POWSIM

THE USER MANUAL FOR VERSION 1.2

Part B - Appendices

WRITTEN BY OLAV BOLLAND

January 3, 2000

APPENDIX A - Listing of computational results

File: *.RES

POWSIM 1.2 USER	ID PA	AGE :	1 15:38	01/07/91	Data files: *.PDT for steam cycle data and *.PGT for gas turbine data.
					The filename of the this output file.
MAIN DATA , FILES : 2PR.PDT	VS	942.5	PGT		Cycle description
OUTPUT FILE: RES.RES					
SUBCRITRICAL CYCLE WITH 3 PRESS	SURE LEVEL((S),	REHEATING	AS PRESSURE LEVEL 2	Generator terminal output
					Generator terminal output
GAS TURBINE OUTPUT		:	288482.000	kW	
STEAM TURBINE OUTPUT		:	205854.500	kW	
TOTAL PUMP WORK		:	4432.382	kW	
GAS TURBINE AUXILIARY POWER		:	1504.000	kW	
STEAM TURBINE AUXILIARY POWER		:	514.636	kW	Power requirement for auxiliary equipment and all pumps
TRANSFORMER LOSS		:	0.000	kW	
TOTAL AUXILIARY POWER CONSUMPTIC	DN	:	6451.018	kW	
NET PLANT OUTPUT		:	487885.500	kW	Temperature in front of HRSG, after supplementary firing if used.
COOLING WATER MASS FLOW		:	11603.900	kg/s	The $(-X)$ means steam guality when the given temperature is negative
INLET EXHAUST TEMPERATURE		:	600.000	C (-X)	
STACK TEMPERATURE		:	92.388	C (-X)	Appears only if the heat transfer area is calculated (item 2 in the CALCULATION & OUTPUT menu)
HRSG HEAT TRANSFER		:	570920.800	kW	Based on fuel lower heating value
TOTAL HRSG HEAT TRANSFER AREA		:	262221.800	m2	Based on fuel lower heating value
GAS TURBINE EFFICIENCY		:	32.377	8	Based on the gas turbine exhaust exergy
NET PLANT EFFICIENCY		:	51.422	8	The plant efficiency if the steam cycle is a reversible process.
STEAM CYCLE EXERGY EFFICIENCY		:	66.865	8	Computational heat balance error. Should be smaller than " 2 kW.
GT POWER+EXHAUST EXERGY DIVIDED	BY Qfuel	:	61.994	8	
STEAM CYCLE HEAT BALANCE ERROR	(OK !)	:	-0.701	kW	

PAGE: 2 15:38 01/07/91

USER ID

EXHAUST GAS DATA

EXHAUST TEMP	PERATURE FRO	OM GAS	TURBINE		:	553.000 C	(-X)		
EXHAUST TEME	PERATURE AFT	FER SUF	PLEMENTA	RY FIRING	3 :	600.000 C	(-X)		
STACK TEMPER	RATURE				:	92.388 C	(-X)		
AVERAGE CP H	FOR EXHAUST	GAS			:	1.117 k	:J/(kg*K)	The average Cp is for information only. POWSIM is calculating with a variable Cp.
WATER VAPOUR	R DEW POINT				:	40.858 0	,		The temparature at which the water vapour in the exhaust gas starts to condense.
EXHAUST GAS	MASS FLOW				: 1	1006.995 k	g/s		
			N2	Ar	C02	02	н20	MW	N2=Nitrogen, Ar=Argon, CO2=Carbondioxide, O2=Oxygen, H2O=Water, MW=Molecular
BEHIND GAS 7	FURBINE (mol	le %)	75.770	0.000	3.160	13.840	7.230	28.350	Gas turbine exhaust gas composition on molecular basis and molecular weight
BEHIND GAS 7	TURBINE (wei	ight%)	74.870	0.000	4.906	15.621	4.603		Gas turbine exhaust gas composition on weight basis
AFTER SUPL.	FIRING (mol	le %)	75.617	0.000	3.356	13.407	7.620	28.325	Gas composition on molecular basis after supplementary firing and molecular weight
AFTER SUPL.	FIRING (wei	ight%)	74.783	0.000	5.215	15.146	4.856		Gas composition on weight basis after supplementary firing
Т	Cp	Н			т	Cp	н		T=temperature EC, Cp=specific heat capacity $kJ/(kg*K)$, H=enthalpy kJ/kg
600.000	1.183	664.3	60		340.000	1.113	365.6	29	
590.000	1.180	652.5	92		330.000	1.110	354.3	90	
580.000	1.178	640.8	24		320.000	1.108	343.3	45	This is a table of temperatures, specific heat capacities $(dH/dT)_P$ and enthalpies for the exhaust
570.000	1.175	629.0	56		310.000	1.105	332.3	88	gas heat recovery.
560.000	1.172	617.2	87		300.000	1.103	321.4	31	
550.000	1.170	605.5	19		290.000	1.100	310.4	75	
540.000	1.167	593.7	51		280.000	1.098	299.5	18	
	-					•			
	-					•			
	•					•			
460.000	1.146	501.3	374		200.000	1.079	212.4	35	
450.000	1.143	489.8	71		190.000	1.077	201.6	91	
440.000	1.140	478.3	67		180.000	1.075	190.9	47	
430.000	1.138	466.8	64		170.000	1.073	180.2	03	
420.000	1.135	455.5	41		160.000	1.072	169.4	59	
410.000	1.132	444.3	02		150.000	1.070	158.7	14	
400.000	1.129	433.0	163		140.000	1.068	147.9	70	
390.000	1.127	421.8	24		130.000	1.066	137.2	26	
380.000	1.124	410.5	85		120.000	1.064	126.5	99	
370.000	1.121	399.3	46		110.000	1.063	116.0	26	
360.000	1.119	388.1	.07		100.000	1.061	105.4	53	
350.000	1.116	376.8	68		90.375	1.060	95.2	77	T=90.375 EC is the stack temperature

USER ID PAGE: 3 15:38 01/07/91

HEAT RECOVERY STEAM GENERATOR

PRESSURE LEVEL #	:	1	
PINCH AT THIS PRESSURE LEVEL	:	10.000	C (-X)
STEAM MASS-FLOW PRODUCED	:	125.633	kg/s
LIVE STEAM PRESSURE	:	110.000	bar
LIVE STEAM TEMPERATURE	:	550.000	C (-X)
ENTHALPY SUPERHEATER OUTLET, LIVE STEAM	:	3489.748	kJ/kg
EVAPORATOR PRESSURE (PRESSURE IN DRUM)	:	115.500	bar
DRUM TEMPERATURE	:	321.732	C (-X)
ENTHALPY EVAPORATOR OUTLET	:	2698.432	kJ/kg
PRESSURE EVAPORATOR INLET	:	121.000	bar
ENTHALPY ECONOMIZER OUTPUT (SUBCOOLED)	:	1455.068	kJ/kg
ECONOMIZER APPROACH TEMPERATURE	:	3.000	C (-X)
PRESSURE ECONOMIZER INLET , AFTER PUMP	:	121.000	bar
TEMPERATURE ECONOMIZER INLET , AFTER PUMP	:	155.612	C (-X)
ENTHALPY ECONOMIZER INLET , AFTER PUMP	:	663.721	kJ/kg
TEMP DIFF SUPERHEATING (EXHAUST/LIVE STEAM)	:	50.000	C (-X)
EXHAUST TEMPERATURE SUPERHEATER INLET	:	600.000	C (-X)
EXHAUST TEMPERATURE SUPERHEATER OUTLET	:	468.328	C (-X)
EXHAUST TEMPERATURE AT PINCH	:	331.732	C (-X)
EXHAUST TEMPERATURE ECONOMIZER OUTLET	:	241.751	C (-X)
PRESSURE LEVEL #	:	2	
REHEATING STAGE			
EXHAUST GAS SPLIT RATIO (REHEATER FRACTION)	:	35.645	00
STEAM MASS FLOW PRODUCED	:	125.633	kg/s
LIVE STEAM PRESSURE	:	30.000	bar
LIVE STEAM TEMPERATURE	:	560.000	C (-X)
ENTHALPY REHEATER OUTLET, LIVE STEAM	:	3590.623	kJ/kg
PRESSURE REHEATER INLET	:	31.500	bar
TEMPERATURE REHEATER INLET	:	366.197	C (-X)
ENTHALPY REHEATER INLET	:	3152.335	kJ/kg
TEMP DIFF SUPERHEATING (EXHAUST/LIVE STEAM)	:	40.000	C (-X)
EXHAUST TEMPERATURE REHEATER INLET	:	600.000	C (-X)
EXHAUST TEMPERATURE REHEATER OUTLET	:	468.328	C (-X)

Pressure level number where #1 is the one with the highest pressure. Temperature difference between the exhaust gas (between evaporator and economiser) and the drum.

Steam pressure leaving the superheater.

Temperature difference between exhaust and steam at the superheater hot end.

A message appears here if the pressure stage is a reheat stage or supercritical stage. From a computational point of view the exhaust gas is splitted between the superheater and the reheater. This is the portion for the reheater.

The reheater inlet is the return from the high-pressure turbine.

USER ID PAGE: 4 15:38 01/07/91

PRESSURE LEVEL #	:	3	
PINCH AT THIS PRESSURE LEVEL	:	15.000	C (-X)
STEAM MASS-FLOW PRODUCED	:	34.304	kg/s
LIVE STEAM PRESSURE	:	5.000	bar
LIVE STEAM TEMPERATURE	:	221.751	C (-X)
ENTHALPY SUPERHEATER OUTLET, LIVE STEAM	:	2901.669	kJ/kg
EVAPORATOR PRESSURE (PRESSURE IN DRUM)	:	5.250	bar
DRUM TEMPERATURE	:	153.690	C (-X)
ENTHALPY EVAPORATOR OUTLET	:	2749.673	kJ/kg
PRESSURE EVAPORATOR INLET	:	5.500	bar
ENTHALPY ECONOMIZER OUTPUT (SUBCOOLED)	:	635.418	kJ/kg
ECONOMIZER APPROACH TEMPERATURE	:	3.000	C (-X)
PRESSURE ECONOMIZER INLET , AFTER PUMP	:	5.500	bar
TEMPERATURE ECONOMIZER INLET , AFTER PUMP	:	104.869	C (-X)
ENTHALPY ECONOMIZER INLET , AFTER PUMP	:	440.099	kJ/kg
TEMP DIFF SUPERHEATING (EXHAUST/LIVE STEAM)	:	20.000	C (-X)
EXHAUST TEMPERATURE SUPERHEATER INLET	:	241.751	C (-X)
EXHAUST TEMPERATURE SUPERHEATER OUTLET	:	237.025	C (-X)
EXHAUST TEMPERATURE AT PINCH	:	168.690	C (-X)
EXHAUST TEMPERATURE ECONOMIZER OUTLET	:	131.090	C (-X)

See explanation on page 4

POWSIM 1.2 USER ID PAGE: 5 15:38 01/07/91

DEAERATOR AND PREHEATING SYSTEM

DEAERATOR TEMPERATURE	:	104.810	C (-X)
DEAERATOR PRESSURE	:	1.200	bar
MASS FLOW INTO DEAERATOR FROM FLASH TANK	:	3.831	kg/s
PRESSURE LOSS IN PIPE FROM FLASH TANK	:	0.200	bar
TEMPERATURE DIFFERENCE FEEDWATER/DEAERATOR	:	10.000	C (-X)
EXHAUST TEMPERATURE FEEDWATER HEATER INLET	:	131.090	C (-X)
EXHAUST TEMPERATURE FEEDWATER HEATER OUTLET	:	92.388	C (-X)
FEEDWATER HEATER INLET PRESSURE	:	5.200	bar
FEEDWATER HEATER OUTLET PRESSURE	:	1.200	bar
WATER TEMPERATURE FEEDWATER HEATER INLET	:	60.000	C (-X)
WATER TEMPERATURE FEEDWATER HEATER OUTLET	:	94.810	C (-X)
MASS FLOW CIRCULATED IN FEEDWATER HEATER	:	78.775	kg/s
FLASH TANK PRESSURE	:	1.400	bar
STEAM FRACTION IN FLASH TANK	:	7.924	8
STEAM MASS FLOW OUT OF FLASH TANK	:	3.831	kg/s
WATER MASS FLOW OUT OF FLASH TANK	:	44.514	kg/s
MIXING TEMPERATURE BEFORE FEEDWATER HEATER	:	46.513	C (-X)

The water in the deaerator is saturated, and therefore this is the saturation temperature and this is the saturation pressure. Steam flow rate required to obtain saturation state in deaerator. The water temperature at the preheater exit is below saturation temperature.

The feedwater inlet temperature - should be above the exhaust gas dew point.

To obtain the required feedwater inlet temperature, hot water is recirculated.

The liquid fraction from the flash is mixed with the condensate.

POWSIM 1.2 USER ID PAGE: 6 15:38 01/07/91

HRSG HEAT TRANSFER

Heat transfer in the heat recovery steam generator between exhaust gas and steam/water

PRESSURE LEVEL #		:	1	
HEAT TRANSFERRED	IN SUPERHEATER	:	99415.2	kW
HEAT TRANSFERRED	IN EVAPORATOR	:	155698.4	kW
HEAT TRANSFERRED	IN ECONOMIZER	:	99419.0	kW
PRESSURE LEVEL #		:	2	
HEAT TRANSFERRED	IN REHEATER	:	55063.3	kW
PRESSURE LEVEL #		:	3	
HEAT TRANSFERRED	IN SUPERHEATER	:	5214.0	kW
HEAT TRANSFERRED	IN EVAPORATOR	:	74151.4	kW
HEAT TRANSFERRED	IN ECONOMIZER	:	40681.3	kW
HEAT TRANSFERRED	IN FEEDWATER HEATER	:	41278.2	kW
SUM HRSG HEAT TRA	NSFERRED	:	570920.8	kW

USER ID PAGE: 7 15:38 01/07/91 POWSIM 1.2

HRSG HEAT TRANSFER AREA

The heat transfer are and LMTD are calculated with variable Cp for bothcold and hot fluid.

AREA U-VALUE LMTD UATamb/W UATamb/W is a dimensionless quantity expressing the required UA per cycle power ouput. _____ PRESSURE LEVEL # : 1 SUPERHEATER : 27777. m2 50.0 W/(m2*K) 71.58 C (-X) 10.593 EVAPORATOR : 59330. m2 50.0 W/(m2*K) 52.49 C (-X) 22.626 ECONOMIZER : 58249. m2 50.0 W/(m2*K) 34.14 C (-X) 22.214 PRESSURE LEVEL # : 2 REHEATER : 15893. m2 50.0 W/(m2*K) 69.29 C (-X) 6.061 PRESSURE LEVEL # : 3 SUPERHEATER : 2321. m2 50.0 W/(m2*K) 44.93 C (-X) 0.885 : 37216. m2 50.0 W/(m2*K) 39.85 C (-X) 14.192 EVAPORATOR ECONOMIZER : 37368. m2 50.0 W/(m2*K) 21.77 C (-X) 14.251 FEEDWATER HEATER : 24068. m2 50.0 W/(m2*K) 34.30 C (-X) 9.179 TOTAL HEAT TRANSFER AREA: 262222. m2 43.54 C (-X) 18.804 AREA/MWnet : 763.061 m2/MW

In the rightmost column the UATamb/W are percentages of the total UATamb/W.

This is the total UATamb/W for the cycle. This is the required heat transfer area per MW of steam cycle output.

STEAM TURBINE

TURBINE CASING #.		:	1	
GROSS WORK FOR THIS T	URBINE CASING	:	42075.540	kW
FRACTION OF STEAM TUR	BINE WORK	:	20.073	\$
ENTHALPY DROP		:	334.919	kJ/kg
INNER EFFICIENCY		:	92.000	8
MASS FLOW		:	125.629	kg/s
MASS FLOW THROUGH SEA	LS	:	0.004	kg/s
INLET STATE	PRESSURE	:	104.500	bar
	TEMPERATURE	:	546.766	C (-X)
	ENTHALPY	:	3487.254	kJ/kg
	VOLUME	:	0.03379	m3/kg
	ENTROPY	:	6.722	kJ/(kg*K)
OUTLET STATE	PRESSURE	:	32.445	bar
	TEMPERATURE	:	367.001	C (-X)
	ENTHALPY	:	3152.335	kJ/kg
	VOLUME	:	0.08612	m3/kg
	ENTROPY	:	6.768	kJ/(kg*K)
TURBINE CASING #.		:	2	
TURBINE CASING #. GROSS WORK FOR THIS T	URBINE CASING	: :	2 59809.730	kW
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR	URBINE CASING BINE WORK	: : :	2 59809.730 28.533	kW %
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP	URBINE CASING BINE WORK	: : :	2 59809.730 28.533 476.083	k₩ % kJ/kg
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY	URBINE CASING BINE WORK	: : : :	2 59809.730 28.533 476.083 88.000	k₩ % kJ/kg %
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW	URBINE CASING BINE WORK	: : : :	2 59809.730 28.533 476.083 88.000 125.629	kW % kJ/kg % kg/s
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA	URBINE CASING BINE WORK LS	: : : : :	2 59809.730 28.533 476.083 88.000 125.629 0.004	kW % kJ/kg % kg/s kg/s
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK LS PRESSURE	: : : : :	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000	kW % kJ/kg % kg/s kg/s bar
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK LS PRESSURE TEMPERATURE	: : : : : :	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764	kW % kJ/kg % kg/s kg/s bar C (-X)
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BBINE WORK LS PRESSURE TEMPERATURE ENTHALPY	: : : : : : : :	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381	kW % kJ/kg % kg/s kg/s bar C (-X) kJ/kg
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK LS PRESSURE TEMPERATURE ENTHALPY VOLUME	:::::::::::::::::::::::::::::::::::::::	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381 0.13972	kW % kJ/kg % kg/s bar C (-X) kJ/kg m3/kg
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK LS PRESSURE TEMPERATURE ENTHALPY VOLUME ENTROPY	:::::::::::::::::::::::::::::::::::::::	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381 0.13972 7.447	kW % kJ/kg % kg/s kg/s bar C (-X) kJ/kg m3/kg kJ/(kg*K)
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK PRESSURE TEMPERATURE ENTHALPY VOLUME ENTROPY PRESSURE	: : : : : : : : : : : : : : : : : : : :	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381 0.13972 7.447 4.825	kW % kJ/kg kg/s kg/s bar C (-X) kJ/kg m3/kg kJ/(kg*K) bar
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK PRESSURE TEMPERATURE ENTHALPY VOLUME ENTROPY PRESSURE TEMPERATURE	: : : : : : : : : : : : :	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381 0.13972 7.447 4.825 322.830	<pre>kW % kJ/kg % kg/s kg/s bar C (-X) kJ/kg m3/kg kJ/(kg*K) bar C (-X)</pre>
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK PRESSURE TEMPERATURE ENTHALPY VOLUME ENTROPY PRESSURE TEMPERATURE ENTHALPY	:::::::::::::::::::::::::::::::::::::::	2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381 0.13972 7.447 4.825 322.830 3112.298	<pre>kW % kJ/kg % kg/s bar C (-X) kJ/kg m3/kg kJ/(kg*K) bar C (-X) kJ/kg</pre>
TURBINE CASING #. GROSS WORK FOR THIS T FRACTION OF STEAM TUR ENTHALPY DROP INNER EFFICIENCY MASS FLOW MASS FLOW THROUGH SEA INLET STATE	URBINE CASING BINE WORK PRESSURE TEMPERATURE ENTHALPY VOLUME ENTROPY PRESSURE TEMPERATURE ENTHALPY VOLUME		2 59809.730 28.533 476.083 88.000 125.629 0.004 27.000 557.764 3588.381 0.13972 7.447 4.825 322.830 3112.298 0.56427	<pre>kW % kJ/kg % kg/s bar C (-X) kJ/kg m3/kg kJ/(kg*K) bar C (-X) kJ/kg m3/kg</pre>

The expansion path is divided into sections which corresponds to the HRSG pressure levels.

Enthalpy drop from inlet to outlet of turbine section. Isentropic efficiency for the section.

The portion of the section inlet mass flow which exergy is not converted to work. Section inlet state (stagnation)

Section outlet state (stagnation)

TURBINE CASING #.	:	3	
GROSS WORK FOR THIS TURBINE CASING	:	107729.700	kW
FRACTION OF STEAM TURBINE WORK	:	51.394	00
ENTHALPY DROP	:	692.757	kJ/kg
INNER EFFICIENCY	:	87.000	00
MASS FLOW	:	159.933	kg/s
MASS FLOW THROUGH SEALS	:	0.003	kg/s
INLET STATE PRESSURE	:	4.650	bar
TEMPERATURE	:	300.510	C (-X)
ENTHALPY	:	3066.669	kJ/kg
VOLUME	:	0.56292	m3/kg
ENTROPY	:	7.498	kJ/(kg*K)
OUTLET STATE PRESSURE	:	0.040	bar
TEMPERATURE	:	-0.926	C (-X)
ENTHALPY	:	2373.912	kJ/kg
VOLUME	:	32.21883	m3/kg
ENTROPY	:	7.878	kJ/(kg*K)

POWSIM 1.2 USER ID PAGE: 10 15:38 01/07/91

TURBINE CASING # : 3 (DETAILS)

STAGE #	1	2	3	4	5		The low pr
INLET PRESS :	4.65	0.20	0.18	0.14	0.09	bar	Stage inle
OUTLET PRESS :	0.20	0.18	0.14	0.09	0.04	bar	Stage outl
INLET TEMPER :3	00.510	-0.975	-0.970	-0.962	-0.951	C (-X)	Stage inle
OUTLET TEMPER:	-0.975	-0.970	-0.961	-0.947	-0.926	C (-X)	Stage outl
INLET ENTHAL :	3066.7	2549.9	2533.0	2505.1	2462.4	kJ/kg	Stage inle
OUTLET ENTHAL:	2549.9	2533.0	2503.2	2453.2	2373.9	kJ/kg	Stage outl
INLET ENTROPY:	7.50	7.73	7.74	7.76	7.82	kJ/(kg*K)	Stage inle
OUTLET ENTRO :	7.73	7.74	7.75	7.79	7.88	kJ/(kg*K)	Stage outl
MASS FLOW :	159.93	159.93	159.93	159.80	159.15	kg/s	Mass flow
EFFICIENCY :	87.00	85.55	85.11	84.37	83.46	8	Isentropic
WORK :	82646.	2705.	4768.	8297.	14089.	kW	Gross powe
DRAINED :	0.000	0.000	0.000	0.134	0.648	kg/s	Water drai
FRACTION OUT :	0.000	0.000	0.000	2.151	7.628	8	The fracti
LEAVING LOSS K	J/KG , KW		: 30.0	000	4774.530		The low pr
TOTAL WORK LOW	PRESSURE 1	FURBINE	: 107729.	700 kW			
MECHANICAL & GE	NERATOR EF	FFICIENCY	: 98.2	206 %			
TOTAL WORK OUTP	UT STEAM 1	FURBINE	: 205854.	500 kW			Steam turb

The low pressure turbine (last turbine section) is calculated in 5 stages
Stage inlet pressure
Stage outlet pressure
Stage inlet temperature
Stage outlet temperature
Stage inlet enthalpy
Stage outlet enthalpy
Stage inlet entropy
Stage outlet entropy
Mass flow entering each stage
Isentropic efficiency for each stage. The efficiency is corrected for moisture.
Gross power output for each stage
Water drainage in front of each computational stage
The fraction of the moisture that is drained
The low pressure turbine leaving loss - specific and total

Steam turbine generator terminal power output

USER ID PAGE: 11 15:38 01/07/91

PUMPS

PRESSURE LEVEL #	:	1	
FEEDWATER PUMP WORK	:	2094.084	kW
ISENTROPIC EFFICIENCY	:	82.000	00
MECHANICAL EFFICIENCY	:	92.000	00
PUMP INLET PRESSURE	:	5.250	bar
PUMP INLET ENTHALPY	:	648.386	kJ/kg
PUMP OUTLET PRESSURE	:	121.000	bar
PUMP OUTLET ENTHALPY	:	663.721	kJ/kg
PUMP PRESSURE INCREASE	:	115.750	bar
CIRCULATION PUMP WORK	:	553.001	kW
PRESSURE LEVEL #	:	3	
FEEDWATER PUMP WORK	:	130.075	kW
ISENTROPIC EFFICIENCY	:	82.000	8
MECHANICAL EFFICIENCY	:	92.000	8
PUMP INLET PRESSURE	:	1.200	bar
PUMP INLET ENTHALPY	:	439.524	kJ/kg
PUMP OUTLET PRESSURE	:	5.500	bar
PUMP OUTLET ENTHALPY	:	440.099	kJ/kg
PUMP PRESSURE INCREASE	:	4.300	bar
CIRCULATION PUMP WORK	:	4.979	kW
COOLING WATER PUMP WORK	:	1508.937	kW
ISENTROPIC EFFICIENCY	:	82.000	8
MECHANICAL EFFICIENCY	:	92.000	8
CONDENSATE PUMP WORK	:	128.072	kW
ISENTROPIC EFFICIENCY	:	82.000	8
MECHANICAL EFFICIENCY	:	92.000	8
TOTAL PUMP WORK	:	4432.382	kW

Feedwater pump (high pressure)

Feedwater pump (low pressure)

DOMOTM 1 0	TIGED TO	DAGE: 10	1 5 . 20	01/07/01
POWSIM 1.2	USER ID	PAGE · 12	12.38	01/0//91

CONDENSER

CONDENSING TEMPERATURE	:	28.983	C (-X)
COOLING WATER PRESSURE LOSS	:	10.000	METER H20
COOLING WATER PRESSURE LOSS	:	0.981	bar
TERMINAL TEMPERATURE DIFFERENCE	:	11.483	C (-X)
INLET COOLING WATER TEMPERATURE	:	10.000	C (-X)
OUTLET COOLING WATER TEMPERATURE	:	17.500	C (-X)
COOLING WATER MASS FLOW	:	11603.900	kg/s
STEAM MASS FLOW TO CONDENSER	:	159.936	kg/s
CONDENSER UA	:	24350.344	kW/K
HEAT TRANSFERRED IN CONDENSER	:	363310.600	kW

The temperature at which the steam from the low pressure turbine condenses. Condenser hot end temperature difference.

Heat transfer divided by the log mean temperature difference

APPENDIX B - Results from heat balance and exergy calculations

File: *.XRY

HEAT BALANCE FOR STEAM CYCLE Exhaust gas entering the heat recovery steam generator (HRSG) HEAT RECOVERY STEAM GENERATOR..... Exhaust gas to stack EXHAUST ENERGY IN Feedwater coming from the condenser 653192 100 -82271 590 EXHAUST ENERGY OUT Live steam going to the turbine at pressure level 1 19429.480 Live steam going to the turbine at pressure level 2 (reheat steam for this case) FEEDWATER IN LIVE STEAM OUT STAGE #1 -438426.400 Steam return from high pressure turbine which is to be reheated LIVE STEAM OUT STAGE #2 -451099.600 Live steam going to the turbine at pressure level 3 (low pressure steam for this case) STEAM IN FROM REHEAT 396036.300 Enthalpy increase at pressure level 1 (pump work multiplied with mechanical efficiency) LIVE STEAM OUT STAGE #3 -99538 020 Enthalpy increase at pressure level 1 (pump work multiplied with mechanical efficiency) Enthalpy increase at pressure level 3 (pump work multiplied with mechanical efficiency) FEEDWATER PUMP #1 1926.557 CIRCULATION PUMP #1 508 761 Enthalpy increase at pressure level 3 (pump work multiplied with mechanical efficiency) Enthalpy increase at pressure level 1 (pump work multiplied with mechanical efficiency) FEEDWATER PUMP #3 119.669 4 580 Heat balance check for the HRSG. This number is usually less than 2 kW if the calculation was successful CIRCULATION PUMP #3 CONDENSATE PUMP 117.826 BALANCE FOR HRSG -0 354 -0.0000619 % Sum of steam coming from the HRSG Steam going back to the HRSG for reheating TURBINE..... LIVE STEAM IN 989064.100 Total heat loss from live steam pipes connecting the HRSG and steam turbine REHEAT STEAM TO HRSG -396036.300 HEAT LOSS FROM LIVE STEAM PIPING -667.400 Water extractions from the steam turbine HEAT LOSS FROM TURBINE -5.177 Steam leaving the low pressure turbine -147.430Mechanical losses from the steam turbine and generator losses EXTRACTIONS FROM LP-TURBINE OUT OF LP-TURBINE -382592 700 Net power generated by the steam turbine -3760.490 Heat balance check for the steam turbine. MECH. + GENERATORLOSS NET POWER -205854 500 BALANCE FOR TURBINE 0.009 0.0000009 % Steam from the low pressure turbine CONDENSER..... Water extractions from the steam turbine, which are mixed in the condenser pot OUT OF LP-TURBINE 382592 700 Cooling water entering the condenser EXTRACTIONS FROM LP-TURBINE 147.430 Cooling water leaving the condenser - second number is the heat absorbed by the cooling water 490166.600 Condensate leaving the condenser and going to the HRSG COOLING WATER IN COOLING WATER OUT -853477 300 363310.600 Heat balance check for the condenser -19429.480CONDENSATE OUT BALANCE 0.044 0.0000114 % EXERGY ANALYSIS FOR THE HEAT RECOVERY STEAM GENERATOR FVFDCV DEDGENTRACE

	EXERCI	FERCENTAGE
EXERGY IN EXHAUST	300469.2	100.000
FEEDWATER EXERGY	180.2	0.060
REHEAT RETURN	150737.5	50.167
PUMP WORK IN	2910.2	0.969
SUPERHEATER #1	-7016.1	2.335

All numbers are in kW. Different control volumes are considered (HRSG, steam turbine and condenser). Negative numbers are outgoing heat flows from the control volumes and positive numbers for ingoing heat flows.

EVAPORATOR #1	-9038.9	3.008
ECONOMIZER #1	-4679.6	1.557
CIRCULATION PUMP #1	-89.2	0.030
FEEDWATER PUMP #1	-403.1	0.134
REHEATER	-2780.6	0.925
SUPERHEATER #3	-575.7	0.192
EVAPORATOR #3	-5016.2	1.669
ECONOMIZER #3	-1653.8	0.550
CIRCULATION PUMP #3	-1.0	0.000
FEEDWATER PUMP #3	-23.8	0.008
FEEDWATER PREHEATER & CONDENSATE PUMP	-3666.4	1.220
FLASH TANK LOSS	-343.0	0.114
DEAREATOR LOSS	-157.3	0.052
FEEDWATER MIXING LOSS	-1253.6	0.417
STACK LOSS	-9471.6	3.152
TOTAL HRSG LOSSES	46169.6	15.366
LIVE STEAM EXERGY STAGE #1	-195947.2	65.214
LIVE STEAM EXERGY STAGE #2	-183321.0	61.012
LIVE STEAM EXERGY STAGE #3	-28859.3	9.605
BALANCE FOR HRSG	0.0	0.000

All numbers are in kW. The considered control volume is the HRSG. Negative numbers are outgoing exergy flows from the control volume and positive numbers for ingoing exergy flows.

Exhaust gas entering the HRSG. Defined as 100%. Feedwater coming from the condenser Steam return from the high pressure turbine which is to be reheated Total pump work (feedwater pumps, circulation pumps and condensate pump) Exergy loss for superheater at pressure level 1 Exergy loss for evaporator at pressure level 1 Exergy loss for economizer at pressure level 1 Exergy loss for circulation pump at pressure level 1 Exergy loss for feedwater pump at pressure level 1 Exergy loss reheater Exergy loss for superheater at pressure level 3 Exergy loss for evaporator at pressure level 3 Exergy loss for economizer at pressure level 3 Exergy loss for circulation pump at pressure level 3 Exergy loss for feedwater pump at pressure level 3 Exergy loss for feewater preheater and condensate pump Exergy loss for flashing Exergy loss for deaeration Exergy loss for the mixing of condensate and liquid fraction from the flash tank Exergy loss for the rejection of exhaust gas to the ambient Sum exergy losses for HRSG control volume Exergy content live steam at pressure level 1 Exergy content live steam at pressure level 2 (reheat steam in this case) Exergy content live steam at pressure level 3

Exergy balance check for HRSG volume

EXERGY ANALYSIS FOR TURBINE

All numbers are in kW. The considered control volume is the steam turbine sections. Negative numbers are outgoing exergy flows from the control volume and positive numbers for ingoing exergy flows.

		EXERGY	PERCENTAGES	
PRESSURE STAGE #	1			High pressure section
EXERGY IN LIVE STEAM		195947.2	65.214	Exergy entering the steam turbine section
LOSS IN LIVE STEAM PIPING		-1001.9	0.333	Exergy loss in live steam piping due to heat loss and pressure loss
LOSS OF STEAM TO SEALS		-5.8	0.002	Exergy loss for the steam which goes through the seals
EXERGY BEFORE EXPANSION		194939.4	64.878	Exergy content at the turbine section entrance
INTERNAL LOSSES IN TURBINE		-1662.6	0.553	Exergy loss when expanding the steam in the turbine
EXERGY AFTER EXPANSION		151201.3	50.322	Exergy content at the turbine section exit
MECH. AND GENERATOR		-754.8	0.251	Exergy loss because of mechanical losses and generator losses
TOTAL LOSSES		3425.2	1.140	Sum of exergy losses for the turbine section
NET POWER (STAGE)		-41320.7	13.752	Net power output from turbine section
BALANCE FOR SECTION		0.0	0.000	Exergy balance check for turbine section 1
PRESSURE STAGE #	2			Reheat section
EXERGY IN LIVE STEAM		183321.0	61.012	Exergy entering the steam turbine section
LOSS IN LIVE STEAM PIPING		-1914.4	0.637	Exergy loss in live steam piping due to heat loss and pressure loss
LOSS OF STEAM TO SEALS		-5.4	0.002	Exergy loss for the steam which goes through the seals
EXERGY BEFORE EXPANSION		181401.2	60.373	Exergy content at the turbine section entrance
INTERNAL LOSSES IN TURBINE		-4051.6	1.348	Exergy loss when expanding the steam in the turbine
EXERGY AFTER EXPANSION		117539.8	39.119	Exergy content at the turbine section exit
MECH. AND GENERATOR		-1073.0	0.357	Exergy loss because of mechanical losses and generator losses
TOTAL LOSSES		7044.4	2.344	Sum of exergy losses for the turbine section
NET POWER (STAGE)		-58736.7	19.548	Net power output from turbine section
BALANCE FOR SECTION		0.0	0.000	Exergy balance check for turbine section 2 (reheat section for this case)

PRESSURE STAGE #	3		Low pressure section
EXERGY IN LIVE STEAM	28859.3	9.605	Exergy entering the steam turbine section from the HRSG
STEAM FROM PRESSURE LEVEL ABOVE	117539.8	39.119	Exergy entering the steam turbine section from the previous section
STEAM FROM SEALS IN	3.5	0.001	Exergy entering the steam turbine section from the seals of the previous section
LOSS IN LIVE STEAM PIPING	-1243.4	0.414	Exergy loss in live steam piping due to heat loss and pressure loss
LOSS OF STEAM TO SEALS	-2.9	0.001	Exergy loss for the steam which goes through the seals
EXERGY BEFORE EXPANSION	145156.3	48.310	Exergy content at the turbine section entrance
INTERNAL LOSSES IN TURBINE	-15884.8	5.287	Exergy loss when expanding the steam in the turbine
EXERGY AFTER EXPANSION	16852.9	5.609	Exergy content at the turbine section exit
STAGE LOSS #1 LP-TURBINE	-10678.9	3.554	Exergy loss for stage 1 of the turbine section
STAGE LOSS #2 LP-TURBINE	-398.6	0.133	Exergy loss for stage 2 of the turbine section
STAGE LOSS #3 LP-TURBINE	-738.8	0.246	Exergy loss for stage 3 of the turbine section
EXTRACTION #2 LP-TURBINE	-1.2	0.000	Exergy loss for water extraction
STAGE LOSS #4 LP-TURBINE	-1398.7	0.465	Exergy loss for stage 4 of the turbine section
EXTRACTION #3 LP-TURBINE	-3.4	0.001	Exergy loss for water extraction
STAGE LOSS #5 LP-TURBINE	-2440.9	0.812	Exergy loss for stage 5 of the turbine section
LEAVING LOSS	-4688.9	1.561	Exergy loss becuase of the leaving loss
MECH. AND GENERATOR	-1932.7	0.643	Exergy loss because of mechanical losses and generator losses
TOTAL LOSSES	19063.8	6.345	Sum of exergy losses for the turbine section
NET POWER (STAGE)	-105797.0	35.211	Net power output from turbine section
BALANCE FOR SECTION	0.0	0.000	Exergy balance check for turbine section 3

EXERGY ANALYSIS FOR CONDENSER.....(*)=LOSSES

STEAM FROM LP-TURBIN EXIT	17075.3	5.683	Exergy content of steam coming from the low pressure turbine
STEAM FROM EXTRACTIONS	4.7	0.002	Exergy content of water from the steam turbine water extractions
COOLING WATER IN	0.0	0.000	Exergy of the cooling water - zero if the temperature for ambient water equals that of the cooling water
COOLING WATER PUMP WORK	1508.9	0.502	
COOLING WATER PUMP LOSS *	-374.8	0.125	Exergy loss for cooling water pump
HEAT TRANSFER LOSS *	-19423.4	6.464	Condenser heat transfer loss
CONDENSER EXERGY REJECTION *	1384.9	-0.461	Exergy loss when rejecting the cooling water at a temperature above the ambient
CONDENSATE OUT	-180.2	0.060	Exergy content of the condensate going to the HRSG
TOTAL CONDENSER LOSS	18413.3	6.128	Sum exergy losses for condenser
BALANCE	-4.6	-0.025	Exergy balance check for condenser
EXERGY FROM GAS TURBINE	261942.8	87.178	Exergy content of exhaust gas leaving the gas turbine
EXERGY IN SUPPL. FUEL (LHV)	57798.2	19.236	Exergy of the fuel in supplementary firing - defined equal to the lower heating value
EXERGY AFTER SUPPL. FIRING	300469.2	100.000	Exergy content of exhaust gas entering the HRSG (defined as 100%)
EXERGY LOSS SUPPL. FIRING	19271.8	6.414	Exergy loss in supplementary firing
EFFICIENCY OF SUPL. FIRING	66.7		The exergy efficiency of converting fuel to heat by suplementary firing

EXERGY LOSS SUMMARY

This is a summary ("easy-to-read") of exergy losses without all the details

	EXERGY	
EXHAUST GAS EXERGY	300469.2	Exergy content of exhaust gas entering the HRSG
HRSG HEAT TRANSFER LOSSES	-34427.2	Sum of HRSG heat transfer losses and pressure drop losses
DEAERATOR-FLASHTANK-FEEDWATER MIXING	-1753.9	Exergy losses becuase of flashing and mixing
STACK LOSS	-9471.6	Exergy loss for the rejection of exhaust gas to the ambient
HRSG PUMPS	-517.0	Sum of exergy losses for feedwater pumps, circulation pumps and condensate pump
TURBINE LOSSES LEVEL #1	-2670.3	Exergy losses for steam turbine section 1
TURBINE LOSSES LEVEL #2	-5971.5	Exergy losses for steam turbine section 2
TURBINE LOSSES LEVEL #3	-21820.0	Exergy losses for steam turbine section 3
MECHANICAL AND GENERATOR LOSS	-3760.5	Exergy loss for mechanical losses and generator losses
CONDENSER LOSSES	-18413.3	Exergy losses for condenser
AUXILIARY POWER CONSUMPTION	-514.6	Auxiliary power consumption is regarded as an exergy loss
TRANSFORMER LOSS FOR STEAM CYCLE	0.0	Exergy loss for converting electricity to a higher voltage
SUM LOSSES	99319.8	Sum of above exergy losses
NET WORK (Steam Cycle)	200907.5	Net power output at the steam turbine generator terminals
EXERGY EFFICIENCY	66.865	Ratio between power output and exergy content of the exhaust gas entering the HRSG

MAIN EXERGY LOSSES SORTED BY SIZE

	EXERGY PERCEN		ITAGES	
HRSG HEAT TRANSFER LOSSES	34427.2	11.458	34.663	
TURBINE LOSSES LEVEL #3	21820.0	7.262	21.969	
CONDENSER LOSSES	18413.3	6.128	18.539	
STACK LOSS	9471.6	3.152	9.536	
TURBINE LOSSES LEVEL #2	5971.5	1.987	6.012	
MECHANICAL AND GENERATOR LOSS	3760.5	1.252	3.786	
TURBINE LOSSES LEVEL #1	2670.3	0.889	2.689	
DEAERATOR-FLASHTANK-FEEDWATER MIXING	1753.9	0.584	1.766	
HRSG PUMPS	517.0	0.172	0.521	
AUXILIARY POWER CONSUMPTION	514.6	0.171	0.518	
SUM LOSSES	99319.8	33.055	100.000	

Column 1: exergy losses

Column 2: exergy loss as percentage of exergy content of the exhaust gas entering the HRSG Column 3: exergy loss as percentage of the total exergy losses

- Sum of HRSG heat transfer losses and pressure drop losses
- Exergy losses for steam turbine section 3
- Exergy losses for condenser
- Exergy loss for the rejection of exhaust gas to the ambient
- Exergy losses for steam turbine section 2
- Exergy loss for mechanical losses and generator losses
- Exergy losses for steam turbine section 1
- Exergy losses becuase of flashing and mixing
- Sum of exergy losses for feedwater pumps, circulation pumps and condensate pump
- Auxiliary power consumption is regarded as an exergy loss

INDEX

computational results condenser'12 preheating deaerator & system'6 exhaust gas data'3 hrsg'4 HRSG heat transfer'7 HRSG heat transfer area'8 pumps'11 steam turbine'9 summary'2 exergy balance condenser'5 steam turbine'4 supplementary firing'5 exergy loss summary'6 files *.PDT'2 *.PGT'2 *.RES'1 *.XRY'1 heat balance'2