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CAUSATION IS THE
TRANSFER OF INFORMATION

1. Introduction

Four general approaches to the
metaphysics of causation are current in
Australasian philosophy. One is a
development of the regularity theory
(attributed to Hume) that uses counterfactuals
(Lewis, 1973; 1994). A second is based in the
relations of universals, which determine laws,
which in turn determine causal interactions of
particulars (with the possible exception of
singular causation, Armstrong, 1983). This
broad approach goes back to Plato, and was
also held in this century by Russell, who like
Plato, but unlike the more recent version of
Armstrong (1983), held there were no
particulars as such, only universals. A third
view, originating with Reichenbach and
revived by Salmon (1984), holds that a causal
process is one that can be marked. This view
relies heavily on ideas about the transfer of
information and the relation of information to
probability, but it also needs uneliminable
counterfactuals. The fourth view  was
developed recently by Dowe (1992) and
Salmon (1994). It holds that a causal process
involves the transfer of a non-zero valued
conserved quantity. A considerable advantage
of this approach over the others is that it
requires neither counterfactuals nor abstracta
like universals to explain causation.

The theory of causation offered here is
a development of the mark approach that
entails Dowe’s conserved quantity approach.
The basic idea is that causation is the transfer
of a particular token of a quantity of
information from one state of a system to
another. Physical causation is a special case in
which physical information instances are
transferred from one state of a physical
system to another. The approach can be
interpreted as a Universals approach
(depending on ones approach to mathematical

objects and qualities), and it sheds some light
on the nature of the regularity approach.1

After motivating and describing this
approach, I will sketch how it can be used to
ground natural laws and how it relates to the
four leading approaches, in particular how
each can be conceived as a special case of my
approach. Finally, I will show how my
approach satisfies the requirements of
Humean supervenience. The approach relies
on concrete particulars and computational
logic alone, and is the second stage of
constructing a minimal metaphysics, started
in (Collier, 1996a).

The approach is extraordinarily simple
and intuitive, once the required technical
apparatus is understood. The main problems
are to give a precise and adequate account of
information, and to avoid explicit reference to
causation in the definition of information
transfer. To satisfy the first requirement, the
approach is based in computational
information theory. It applies to all forms of
causation, but requires a specific
interpretation of information for each
category of substance (assuming there is more
than one). For the scientifically important
case of physical causation I use Schrödinger’s

1 Jack Smart suggested to me that my approach might
be a regularity approach in the wider sense that
includes his own account of causation. On my account
all detectable causation involves compressible
relations between cause and effect (§4 below).
Inasmuch as, given both compressibility and all other
evidence being equal, it is almost always more
parsimonious to assume identity of information token
rather than coincidence (and never the opposite),
compressibility almost always justifies the inference
to causation. If meaning is determined by verification
conditions (which I doubt) then my theory is
indistinguishable from a regularity theory in Smart’s
wide sense, since the exceptions are not decidable on
the basis of any evidence (see §8.1 below for further
discussion.
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Negentropy Principle of Information (NPI).
Causation can be represented as a
computational process dynamically embodied
in matter or whatever other "stuff" is
involved, in which at least some initial
information is retained in each stage of the
process.2 The second requirement, avoiding
circularity, is achieved by defining causation
in terms of the identity of information tokens.

2. The Role of Form in Causal
Explanations

Suppose we want to ensure that
someone is the person we believe them to be.
We typically rely on distinguishing features
such as their face, voice, fingerprints or
DNA. These features are complex enough
that they can distinguish a person from other
people at any given time, and are stable
enough that they reliably belong to the same
person at different times (science fiction
examples excepted). However, if the person
should have a dopplegänger (a qualitatively
identical counterpart), these indicators would
not be enough for identification; we would
need to know at least something of the

spatiotemporal history of the particular
instantiations of the qualities of the person
we wish to identify. Sameness of person (or
at least of their body) requires a causal
connection between earlier stages and later
stages. We can recognise this connection
through identifying features and
spatiotemporal continuity. The body transmits
its own form from one spatiotemporal
location to another. I will argue that not only
is this sort of transmission an evidential basis
for causal connection, but it can be used to
define causal connection itself.

Central to my account is the
propagation of form, as measured by
information theoretic methods. This is not so
foreign to traditional and contemporary views
of causation as it might seem. By form, I
mean the integrated determinate particular
concrete qualities of any thing, of any kind.3

Understanding the propagation of form is
necessary for understanding contemporary
science. If the reader finds this
uncontroversial, I suggest they skip directly to
§3.

Form includes the geometrised
dynamics of grand cosmological theories like
geometrodynamics (harking back to Platonic
and Cartesian attempts to geometrise
dynamics, Graves, 1971) and geometry and
symmetry used to explain much of quantum
particle physics (Feynman, 1965). It also
includes the more common motions and
forces of classical mechanics, as expressed in
the Hamiltonian formulation with generalised
coordinates.4 Treatments of complex physical

2 Causal connection is necessary in the same
way that a computation or deduction is
necessary, but it is not necessary in the sense
that it is impossible for things to be
otherwise. The necessity depends on
contingent conditions analogous to the
premises of a valid argument (see §4 below).
I proposed this kind of necessity for laws in
(Collier, 1996a). Something that is necessary
in this way cannot be false or other than it is,
but is contingently true; i.e. it is contingent
that it is. This theory of causation fills out the
uninterpreted use of ‘causation’ in concrete
particular instances in (Collier, 1996a), and is
part of a project to produce a minimal
metaphysics depending on logic, mathematics
and contingent concrete particulars alone.

3 I will give a more precise, mathematical
characterisation of form in §3 below. My
definition of form may seem very broad. It is.
Naturally, if there are any exceptions, my
account fails for that sort of case, but I
believe there are none, nor can there be.

4 On generalised coordinates, see (Goldstein,
1980). On the embedding of classical
mechanics as well as more recent non-
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phenomena such as Bénard cell convection
and other phenomena of fluid dynamics rely
on knowledge of the form of the resulting
convection cells to solve the equations of
motion (Chandreshankar, 1961; Collier,
Banerjee and Dyck, in press). In more highly
nonlinear phenomena, standard mechanical
techniques are much harder to apply, and
even more knowledge of the idiosyncrasies of
the form of particular phenomena are
required to apply mechanical methods. Even
in mathematics, qualitative formal changes
have been invoked to explain "catastrophes"
(Thom, 1975). Sudden changes are common
in phase transitions in everyday complex
phenomena like the weather, as well as in
highly nonlinear physical, chemical,
developmental, evolutionary, ecological,
social and economic processes. 

In biology, causal explanations in terms
of  the dynamics of form are especially
common. Because of the complexity of
macromolecules and their interactions, it
seems likely that biologically oriented
chemists will need to rely on form of
molecules indefinitely. This has led to
information theoretic treatments of
biochemical processes (Holzmüller, 1984;
Küppers, 1990; Schneider, 1995). Even the
reduction of population genetics to molecular
genetics has failed to fulfill its promise
because of many-many relations between the
phenotypic traits of population biology and
molecular genes. Although some molecular
biology is now done with the aid of
mechanics and quantum mechanics, these
methods are limited when large interacting
molecules are involved. In large scale biology
(systematics, ecology, ontogeny and
evolution), causal arguments usually concern
some aspect of the transitions of form as I
have defined it above (D’Arcy Thompson,

1942; Wiley, 1981; Brooks and Wiley, 1988;
Ulanowicz, 1986).

The most dominant current view of
cognition is the syntactic computational view,
which bases cognitive processes on formal
relations between thoughts. Whether or not
the theory is true, it shows that psychologists
are willing to take it for granted that form
(viz., the syntax of representations) can be
causal. Fodor (1968) argues that the physical
embodiment of mental processes can vary
widely, if the syntactic relations among ideas
are functionally the same. To understand the
embodiment of mind, if we accept that
cognitive processes derive their formal
relations from underlying dynamics, we need
an account of the role of form and
information in dynamics.5

Traditional linear and reductionist
mechanical views of causation have had
limited success in these emerging areas of
study. Since the traditional views are well
established, any adequate account of
causation may initially seem counterintuitive.
Causal studies using ideas of form, broadly
construed as I have described it, have been
more successful than mechanical approaches
in the sciences of complex systems, but we
need a precise account of the causal role of
form to unify and normalise these studies. We
need this because there is no hope that
mechanical accounts will ever fully replace
their currently less regarded competitors. The
mechanical view is demonstrably too
restrictive to deal with many kinds of possible
systems that we are likely to encounter (see
Collier and Hooker, submitted, for details).

The view I propose is not entirely
without precedent. Except for its idealism,
Leibniz’ account of causation is in spirit the
most developed precursor of the account I

mechanical physics in the dynamics of form,
see (Collier and Hooker, submitted).

5 This argument is developed in (Collier,
1990a) and (Christensen et al, in preparation).



John Collier Causation is the Transfer of Information

Page 4 of  32

will give.6 The case is complicated because of
Leibniz’ three level ontology (Gale, 1994). At
the observable level Leibniz’ physics was
mechanical, however this dynamics was
explained by the properties of monads, whose
substantial form implied a primitive active
force (encoded by the logico-mathematical
structure of the form in a way similar to the
compressed form of causal properties I will
discuss later). This primitive active force
produces the observable varieties of
derivative active force through strictly logical
and mathematical relations. At the
metaphysical level, the substantial form is
based in "clear perceptions" which are
articulated in the structure of the substantial
form of corporeal substance. A similar
hierarchy exits for passive forces, which are
similar to Hobbes’ material cause.7 The

derivative passive force is a consequence at
the corporeal level of Prime Matter, which is
metaphysically based in the monad’s
confused perceptions (which, because
unarticulated, cannot act as agent; see
Christensen et al, in preparation). 

Leibniz expressed many of these ideas
in "On the elements of natural science" (Ca.
1682-1684, Leibniz, 1969: 277-279). The
following quotation illustrates the importance
of form in Leibniz’ philosophy:

And the operation of a body
cannot be understood
adequately unless we know
what its parts contribute;
hence we cannot hope for the
explanation of any corporeal
phenomenon without taking
up the arrangement of its
parts. (Leibniz, 1969: 289).

An earlier version of this view can be found
in the 1677 paper "On the method of arriving
at a true analysis of bodies and the causes of
natural things" The paper emphasises the
importance of empirical observation, but the
final paragraph makes clear the role of form
in causal explanation:

Analysis is of two kinds % one
of bodies into various
qualities, through phenomena
or experiments, the other of

6 Some other possible precursors are Plato,
Aristotle, the geometric forms of the
atomists’ atoms, Descartes’ geometric view
of dynamics, and Spinoza’s theory of
perception. I mention them mostly to avoid
being accused of thinking myself especially
original. These are failed attempts that
imported unnecessary metaphysical elements
to fill gaps in the accounts that disappear with
a proper understanding of computational
processes and their relation to physical
processes. My position differs from
Wittgenstein’s position in the Tractatus
(1961, see 2.0 to 2.063 especially) in using
computational logic broadly construed. I also
differ with Wittgenstein on 2.062, in which
he says that a state of affairs cannot be
inferred from another state of affairs (see §4
below). States of affairs which are
unanalysable distinctions or differences may
be the only exception, and might satisfy the
requirements for Wittgenstein’s elementary
propositions (for reasons to think not, see Bell
and Demopoulos, 1996).

7 Although Hobbes attributed causation to the
mechanical collisions of contiguous bodies, at

least one of which is in motion, he believed
that causation was necessary. If the total
cause is present, then the effect must occur; if
the effect is present, then the total cause must
have existed (Hobbes, 1839: 9.3). The total
cause is made of both the efficient cause
(being accidents in the agent) and the material
cause (being accidents in the patient). Form
played no role for Hobbes’ view of causation,
except in the geometry of the accidental
motions of the agent and patient. On the other
hand, despite this extreme mechanism, there
is no cause unless the geometries are precisely
correct to necessitate the effect.
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sensible qualities into their
causes or reasons, by
ratiocination. So when
u n d e r t ak i ng  accu r a t e
reasoning, we must seek the
formal and universal qualities
that are common to all
hypotheses ... If we combine
t h e se  ana l yses  w i t h
experiments, we shall discover
in any substance whatever the
cause of its properties.
(Leibniz, 1969: 175-76)

Again we see that for Leibniz, grouping
observable phenomena by of their qualities
and changes in qualities is but a prelude to
explanation in terms of substantial form. The
full explanation from metaphysics to physics
to phenomena should be entirely
mathematical. I shall take advantage of the
fact that mathematics is neutral to collapse
Leibniz’ three levels into one involving only
concrete particulars. The first step is the
quantification of form using recent
developments in the logic of complexity.

3. Quantification of Form Via
Complexity Theory 

A precise mathematical characterisation
of form (more precisely, the common core of
all possible conceptions of form) can be
formulated in computational information
theory (algorithmic complexity theory). This
will provide the resources for a general
account of causation as information transfer
(whether physical or not) in §4. In §5 I will
connect information to physical dynamics in
an intuitive way through Schrödinger’s
Negentropy Principle of Information (NPI),
which defines materially embodied
information. Physical causation is defined in
§6, using the resources of the previous three
sections. A method of quantifying the
hierarchical structure of a thing is given in §7,
to distinguish between mere complexity and

organised complexity. This is done through
Charles Bennett’s notion of logical depth. The
notion of logical depth can be used make
sense of the account of laws as abstractions
from particular cases of causation given in
(Collier, 1996a) by showing how laws
organise the superficial disorder of particular
events and their relations. This completes the
technical part of the chapter. The final
sections look at some potential objections to
the formal approach to causation, and the
implications for the four current approaches
to causation.

The quantification of form is a
quantification of the complexity of a thing.
Complexity has proven difficult to define.
Different investigators, even in the same
fields, use different notions. The Latin word
means "to mutually entwine or pleat or weave
together". In the clothing industry one fold
(e.g. in a pleat) is a simplex, while multiple
folds comprise a complex. The most
fundamental type of complexity is
informational complexity. It is fundamental in
the sense that anything that is complex in any
other way must also be informationally
complex. A complex object requires more
information to specify than a simple one.
Even the sartorial origins of the word
illustrate this relation: a complex pleat
requires more information to specify than a
simplex: one must specify at least that the
folds are in a certain multiple, so a repeat
specification is required in addition to the
"produce fold" specifications. Further
information might be required to specify any
differences among the folds, and their
relations to each other. 

Two things of the same size or made
from the same components might have very
different informational complexities if one of
them is more regular than the other. For
example, a frame cube and a spatial structure
composed of eight irregularly placed nodes
with straight line connections between each
node may encompass the same volume with
the same number of components, but the
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regularity of the cube reduces the amount of
information required to specify it. This
information reduction results from the mutual
constraints on values in the system implied by
the regularities in the cube % all the sides,
angles and nodes must be the same. This
redundancy reduces the amount of
information required in a program that draws
the cube over that required by a program that
draws the arbitrary eight node shape.
Similarly, a sequence of 32 ‘7’s requires a
shorter program to produce than does an
arbitrary sequence of decimal digits. The
program merely needs to repeat the output of
‘7’ 32 times, and 32 itself can be reduced to
25, indicating 5 doublings of an initial output
of ‘7’. To take a less obvious case, any
specific sequence of digits in the expansion of
the transcendental number %=3.14159... can
be produced with a short program, despite the
apparent randomness of expansions of %. The
information required unambiguously to
describe ordered and organised structures can
be compressed due to the redundant
information they contain; other structures
cannot be so compressed. This is a property
of the redundancy of  the structures, not
directly of any particular description of the
structures, or language used for description.

The specification of the information
content of a form or structure is analogous to
an extended game of "twenty questions", in
which each question is answered yes or no to
identify some target. Each accurate answer
makes a distinction8 corresponding to some
difference between the thing in question and
at least one other object. The answers to the
questions encode the distinct structure of the
target of the questions. Every determinate

aspect of the form of any thing is included in
its encoding. Thus, the encoding from
questions and target perfectly represents the
form of the target. Nothing else is left to
encode, and the form can be recovered
without loss from the encoding by examining
the questions and decoding the answers
(assuming the questions to be well formed,
and the answers to be accurate). Such an
encoding is an isomorphic map of the form of
an entity like an object, property or system
onto a string in which each entry is a "yes" or
a "no", or a "1" or a "0". This string is an
object to which computational complexity
theory (a branch of mathematics) can be
applied. The method is analogous to the use
of complex numbers (the Cauchy-Riemann
technique) to solve certain difficult problems
in mathematical physics. The form is first
converted to a tractable encoding, certain
results can be derived, and then these can be
applied to the original form in the knowledge
that the form can be recovered with the
inverse function. There is no implication that
forms are strings of 1s and 0s any more than
that the physical systems to which complex
analysis of energy or other relations is applied
really involve imaginary numbers.

Let s be mapped isomorphically onto
some binary string )s (i.e. so that s and only
s can be recovered from the inverse
mapping), then the informational complexity
of s is the length in bits of the shortest self-
delimiting computer program on a reference
universal Turing machine that produces )s,
minus any computational overhead required
to run the program, i.e. CI = length()s) -
O(1).9 The first (positive) part of this measure

8 The logic of distinctions has been worked
out by George Spencer Brown (1969) and is
provably equivalent to the propositional
calculus (Banaschewski, 1977). This is the
basis of the binary (Boolean) logic of
conventional computers.

9 On the original definition, length()s) =
min{|p|: p�{0,1}* & M(p) = )s} = min{|p|:
p�{0,1}* & f(p) = s}, |p| being the length of
p, which is a binary string (i.e. p�{0,1}*, the
set of all strings formed from the elements 1
and 0), and M being a specific Turing
machine, and f being the decoding function to
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is often called algorithmic complexity, or
Kolmogorov complexity. The second part of
the measure, O(1), is a constant (order of
magnitude 1) representing the computational
overhead required to produce the string )s.
This is the complexity of the program that
computes )s. It is machine dependent, but can
be reduced to an arbitrarily small value,
mitigating the machine dependence.10 I

deduct it to define the informational
complexity to get a machine independent
measure that is directly numerically
comparable to Shannon information,
permitting identification of algorithmic
complexity and combinatorial and
probabilistic measures of information.11 The
resulting value of the informational
complexity is the information in the original
thing, a measure of its form. Nothing
additional needed to specify the form of
anything. Consequently, I propose that the
information, as measured by complexity
theory, is the form measured, despite
disparate approaches to form in differing
sciences and philosophies. Nothing
determinate remains to specify. Any proposed
further distinctions that go beyond this are
distinctions without a difference, to use a
Scholastic saw. The language of information
theory is as precise a language as we can
have. Once all distinctions are made, nothing
else we could say about something that gives
any more information about it.

All noncomputable strings are
algorithmically random (Li and Vitànyi,

recover )s from p and then s from )s. This
definition requires an O(logn) correction for
a number of standard information theoretic
functions. The newer definition, now
standard, sets length()s) to be the input of the
shortest program to produce )s for a self-
delimited reference universal Turing
machine. This approach avoids O(logn)
corrections in most cases, and also makes the
relation between complexity and randomness
more direct (Li and Vitányi, 1990).

10 For a technical review of the logic of
algorithmic complexity and related concepts,
see (Li and Vitànyi, 1990 and 1993). The
complexity of a program is itself a matter for
algorithmic complexity theory. Since a
universal Turing machine can duplicate each
program on any other Turing machine M,
there is a partial recursive function f0 for
which the algorithmic complexity is less than
or equal to the algorithmic complexity, plus a
constant involving the computational
overhead of duplicating the particular M,
calculated using any other f. This is called the
Invariance Theorem, a fundamental result of
algorithmic complexity theory (for discussion
of this, to some, counterintuitive theorem, see
Li and Vitànyi, 1993: 90-95). Since there is a
clear sense in which f0 is optimal, the
Invariance Theorem justifies ignoring the
language dependence of length()s), an this is
now common practice for theoretical work.
String maps of highly complex structures can
be computed, in general, with the same
computational overhead as those of simple
structures (the computational overhead is

nearly constant), so for complex structures
(large CI) the negative component of
informational complexity is negligible.
Furthermore, in comparisons of algorithmic
complexity, the overhead drops out except for
a very small part required to make
comparisons of complexity (even this drops
out in comparisons of comparisons of
complexity), so the relative algorithmic
complexity is almost a direct measure of the
relative informational complexity, especially
for large CI.

11 The more operational approach that retains
the constant achieves only correspondence in
the infinite limit, which is the only case in
which the computational overhead, being a
constant, is infinitesimal in proportion and is
therefore strictly negligible (Kolmogorov,
1968; Li and Vitànyi, 1990).



John Collier Causation is the Transfer of Information

Page 8 of  32

1990). They cannot be compressed, by
definition; so they contain no detectable
overall order, and cannot be distinguished
from random strings by any effective
statistical test. This notion of randomness can
be generalised to finite strings with the notion
of effective randomness: a string is effectively
random if it cannot be compressed.12 Random
strings do not contain information in earlier
parts of the sequence that determines later
members of the sequence in any way (or else
they could be compressed).13 Thus any system

or process whose trajectory cannot be
specified in a way that can be compressed is
dynamically disorganised and effectively
random. Such a system or process can have
specific consequences, but cannot control
anything, since these effects are
indistinguishable from random by any
effective procedure: no pattern (form) can be
generated except by chance.

Algorithmic information theory can be
used to quantitatively examine relations of
information, and thus of form. The
assignment of an information value to a
system, state, object or property is similar to
the assignment of an energy to a state of a
system, and allows us to talk unambiguously
of both the form and its value.14 We can then
compare the form of two states, and of the
transfer of form between states. In addition,
and unlike for energy (whose relations also
require dynamical laws), there are necessary
relations between information instances that
depend on whether a second instance is a
theorem of the theory comprising the first
instance and computation theory. Except for
noncomputable cases, this relation is
equivalent to there being a Turing type
computation from the first information to the
second. There are several relations of note:
the information IA contained in A contains the
information in B iff IB is logically entailed by
IA, and vice versa. This implies that the
information in A is equivalent to the
information in B if and only if each contains
the other. The information in B given the
information in A, and their mutual
information can be expressed in a similar
way. These relations are all standard in
algorithmic complexity theory (Li and
Vitànyi, 1993: 87ff). They allow us to talk

12 Since it is possible to change an effectively
random string into a compressible string with
the change of one digit and yet, intuitively,
the change of one digit should not affect
whether a string is random, randomness of
finite strings of length n is loosely defined as
incompressibility within O(logn) (Li and
Vitányi, 1990: 201). By far the greatest
proportion of strings are random and in the
infinite case the set of non-random strings has
measure 1. It is also worth noting that there
are infinite binary strings whose frequency of
1s in the long run is .5, even though the
strings are compressible, e.g. an alternation of
1s and 0s. These strings cannot be
distinguished by any effective statistical
procedure (see above). If probability requires
randomness, probability is not identical to
frequency in the long run. It seems
unreasonable, e.g. to assign .5 to probability
of a 1 at a given point in the sequence
because the frequency of 1s in the long run is
.5, if the chance of getting a 1 at any point in
the sequence can be determined exactly to be
1 or 0.

13 The converse is not true. Arbitrarily long
substrings of non-computable strings (and, for
that matter, incompressible finite strings) can
be highly ordered, and therefore computable,
but the location and length of these highly
ordered sub-strings cannot be predicted from
earlier or later elements in the string. In
general, the incompressibility of a string does

not imply the incompressibility of its
substrings.

14 As with assigning energy values to real
systems, assigning information values for
practical purposes is not always easy.
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about changes of form from one state of a
system to another (processes), and between
states of different systems (interactions). A
relation between the information in A and
that in B is not causal unless A and B have
mutual information (they must be correlated).
Sufficiency is not guaranteed, since the
formal content of A and B can overlap by
chance.

4. Causation is the Transfer of
Information

The previous section placed the
existence of mutual information as a
necessary condition on the dynamics of form,
but left open the possibility of chance
coincidence of forms. An account of
information as transfer of form must rule this
possibility out non-circularly. I do this by
stipulating that the information transferred
must be the same particular information.
Thus, we have the first definition of a causal
process:

P is a causal process in system
S from time t0 to t1 iff some
particular part of the form of
S involved in stages of P is
preserved from t0 to t1.

The preservation of form, here, implies that
the form preserved is the identical form, not
only in value and logical structure, but in fact.
This definition is temporally symmetrical, in
keeping with the temporal symmetry of
fundamental laws of mechanics and quantum
mechanics. Temporal asymmetry is an
additional condition that will be considered in
§6.1. The definition is similar to Salmon’s
PCI (1984: 155) according to which a process
that transmits its own structure can propagate
a causal influence from one spacetime locale
to another. The main difference is that
Salmon defines the transmission of structure
as the capacity to carry a mark. This notion
requires an irreducible counterfactual
formulation (Kitcher, 1989; Dowe, 1992), as

Salmon has admitted (1994). This violates my
methodological assumption that all
fundamental concepts should refer only to
logic, mathematics and concrete particulars
(see footnote 2 above).

Another serious problem for the mark
approach is that some causal processes cannot
be marked. An electron, for example, has too
few fundamental properties to be easily
marked (though polarisation is a possibility).
Other fundamental particles (photons and
neutrinos, for example) cannot be marked
without changing them into other particles.
Equilibrium statistical mechanical systems
cannot be marked without changing them
from equilibrium. The mark will disappear
relatively quickly through dissipation unless
the mark puts the system quite far from
equilibrium, which changes the dynamical
properties of the system substantially. Since
such basic dynamical processes as
fundamental particle propagation and
equilibrium processes are clearly causal, but
cannot be marked, the mark method fails for
reasons independent of any problem of the
counterfactual dependence of the approach. In
addition, it is unclear how nonphysical
processes (if such exist, like the thought
processes of God or other immaterial minds)
could be marked. I avoid both the problem of
unmarkable causal processes and the problem
of counterfactual dependence by dropping
marking entirely in favour of the transfer of
form in general, rather than just of marks.
The ability to mark a causal process remains
important as an intuition leading to the
definition above, however.

Critics might complain that my
minimised definition of causation is wildly
circular, since the identity of preserved form
entails a causal connection. I am glad they
share this intuition with me, since an adequate
analysis of causation should correspond to
intuitive ideas about causation. Any suspicion
that causation has been surreptitiously
imported in the above definition must involve
the preservation of information, since form in



John Collier Causation is the Transfer of Information

Page 10 of  32

a state of a system has been defined with
purely logical notions. Preservation, though,
I have stipulated to be identity, which is also
a logical notion.15 There is no direct reference
to causation in the definition. This is perhaps
more clear in the following variant:

P is a causal process in system
S from time t0 to t1 iff some
particular part of the
information of S involved in
stages of P is identical at t0

and t1.
This may seem like a trick, and indeed

it would come to very little unless there is a
way to determine the identity of information
over time without using causal notions
explicitly. This is an epistemological
problem, which I defer until later. It turns out
that there are simple methods for many
interesting cases. From a strictly ontological
view, the above definition is all that is
needed, though the metaphysics of identity
will depend on the substantial categories
involved. Information tokens are temporal
particulars. In physics with spatio-temporal
locality, they are space-time "worms" (see
§6.1).

The notion of transfer of information is
useful:

Information I is transferred
from t0 to t1 iff the same
(particular) information exists
at t0 and t1.

The definition of causal process can then be
revised to:

P is a causal process in system
S from time t0 to t1 iff some
part of the information of S

involved in stages of P is
transferred from t0 to t1.

16

Interactive causation can now be defined
easily:

F is a causal interaction
between S1 and S2 iff F
involves the transfer of
information from S1 to S2,
and/or vice versa.

This allows a straightforward definition of
causal forks, which are central to discussions
of common cause and temporal asymmetry
(Salmon, 1984):

F is an interactive fork iff F is
a causal interaction, and F has
distinct past branches and
distinct future branches.

and,
F is a conjunctive fork iff F is
a causal interaction, and F has
one distinct past branch and
multiple distinct future
branches, or vice versa.

Interactive forks are X-shaped, being
open to the future and past, while conjunctive
forks are Y-shaped, being open in only one
temporal direction. The probability relations
Riechenbach used to define conjunctive forks
follow from these definitions, the
mathematics of conditional information,

15 The nature of identity is not important here,
as long as identicals are indiscernable, i.e. if
a=b, then there is no way in which a is
distinct from b, i.e. they contain the same
information.

16 It is tempting to define a cause as the origin
of the information in a causal process. Quite
aside from problems of which end of a causal
process to look for the origin, the usual
continuity of causal processes makes this
notion poorly defined. Our usual
conception(s) of cause has(ve) a pragmatic
character that defies simple analysis because
of the explanatory and utilitarian goals it
(they) presuppose(s). Nonetheless, I am
confident that my minimalist notion of causal
process is presupposed by both vulgar and
scientific uses of the term ‘cause’. Transfer of
information is necessary for causation, and is
sufficient except for pragmatic concerns.
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temporal asymmetry, and the probabilities
derived from the information from the
mathematical relation between informational
complexity and probability-based definitions
of information (justified by the definability of
randomness within complexity theory), as do
the probabilities for interactive forks. There is
no room to prove this here, since apart from
the mathematics we need a satisfactory
account of the individuation and identity of
dynamical processes that is beyond the scope
of this chapter. It should be obvious, though,
given that a causal process preserves
information, that a past common cause
(shared information) makes later correlation
more certain than a present correlation of two
events makes later interaction probable,
though the reasons for this are not presently
transparent by any means (Horwich, 1988).
Likewise, an interactive fork gives
information about both past and future
probabilities, because the identity of the
information in the interaction restricts the
possibilities at both of the open ends of the
forks.

Pure interactions between independent
processes are rare, if not nonexistent.
Interaction through potential fields (like
gravity) occurs among all bodies
continuously. If gravity and other fields are
involved in the dynamics of interacting
systems, enlarging the system to include all
interactions is better than to talk of interacting
systems. This is standard practice in much of
modern physics, for example, when using the
Hamiltonian formulation of Newtonian
mechanics. 

According to the information theoretic
definition of causality, the necessity of causal
relations follows easily, since the
informational relations are computational.
The information transferred must be in the
effect and it must be in the cause, therefore
the relevant information is entailed by both
the cause and the effect. Furthermore, the
existence of the identical information (token)
in both the cause and effect is both a

necessary and a sufficient condition for
causation. We can think of a causal process as
a computation (though perhaps not a Turing
computation or equivalent) in which the
information in the initial state determines
information in the final state. The effect,
inasmuch as it is determined, is necessitated
by the cause, and the cause must contain the
determined information in the effect.
Although the causal relation is necessary, its
conditions are contingent, so it is necessary
only in the sense that given the relata it
cannot be false that it holds, not that it must
hold (see Collier, 1996a for more on this form
of necessitation, and its role in explaining the
necessity of natural kinds and laws). Note that
the only necessity needed to explain causal
necessity is logical entailment. This is one
great advantage of the information theoretic
approach to causation, since it avoids direct
appeals to modalities. Counterfactual causal
reasoning fixes some counterfactual
conditions in distinction to the actual
conditions either implicitly or explicitly
through either context or conventions of
language. Counterfactual causal reasoning is
thus grounded in hypothetical variations of
actual conditions.

Locality, both spatial and temporal, is a
common constraint on causation. Hume’s
"constant conjunction" is usually interpreted
this way. While it is unclear how causation
could be propagated nonlocally, some recent
approaches to the interpretation of quantum
mechanics (e.g. Bohm, 1980) permit
something like nonlocal causation by
allowing the same information (in Bohm’s
case "the implicate order") to appear in
spatially disparate places with no spatially
continuous connection. Temporally nonlocal
causation is even more difficult to understand,
but following its suggestion to me (by C.B.
Martin) I have been able to see no way to rule
it out. Like spatially nonlocal causation,
temporally nonlocal causation is possible only
if the same information is transferred from
one time to another without the information
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existing at all times in between. Any
problems in applying this idea are purely
epistemological: we need to know it is the
same information, and not an independent
chance or otherwise determined convergence.
Resolving these problems, however, requires
an appropriate notion of information and
identity for the appropriate metaphysical
category.

The epistemological problems are
diminished immensely if temporal locality is
required. If there is a sequence of temporal
stages between the start and end of a
candidate causal process for which there is no
stage at which the apparently transferred
information does not exist, the candidate
process is temporally local.  All other things
being equal, it is far more parsimonious to
assume that the identical information exists at
each stage of a candidate local process than
that the information at each stage arises
independently. The odds against a candidate
local causal process being noncausal (i.e.
apparently but not actually transferring the
identical information) are astronomical. The
main exception is an independent common
cause, as in epiphenomena like Leibniz’
universal harmony. There are difficulties
distinguishing epiphenomena from direct
causal phenomena, but in many cases
intervention or further knowledge can provide
the information needed to make the
distinction. For example, we can tell that the
apparent flow of lights on a theatre marquee
is not causal by examining the circuitry. The
null hypothesis, though, despite these
possibilities, would be that candidate causal
processes are causal processes. Lacking other
information, that hypothesis is always the
most parsimonious and the most probable.
Unfortunately, it can’t be shown conclusively
that any apparent causal process is really
causal, but this sort of problem is to be
expected of contingent hypotheses. The
important thing to note is that (ignoring
pragmatic considerations) any talk of

causation can be eliminated in favour of talk
of the transfer of the same information
throughout the apparent process. 

It is interesting to note that my
approach to causation permits an effectively
random system to be a cause. A large random
system will have ordered parts, and an infinite
random system will have ordered parts of
arbitrarily large size (see footnote 13 above).
If the universe originated as an infinite
random system, as suggested by David
Layzer (1990), then ordered random
fluctuations would be expected, and our
observable world could be caused by a
particularly large fluctuation that later
differentiates through phase transitions into
the variety that we observe today. This
cosmological theory requires the pre-
existence of a random "stuff" with the
capability of self interaction. No intelligence
or pre-existing order is required to explain the
causal origin of the order and organisation in
the observable world. This is contrary to the
views of my rationalist predecessors like
Aristotle, Descartes and Leibniz.

So far, this account of causation has
very little flesh; it is just a formal framework.
This will be remedied in the next two sections
in which I apply the framework to physical
causation.

5. The Negentropy Principle of
Information

To connect information theory to
physical causation, it is useful to define the
notions of order and disorder in a system in
terms of informational complexity. The idea
of disorder is connected to the idea of
entropy, which has its origins in
thermodynamics, but is now largely explained
via statistical mechanics. The statistical
notion of entropy has allowed the extension
of the idea in a number of directions,
directions that do not always sit happily with
each other. In particular, the entropy in
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mathematical communications theory
(Shannon and Weaver, 1949), identified with
information, should not be confused with
physical entropy (though they are not
completely unrelated). Incompatibilities
between formal mathematical conceptions of
entropy and the thermodynamic entropy of
physics have the potential to cause much
confusion over what applications of the ideas
of entropy and information are proper (e.g.
Wicken, 1987; Brooks et al, 1986).

To prevent such problems I adopt the
interpretive heuristic known as NPI,
according to which the information in a
specific state of a physical system is a
measure of the capacity of the system in that
state to do work (Schrödinger, 1944;
Brillouin, 1962: 153), where work is defined
as the application of a force in a specific
direction, through a specific distance.17 Work
capacity is the ability to control a physical
process, and is thus closely related to
causality.  Nevertheless, it is a state variable
of a system, and involves no external
relations, especially to effects. So the concept
of work capacity is not explicitly causal
(though the concept of work is).18 Through

the connection with work, NPI ties
information, and so complexity and order, to
dynamics. NPI implies that physical
information  (Brillouin, 1962)19 has the
opposite sign to physical entropy, and
represents the difference between the
maximal possible entropy of the system (its
entropy after all constraints internal to the
system have been removed and the system has
fully relaxed, i.e. has gone to equilibrium)
and the actual entropy, i.e., 

NPI: IP = HMAX  - HACT

where the environment of the system and the
set of external constraints on the system are
presumed to be constant. The actual entropy,
HACT, is a specific physical value that can in
principle be measured directly (Atkins, 1994),
while the maximal entropy, HMAX , of the
system is also unique, since it is a
fundamental theorem of  thermodynamics that
the order of removal of constraints does not
affect the value of the state variables at
equilibrium (Kestin, 1968). This implies that
the equilibrium state contains no trace of the
history of the system, but is determined
entirely by synchronic boundary conditions.
Physical information, then, is a unique and

17 Work has dimensions of energy in standard
mechanics, and thus has no direction.
However, since it is the result of a force
applied through a distance, it must be
directed. Surely, undirected force is useless.
However, this changes the units of work,
since energy is not a vector. Interestingly,
Schr§dinger (1944) considered exergy as a
measure of physical information, but rejected
it because people were easily confused about
energy concepts. This is remarkable, since
exergy and entropy do not have the same
dimensions.

18 Though work capacity is a dispositional
concept, it is defined through NPI in terms of
the state variables of a system, which can be
understood categorically. The causal power of
a system is determined by its work capacity.

The details are relatively simple, but are
beyond the scope of this paper, since
explaining them requires clearing up some
common misconceptions about statistical
mechanics.

19 Brillouin (1962: 152) refers to physical
information as bound information but in the
light of my  distinction between intropy and
enformation (see below), I avoid this term
(since in one obvious sense intropy, being
unconstrained by the system, is not bound).
Brillouin defines bound information as a
special case of free information, which is
abstract, and takes no regard of the physical
significance of possible cases. Bound
information occurs when the possible cases
can be regarded as the complexions of a
single physical system.
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dynamically fundamental measure of the
amount of form, order or regularity in a state
of physical system. Its value is non-zero only
if the system is not at equilibrium with its
environment. It is a measure of the deviation
of the system from that equilibrium. It is
important to remember that NPI is not a
formal or operational definition and, given
the current proliferation of formalisms for
entropy and information, it needs to be
interpreted as appropriate for a given
formalism and for a given physical system
and its environment.20 

On the other hand, NPI is an implicit
definition, since it determines how terms like
entropy and information are to be used in a
physical context. As in mathematics, central
definitions in empirical theory should be
supported with an existence proof. This is
done by showing that violating the definition
would violate any known or theoretically
projected observations (Mach, 1960: 264ff).

If we assume NPI, then reliable production or
reproduction of one bit of information
requires a degradation of at least kTln2 exergy
(available energy), where k is Boltzmann's
constant in a purely numerical form
(Brillouin, 1962: 3), and T is temperature
measured in energy units. This relation must
hold, or Maxwell's demon will come to haunt
us, and the Second Law of Thermodynamics
will come tumbling down. NPI, then, reflects
the strongly confirmed intuitions of physicists
and engineers that the physical form of things
cannot be used in some tricky way to control
effectively random physical processes. There
are strong reasons to believe that this is
logically impossible in a world restricted to
physical causation (Collier, 1990b). I will
return to this later in §6.1. NPI is empirically
justified; we know, for example, that
violation of NPI, which would amount to
using information to reduce the entropy of an
isolated system, violates our most common
experiences of physical systems. NPI implies
that a bit of information can be identified
with the minute but non-negligible physical
value kln2 and that its transfer from one
system or part of a system to another will
require the transfer of at least kTln2 exergy
(see Brillouin, 1962 for details). This gives us
a quantitative physical measure of form that
is directly related to exergy and entropy, the
central concepts in nonequilibrium processes.
These relations allow us to study complexity
changes in physical processes, and permit
principled extensions of the concepts of
entropy and information.21

20 With respect to the need to interpret the
principle in relation to the system and
environment under consideration, the
situation is exactly paralleled by that for
energy and momentum. By referring
information to the system environment the
need to define some absolute reference point
where all constraints of any kind are relaxed,
which is not obviously a well defined
condition is avoided. Just as there are very
different formulae for all the forms of
potential energy in different systems, so too
are there for forms of entropy and
information. The 0th Law of Thermodynamics
suggests an absolute measure of entropy, but
in practice the "freezing out" of complex
order in the hierarchy of energy levels
precludes strict application of this "law",
except to ideal gases. For the 0th Law to
apply, all degrees of freedom of a system
must be equally flexible. This is very unlikely
to be true in any real physical system (see
also Yagil, 1993b).

21 It is worth noting at this point that logical
processes, such as computations, obey the
Second Law as well, in the sense that a
computation can produce only as much
information as it starts with, and generally
will produce less. There are theoretically
possible reversible computers, but they
produce vast amounts of waste stored bits if
they compute practical results. Consequently,
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NPI can be motivated more directly
from information theory. This might be
useful to those who find themselves on the
wrong side of C.P. Snow’s two cultures, the
divide being the understanding of entropy.
Entropy cannot be explained simply without
loss of content22, but the following
explanation will give the main details, though
it will give no idea of how to apply the ideas
(unlike the way I introduced NPI above,
which rigorously connects information to
known physical principles and their common
applications). HMAX  represents a possible state
of the system in which there is no internal
structure except for random fluctuations. All
possible microstates of the system are equally
likely. There is no physical information
within the system, and it cannot do any work
internally, since it is statistically uniform
except for random fluctuations, which,
because of their random nature, cannot be
harnessed for any purpose from within the
system. The actual entropy, however, except
for systems in equilibrium, permits internal
work, since there is energy available in the
nonuniformities that can be used to guide
other energy. The information equivalent to
this ordered energy is just that we would
obtain with a perfect "game of twenty
questions" that determines the information
gap between the information of the
macrostate and the information of the
microstate, and hence the probability

distribution of microstates. It therefore
represents the form (nonrandom component)
of the system, according to the definitions of
§3. This justifies the connection between
form and capacity for work. Any other
consideration of dynamics and physical
information will have to be consistent with
this connection (however subtle) between
dynamics and form, i.e. any physical system
must satisfy NPI. 

There are two ways that entropy is
significant in physical systems, sorting and
energy availability, though they are really
extremes of one set of principles. To take a
simple example of sorting, imagine that we
start with a container of m "red" and n
"white" molecules in an ideal gas at
equilibrium, S0, and it ends in a state, S1, in
which all the red molecules are on the right
side of the container, and the white molecules
are on the left side, so that we could move a
frictionless screen into the container to
separate completely the red and white
molecules without doing any additional work.
The entropy of S0 is -(P0klnP0, and the
entropy of S1 is -(P1klnP1, where P0 is the
inverse of the number of complexions in the
initial state, and P1 is the inverse of the
number of complexions in the final state.
Simplifying again, assume the m = n = 1.23

Then the entropy of the final state is
obviously 0, since there is only one
possibility, in which the red molecule is on
the right, and the white molecule is on the
left, so P1 = 1. The entropy of the initial state
is higher: both molecules can be either on the
right or the left, or there can be a red on the
left or a red on the right, giving four distinct
possibilities, and P0 = .25. If we know that the
system is in S1, we have 2 bits more
information than if we knew merely that it
was in S0. For example, we might have the

arguments concerning the dynamics of
physical complexity also apply to any sort of
creature governed by logic. This places some
limits on the role of gods as counterexamples
to causal analyses, unless the gods act
inconsistently with logic. We might as well
just assume uncaused events in these
supposed counterexamples (see §6.2).

22 Many bright students have taken more than
one full course on the subject at university
without coming to understand entropy
properly.

23 This is not quite as simple as Szillard’s case
(see Brillouin, 1962: 176ff), which uses only
one molecule!
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information that no two molecules are on the
same side, and that a red molecule is on the
right, requiring two binary discriminations.
To slide the screen in at an appropriate time,
we need the information that the system is in
S1, i.e. we need the information difference
between S0 and S1. This is exactly equivalent
to the minimum entropy produced in a
physical process that moves the system from
S0 to S1, as can be seen by setting k to 1, and
using base 2 logarithms to get the entropy in
bits. To move the system from S0 to S1, then,
requires at least 2T work. This is a very small
amount; the actual work input would be
larger to cover any energy stored and/or
dissipated. Alternatively, a system in S1 can
do at most 2T work before it has dissipated
all its available energy from this source.
Putting this in other words, the system can
make at most two binary distinctions, as can
be seen by reversing the process.24 These two

bits measure the maximal controlling
potential of the system: implemented as a
controller, controlling either itself or another
system, the system could function as at most
two binary switches. Calculating the physical
information for each case from the definition
above, IP(S0) = 0, while IP(S1) = 2. As it
should, the difference gives us the amount of
information lost or gained in going from one
state to the other. A number of years ago it
was confirmed that the entropy production of
the kidneys above what could be attributed to
the basal metabolism of its cells, could be
attributed to the entropy produced in sorting
molecules for elimination. Presumably, more
subtle measurements would also confirm a
physical realisation of the molecule example.

The relations between information and
energetic work capacity are somewhat subtle,
since they involve the correct application of
NPI, which is not yet a canonical part of
physics.25 The physical information in a given
system state, its capacity to do work, breaks
into two components, one that is not
constrained by the cohesion in the system,
and one that is. The former, called intropy,  �,
is defined by  �� = �(exergy)/T, so that ,T��
measures the available energy to do work,
while the latter, called enformation, �,
measures the structural constraints internal to
the system that can guide energy to do work
(Collier, 1990a). Enformation determines the
additional energy that would be obtained in a
system S if all cohesive constraints on S were
released. Intropy measures the ordered energy
that is not controlled by cohesive system
processes, i.e. by system laws, it is
unconstrained and so free to do work. For this
reason, though ordered, both intropy and
exergy are system statistical properties in this

24 NPI is assumed throughout, as is the
impossibility of a Maxwellian demon
(Brillouin, 1962; Bennett, 1982; Collier,
1990b). Szillard’s original argument makes
the connection to work more obvious by
using a molecule pushing on a cylinder in a
piston, but the more general arguments by
Bennett and Collier examine (in different
ways) the computational problem the demon
is supposed to solve. The connection to work
is implied by thermodynamics and NPI.
Szillard used thermodynamics explicitly, but
NPI only implicitly, which meant that his
exorcism of the demon could not be general.
Denbigh and Denbigh (1985) argue that
information is not required for the exorcism,
since thermodynamics can be used in each
instance. It seems to have escaped them that
proving this requires something at least as
strong as NPI. The problem of Maxwell’s
demon is especially important because it
forces us to be explicit about the relations
between control and physical activity. A
demon that could store information in some

non-physical form could perform its sorting
job, though at the expense of producing waste
(unusable) information in this storage.

25 That would require the equivalent of the
acceptance of the ideas in this section.
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sense: their condition cannot be computed
from the cohesive or constrained system state,
the cohesive state information determines the
micro state underlying the intropy only up to
an ensemble of intropy-equivalent
microstates. There is another system
statistical quantity, entropy, S, but it is
completely disordered or random, it cannot be
finitely computed from any finite system
information.26 Entropy is expressed by
equiprobable states, and so appears as heat
which has no capacity to do work; �S =
�Q/T, where Q is heat, and ,T�S measures
heat. Enformation is required for work to be
accomplished, since unguided energy cannot
do work.27 Intropy is required for work in
dissipative systems, to balance dissipation (S
production).

Consider, for example, a system S with
heat Q as its only unconstrained energy. If S
is at equilibrium then the only enformation is
the existence of a system temperature (not
that it is of some specific value T), for only
that follows from the system constraints, and

� = 0 and Q is entropic since Q cannot do
work on S. If S nomicly maintains an internal
temperature gradient G then G is enformation
for S since it cannot be released to do work
without first altering the cohesive structures
of S. If G is unconstrained by S then G
expresses intropy in S since G is an ordering
of the heat energy and work can be done in S
because of G. (In fact S will dissipate G,
creating entropy, until equilibrium is
reached.) Further, note that if S, even if at
internal equilibrium with G = 0, is made part
of a larger system Ss where it is in contact
with another sub-system P of Ss at a lower
temperature, then there is now a new
temperature gradient Gs unconstrained by Ss
so S will do work on P with heat flowing
between them until equilibrium is reached (Gs

= 0) at some intermediate temperature; hence
Gs is intropic in Ss even though S has no
intropy and S’s temperature, which serves in
part to determine Gs, is enformation in S.28

These analyses carry over to all other physical
forms of energy.

The main difference between intropy
and enformation is the spatial and temporal
scale of the dynamical processes that underlie
them.29 The dynamics underlying intropy

26 One obvious information basis to consider
is a complete microscopic description of a
system. However, behind this statement lies
the vexed issue of a principled resolution of
the relations between mechanics and
thermodynamics that respects the
irreversibility of the latter despite the
reversibility of the former. While the analysis
offered here represents a small step toward
greater clarity about this complex issue, I do
not pursue it here.

27 Archimedes lever with which he could
move the world, like any other machine, must
have a specific form: it must be rigid, it must
be long enough, there must be a fixed
fulcrum, and there must be a force applied in
the right direction. If any of these are lacking,
the lever would not work. No amount of
energy applied without regard to the form in
which it is applied can do work, except by
accident.

28 There is nothing arbitrary about these
system-relative distinctions; each is grounded
in the system dynamics. Relational properties,
like intropy, entropy and enformation,
necessarily produce relativised applications
across relationally distinct contexts, e.g. S and
Ss here, and it is an error (albeit a common
one) to equate this to relativism, which is the
absence of any principled basis for
distinguishing conflicting claims across
contexts.

29 All enformation except perhaps the
enformation in some fundamental particles,
like protons, will eventually decay, which
means that at some temporal scale all, or at
least most, enformation behaves as intropy.
The scale is set by natural properties of the
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have a scale smaller than that of the whole
system, and involve no long term or spatially
extended constraints, except those that govern
the system as a whole, which in turn
constitute the system enformation. The
intropy of a system S is by definition equal to
the difference between S’s actual entropy and
its maximal entropy when exergy has been
fully dissipated (given enformation invariant,
i.e. S’s constraints remaining unchanged, and
environment invariant); so, � = IP= HMAX(S) -
HACT(S), all at constant environment and
constraints. The enformation is just the
additional information equal to the difference
between HACT(S) and the entropy of the set of
system components that result when the
constraints on S are fully dissipated and S
comes to equilibrium with its environment
(assumed to remain otherwise invariant); � =
IE = HMAX(SE) - HMAX(S). Note that IP(S) = � +
� = HMAX(SE) - HACT(S) as required by NPI.
This is perhaps more clear with an example.
A steam engine has an intropy determined by
the thermodynamic potential generated in its
steam generator, due to the temperature and
pressure differences between the generator
and the condenser. Unless exergy is applied
to the generator, the intropy drops as the
engine does work, and the generator and
condenser temperatures and pressures
gradually equilibrate with each other. The
enformation of the engine is its structural
design, which guides the steam and the piston
the steam pushes to do work. The design
confines the steam in a regular way over time
and place. If the engine rusts into
unrecoverable waste, its enformation is
completely gone (as is its intropy, which can
no longer be contained), and it has become
one with its supersystem, i.e. its surroundings.
Such is life.

As noted, NPI allows us to divide a
physical system into a regular, ordered part,
represented by the physical information of the
system, i.e. � + �, and a random, disordered
part, represented by the system entropy. The
orderedness of the system is its information
content divided by the equilibrium (i.e.
maximal) entropy, i.e.; O = IP/HMAX , while the
disorderedness is the actual entropy divided
by the equilibrium entropy, i.e. D =
HACT/HMAX  (Layzer, 1975; Landsberg, 1984);
it follows from NPI that O+D = 1. The
informational complexity of the information
in the system, CI (IP), is equal to the
information required to distinguish the
macrostate of the system from other
macrostates of the system, and from those of
all other systems made from the same
components.30 The mathematical relations
between statistical entropy and algorithmic
information (Kolmogorov, 1965, 1968; Li
and Vitányi, 1993) ensure that CI(IP) = HMAX

- HACT, so CI(IP) = IP. This is so since the

system in question. Specifically, the extent of
the cohesion of the system implies a natural
scale (Collier, 1988, Collier and Hooker,
submitted; Christensen et al, in preparation).

30 A complete physical specification would
amount to a maximally efficient physical
procedure for preparing the system, S, in the
macrostate in question from raw resources, R
(Collier, 1990a). Furthermore, the procedure
should be self-delimiting (it finishes when S
is assembled, and only when S is assembled).
The information content of this specification
is just IP plus any intropy that must be
dissipated in the process. The latter is called
the thermodynamic depth of the state of the
system, and is equal to HACT(R) - HACT(S) if
there are no practical restrictions on possible
physical processes. The algorithmic
complexity analogue of thermodynamic depth
is the complexity decrease between the initial
and final states of a computation (through
memory erasure). This quantity is often
ignored in algorithmic complexity theory, but
see (Bennett, 1985; Collier, 1990b; also
Fredkin and Toffoli, 1982), who would hold
that the analogy is a physical identity.
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physical information of a system determines
its regularity and this regularity can be neither
more nor less informationally complex than is
required to specify the regularity. (The
informational complexity of the disordered
part is equal to the entropy of the system, i.e.
CI(HMAX  - IP) = CI(HACT) = HACT and since O
= IP/HMAX , the ordered content of S = HMAXO
= Ip as required.) These identities allow us to
use the resources of algorithmic complexity
theory to discuss physical information, in
particular to apply computation theory to the
regularities of physical systems. This move
has always been implicit in the use of
deductive reasoning to make physical
predictions, and should be non-controversial.
The main achievement here is to tie together
explicitly computational and causal reasoning
within a common mathematical language (see
also Landauer, 1961, 1987; Bennett, 1988).31

It is important to note, however, that NPI can
be stated entirely in terms of state
descriptions and relations between state
descriptions, and involves no explicit
importation of causal notions.

6. Physical Causation

The analysis of causation in §4 is very
abstract and perhaps hard to comprehend. In
this section I use NPI to give an account of
physical causation, the target of most
contemporary metaphysical accounts of
causation. My account divides into
ontological and epistemological issues.

6.1 Ontological Issues
The mark approach fails because of its

dependence on counterfactuals, and the
inability of some obviously causal processes
to be marked (see §4). This problem can be
overcome if we take the form of the states of
a physical process to itself be a mark, where
the information in the mark is given by the
methods of §5. The mark approach is
attractive, since we can make a recognisable
mark, and then check it later. A paradigmatic
example is signing or sealing across the flap
of an envelope so we, or someone else, can
check that it is the original envelope, and that
it has not been tampered with. Modern
computer security methods using open and

31 There is one further terminological issue
concerning physical information that should
be noted. By NPI, the disordered part of the
system does not contain information (because
it cannot contribute to work), but the
information required to specify the complete
microstate of the system is equal to the
information in the macrostate plus the
information required to specify the disordered
part. Layzer (1975, 1990) speaks of the
information required to specify the disordered
part as the "microinformation" of microstates,
as if the information were actually in the
microstate. This information can do work
only if it is somehow expressed
macroscopically. For this reason, I prefer to
regard unexpressed microinformation as a
form of potential information (Gatlin, 1972;
Collier, 1986; Brooks and Wiley, 1988).
Expressed information is sometimes called
stored information (Gatlin, 1972; Brooks and
Wiley, 1988). Potential information can also
be directly expressed as intropy, e.g. in the
Brownian motion of a particle, as opposed to
at the expense of enformation, e.g. when

micro fluctuations disrupt structure. Although
expression as intropy is physically possible, it
cannot be physically controlled (Collier,
1990b). Control of this process would imply
the existence of a Maxwellian demon. In
dissipative structures, especially those formed
in systems with multiple attractors, in which
the branch system followed in a phase change
is determined by random fluctuations,
potential information can be expressed
macroscopically at the expense of dissipation
outside the macroscopic structure.
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private keys are directly analogous, and much
more secure. Unfortunately, many causal
processes are too simple to mark at all, let
alone permit the complex mathematical
methods of open key security. Security and
recogni t ion,  however,  are more
epistemological problems than an ontological
ones, and I will postpone this issue until
section §6.2. For now I will concentrate on
the ontology of the transfer of physical form.

Information preserved in physical
causat ion wi l l  have constrained
(enformational) and may have unconstrained
(intropic) components. For example, a steam
locomotive retains its structure as it moves
along the tracks, but it also burns fuel for its
intropy, part of which is converted into
motion. It is only the enformation that is
essential to a dynamical process, since the
intropy is statistical and its microscopic basis
is possibly chaotically variable, whereas the
enformation guides the dynamical process,
and constitutes the structure of the system at
a given time. Therefore we might try:

P is a physical causal process
in system S from time t0 to t1
iff some part of the
enformation in S is transferred
from t0 to t1.

We may or may not want to add locality
requirements. Familiar cases of physical
causality are both temporally and spatially
local.

Unfortunately, pseudoprocesses like the
passing of a beam of laser light across the
face of the moon satisfy this definition, but
the causal process involved is actually a good
deal more complicated. NPI can help us here.
First, though, it helps to invoke Russell’s "at-
at" theory of causal propagation (Salmon,
1984: 147ff) to ensure locality:

P is a causal process in system
S from time t0 to t1 iff some
part of the enformation in S is
identical from t0 to t1, and at
all times between t0 and t1.

As mentioned in §4, the at-at approach
to locality makes the information token a
spacetime "worm". Locality disallows
causation over a temporal gap, but it is very
much in tune with the intuitions of physicists
and other scientists that all physical causation
is local. The main exception might arise in
quantum mechanics on Bohm’s implicate
order approach, which is controversial, and
nonetheless requires locality of a different
sort through the enfolding of the universe.
The above definition can be revised, if
necessary, to take into account this different
sort of locality. Of course the intuitions of
physicists may be false, but at this time they
are our best experts on how to interpret
causality and cognate terms.

The pseudoprocess problem is then the
underlying problem for the information
transfer theory, as it is for the mark approach.
I attack this problem by invoking NPI
explicitly:

P is a physical causal process
in system S from time t0 to t1
iff some part of the
enformation in S is transferred
from t0 to t1, and at all times
between t0 and t1, all
consistent with NPI.

Consistency with NPI is a fairly strong
constraint. It requires that causal processes be
consistent with entropy changes in the
processes. This is enough to rule out the
flashlight beam across the moon
pseudoprocess, since the information in the
spot comes from nowhere, and goes to
nowhere, if the movement is all there is to the
process. This violates not only the Second
Law of Thermodynamics, but also strong
physical intuitions that embodied order
cannot just appear and disappear. Quantum
mechanics and the emergence of dissipative
structures seem to violate this intuition, but
on closer study symmetry requirements in
quantum mechanics and the influence of the
order in microscopic fluctuations ensure that
no new information is generated.
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The Second Law itself has an
interesting status. Although reversible
systems are possible in nature (apparently
reversible systems can be designed in the
laboratory as thermodynamic branch systems,
but in fact they obey the Second Law when it
is properly interpreted), it is impossible for
any physical device or physical intervention
to control the overall direction of the entropy
gradient because to do so is computationally
impossible (Bennett, 1987; Collier, 1990b).
Reversal of the normal increase in entropy
requires very special conditions that can be
detected by examining the history, boundary
conditions and dynamics of the system.
Consistency with the Second Law is not
merely an empirical requirement; it is closer
to a logical constraint, and holds for abstract
computational systems as much as for
physical systems (Landauer, 1961, 1987;
Bennett, 1988; Li and Vitànyi, 1993).
Processes can be distinguished from
pseudoprocesses, then, by their consistency
with the Second Law, if we take care to
ensure that special conditions allowing
spontaneous reversal of entropy increase do
not hold. It is possible (though highly
unlikely) that a pseudoprocess could by
chance mimic a real process with respect to
the constraints of NPI, but experimental
intervention could detect this mimicry to a
high degree of probability.

NPI ensures that if information is not
lost, the causal process is temporally
symmetrical, and there is no internally
defined temporal direction. If dissipation
occurs, however, the information in the final
state is less than in the initial state and the
initial state cannot be recovered from the final
state. Consequently, dissipative causal
processes are temporally directed. The
complete nature of dissipation is not yet
completely understood (Sklar, 1986, 1993),
but we know that it occurs regularly. 

I cannot give a complete account of
chance causation here, but I will give a brief
sketch. If the information in the effect cannot

be computed from the information in the
cause, the system is not predictable, even
though it may be deterministic in the sense
that the same cause would produce the same
effect. In either deterministic or
indeterministic cases with this sort of
informational gap between cause and effect,
the probability of the effect can be computed
by the informational size of the gap by using
the standard relations between information
and probability. Perhaps the most interesting
case is deterministic chance, which at first
appears to be an oxymoron. Consider a coin
toss. Suppose that the coin’s side is narrow
compared with the roughness of the surface
on which it lands, so it comes up either heads
or tails. Suppose further that it’s trajectory
takes it through a chaotic region in the phase
space of the coin toss in which the head and
tail attractor basins are arbitrarily close to
each other (the definition of a chaotic region).
The path of the coin to its eventual end in one
of the attractors in this case cannot be
computed with any finite resources (by any
effective procedure). This means that the
attractor the coin ends up in is irreducibly
statistical, in the sense that there is no
effective statistical procedure that could
distinguish the attractor selected (however
much it is determined) from a chance
occurrence (see end of section 3.1). The
actual odds can be computed by the size of
the information gaps in prediction of each of
the outcomes, since some of the form can be
tracked (e.g. the coin keeps its shape). If the
coin has the right form (i.e. it is balanced and
symmetrical), the odds will be roughly 50-50
for heads or tails. Note that no counterfactuals
are required for this account of chance, nor is
the chance in any way subjective. 

Some readers might resist the idea of a
deterministic system being a chance system,
but since no effective statistical procedure can
distinguish a chaotic system from a chance
system, the difference is certainly beyond our
reach. The decision to call systems like the
coin toss chance systems is somewhat
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arbitrary, but it is consistent with anything we
could know about statistics or probability.
The distinction between unpredictable
systems and indeterministic systems forces us
to choose which to call intrinsically chancy.
Since chance has  long been associated with
limits on predictability, even by those like
Hume who considered it to be a purely
subjective matter, I believe that the
association of chance with intrinsic
unpredictabil ity rather than with
indeterminism is justified. The difference
between chance deterministic systems and
chance indeterministic systems, then, is that
the information gap in the former is only in
the computability of the information
transferred, while in the latter the gap is  in
information transferred. Deterministic
systems are entirely causal, but
indeterministic systems are not. A completely
random system might still be completely
determined. Our universe might be such a
system (see §4 above), showing only local,
but not global order beyond the constraints of
logic. 

6.2 Epistemological issues
One problem with the information

theoretic approach is that it requires precise
assessments of the quantity of form. This is
difficult even for simple molecules, though
techniques are being developed using
informational complexity (Holzmüller, 1984;
Küppers, 1990; Schneider, 1995; Yagil,
1993a, 1993b, 1995). A further problem is
that the maximally compressed form of an
arbitrary string is not computable in general,
though again, methods have been developed
for special cases, and approximation methods
have been developed that work for a wide
range of cases (Rissanen, 1989; Wallace and
Freeman, 1987). This problem does not affect
the metaphysical explanation of causation in
terms of information transfer, however.

Perhaps a more serious problem is
determining the identity of information in a
system trajectory. For example, apparent

causation might really be Leibnizian pre-
established harmony. We might not be able to
tell the difference, but the information flow
would be different if God or some demon is
the cause of the apparent direct causation.
This situation does not violate the
informational metaphysics, however, since
the information flow in the preestablished
harmony case would be from God to
individual monads, with the form originating
in God.32 The problem of the intervention of
gods in a specific causal process is just a
special case of the Leibniz case, and can be
handled the same way, as long as they are
subject to the constraints of logic. If they are
not, and the effects of their actions bear no
determinate relation to the cause, the effects
are chance, and can be handled as such.

What appears to be a causal process
from the information theoretic point of view
might be a chance sequence, or contain a
chance element that breaks the causal chain.
For example, at one instant the causal chain
might end indeterministically, and a new
chain might start at the next instant, also
indeterministically, where the form types
involved are identical to the types if the chain
were unbroken. Phil Dowe’s chapter in this
volume deals with the identity across time
issue fairly effectively by showing that other
approaches to causation also suffer from the
problem. I see no conclusive way around it. I
think we just have to live with this possibility.
On the other hand, if locality holds, and NPI

32 It seems to me that Leibniz had something
like this in mind, but it is unclear to me how
the generation of new information could be
possible without God suffering from the
waste problem of the computational version
of Maxwell’s demon. God could solve the
problem by storing huge amounts of waste
storage someplace otherwhere, but it would
certainly complicate the metaphysics. I
believe my one levelled approach is more
parsimonious.
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is applied, we can reduce the probability that
what appears to be a transfer of the same
information is actually a chance configuration
to a minuscule consideration, as argued in §3.
The lack of certainty should not be
philosophically bothersome, since we cannot
be certain of contingencies in any case.

7. Organisation, Logical Depth and
Causal Laws

One last technical idea will be useful
for connecting causality to causal laws. The
redundancy in a system (physically, its IP) can
be decomposed into orders n based on the
number of components, n, required to detect
the redundancy of order n (Shannon and
Weaver 1949).33 Complex chaotic (and nearly
chaotic) conservative systems, e.g. a steel ball
pendulum swung over a pair of magnets
under frictionless conditions, typically show
relatively little low order redundancy, but a
significant amount of high order redundancy,
while living systems typically show
significant redundancies at both low and high
orders (Christensen et al, in preparation). It is
ultimately an empirical matter just how local
and global redundancies interrelate to lower
and higher order redundancies in particular
classes of systems, though usually higher
order redundancies will also have large
temporal or physical scale, or both.

In many of these cases the higher order
redundancy is hidden or buried, in the sense
that it is not evident from inspecting small
parts of the system or local segments of the
dynamic trajectory of the system.
Nevertheless, it can be seen in the overall
structure of the system, and/or in the statistics
of its trajectory. For example, the trajectory
of a chaotic system is locally chaotic, but it is
(probably) confined to spatially restricted
attractor basins. Because the information in
such systems involves large numbers of
components considered together without any
possibility of simplification to logically
additive combinations of subsystems (the
systems are nonlinear), computation of the
surface form from the maximally compressed
form (typically an equation) requires many
individual steps, i.e. it has considerable
logical depth (Bennett, 1985; Li and Vitányi
1990, 238). Bennett has proposed that logical
depth, a measure of buried redundancy, is a
suitable measure of the organisation in a
system.

Formally, logical depth is a measure of
the least computation time (in number of
computational steps) required to compute an
uncompressed string from its maximally
compressed form.34 Physically, the logical

33 This is a strictly mathematical
decomposition. Physical decomposability is
not required. A level of organisation is a
dynamically grounded real structural feature
of a complex system which occurs when (and
only when) cohesive structures emerge and
operate to create organisation (Collier, 1988).
The same level may manifest or support
many different orders of organisation and the
same order of organisation may be manifested
or supported at many different organisational
levels.

34 Some adjustments are required to the
definition to get a reasonable value of depth
for finite strings. We want to rule out cases in
which the most compressed program to
produce a string is slow, but a slightly longer
program can produce the string much more
quickly. To accommodate this problem, the
depth is defined relative to a significance
level s, so that the depth of a string at
significance level s is the time required to
compute the string by a program no more
than s bits longer than the minimal program.
A second refinement, depth of a sequence
relative to the depth of the length of the
sequence, is required to eliminate another
artefact of the definition of depth. All
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depth of a system places a lower limit on how
quickly the system can form from
disassembled resources.35 Organisation
requires complex large scale correlations in
the diverse local dynamics of a system. This,
in turn, requires considerable high order
redundancy, and a relatively lower low order
redundancy. This implies a high degree of
physically manifested logical depth. Whether
or not organisation requires anything else is
somewhat unclear right now. For present
purposes, high level redundancy implied by
logical depth will be a more important
consideration than organisation or dynamical
time, since it will be shown to explicate
natural laws as described in (Collier, 1996a).
A deep system is not maximally complex,
because of the buried redundancy (more
internally ordered than a gas), but it is not
maximally ordered either, because of its
surface complexity (less ordered than a
crystal).

Logical depth requires correlation
(redundancy), but is silent about dynamics.

No dynamical interconnections among the
parts of the system are implied, because of the
formal nature of the concept (which, like all
purely formal concepts, ignores dynamics).
Logical depth needs to be supplemented with
a dynamical account of depth, within the
context of NPI. How to do this is not
presently entirely clear (because the
dynamical grounding of logical depth requires
a way to physically quantify the notion of
computational time, or, equivalently, of a
computational step, and how to do this
properly is not clear). But when we do
observe organisation we can reasonably infer
that it is the result of a dynamical process that
can produce depth. The most likely source of
the complex connections in an organised
system is an historically long dynamical
process. Bennett recognised this in the
following conjecture: 

A structure is deep, if it is
superficially random but
subtly redundant, in other
words, if almost all its
algorithmic probability is
contributed by slow-running
programs. ... A priori the most
probable explanation of
‘organized information’ such
as the sequence of bases in a
naturally occurring DNA
molecule is that it is the
product of an extremely long
biological process. (Bennett,
1985; quoted in Li and
Vitányi, 1990: 238) 

However we should also note that higher
order redundancy could arise accidentally as
an epiphenomenon (a mere correlation), but
then it would not be based on a cohesive
structure (cf. Collier, 1988) and so its
emergence can’t be controlled and it will not
persist.

Entrenchment is physically embodied
depth per se, with no direct implications
concerning the historical origins of the depth.
Canalisation, on the other hand is

sequences of n 0s are intuitively equally
trivial, however the depth of each string
depends on the depth of n itself. The
additional depth due to sequence of 0s is
small. The depth of a sequence of n 0s
relative to the depth of the length of the
sequence itself is always small. This relative
depth correctly indicates the triviality of
sequences of the same symbol.

35 Since computation is a formal concept,
while time is a dynamical concept, it isn’t
completely clear how we can get a dynamical
measure of computation time. Generally, the
minimal assembly time of a system will be
less than the expected assembly time for
assembly through random collisions, which
we can compute from physical and chemical
principles. Maximally complex systems are
an exception, since they can be produced only
by comparing randomly produced structures
with a non-compressible template.
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entrenchment resulting from a deep historical
process (and also describes the process).
Bennett’s conjecture is, then, that cases of
entrenchment are, most likely, cases of
canalisation. This is an empirical claim.
Natural laws are usually taken to be
entrenched, but not canalised. Future studies
in cosmology may prove this wrong. On the
information theoretic account, the same
historical origin for the same forms in
different systems, including law-like
behaviour, is an attractive hypothesis. In any
case, logical depth implies high order
redundancy, whether it took a long time to
form or not. This high order redundancy is a
measure of organisation. Natural laws are at
the maximal level (or levels, if specificity of
information is not linearly ordered) that there
is redundancy within a system (cf. Collier,
1996a), and are specified by this redundancy
(information) and the inverse mapping
function. As such, they serve as constraints on
the behaviour of any system. They are thus
abstractions from concrete particulars. System
laws are not always true scientific laws,
which must be general. This can be assured
by taking as the system the physical world.
This is a standard scientific practice,
according to which a purported scientific law
that fails under some conditions is thereby
shown not to be a law after all.

The information theoretic approach to
causation can be used, then, to interpret
natural laws in the minimalist metaphysics
described in (Collier, 1996a), according to
which laws are relations between natural
kinds, which are in turn the least determinate
classes related by the mathematical relation
required to ensure particular instances of the
laws hold. These classes are defined in terms
of their information, and the mathematical
relation is computational consequence,
ensuring necessity, given the existence of the
particular informational structures (i.e.

forms).36 The laws turn out to be
computationally deep, in the sense that the
phenomena obeying the laws show high order
redundancy, and the computation of the
surface phenomena is relatively long (Collier
and Hooker, submitted, also Collier, 1996b).
The explication of causation, laws and
counterfactuals, then, requires only logic with
identity (computation theory) and particular
concrete circumstances. This is the sort of
metaphysics the logical empiricists were
looking for, but they made the mistake of
relying too heavily on natural language and
phenomenal classifications (i.e., they put
epistemology before ontology). Of course
computation theory was poorly developed
before their program was undermined by their
mistakes, so they had no way to recover from
those mistakes see.37

8. Information Theoretic Causation and
Other Approaches

Some aspects of the information
theoretic approach to causation can be
clarified by comparing it with other accounts
of causation. I will deal with each of the
major current approaches in turn. Not
surprisingly, as a minimalist approach, my
approach can be interpreted as a version of
each of the others with suitable additional
assumptions. 

8.1 The regularity approach
The regularity approach to causation is

widely supported by philosophers of science,
since it seems to represent well how scientists
actually establish correlations and causal

36 For an explanation of how this supports
counterfactuals, see (Collier, 1996a) and §4
above.

37 See (Collier, 1990a) for a discussion of the
inadequacy of Carnap’s attempt to determine
the information in a proposition.
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influence through controlled experiments
using statistical methods (Giere, 1984).
Information content (compressibility and
depth) is a measure of regularity. It is more
reliable than the constant conjunction
approach: 1) constant conjunction fails for
accidental generalisations, whereas the
information transfer model does not because
it requires computational necessitation, and 2)
samples of chaotic systems appear irregular,
thus unlawlike, but have a simple generating
function that can often be recovered by
computational methods.38 For systems in
chaotic regions, random sampling of data will
give results indistinguishable from chance
events, even though the generating function
for the data points can be quite simple. Minor
deviations in initial or boundary conditions
can lead to wildly different behaviour, so
experiments are not repeatable. Constant
conjunction as a means to decide regularity is
unworkable. Time series analysis can
improve the chances of finding the generating
function, especially if the basic dynamics of
the system can be guessed from analogy to
more tractable systems. There is still a
problem of determining the dimensionality of
the phase space of the system, and wrong
guesses can lead investigators far astray.
Testing guesses with computer models is
helpful, but the mathematics of chaos ensures

that there is no reliable method for finding the
generating function of a given time series: the
problem is computationally intractable. 

The alternative Humean approach uses
counterfactuals (Lewis, 1973). This presents
problems of its own. Any attempt to
distinguish laws from accidental
generalisations using counterfactuals without
going beyond particulars by using a possible
worlds ontology is plagued by the lack of a
computable similarity metric across
deterministically chaotic worlds. The
phenomena in such worlds might as well be
related by chance, since by any effective
statistical procedure, their relations are
chance. This objection is not telling, however,
except for verificationists. There is a deeper
problem for anyone who is not a
verificationist, or anyone who is a
metaphysical realist. It seems we can imagine
two worlds, one with deterministic chaotic
generators, and one produced solely by
chance, which are nonetheless identical in the
form of all their particulars. Either these
worlds are distinguished by the separate
existence of laws, which undermines the
reason for inferring possible worlds, or else
the two worlds must be the same. This latter
assumption seems to me to be arbitrarily
verificationist, especially given that
unrestricted verificationism directly
undermines the possible worlds approach, and
is also contrary to metaphysical realism. If
one is willing to swallow these consequences,
then I can see no objection. The same
argument can be applied to chance and
nonchance worlds that are not chaotic, which
is perhaps more telling. 

These problems are also telling against
any attempt to reduce causation to
probability, since it is question begging to
infer common cause from probability
considerations if causation is defined in terms
of probality relations. Probabil ity
considerations alone cannot distinguish
between a world with chance regularities and
one in which the regularlites are caused. On

38 It is worth noting that our solar system, the
epitome of regularity in classical physics, is
stable for only relatively short periods. Over
longer periods it is difficult to predict its
evolution (physicist Philip Morrison calls this
the "Poincaré Shuffle". In a world with
infinite time, it is mathematically impossible
to predict the evolution of the solar system.
On the other hand, dissipative processes like
tidal dissipation probably explain the
regularity that we observe in the solar system.
A world in which all processes are in a
chaotic regime would need to lack such
dissipative processes that produce regularity.
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the informational approach, there are no such
problems. The metaphysical distinction
between chance correlations and causal
correlations depends on the identity of
information. The sensible hypothesis, on any
reliable evidence that there is a possibility
that the world is not a chance world, would
be that the world has natural causal laws that
preserve information and determine the
probabilities. But that hypothesis could be
wrong.

8.2 Universals and Natural Kinds
A distinction might be considered to be

the only required universal. I see no great
advantage in making distinction a universal,
but it is certainly a natural kind in the sense
of (Collier, 1996a). The issue of whether or
not it is a universal ultimately depends on the
ontological status of mathematical objects.
Other natural kinds are forms that can be
analysed in terms of their informational
structure, perhaps in terms of their
distinctions from other natural kinds. In any
case, the information theoretic approach to
causation does not need to invoke either
universals or natural kinds except as
abstractions from particular systems and their
particular properties. If mathematical objects
are universals, then so are natural kinds, but
so are a lot of other forms as well. Invoking
universals seems to have no additional
explanatory value in the case of causation,
since all possible distinctions are already
presupposed by the information theoretic
account.39

8.3 The conserved quantity approach

Salmon has dropped the mark approach,
and has adopted Dowe’s conserved quantity
approach (Dowe, 1992; Salmon, 1994). The
idea is that causal processes, unlike
pseudocausal processes (like the spot of a
flashlight crossing the face of the moon),
involve a non-zero conserved quantities. The
problem with this approach is that it does not
allow for causation in dissipative systems,
which predominate in this world. It is
possible that dissipative processes can be
reduced to underlying conservative
approaches, but how to do this is not
presently known (Sklar, 1986, 1993: 297ff).
Energy and momentum are conserved in
dissipative processes in our world (so far as
we know).  Nevertheless, it seems to be
possible to have physical systems in which
not even energy and momentum are
conserved (e.g. through the spontaneous
disappearance of energy/momentum from the
physical world as it dissipates, or through the
appearance of matter through Hoyle’s
empirically refuted but seemingly possible
continuous creation). Dissipative systems of
this sort still preserve information, even if
they do not conserve the quantity of
information or any other non-zero physical
quantity.

The information approach and the
conserved quantity approach are equivalent in
conservative causal processes and in causal
interactions because conservation laws are
equivalent to informational symmetries (cf.
Collier, 1996b and references therein). In any
conservative process, no information is lost,
and no information is gained. However, the
quantity of information is not necessarily
conserved in causal processes (by definition
it is not conserved in dissipative processes),
though some information is preserved in any
causal process. I suppose that focusing on the
preserved information in the process as the
conserved quantity might make the two
approaches identical, but this seems a bit
stretched to me. In our world, there are
conserved quantities in all causal processes

39 There is an ingenious but not entirely
convincing argument by Russell that
nominalists are committed to at least one
universal, similarity. I take it that all
distinctions are particular, and depend only
on the existence of distinct particulars.
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(energy/momentum and charge/parity/time,
so far as we know), but the information
theoretic approach will work in worlds in
which there are no conservation laws as well,
if such worlds are indeed possible. At the
very least, the information theoretic approach
and the conserved quantity approach mutually
support each other in worlds in which all
causal processes involve some conserved
quantity. The main practical advantages that
I see for the informational approach is that it
explains the longstanding importance of form
in accounts of causation, and it does not rule
out dissipative worlds. Theoretically, the
approach gives a deeper insight into the
nature of conservation as a form of
symmetry.

8.4 Humean supervenience
Humean supervenience requires that

causation, natural kinds and natural laws are
supervenient on particulars. It is satisfied
trivially by the information theoretic
approach that I have proposed. All that is
required for the my general account is the
particular information in particular things and
their computational relations, and a natural
way to specify the information in things that
is epistemologically accessible. For physical
things, NPI provides the last condition.
Although NPI cannot be completely specified
right now, if ever, the practices of scientists
and engineers allow us to use information as
unambiguously as any concept in science. I
cannot say exactly what NPI means, but I can
show how it is used. Unfortunately, it is my
experience that the learning process takes at
least many weeks at least. It takes much
longer if the student keeps asking for
explanations in English. Information theory is
the most precise language we can have.
Asking for a clearer natural language
explanation is pointless. To paraphrase
Wittgenstein, we must learn by practice what
cannot be said.

9. Conclusion

The identification of causation with
information transfer permits a minimalist
metaphysics using only computational logic
and the identity through time of contingent
particulars. It also helps to account for the
persistence of causal explanations involving
form from the beginnings of science to the
present. It needs no possible worlds or
universals, so it is ontologically
parsimonious. Necessitation arises naturally
from the computational basis of the approach:
causal processes can be thought of as
analogue computations that can, when
recursively definable, be mapped onto digital
computations for tractability. There are some
epistemological difficulties with the
approach, but it shares these difficulties with
more elaborate approaches. The more
elaborate approaches can be seen as special
cases of the information theoretic approach
involving at least one further methodological
or empirical assumption, so it can be seen as
the core of the other current approaches.
Furthermore, it is immediately compatible
with modern computational techniques, and
thus can be applied directly using
conventional methods that have been
developed by physicists. NPI and the
quantitative methods of Statistical Mechanics
permit the quantification of the strength of
causal interactions. I doubt these advantages
can be gained by any other philosophical
approach to causation.
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