S e, u ol

Security of € commerce

Soba Syl
A-Jabary@yahoo.com g 5O S

oy
solad oledbl adalis (gl Sod ain b Sy (sla 5 e85 suliin) (S g 58I o5l

Gk 5l clona 5 La¥IS ¢ cledll (o 5 aonn b i <€ cond 3218 51 soliiad & s
o L s e s g lais sl sunaie oS 5 Jolws Lol . cocal Bl 5o sl
09 el G 5oL WS e s pblae Hlao 1) e alin G S0 Ho el ESHE e a5
-8t o g odae SET 5 SSL (gLl 5 gyne 5 aplailical JS5 55 g0 (S iSll olas
S Sendpes [Laaicascs S SS o o) wlb (S 58 o0 slopicuns (slgilw sk

A Gpoli a0 i GLuS Sy dado B uiag, 48 058

(Sl Dlals”
o9 oolal e enidigsd s oidee « SET SSL v (K g il alabos ¢ el (S5 53 53

ARV

.

LV VT

Sleonling o) sum € S50 5 ulad ssel GBS aladl olgi e 1) (K o Hlas
(Sl 38 4ty = 3l S 53 5ad) cslellon 5o S5 Gl S ol Tl iles 4Sud 3ok
iaase Hlas e oolad ale S ads8e ol 4o a3l B gotdas sue Glo) waXS b o) Gl
3 SLEH0L 5 sulal Kol 4o 3ok Gl B 4S W g (g9l aalie Jia 4 oS sialsas
St Sl YIS Busa bsaac (558 5 won Jeolid ail 55 ce 5 sel Gl a5 e
Solse S35 Olisidie 45 Alias (glagu s L) (s 5saelS slasldla 5 b 5 Jase 53 salas)
aalbs sy S s S aolad 5o el) e Ho G 4 sad (o 3a8a3 ol o adl golas
poe Jmad sl (oo Gl (S S oslad 5 (S canalie 5 Baslad) Juad Ho luil L o e
G Il USS 500 99 0550 L9 pse Juad oy sk role L Al € S01 o cuiel o sgde
b aalsa s leal ks SSL, SET (sleals

S iS e,lad s s) Jeas

O o9 S el 3 2I€ 3 sulaical o g 5,3 ledb) dulie 3 ojlie (KooK o las
ol 5 S 3K S Bel sLGe (S0 o 3K ey « Lo sols (S5 3SH dlolis winle o Lgs sl s
ST, Slhilae L a8 Syl oslad . s gd (oo 80,8 @ o (e sleass 08
J‘,JTO_QJJJlSJJ’;c;.\l.;ga‘,.ﬁwoJPkS;laaﬁhng&aa)@aLmeLgl

LS sl s 5 51K a8 K55 S MlS lams S 4 ¢S S o 5, 1 Lol SLy
el Bl 51 S el 3l suliiel « Lolejlas il Jlw dia Lo . diag LudS 1, 35
833 S S g SIS a3 g, 9 iy s S0 0Sen Blad 5l eisiul . Wl sa S gl |
col s pead (sl @S b danlie o 4Sad cpl Sl saliil Cpuly sl duda T 5 el
Gl daiu 9 (90l Sy 5o e SIS o Hlad sla ol S eadls Sy e Wl dall
S o 558l (55 sad AL (5T 08 4S e suls (S g sl Gl sgas ol b
Sl s obical alolis 3 clie W sals (S s i€ alolis . aas oSS |y S g5 o ylas
sla S 3ok) lples b G Leal&ins b B3l BB 5 Gl (i Ll Lo sl
VB i po Sy olas - acal (555 saaelS Lol)
Sl go oo 5 cload 5 LaVIS (5558 5 amya s ad) Gelaal s 4 el s 30 5500
Sledbl T g S cal (g5 S5, eolad . cl sama S S Hlas oles
SS9 o OB by w8 L)) sl Sl Guob B sleaa 5 oY seans
i€l leMal (B3l 5 JLES! cps 5 Jlad (sld st 90,8 b s eyla3 B wiS s
col HlansA s g 85 5 Sl cuaal Hlaledb) o S8 ,50 cullad G S Ha Hu) a0 S
FoaelS o 65 emelS S LS a sk 5 (S S o) eay wledll) S SN ool 5o
852 5 631 S8 asd oo Uslis (Sleud L YIS g5 an oSl 51 5l s . 3l oo JBe S
Saal S 0550 (SEHHL sla Gk 4en Lo oledlll mi S 5 5ol
il slieal 5 S lame S 3K 6 0lin gl m Olss sma 1 Lt sul S 5,30 tolis
SEEH0L Sl olblKe sila 5 VS Jsos wanli « Joa wadlel S0 ca a ol
3 Ao Sledbl Jluyl sl O1ss (oo Oiaad 15 ol 08 cnl - 9 s soliinad s5laS (b Gn
s g ol A () G alans u)ly L suls Saalia Lo SIS (S 3K glgala sy
S aolsrsame 5o L gad wlS 4 5ls aas e sols lea (e s sdie Yl (S5 S
s 9,lS s L suly S S A dulin Y sane 1 0T 58 ol L 008 o s suidig,d
a5 3285 YalS (5,18 (ola 4oligs b ol o 1 e suls S iSI aolis - wiols o 0,lS
deolie g L suls w5018 Gaigan 5 SIS0 sk G L suls aliins GLsae al 8 ool
cadla (oo e 1 solad lednhk B S A Ho (Slesla G0
G5l Glome 4o pala b La suls (S Sl adolis 5 ale b o (S Sl olas

L3 wiul5d ol 5o il st i Gt s abob Lslolas hlee sla s sat 5o S alasl (sl

Loboslas e lolas aladl s gad 5o a3 9 slal Cuigas Kb o 7 5hae (5321€ &lae ia
il (oo sl e s L sals (S S dlalie wlelas 4 (o sSaly 50 5 olaS Lok b
s s (YL @l o usd oo (Pledbe s sladl B oLl case v Gal
Jalas 5 35 5 JolS sleans 5 31 Gur 0T 08 (ol S 0t oo Jeals Sled LTS 5 505
D58 oo L3 (5Ll 5 SIS0 Bsse aglie sk Ladil .

S S oy a5 el £ p g Juad

Bl €S b sld st s o5dle ¢ Lplodln (sulas cudlad dimn 50 GL1 L el b
s asmd o omels SIS0 5a slasnl b oledbl el ¢ by o LIS Sledbl 3l alslia (gl
g e Jrealle SS0u Sy o L Sl Bysb) Ll sle (o) b1 (sla pleies <SSl ol 5e
gamaa alas) 50 o) Gl gla i ju ol ua Ho e suls) cbilia Jay sle M) Jial
alcul Jols [slaias La ooty (S o iU adobis o 50,18 Lis LIS 5 gl 50 0,8 s ua 4
o Uolie (Ks8I sy oS olica + el G355l Jla Lo Wil LS5 il G glas
sl s olical o ((oad aMakead ¢ Jan i o 550 wle) o,las elie slicd Jalid it
A50 wile) U8 5 Jan Solae (oo (5, aaadlel ¢ dllga o mals 5 sius wiils)
o9 il (oo (oS ol Hlghl wle) (S8 sl 5 (La conay adlel s o il
Eolad el 53 BUI 35l Wil o La sals (S i Al e Mged © S olele sl
el LS ol B sust aleul Sl sla Ll 5 La sols (S5 5 alsbie sla,l3al a5 b
€S 0 Cialae asls g ala csanl solall 355 sl . 55t S1,1 SEL3L ela cullas (gl
olas 5 Jilaa 55 05 dne 3B o i 53%la oS o€ L suls (K530 Yol
F398 Hlusa s cad e Jlael (T 5la s a4 Coed Sl el

5 ol o S g S o slas gusulS LIl a s B4 L WS 5l 5 ook
L Neteraft jlea b el gl @6 5a o5l Lol wip8 o swaali 1 (liuls alewns 5o el
oo Neteraft b 55 oS leadl 5. S o (3L 1 Ledln ;B Gl cuiel Giay (0 S sl
O LT S ol a3 ()b oS il (ke 4 llae Gl s 5 ol 458 (oo
G0 sl (oo Slella Lol cplh adl oo o) Aol sledlusl Gl S po suldil

Siel (gl (BLS sl e S B8 ad G50 ooae GlBaSAs (B51nS s alS
oladn . Web satas Gus g Joole aivwns 581 05,8 LI Web-based x gl g 5
= ade (5,8 8,00 S guis a1 e 5 (Sledlb) SLSEL csals w555 slee s HTML
o s s - mss o LIS Glalol aliu gy st slas) SYISaI &, oo B 1, Web-site
GRsnelS Wi 58 S il il L 0 S o) Send S el aliws S o el 4
el Gusiens 58 Olaiadle aldd gl wal Gals € (S35 o b agd o Jeale il 4 «S
2315 (B8 5 eolad S5 a8 Sl s el wa Tl lal (SEs Gas s e Ho gl
ooldie oS 5l Ko ¢ (SIS sl Gl o) e ol 24 5Y Gl b L 0S o aal B Sl 100
DUS L0 aleanis (538 HIS Job 5o 5 i€ aladiil sl alls Jsb 5u 1) 6 doa il
Casd oo cliblae sl (slgaw g rmn 53 Lot Glo i €S W g Giakao 15 anals]

b 5o S sols (35508 1 usA cuiel 5uBT (slgews 5 o0 Neteraft i Jlw g o
O30S lay Jolids Jlaness (abais 5o 5 Sidie Csane (sla suias (g yes s Jold ol
= Web (su,50,LS slajlnil oo suts o S b (ol sulyy 5 (alok 5o s sa 5o sla G5,
=S558 5l ol Guleal s Crasl S g SN eslas (slghaaas Ll e 4 dad gl (s g s - 3 5
el 535S ity 59508 L1381 a5 (5 side s LMl JESI 508 (5 e 5 SSI
29 el ago Ll oMbl JEE1 5 J5 Lo cutal ol o€ w58 panad Lledlos 4Sl byt 4
OB 2e 5o 1y usa Slla o Gl g 5l Gadl sl sl LelS B s pae S
D et (Gl S 0SS gl 3wl sala HI8 Ao OlaolS ok 5l g siie sl dlaa
sola) mao las Slae Ly 5 5Lin; se (sl s s 40 b8 5 a5 G Ol ke s 5w alas
el sad 4l mhais S b Gustans 5o Gl g Sl 5l Glaabl glos 5 s (g s
c S Glatel | LT wb wiS s cilillas

@yl snel 5o i oy guas oS el slasluliod o sa (381 e 1Y gans oS K
La Server . s s ol Server Ko sy, 45 5ad slan ;8 5 Ll wias o s)lal Solu
b i S 5 8y 5 i LSS Giules gl oS s oS Jali Y sans
caS aalga spblas Hlaa | Al cutal sel cpl g ols sal A aa caalie a3kl dg sa
alSia 5o 4 0l el e B Rila ala 595 b Web-based slas ;a8 51 suly slass
a3 S0l SOuslougay b gu Lol by wialgd oY seane G o0 8550 G sole]

Telnet Front page ,Iy-! 5 blowse 56 FTP Ly O alaal € upls oKl 5 adl el
Caal s 5l ol 4 5o Sos slgindile i sy cral (Sas ia s adl Gl]
O 5908 (o D18 o5l 50 L g s (b wsm s el 0L @ Jemme o0 s
Lebld 5l anb wd JolS a5 (S8 Gl bl s walsa usiens LB et (sl L g 5o
S gosome sla suls 5 sl oo sl dais 53 Loy Job s bl 4l 5 0l 4ags Glutay
l= Lascript Haker.)l golaas Guss . & oo oS80 60380 s g 555, Web Al
F B (oo Sl lase (SLadS 5 sags sl s Ol lebl oLl
ol oS cliilas wb Lais on linesla atewis o Guliaa sl suls 5 4Sul age 4S5
dada b Gas 50 0L ol sad alad) SIS0 s B 0 o cs | Ll L2 Neteraft
Web- < alial (hga3 o) 50 5o sadl sleale ol I8 € i 3 Gol 0 S e e 15 054
sbi il mls L glitch 51580 a5 4 1 slal cpl Jala s) 00 58 59 5 80 s IS 4 site
el 355, alob 5o esleol sla (A8 ale € SLALEE) 31 (5l din 58 . diAY o S
sl alc Baas a8 sl 1) (Faw olsle diuen o 5,8 din sla € alb

w0l LS (,lagSs 5 a3 s dias oo B3 (5,108 a5

.Ia:\:s‘)dou_:dx‘)ljLots_):sl:ib&ud@wbweb;ijéﬁﬁj)giweb-basedx
wole oolal s S S uS o

o 15 SIS0 6a Ly) salaas Web-based Luw gy O ot daks Sl [Sou s

A€t 5oy Ll 5 0 o 5850 sl (3500 L sl soms 5 b pleses 5ol 5 satenn
HTML slaiio olay a5 0,8 o L1558 5LETI) 50 slala Ho alwse S J88 us
LS e aal a3l b €) alia cuiel wial A o SSLS s 1) saske oledl
e 0SUa ¢ 5ot « st sualie WHOIS xgela 5 Jolid L5 & wide wledlal S
S8 50 BB S Gally L 058 o s o9 a1 el s Web cladn § S iae Web-sit «<b
o 1y ST oy a8 sl » g 3530 1 Lo aleases 515 o oS plgaly 4 0 S
22oLS S e sols gl 5o AGS Ko SLALLE! L S o aalyd Al & GBS dlaa

il 0,38 50 sws cu] suly Gl B solii) s 5 ol

LS mlond ¢ oSS e La sl Sig S alolis Jali S g0 ol sl

s lae gl S 0 o Slagl ba (555 SIS sla ieinis 5 590 o), 5 (LG 2B
oot aal b sulaiels s 5o (5o S aue st (suy 4l Sledlal il 5 (5 ,La3 oliasd il o
Yo (o o Jols ot |y (a5l g e suw g oo S s fae 5o waa a0 gl
onlas 58 8l wlalas Ls sl yan ¢ 55 50 4S wdly Bl oSl Grinas Wl cuul 83,

:Aﬁwaélaa@y‘wjlfdflla

D iy calils -1
S i gmian s ol et 1) ilio S 5 Loy o Lo suls J o cnllilE 5 (on s ol
WS el L suls 4 Slae e e i
ol —
Sa glbad a8 clalasl Shlee olabasl 3o s ¢ Sl slad 5l oske
5 s 5153 a5 5 158
c il oo Lps s
 blie ol -
po e GaledT 3 1B 51 s oSslae G 3Sola (ol)l (sl saene SISl o)ke
Lo ool ety wheaes GaolS 5 (s i AL o same I3 ke 5 La)33l
P oo Oleyas =2
e Bloael g 5K csuliinl £ pw BB Hu Lol wlilia
 olla
O 5o=Sa) s L o Glodbaw G900 958l s Slae 5ad (oo sl
pslae
 Llie ol -
Lo aby (L5 e,
: el 3
Selad Jolod (atiaan poid go (ol - aly Gl sal Bla b el 5 Jao 5 oSl
sl (oo ale G385 @ 3 5 5 OIS B oSl 6l M5
 olla

Cemson At L sals S asls dlaye Lo Gl 3 8l b dulead laladl 5
s ablBe ol -
Caly g 5l saliial aby sleml 4 el ol

by il LIS 5 lacl -4

c- (SLAUHJJT < J‘)Luudo JJB b):leS uﬁ.vle‘ SloaA (SLAuufJ‘).t.u o xWhois
IS oo layy

Cpla Jsos 5 ol Sl (ISl 5 adi 58 5 suiin y8 o sa) Ll (el

HICABVREC

P Cusd Jan

L ablEe ulss -

JAJMJL‘QMJ;J”S‘S@T‘ABIAL;oJ:leS‘L%BT‘}l&ESJS@x‘ALgcJLal%B
0l (S5 sleS5es b
PS5 ook cublE -5

caaled 5 (o ile s s couand g 3 i bl Ly a3l (sl sy 3

s alilie Huld 5 ol

cosolad 5 Gagm Blesas s 5a Vb 5o S el Glaa LT L ablis sleal, 5 olba

toledb) Sl r ol
P9S8 ps o0 e AliAe s dw 5o b Sledl) el
BeLlS-
Sledlbl BBiae 7ol 4o o iens 3o conlgiS ol Slodla (550 dhicwe 55,18
S o Gl g Ayl | AR glau IS ddi s
Pk -

Shame ledlas 5 Shae lHolS dhi g LS (o) aSud =g Sl 51 Glisebel J e
.CJJ.U‘L;LUJL.UJLJ:'G
:‘Al:\::t_

Fosd (oo mdly s HBI, pe 80358 Al gy L6 5 4 S

S il = plas o ol (GlgS 5 2 p s S
SET s, -1

Ay il aad el sud sols da g sl sl oS 5 1 s i s «SSET S5 55
JL&uJJC)TS/l 45_4.43A;SOdo"JC.\JJI\&‘JJQ%JJSGL&QJ‘SMJS&‘J#OJ};‘}JJ
LSS ol sad 5 0l e ologile 5 LS55 50 oo Jead (ol ad GALLE 1997
Sl (oo el
SET S5 sleShs1-1
IGJ‘K :).o‘)—l—l—l

sadl e als w3 S oS el (550850, SET US55 slesS 35 Cnsings 31 (S
coos) s Gl alisy S 511 Se abig S Wil o

tsSan g iSI slasl -1-1-2
csiol Lisol SET JS5 55 50 sl ol sl o 9o ol (S5 53 glisal 51 saa
it 5 335 (oo e (2l W L1 (Jlias (sleiie s s€ . was (oo a4 R0
sl 1o by S0 ool La Lsal o)L aan jlidel suiil g 40 LlEe walS dhiu g 0I5 o

oadie Slae Sussls

e b cslas -1-1-3

0ol S 4 o gee W S bl ol habe pan) i S 5 oAy b ciles
ciles Sl o gac W ¢ a0l cilas Sl oo s Jio Sledll gsls 5 asls 3l Lo sands
eilas 00iS Huls slasal 5 4olh colas Hliel 5550 ¢ 4als cilas suiiS Hulis cu 58 « 4l
iy GeliBls s Ghaolany 1 Slcsadle i & padnd & K1 .. wdl o 4l
suliiul 8058 o sae ol Wil 51 Wl 65 co 803 S Ly ol (o050 Wl SILe) 4SS WS o
waas aladh 1 i (g9, diel 3l 4l B i

SET US55, ologyle -1-2
o yide —1-2-1

el & 5 aslulind Kaula S rals 9 SET alie calayy (S5 ¢ (g5t S ol
5oolS Lasns ol 5o 5 8 o o 1y aliBilans S5 5+ ool Set.wallet (o genis o lie!
b (oo s
Sl oS s oo sHlal ol WS oSl lial w £33 & 4 SET LS wb el
Wi s gy sbdel G5l o5lal sS4 posae S 5 5 e Jliags Sl 4 1)
e (g luie) oS« S5 b 5 SET 4l cilas . aas o1 5u,l8 Gk 5l saae,
soltie) oslS a (gl el cilas 5 SET il sl 5 asad o Jhou,l « 43S o sobea I,
Ol ol (g yidine o)LS ¢ (s golbe) oIS slael cauiey B s wd aal A el A o
LS 5o Slael Gy 05 o sl SET 46l cilas ju o)l€ suijls o 5ae a5 ulac!
oo Jlas) SET aals cilas coodle Tulgs o cvnad oli& e, Ll gkl ol HBALL L 53
= cilas 9 0K o gyidie 4 Blaie |y e sac Wl L 4l cilas RS ol L o g
Set.wallet ;s 550 - S wa goliel ol ol G 5 @8l aalsa s3lal 4i,lS « ik
s Slae 1y sritie 5 aS e o,nd 1 goliie] @IS suisls 4ol cilas 5 Sy al oS cal

..A:sLaSL;oSETi;JCA&bJ;}

L o&,oL—1-2-2

29 (B g 3 O GBS (sl pesmade D8N a5 Ll siles S 4 K50
$AlsS S 50 e (Bl) solbel oS aa g LIS us e oSy usle SL SET S5 5

u‘&:wéuédm‘&‘ﬁuﬁ“)dSETm‘dﬁ)dﬁu‘)m&‘\sdﬁw.}:ﬁ.‘ﬂﬁu(s‘f

CaaS andbye 1y endla s solal uyls shlal Halb € w0 Ghake |y Lo Al S Cl as S g

ol Jaae -1-2-3
1y Sl liiel €S alial € Jolid 5 caal G0 ol 5o 5ol 5 Llusa G eilay o)kl

ZMJL\S&‘W—I—z—AI'

N KR ENE RUA vV DY SRRCIEN NGV VRt P R P A RN

 elin yona 1225
SET ssas LS50 0l O 5 - sl (2lesS305 6ol (S5 oplas el SS9

slasuls can S uLa suls casla L 0SS o a8l yo (55w sla suly 31 S el alas
Aol e s slalinsl 31 asliion] (sl S5 JEII olyal G s s ol g 58] 5
Sashaiian 0 ae wgal (e o) ol | o Soide Bl sasw; alig 58 Sjide 5a
L5 €S was o elal Jlusn & My slaliaal 31 soliieal b oS el e 83 Ll
YL acs S SET U555 aaila 5o addn Hliel | i Slasa 5ol S adas el |,
il Hlassa oIS S0 5al Sl 80 S 4gs Gasa OIS s sl el
abidlas sl dhic g sud s o oliiel LIS oslads 5al s 5o ad Hlua S 5l sa

LIV P

SSL S5 4,2 -2
Gloyae 5 slaiel Jols LLsil ¢ (bl LilS 5o G 4 caainl SSL US55 4l sl Ciaa
Coaesl st Y Y s (53 Gmly 5o oS el sad JSES Y 5o 51 S 55 Ol - o) aal
s 3525 SSL.RECORD 55,0 TCP siile Jsi 5 Jan (sl JS5 550 5 (o 5L o

A s 5 Ses litin S5y S o g 15 Ll 5 e 5 slite (sla 40 US55 0
Eas 5 5500 oLl) (soidie 5 o0iAY (s g yew S uau e 83la) SSL.Handshake
Lo s aas JEl 1 La sols culs calyl 5 oalie JS5 55 51 Jad Se) slaaalS 5 5, ol SIS
o SV o IS5 55 5 sl JBws (B lEe US55 5 oS caaiyl 50 SSL o - S iy 5
18 €S 43S o anl el SSL US55, ¢ usd ¥ SSL S5 55 YU o LT w3
sl 55 LS5

el layae b, -

bt 1, e, osae S L Gus oMl 5l auliied b w15 o 450 lad anids -

LS
ol olaiel B8 Lls,l -

SSL S5 5,50 slaal -2-1
ol Ol cuial -2-1-1

Cased e s0liiesd ik 5o Gy B i Ll S5 olasl sl SSL
L ods il daa g —2-1-2

8355 e sl 5 O o a8 waua e gae WK JAls], () 80 gaae SST (slas sy
5 asia US55 S olasl 4 pliial G0 S soSola 51 et - s oo U3 B0
caola s man (Adel GLAGES S glial 4 5l ol
e € -2-1-3

oo JS a8 SSL fan (510 . 00 S 0 CPU 0l soliiiul 4 jaie (5,185 olilac
Scatch cia s 51 asjls zlial oS Sl) lass (alS gl golaal wds Slghy 75k S
LS)3 bl ddsila
{ siew ol Cilual -2-1-4

a1 US55 45 Sawl a5l Jwal o Specification 3.0 4a.s SSL J<s 45,
o) L oliadie ad o alan a3 Sl o an o al 157 ey 5alGT 4 ole] 5w o
) 4 0 i e 5SS o e S gu T laliial GulSail 5l 5 sad Wl (a3 59 Gaob
3 g o (e allSHu (il B gl sS4 sl (slouls laslala 5l gulass Sl

(taras S o ol dlalh o) ghns) o e 43585 oo LT 0 ST en s (0 S

38,8515 5o bl (el O 5 oleaa fpaal oldia (0, aal 8 6l o 4 Sl
Sl ol lian (gl LT oS, shilan wili gy oo 1 (monbinn AT Shlis dn S wsd oo
V. QPP FER)
D otula oLy -2-1-5

oS Sl aas o ol 5 oK o Saa; aolh Suulay S o la sols e yd 4 a0l
095 S (e py GELBA L Hu pie (o L) s L u sl e suliil (el Glulas
F ol e sb el Ol Gyl S
4yl 5 gl 031l -

el el S ol (slasols Ssh 8310 0 pine (adtis Loy yom Lasols 4381 daa il
Onbs YL Sl @ oa 5 L Jladl Bl caelise slgnb slasals 231 (@ 8 Sas).
wlens J&a3
055657 -
b UL X/ T L pasd T /x T L olana s
gl en sals ¥y [7 S 3805y 50 T Gu S dasais b 55 55 LEA ¢l al
0PAqUE .55 51 (el 5t slasals (g 5iae s ihe Ll w5
Mg -

Slod 5o el (Sae Hlas a3l el el 50 slasuls Heslie 5 il S gum Ko ol
1 Uil olaas oJgds 5lo 5o dlaye 5o Lo ciles cpasl al 5le) B L oyl Gaddie wilus
1y seobic g5 €4S e el
ot Tesd culh Job b Sl S 4S clT was ¢50 S (s) giws
T T'[n
s Tajlasl 3 ymde SN S pla S o Jlid) Lasals i, Lo 1y enbin T el o
Do eas Jold (o808 S Slisa 5a Ol Jsb
ook wadi oo Guad S HB sledsb sugane 1) Sy (euddS s 3 Lasl s sadgsnds Jsb
9 ol ol siae 5 anle adly Jsb a0 S 23> < floor..ceiling sla 3 soliial b
Sl gulaal @m0 g wBlA SIS iime sue S Sy see 4 b o] cul Gl
S Lo Sl el Ul (ceiling) sl sud fuand Yok e Sle (5510650 o el g3 50
el s LAl (A Slass S Ol s Ghis il a8l Sk
«<T T'<floor..ceiling

Slasl -
gaae slasaly gl sl aaa (unit 8) Ol coodle (4 gus el S (L) by slasuls ¢ 5
i cedle (st e L JLail (Ll (slessen culs S5 3 S35 5
¢[unit8 unitl6 [2
¢[unit8 unit24 [3
¢[unit8 unit32 [4
unit8 unit64
<[[8

tly bl -

g ahs S d sesuiel ONUM il peu iy B S SLST US55 suls £ 65 SO
oldie g o3 S 8523 58 0l o | 00,8 LS (i a8 alK8a 50 oS (5 pulie L8 enum
oioled S) (S 58 el dawnlie b su LS cl (Sas £ 68 (lea sl i led 188 el
lal S SlasTylaan pan el Hlale S gam Jle,o sud suls Ginlad & gems Wb
8 Garead (B le) 1 s 558 50 K g e 5o wil giue LT 05 9l oo 50 ol sladd
enum { e;(vy), € (v1), ... , €x (Vn), [(n)] } Te
ss—ana 5 sliie 4 HLS ol IS s T (g s Gam 1) Sl S el (K Gile)

el GG e S Gl G 258 (S OIS

A5 g
Dol dislu £lgil-
SO laddio ja 0 0d GALE Sal) o wlgl gl) B el (Sas sud uaad slaBA L
ol C el 8 Gliie (i ya3 (5l ol S WS o Gl 1) Sbgs 5 was g0
struct {
T, fy;
T, f;
Ty fo;
§[T];

.Aailebdai\;\}m;.cM\Hi)dc;a.u‘&s.ns_,u';u&fdi)ﬁ.dd;unf
(Lajuais) Lacabs yls -
08 OSee olpdd 4SS 0 il Eolad e S wb s Clam) sl Gals sl bass Al
o9 ead el cdnlad e ya 58 6l (200b b BT 0 e Guad 1 suid B pa3 AL
s s 5 Gl L) bace g5 9 e ST al (e 5o bl 48
struct {
T, f3;
T, f;
v T T
select (E) {

case e;: T.p;
case €;: Teo;

case €,: Tep;

AT

P Ologas -
block cipher stream cipher encryption digital signing 3o, ,Slee ,Lga
block - stream - ciphered digitally —signed « 35 4 public key encryption
Sladiie 5 8 0l Hey dda yo SO 0 gdne Gual public — key - encrypted g ciphered
b 5 o) LAl s s (paaad nilio WS il (a4 (9 S JSse iy ld g 58

s yal b s cans

oMl 2l s SIS (gl g0 Olie o gusSlae (i, SO Jiaas lEedle o
MDS s, %58 s SHA <)HASHG 2 L 36,,6a b RSA (6,158aMe jo .0 sine suliiel
LaiiweSHA HASH ol 20 DSS Lo o pmsmd S L s Sy) s oo 5,13K003e (
sde 1oal BLAHASH ¢ s Jlasss cadle al, SI 320k 3

o0n 0 OleSs Hlade S L cl exclusive - ored Jsane (ie 4l il 5 ey o
SERTRY
ans 53 3t o 530 e b Sl o 0l pane (e S5l n S5l 4315 Sy L
(s 64) (g9 Spls Slafie Jaks 5o (aiieds | Lasals € dia 58) L sans (io 45
352 pad out Hlas sla Il 51 250 L sB S leSsh (LL aauyie Sl (5550 WIS 3680
sLlasals 3w, (sl « trapdoors »;_QJL)A,SIA;&:,L;JAM%JS;,AJJ;.Pme
L) siee 1l st suls wilS cida S o gae il U Lasals So 0 setine saliiel s s Holio
oSl 5 s sa,5T0 s, alla Bl s uad W
HCYG] L
LS 5 psdlae 65 5 G g S Ol b sliadidis salis g Olsine) ol Gl
S ol Eal suate Jsb b olasla,s cOpaque) 5 ke ¢l sl oS iy as o gls g alis
Colom L (o adn DBALL S0 5 alid gm0 S B Ol | (ol OpAQUE (5 siae
W Bla S (Sas
} struct
cunit8 fieldl
cunit8 field2
¢ Examplel }

. SSL US55 2-1-6
cdob sl plaald Jold oo (5 Sas Lol Y58 5o ool sl JS5 53 < SSL
LSl Jals 4 Lasuls (Sl ¢ JUE) ghie 401, Lgolsy SSL . wtls b b 5 e olans 3
20 oy 0o hyal 1) MAC S aiio a0 s 1 Lasals gLl sk 058 oS3 S sl
Slla Sl sad s D g o oLES ey 8L 0 slasaly L sanss JEDI daan 5 oS
sals S 53 YL s (slgasitie @ g S ppo s sa s Sida laana s T e (S utid

- L gl o
byl slElla s als -

o Saa lias . ol SSL handshake JS5 5 55 J shne « ool stateful SSL wls S
oo S Ha sleinile US55 cura s wase o3l T o sar LISead 5 (53 slells

sals Gialal 5Ly o cuaid g Blie ol 5 b el deanlie TBB0 a4l a2 pule
curs s Olsic 4 lsaas (hand.shake JSs,5 b)y olad Sl cansy o gias (Ko o s
S siie (B . W e (Sluldy GlSlas sk 4 GLa g 5 Gaila Jalie 8 ey 4 slasls
Ol sa cua s g 0 ue mdlu) (s 5uiS | e oladsie) chang cipher spec aly
play S OSSena b (g idie (B85 0 (oS ad GulsA cuad g JAals 5l pslaels Ll
S s in g alla JAbs ol e slael b g clla i Lyl 1, chang cipher spec
chang slgoly ,13S0aua 5 (s yiddie «S ool JolS hand shake s SIde 5 das 185 0Se
E) (sasan 381 55 Cipher eladine 5l soldi ol Ly Gupow 5 ianse s |, Cipher spec
elgiacad o o 0e - usSm,0 15 obiaia ool SleMbl caul (oo SSL duls & . 0iS
Cail obuaia oleyan olada shls col (Sas
P Y-

ol 3l Gl s sLeSsb 31 YL Lads¥ 311 omani sk (slasols SSL e 0¥
ERV.EPRILI| PPN}
P ey deadiiie yudS JSS g5 -

ol US55 « ol sl 8 gan 93 (5518 o5 (635053l S JUEBI (LU (5158 SSS 55 0
S Jolt aliay 0 pdie s b 5 55l 505 sola Ciper Spec cas «S ¢ vl (S aliy S
) & e b el

S s—diae saliu 8 HIKen A dliiuy G aa g (soide dliny 4 o,y Laddie Huid aliy
CIPEr SPEC ceu s JLEDI cuad (guas slau, S5 S aas e suvn; Gas 4 Sl gl
Sl 53) aana g 00 S il o 0 bt Biels Al (ol @ilou . b wialpa cliilae LSy
Cllan Hob 4o Gidis 5 Hadln Jalie aS oS gola (uilsa cuns g JAlu | (aslaals
il aliy S HISSeud b (il (B . e oo (50l SSLISHeud 5 (3 b 5
S Oilsa sola caniy JAl 1 Gsla aslael cany $ie cdl o e Ladie
g Cuad g ¢ gie | ey dadidie it aling K LIS b (g b 8. 0is
CaSae (@S ol GRAS cuaay JAls] aslaals

456 5 Hand shake oo a5 glaaling Jlis 1) Se) dadiiie il aliny S (5 53k
by Saelondl go Ga5M) aas S siie HISSen a5 WS o Jloayl (il K1) wolisal S

S e il 53 48 5T ek ks

Polada US55 -

ool (Alert) Jladia g5 g e Slatiy SSL)58, 0¥ b i oS sl ¢l 51 (S
cha S L olada slaaliny sanie e 1) plada 5l mas 8 S 5 alis Ja Alert ol .
Sl 4) sLalle 5o dla o ol Lo LT (5558 Glless e gl)
B il 31,k 30 - S bl 1y Gde dnadaly il alich Lol S gy <alol e
¢ L g 03,28 5 (5 IS e, Hladia slaalan Laaliy S0 asile i 18 5 1) (saaa
c ol sud paddie ola bLES s se dhin gy oS (55 skilen
Handshake JS5s,s Jleal ooy -

YL << i siue a5 SSI handshake JS5 55 b 55 deala ala 5o 518050, sla el L
1 bl cruas 5L slse SSL Hu LISieas o (side K (B . wiae Jae SSL o, <5 oY
5SS sl pads Gals caany SIS e Al I QLA 5555 S s LT i Sled
Jola 3ol Soidie slaje,; aal s sl Public — Key (o S (s50, eSasS 5l saliinl
25 o9 sl LA &) pes 4 oS Wi alasl Handshake JS5 g5 5o L dlasg ol - wiSe
s wilsas!
olsa Server hello alay S G s 5 wienyine JlK5eus o Client hello alay S g5
5 m Al u ol - ol sl) L) 5 ols salsa &) suid€ slad S oSl b ol sala
99 Ol g suliiial (L10S0eun) HISTe0A 5 (s Rde (o S LB L cuiel (5535
S 51850 15) palsa alan
Slade 5o 8 dle o (g5lwen il ule 5 5oy (sladeli s e gane duada dulid US55 0550
Serner Hello . 5 Client Hello . Randdom . &5 due Jaos 50, 5ol Solas
.Randdom

s Baaal HS) 0, S walpa Jlal 1 0 sa delival £ 515%e0n ¢ a Ml slgeling Jlis
PS5 a5 s Syl ol (Sae HIS800a WS 53 aliy S o 5 e pdle wanly
) aolinal S S waly (aTie AT sy 4eling de gane ol €SI ad Faaad H1S0e0a
S el A 0 (g e

5L a5 Jaiie . o S wal & JLa,l |, Server hello . done aliy S 51=8e0a) o)
o il Sl H1KEe0d Guns . el sud JoIS Handshake ;s Hello - message

oliual £ aliay Wb (gsidne « wil su S Jla) woliwal £ ol sa 50 aliyy S Server S
Client key change s e w3 ;s alay - 03K Jlayl 1 wolual S s s g ane Hlada b
Client Hello ;s sus CLAS oo gae wilS a5 &I s aliy ol 03008 5 0 giies Jlew) & 58]
80 S Jlwyl (5,13880Me eabils s aobual £ & i S ols S Server Hello
S oo Gl oo s satine Jlusl 4olinal S e Faaal (sl elinal S wil aligy S sl
1y a1} ey dmmdiiin (g idin 5 0 sedine Jlaul (g 5idin dlany 4« 3oy uaddio Hudd y aliy
g, oS a1 aaila alang 1od soidie Gupes ¢ wien (oS (5l 3o nditia JAls
1585 ey tmdidio yndl y aling HISSe0d mauly Ho ¢ 0o Jluyl waa slade,; o LawslS
el o sa daila albny o aaane JLESI ghla o) dadidio 41, Wl g5 0 S wala Jlu))
Wl e HIK0e0A 5 (suide g ol JSLe Handshake) ¢S1 . wiie o)) waa oy adidie
- dubie |, Application Y sals

a5 e 5 esba 1) U duada 6 4S 05800 pranal H13S0e0d 5 (g 5ide (BB
P an el gla Sl sl dalis sl) cul) aiile aliy Hla sl WS 5l g0 1) S sa 50

st 438 S 5w 3 S s s 4nulis 5 suliind b Cient hello aliy S (s e
St 5o Bl S e s a3 5T 5 03 eyl (g LI3SEasa - S s
S a8 s asluga 1 L)) sud (edidie duula caad g il aal i HISEead 5wk
SIead o a g s yiie o (ST 0 ool dada 4lis Hlade olaa L server hello
2 ala sl 4 ala gla aling (sl Lafins 5 i€ L)l 1) Gy oo yuis » (slaalin Wb
application 42 o sals ol 4 LI5S000a 5 (guide ol JolS saas LS Sl (aas @
iSie a5 s dals Qs S KA ¢ s iy s il Golls K1 Ko sl
- diasse sl Iy JoI€ hand shake <& SSL1K5eud 5 (s 5380
535 Syl S5 -

= S 89— ad (guiuciadd 5 W g po e 95555 LY Al sala w58 slaplay
35550 Y o alad duls wile Laaliy b aaiiein sud (50850 sola bLS,) U 5o sliss

SN

e, slilas 2-1-7

g sadn slaxsl chipher.suite L MAC slaai, &I 5 5ol 505 ¢ ol «afS 505
5 o 5T server hello aliy 5o 5wl oo aala HISia0a
oolEial (g 1 e mlislas 2-1-7-1

el (Lol w3 5 Ladius 320l (s handshake JS5 50 50 oL slaas, KU
lead soldic) &y g sad

pre_maste_secret bus gl ok, &I laa Fortezza s RSA Diffie-Hellman (1,
LS os—dus S «bsls 5l ool pre_master_secret .o i o suléi il master_secret «
Al sud daclae master_secret
-RSA

pre_master_secret K s o suliioul WIS s o H1S0e0d Gaaad o), RSA 13
O asde oIS e, HISEeun o see WK S sk o wal B (s ide iy 4 L1 48
master_secret ;9,3 |, pre_master_Secret (s diws g9 58 .35 oo Jlul H1K0e0a
el sud paadne YU Ho S shiles wiS oo oS

2 oo 15l [PKCS # 1 [PKCST & g 63 Sl 5l sulinnl LRSA Iy slabis
Sadige al PKCS # 1 50 ¢ 90 Sk 5 solii LRSA o sae 0K 5
Diffie-Hellman -

il (Z) JLEn) oK o o o | —a (suls 1,3 Diffie-Hellman 4 ulae S
Y Hu S obilan o g oo Jous master_secret ;g 0 g 5,00 LIS pre_master_secret
) 80 oA e
paS 5o el (Kas 5 wilowd paddie HI30ead il o Diffie-Hellman sla il cdo-gi
Dol Jolid H1K000a dalianl S ol yan b wiil al g8
Fortezza -

OV G TEK coad sa s (513850 5u suliw 3 uLs pre_master_secret 48 <,
Jsas master_secret ;5,0 1, ol LS o pola e, 3l 1, pre_master_secret I Kieaa
6131850, sl LAV g aian o) slaaal il sl padidie YU o € glailes S o
L33 master_secret (uiiS o sl wiS 5ua5 aliny o g W 5d o Wil & (s yide Token L o3
s o 63l MAC e lbiulas s

o, Ladidie 5 oulEe g1 e, eluslas 2-1-7-2

ol JLad e Lumadie 8l 53 SSL (glan, S5 (a0 asili 5 ey 5 suliinn) S
o< il g DES) solai il L sols asslou ey 4o a8l Jlie Koo g oo padidie
s LS MAC slaais ;5K 5 (5,138 50 5 .0 5 aal sa MDS5 5l suliiwal Ly sus Gaauas
wlsa s s SSL handshake S5 5 5 shit s SSL_NULL_WITH_NULL_NULL
handshake J<5 g, .conl saii sals Giulad g5, Lo Gaoeal alig maa Sl 5 0)ls ¥y
8 g o aliiaul (138 505 (SlanlS w5 (sl 5 Sl b (S Ladidie 53 Sy JW (6l
ol 3o -

3 e wod | al L, S5 (g5 Blshs Baaad ey Sl b (o o185,) i
BALE Gl g (gl bl 4 aiS Wl 1) s aaedd (yes oledlbl & 5,0 HL LI3Siend
S o) 3oy w05 s susel sl oy €S cacal b 48 ciaeS K Ll ol el sad
Laais; oS 51 s 0552 LG MAC slivlae 5 518850, 512 Lade, 5 i il 3
il 0 ey slawdS w55 sl |y GLbusa dgy) ol (Sae Fortezza wils
MAC lase; 5 lanK & Lol 5o,y Joas -

5 L K MAC slade; € € wsd o 0 a 530, bbb 5 dales S o590 Lol 5e)
sl g0 i gola oy Ladiio Ui gy SIS ws 50 (2 son suk slalV

b g sad i g MAC o) S ssidie b gi sad il s MAC 30, S oy Lndiiis
IV SO OlaSiend b g8 sud Al b aalS S (g 50 b 5 ouds A 0 aalS S 1 0K000a
sl sadie o sl hal 3o (sl S 5l Sl OISHend 13 B TV S 5 stte R
A ol 5 alay o s p3U Fortezza slasl wile sslitonl JulG e palio .ilens
A 3 ga go walS (R 5a0 (B3l oy (sl) slaa sy aia

LSS Entropy asie S asibe (Lial 5o, g oo aal 55 MAC (slaye, 5 Lol S5
s poo J2B slade, sl 15 LIV 5 (6505008 55 ,lagSS ol g (Buleal ya0lie 5 w00
e
S danulae (alS ol go wil 5 (515
S Srandd) O w key block Gupw il sad wl 5 S gla a8 € Sl G
g 50

Sl e AL 50 JSlaslkey block sule 5a

CipherSpec.is_exportable 3| alaS sa 5l m) (3 S Hola 5B (5138505 slaais,; &I

tobl aid e slawlS BELE) g s 5 wiile u)lu Sl SLa) (sl o s (el ci o
S e Bhde Suliad slaaling sl 1, plaslalV o S jule LB 6,18 50 slaais, S

w0 cpmgee (sl (RS (a5 9 Al s 031 paluaia) (s MDS (slgaa 555

P oS eyl

S 59 L ooy S 5K adiln w3 v slaie) el 5 IS 5 lisabl Jsemn sl
lelid o o @l Liie 358 5158 Jala3 5 4383 5550 Jlaial @lbd wb olosle
O - 33,58 pad e ad aal d alasl 4S ola uda Gl aaBly S Sp e Ho s W
s SLeMl =¥ulse 53les masl (sl - 958 sutstnil a3Y Ll Slba ol b el s
Ou i 53 g Sy go a3 (5551 58 85l ¢ i Jiate LS, Sk 4 S plpbeslu
ol ol 4assa s a9 (pleissane b ogd aalyd wb S Al mlacs Lol ol
S gl el s 50 o 5l el 48 Sledbl (550 5wl gl

el
CT/1102 s las — Csin Ol gd cuiige 08 ol&2ila — S5 350 o ,la3 46l oLk (1
Secure Electronic Transactions Protocol - http://www.set.ch (2
3)Security of eCommerce Systems - A Netcraft White Paper - May 2001

4) SSL 3.0 Specification - http://www.smartcard.com/technical

S S e lad o ol

Security of ¢ commerce

GPseelS Gl Sudii uja Ol e

ol Sl sdiiw 5

S0 uyo S

Status of this memo

This document is an Internet-Draft. Internet-Drafts are working documents of the
Internet Engineering Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or made obsolete by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or to cite them other than as
work in progress.

To learn the current status of any Internet-Draft, please check the 1id-abstracts.txt
listing contained in the Internet Drafts Shadow Directories on ds.internic.net (US East
Coast), nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
Rim).

Abstract

This document specifies Version 3.0 of the Secure Sockets Layer (SSL V3.0)
protocol, a security protocol that provides communications privacy over the Internet.
The protocol allows client/server applications to communicate in a way that is
designed to prevent eavesdropping, tampering, or message forgery.

Introduction

The primary goal of the SSL Protocol is to provide privacy and reliability between two
communicating applications. The protocol is composed of two layers. At the lowest
level, layered on top of some reliable transport protocol (e.g., TCP[TCP])), is the SSL
Record Protocol. The SSL Record Protocol is used for encapsulation of various higher
level protocols. One such encapsulated protocol, the SSL Handshake Protocol, allows
the server and client to authenticate each other and to negotiate an encryption
algorithm and cryptographic keys before the application protocol transmits or receives
its first byte of data. One advantage of SSL is that it is application protocol
independent. A higher level protocol can layer on top of the SSL Protocol
transparently.

The SSL protocol provides connection security that has three basic properties:

The connection is private. Encryption is used after an initial handshake to
define a secret key. Symmetric cryptography is used for data encryption (e.g.,
DES[DES], RC4[RC4], etc.)

The peer's identity can be authenticated using asymmetric, or public key,
cryptography (e.g., RSA[RSA], DSS[DSS], etc.).

The connection is reliable. Message transport includes a message integrity
check using a keyed MAC. Secure hash functions (e.g., SHA, MDS5, etc.) are
used for MAC computations.

Goals
The goals of SSL Protocol v3.0, in order of their priority, are:

1. Cryptographic security
SSL should be used to establish a secure connection between two parties.
2. Interoperability

Independent programmers should be able to develop applications utilizing SSL
3.0 that will then be able to successfully exchange cryptographic parameters
without knowledge of one another's code.

Note:It is not the case that all instances of SSL (even in the same application domain)
will be able to successfully connect. For instance, if the server supports a particular
hardware token, and the client does not have access to such a token, then the
connection will not succeed.

3. Extensibility

SSL seeks to provide a framework into which new public key and bulk
encryption methods can be incorporated as necessary. This will also
accomplish two sub-goals: to prevent the need to create a new protocol (and
risking the introduction of possible new weaknesses) and to avoid the need to
implement an entire new security library.

4. Relative efficiency

Cryptographic operations tend to be highly CPU intensive, particularly public
key operations. For this reason, the SSL protocol has incorporated an optional
session caching scheme to reduce the number of connections that need to be
established from scratch. Additionally, care has been taken to reduce network
activity.

Goals of this document

The SSL Protocol Version 3.0 Specification is intended primarily for readers who will
be implementing the protocol and those doing cryptographic analysis of it. The spec
has been written with this in mind, and it is intended to reflect the needs of those two
groups. For that reason, many of the algorithm-dependent data structures and rules are
included in the body of the text (as opposed to in an Appendix), providing easier
access to them.

This document is not intended to supply any details of service definition nor interface
definition, although it does cover select areas of policy as they are required for the
maintenance of solid security.

Presentation language

This document deals with the formatting of data in an external representation. The
following very basic and somewhat casually defined presentation syntax will be used.
The syntax draws from several sources in its structure. Although it resembles the
programming language 'C' in its syntax and XDR [XDR] in both its syntax and intent,
it would be risky to draw too many parallels. The purpose of this presentation
language is to document SSL only, not to have general application beyond that
particular goal.

6.1 Basic block size

The representation of all data items is explicitly specified. The basic data block size is
one byte (i.e. 8 bits). Multiple byte data items are concatenations of bytes, from left to
right, from top to bottom. From the bytestream a multi-byte item (a numeric in the
example) is formed (using C notation) by:

value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) | ... | byte[n-1];
This byte ordering for multi-byte values is the commonplace network byte order or big
endian format.

6.2 Miscellaneous

Comments begin with "/*" and end with "*/".
Optional components are denoted by enclosing them in italic "[]" brackets.
Single byte entities containing uninterpreted data are of type opaque.

6.3 Vectors

A vector (single dimensioned array) is a stream of homogeneous data elements. The
size of the vector may be specified at documentation time or left unspecified until
runtime. In either case the length declares the number of bytes, not the number of
elements, in the vector.
The syntax for specifying a new type T' that is a fixed length vector of type T is

T T'[n];
Here T' occupies n bytes in the data stream, where n is a multiple of the size of T. The
length of the vector is not included in the encoded stream.
In the following example, Datum is defined to be three consecutive bytes that the
protocol does not interpret, while Data is three consecutive Datum, consuming a total of

nine bytes.
opaque Datum[3]; /* three uninterpreted bytes of data */
Datum Data[9]; /* 3 consecutive 3 byte vectors */

Variable length vectors are defined by specifying a subrange of legal lengths,
inclusively, using the notation <floor..ceiling>. When encoded, the actual length
precedes the vector's contents in the byte stream. The length will be in the form of a
number consuming as many bytes as required to hold the vector's specified maximum
(ceiling) length. A variable length vector with an actual length field of zero is referred
to as an empty vector.

T T'<floor..ceiling>;
In the following example, mandatory is a vector that must contain between 300 and 400
bytes of type opaque. It can never be empty. The actual length field consumes two
bytes, a uint16, sufficient to represent the value 400 (see Section 6.4). On the other
hand, longer can represent up to 800 bytes of data, or 400 uint16 elements, and it may
be empty. Its encoding will include a two byte actual length field prepended to the

vector.
opaque mandatory<300..400>; /* length field is 2 bytes, cannot be empty */
uint16 longer<0..800>; /* zero to 400 16-bit unsigned integers */

6.4 Numbers

The basic numeric data type is an unsigned byte (uint8). All larger numeric data types
are formed from fixed length series of bytes concatenated as described in Section 6.1

and are also unsigned. The following numeric types are predefined.
uint8 uint16[2];

uint8 uint24[3];
uint8 uint32[4];
uint8 uint64[8];

6.5 Enumerateds

An additional sparse data type is available called enum. A field of type enum can only
assume the values declared in the definition. Each definition is a different type. Only
enumerateds of the same type may be assigned or compared. Every element of an
enumerated must be assigned a value, as demonstrated in the following example.
Since the elements of the enumerated are not ordered, they can be assigned any unique
value, in any order.

enum { e;(vy), € (V1), ..., €, (Vn), [(0)] } Te;
Enumerateds occupy as much space in the byte stream as would its maximal defined
ordinal value. The following definition would cause one byte to be used to carry fields
of type Color.

enum { red(3), blue(5), white(7) } Color;
One may optionally specify a value without its associated tag to force the width
definition without defining a superfluous element. In the following example, Taste will

consume two bytes in the data stream but can only assume the values 1, 2 or 4.
enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

The names of the elements of an enumeration are scoped within the defined type. In
the first example, a fully qualified reference to the second element of the enumeration
would be Color.blue. Such qualification is not required if the target of the assignment is

well specified.
Color color = Color.blue; /* overspecified, but legal */
Color color =blue; /* correct, type is implicit */
For enumerateds that are never converted to external representation, the numerical

information may be omitted.
enum { low, medium, high } Amount;

6.6 Constructed types

Structure types may be constructed from primitive types for convenience. Each
specification declares a new, unique type. The syntax for definition is much like that
of C.

struct {
T, fi;
T, f;

T, fu;
3T
The fields within a structure may be qualified using the type's name using a syntax
much like that available for enumerateds. For example, T.f, refers to the second field
of the previous declaration. Structure definitions may be embedded.

6.6.1 Variants

Defined structures may have variants based on some knowledge that is available
within the environment. The selector must be an enumerated type that defines the
possible variants the structure defines. There must be a case arm for every element of
the enumeration declared in the select. The body of the variant structure may be given
a label for reference. The mechanism by which the variant is selected at runtime is not
prescribed by the presentation language.

struct {
T, fi;
T,
T, £
select (E) {

case e;: Tep;
case €,: Te;

case €,: Ten;
§ R
§ TV
For example
enum { apple, orange } VariantTag;
struct {
uint16 number;
opaque string<(..10<; /* variable length */
+ VL
struct {
uint32 number;
opaque string[10]; /* fixed length */
} V2,
struct {
select (VariantTag) { /* value of variant selector is implicit */
case apple: V1; /* definition of VariantBody, tag = apple */
case orange: V2; /* definition of VariantBody, tag = orange */
} variant_body; /* optional label on the variant portion */
} VariantRecord;
Variant structures may be qualified (narrowed) by specifying a value for the selector
prior to the type. For example, a
orange VariantRecord

is a narrowed type of a VariantRecord containing a variant_body of type V2.

6.7 Cryptographic attributes

The four cryptographic operations digital signing, stream cipher encryption, block
cipher encryption, and public key encryption are designated digitally-signed, stream-
ciphered, block-ciphered, and public-key-encrypted, respectively. A field's cryptographic
processing is specified by prepending an appropriate key word designation before the
field's type specification. Cryptographic keys are implied by the current session state
(see Section 7.1).

In digital signing, one-way hash functions are used as input for a signing algorithm. In
RSA signing, a 36-byte structure of two hashes (one SHA and one MD5) is signed
(encrypted with the private key). In DSS, the 20 bytes of the SHA hash are run
directly through the Digital Signing Algorithm with no additional hashing.

In stream cipher encryption, the plaintext is exclusive-ORed with an identical amount
of output generated from a cryptographically-secure keyed pseudorandom number
generator.

In block cipher encryption, every block of plaintext encrypts to a block of ciphertext.
Because it is unlikely that the plaintext (whatever data is to be sent) will break neatly
into the necessary block size (usually 64 bits), it is necessary to pad out the end of
short blocks with some regular pattern, usually all zeroes.

In public key encryption, one-way functions with secret "trapdoors" are used to
encrypt the outgoing data. Data encrypted with the public key of a given key pair can
only be decrypted with the private key, and vice-versa.

In the following example:
stream-ciphered struct {
uint8 fieldl;
uint8 field2;
digitally-signed opaque hash[20];
} UserType;
The contents of hash are used as input for a signing algorithm, then the entire structure

is encrypted with a stream cipher.
6.8 Constants

Typed constants can be defined for purposes of specification by declaring a symbol of
the desired type and assigning values to it. Under-specified types (opaque, variable
length vectors, and structures that contain opaque) cannot be assigned values. No
fields of a multi-element structure or vector may be elided.
For example,
struct {
uint8 f1;
uint8 2;
} Examplel;
Examplel ex1 = {1,4}; /* assigns fl =1,f2=4*/

SSL protocol

SSL is a layered protocol. At each layer, messages may include fields for length,
description, and content. SSL takes messages to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC, encrypts, and
transmits the result. Received data is decrypted, verified, decompressed, and
reassembled, then delivered to higher level clients.

7.1 Session and connection states

An SSL session is stateful. It is the responsibility of the SSL Handshake protocol to
coordinate the states of the client and server, thereby allowing the protocol state
machines of each to operate consistently, despite the fact that the state is not exactly
parallel. Logically the state is represented twice, once as the current operating state,
and (during the handshake protocol) again as the pending state. Additionally, separate
read and write states are maintained. When the client or server receives a change
cipher spec message, it copies the pending read state into the current read state. When
the client or server sends a change cipher spec message, it copies the pending write
state into the current write state. When the handshake negotiation is complete, the
client and server exchange change cipher spec messages (see Section 7.3), and then
communicate using the newly agreed-upon cipher spec.

An SSL session may include multiple secure connections; in addition, parties may
have multiple simultaneous sessions.

The session state includes the following elements:

session identifier

An arbitrary byte sequence chosen by the server to identify an active or
resumable session state

peer certificate

X509.v3[X509] certificate of the peer. This element of the state may be null.
compression method

The algorithm used to compress data prior to encryption.
cipher spec

Specifies the bulk data encryption algorithm (such as null, DES, etc.) and a
MAC algorithm (such as MD5 or SHA). It also defines cryptographic
attributes such as the hash_size. (See Appendix A.7 for formal definition.)

master secret
48-byte secret shared between the client and server.
is resumable
A flag indicating whether the session can be used to initiate new connections.
The connection state includes the following elements:
server and client random
Byte sequences that are chosen by the server and client for each connection.
server write MAC secret
The secret used in MAC operations on data written by the server.
client write MAC secret
The secret used in MAC operations on data written by the client.
server write key

The bulk cipher key for data encrypted by the server and decrypted by the
client.

client write key

The bulk cipher key for data encrypted by the client and decrypted by the
server.

initialization vectors

When a block cipher in CBC mode is used, an initialization vector (IV) is
maintained for each key. This field is first initialized by the SSL handshake
protocol. Thereafter the final ciphertext block from each record is preserved
for use with the following record.

sequence numbers

Each party maintains separate sequence numbers for transmitted and received
messages for each connection. When a party sends or receives a change cipher
spec message, the appropriate sequence number is set to zero. Sequence
numbers are of type uint64 and may not exceed 2%*-1.

7.2 Record layer

The SSL Record Layer receives uninterpreted data from higher layers in non-empty
blocks of arbitrary size.

7.2.1Fragmentation

The record layer fragments information blocks into SSLPlaintext records of 2'* bytes
or less. Client message boundaries are not preserved in the record layer (i.e., multiple
client messages of the same ContentType may be coalesced into a single SSLPIlaintext
record).
struct {
uint8 major, minor;
} ProtocolVersion;
enum {
change cipher_spec(20), alert(21), handshake(22),
application_data(23), (255)
} ContentType;
struct {
ContentType type;
ProtocolVersion version;
uint16 length;
opaque fragment[SSLPlaintext.length];
} SSLPlaintext;

type
The higher level protocol used to process the enclosed fragment.
version

The version of protocol being employed. This document describes SSL
Version 3.0 (See Appendix A.1.1).

length

The length (in bytes) of the following SSLPlaintext.fragment. The length
should not exceed 2",

fragment

The application data. This data is transparent and treated as an independent
block to be dealt with by the higher level protocol specified by the type field.

Note: Data of different SSL Record layer content types may be interleaved. Application data is
generally of lower precedence for transmission than other content types.

7.2.2 Record compression and decompression

All records are compressed using the compression algorithm defined in the current
session state. There is always an active compression algorithm, however initially it is
defined as CompressionMethod.null. The compression algorithm translates an
SSLPlaintext structure into an SSLCompressed structure. Compression functions erase
their state information whenever the CipherSpec is replaced.

Note: The CipherSpec is part of the session state described in Section 7.1. References
to fields of the CipherSpec are made throughout this document using presentation
syntax. A more complete description of the CipherSpec is shown in Appendix A.7.
Compression must be lossless and may not increase the content length by more than
1024 bytes. If the decompression function encounters an SSLCompressed.fragment that

would decompress to a length in excess of 2'* bytes, it should issue a fatal
decompression_failure alert (Section 7.4.2).

struct {
ContentType type; /* same as SSLPlaintext.type */
ProtocolVersion version; /* same as SSLPlaintext.version */

uint16 length;
opaque fragment[SSLCompressed.length];
} SSLCompressed,

length

The length (in bytes) of the following SSL.Compressed.fragment. The length
should not exceed 2'* + 1024.

fragment
The compressed form of SSLPlaintext.fragment.

Note: A CompressionMethod.null operation is an identity operation; no fields are altered.
(See Appendix A.4.1)

Implementation note: Decompression functions are responsible for ensuring that
messages cannot cause internal buffer overflows.

7.2.3 Record payload protection and the CipherSpec

All records are protected using the encryption and MAC algorithms defined in the
current CipherSpec. There is always an active CipherSpec, however initially it is
SSL_NULL_WITH _NULL NULL, which does not provide any security.

Once the handshake is complete, the two parties have shared secrets which are used to
encrypt records and compute keyed message authentication codes (MACs) on their
contents. The techniques used to perform the encryption and MAC operations are
defined by the CipherSpec and constrained by CipherSpec.cipher type. The encryption and
MAC functions translate an SSLCompressed structure into an SSLCiphertext. The
decryption functions reverse the process. Transmissions also include a sequence

number so that missing, altered, or extra messages are detectable.
struct {
ContentType type;
ProtocolVersion version;
uint16 length;
select (CipherSpec.cipher_type) {
case stream: GenericStreamCipher;
case block: GenericBlockCipher;
} fragment;
} SSLCiphertext;

type

The type field is identical to SSLCompressed.type.
version

The version field is identical to SSLCompressed.version.
length

The length (in bytes) of the following SSLCiphertext.fragment. The length may not
exceed 2'* +2048.

fragment

The encrypted form of SSLCompressed.fragment, including the MAC.

7.2.3.1 Null or standard stream cipher

Stream ciphers (including BulkCipherAlgorithm.null - See Appendix A.7) convert
SSLCompressed.fragment structures to and from stream SSLCiphertext.fragment structures.
stream-ciphered struct {
opaque content[SSLCompressed.length];
opaque MAC[CipherSpec.hash_size];
} GenericStreamCipher;
The MAC is generated as:
hash(MAC_write_secret + pad_2 +
hash (MAC_write_secret + pad_1 + seq_num + length + content));
where "+" denotes concatenation.

pad 1

The character 0x36 repeated 48 time for MD5 or 40 times for SHA.
pad 2

The character Ox5c repeated the same number of times.
seq_num

The sequence number for this message.
hash

The hashing algorithm derived from the cipher suite.

Note that the MAC is computed before encryption. The stream cipher encrypts the
entire block, including the MAC. For stream ciphers that do not use a synchronization
vector (such as RC4), the stream cipher state from the end of one record is simply
used on the subsequent packet. If the CipherSuite is SSL_ NULL_WITH NULL NULL,
encryption consists of the identity operation (i.e., the data is not encrypted and the MAC size is zero

implying that no MAC is used). SSLCiphertext.length is SSLCompressed.length plus
CipherSpec.hash_size.

7.2.3.2 CBC block cipher

For block ciphers (such as RC2 or DES), the encryption and MAC functions convert
SSLCompressed.fragment structures to and from block SSLCiphertext.fragment structures.
block-ciphered struct {
opaque content[SSLCompressed.length];
opaque MAC[CipherSpec.hash_size];
uint8 padding[GenericBlockCipher.padding_length];
uint8 padding_length;
} GenericBlockCipher;
The MAC is generated as described in Section 7.2.3.1.

padding
Padding that is added to force the length of the plaintext to be a multiple of the block cipher's
block length.

padding_length

The length of the padding must be less than the cipher's block length and may be zero. The
padding length should be such that the total size of the GenericBlockCipher structure is a
multiple of the cipher's block length.

The encrypted data length (SSLCiphertext.length) is one more than the sum of SSLCompressed.length,
CipherSpec.hash_size, and padding_length.

Note: With CBC block chaining the initialization vector (IV) for the first record is provided by the
handshake protocol. The IV for subsequent records is the last ciphertext block from the previous record.

7.3 Change cipher spec protocol

The change cipher spec protocol exists to signal transitions in ciphering strategies. The protocol consists
of a single message, which is encrypted and compressed under the current (not the pending)
CipherSpec. The message consists of a single byte of value 1.

struct {

enum { change cipher_spec(1), (255) } type;

} ChangeCipherSpec;
The change cipher spec message is sent by both the client and server to notify the receiving party that
subsequent records will be protected under the just-negotiated CipherSpec and keys. Reception of this
message causes the receiver to copy the read pending state into the read current state. Separate read and
write states are maintained by both the SSL client and server. When the client or server receives a
change cipher spec message, it copies the pending read state into the current read state. When the client
or server writes a change cipher spec message, it copies the pending write state into the current write
state. The client sends a change cipher spec message following handshake key exchange and certificate
verify messages (if any), and the server sends one after successfully processing the key exchange
message it received from the client. An unexpected change cipher spec message should generate an

unexpected _message alert (Section 7.4.2). When resuming a previous session, the change cipher spec
message is sent after the hello messages.

7.4 Alert protocol

One of the content types supported by the SSL Record layer is the alert type. Alert messages convey the
severity of the message and a description of the alert. Alert messages with a level of fatal result in the
immediate termination of the connection. In this case, other connections corresponding to the session
may continue, but the session identifier must be invalidated, preventing the failed session from being
used to establish new connections. Like other messages, Alert messages are encrypted and compressed,
as specified by the current connection state.

enum { warning(1), fatal(2), (255) } AlertLevel;

enum {
close notify(0),
unexpected message(10),
bad_record mac(20),
decompression_failure(30),
handshake_failure(40), no_certificate(41), bad_certificate(42),
unsupported_certificate(43), certificate_revoked(44),
certificate _expired(45), certificate_unknown(46),
illegal parameter (47)
(255)
} AlertDescription;

struct {
AlertLevel level;
AlertDescription description;
} Alert;

7.4.1 Closure alerts

The client and the server must share knowledge that the connection is ending in order to avoid a
truncation attack. Either party may initiate the exchange of closing messages.

close notify

This message notifies the recipient that the sender will not send any more messages on this
connection. The session becomes unresumable if any connection is terminated without proper
close notify messages with level equal to warning.

7.4.2 Error alerts

Error handling in the SSL Handshake protocol is very simple. When an error is detected, the detecting
party sends a message to the other party. Upon transmission or receipt of an fatal alert message, both

parties immediately close the connection. Servers and clients are required to forget any session-
identifiers, keys, and secrets associated with a failed connection. The following error alerts are defined:

unexpected _message

An inappropriate message was received. This alert is always fatal and should never be
observed in communication between proper implementations.

bad_record mac

This alert is returned if a record is received with an incorrect MAC. This message is always
fatal.

decompression_failure

The decompression function received improper input (e.g. data that would expand to excessive
length). This message is always fatal.

handshake_failure

Reception of a handshake failure alert message indicates that the sender was unable to
negotiate an acceptable set of security parameters given the options available. This is a fatal
error.

no_certificate

A no_certificate alert message may be sent in response to a certification request if no
appropriate certificate is available.

bad_certificate

A certificate was corrupt, contained signatures that did not verify correctly, etc.
unsupported_certificate

A certificate was of an unsupported type.
certificate_revoked

A certificate was revoked by its signer.
certificate_expired

A certificate has expired or is not currently valid.
certificate_unknown

Some other (unspecified) issue arose in processing the certificate, rendering it unacceptable.
illegal parameter

A field in the handshake was out of range or inconsistent with other fields. This is always fatal.
7.5 Handshake protocol overview

The cryptographic parameters of the session state are produced by the SSL Handshake Protocol, which
operates on top of the SSL Record Layer. When a SSL client and server first start communicating, they
agree on a protocol version, select cryptographic algorithms, optionally authenticate each other, and use
public-key encryption techniques to generate shared secrets. These processes are performed in the
handshake protocol, which can be summarized as follows:

The client sends a client hello message to which the server must respond with a server hello message, or
else a fatal error will occur and the connection will fail. The client hello and server hello are used to
establish security enhancement capabilities between client and server. The client hello and server hello
establish the following attributes: protocol version, session ID, cipher suite, and compression method.
Additionally, two random values are generated and exchanged: ClientHello.random and
ServerHello.random.

Following the hello messages, the server will send its certificate, if it is to be authenticated.
Additionally, a server key exchange message may be sent, if it is required (e.g. if their server has no
certificate, or if its certificate is for signing only). If the server is authenticated, it may request a
certificate from the client, if that is appropriate to the cipher suite selected.

Now the server will send the server hello done message, indicating that the hello-message phase of the
handshake is complete. The server will then wait for a client response.

If the server has sent a certificate request message, the client must send either the certificate message or
a no certificate alert. The client key exchange message is now sent, and the content of that message will
depend on the public key algorithm selected between the client hello and the server hello. If the client
has sent a certificate with signing ability, a digitally-signed certificate verify message is sent to
explicitly verify the certificate.

At this point, a change cipher spec message is sent by the client, and the client copies the pending
Cipher Spec into the current Cipher Spec. The client then immediately sends the finished message
under the new algorithms, keys, and secrets. In response, the server will send its own change cipher
spec message, transfer the pending to the current Cipher Spec, and send its Finished message under the
new Cipher Spec. At this point, the handshake is complete and the client and server may begin to
exchange application layer data. (See flow chart below.)

Note: To help avoid pipeline stalls, ChangeCipherSpec is an independent SSL Protocol content type,
and is not actually an SSL handshake message.

When the client and server decide to resume a previous session or duplicate an existing session (instead
of negotiating new security parameters) the message flow is as follows:

The client sends a client hello using the Session ID of the session to be resumed. The Server then
checks its session cache for a match. If a match is found, and the server is willing to re-establish the
connection under the specified session state, it will send a server hello with the same Session ID value.
At this point, both client and server must send change cipher spec messages and proceed directly to
finished messages. Once the re-establishment is complete, the client and server may begin to exchange
application layer data. (See flow chart below.) If a Session ID match is not found, the server generates a
new session ID and the SSL client and server perform a full handshake.

The contents and significance of each message will be presented in detail in the following
sections.

7.6 Handshake protocol

The SSL Handshake Protocol is one of the defined higher level clients of the SSL Record
Protocol. This protocol is used to negotiate the secure attributes of a session. Handshake
messages are supplied to the SSL Record Layer, where they are encapsulated within one or
more SSLPlaintext structures, which are processed and transmitted as specified by the current
active session state.

enum {
hello_request(0), client_hello(1), server_hello(2),
certificate(11), server_key exchange (12), certificate request(13),
server_hello_done(14), certificate_verify(15), client key exchange(16),
finished(20), (255)

} HandshakeType;

struct {
HandshakeType msg_type; /* type of handshake message */
uint24 length; /* # bytes in handshake message body */

select (HandshakeType) {
case hello_request: HelloRequest;
case client_hello: ClientHello;
case server_hello: ServerHello;
case certificate: Certificate;
case server_key exchange: ServerKeyExchange;
case certificate_request: CertificateRequest;
case server_hello_done: ServerHelloDone;
case certificate verify: CertificateVerify;
case client key exchange: ClientKeyExchange;
case finished: Finished;

} body;

} Handshake;

The handshake protocol messages are presented in the order they must be sent; sending
handshake messages in an unexpected order results in a fatal error.

7.6.1 Hello messages

The hello phase messages are used to exchange security enhancement capabilities between the
client and server. When a new session begins, the CipherSpec encryption, hash, and
compression algorithms are initialized to null. The current CipherSpec is used for renegotiation
messages.

7.6.1.1 Hello request

The hello request message may be sent by the server at any time, but will be ignored by the
client if the handshake protocol is already underway. It is a simple notification that the client
should begin the negotiation process anew by sending a client hello message when convenient.

Note: Since handshake messages are intended to have transmission precedence over
application data, it is expected that the negotiation begin in no more than one or two times the
transmission time of a maximum length application data message.

After sending a hello request, servers should not repeat the request until the subsequent
handshake negotiation is complete. A client that receives a hello request while in a handshake
negotiation state should simply ignore the message.

The structure of a hello request message is as follows:
struct { } HelloRequest;
7.6.1.2 Client hello

When a client first connects to a server it is required to send the client hello as its first
message. The client can also send a client hello in response to a hello request or on its own
initiative in order to renegotiate the security parameters in an existing connection.

The client hello message includes a random structure, which is used later in the protocol.

struct {
uint32 gmt_unix_time;
opaque random_bytes[28];
} Random;

gmt_unix_time

The current time and date in standard UNIX 32-bit format according to the sender's internal
clock. Clocks are not required to be set correctly by the basic SSL Protocol; higher level or
application protocols may define additional requirements.

random_bytes
28 bytes generated by a secure random number generator.

The client hello message includes a variable length session identifier. If not empty, the value identifies a
session between the same client and server whose security parameters the client wishes to reuse. The
session identifier may be from an earlier connection, this connection, or another currently active

connection. The second option is useful if the client only wishes to update the random structures and
derived values of a connection, while the third option makes it possible to establish several
simultaneous independent secure connections without repeating the full handshake protocol. The actual
contents of the SessionID are defined by the server.
opaque SessionID<0..32>;
Warning: Servers must not place confidential information in session identifiers or let the contents of
fake session identifiers cause any breach of security.
The CipherSuite list, passed from the client to the server in the client hello message, contains the
combinations of cryptographic algorithms supported by the client in order of the client's preference
(first choice first). Each CipherSuite defines both a key exchange algorithm and a CipherSpec. The
server will select a cipher suite or, if no acceptable choices are presented, return a handshake failure
alert and close the connection.
uint8 CipherSuite[2]; /* Cryptographic suite selector */
The client hello includes a list of compression algorithms supported by the client, ordered according to
the client's preference. If the server supports none of those specified by the client, the session must fail.
enum { null(0), (255) } CompressionMethod;
Issue: Which compression methods to support is under investigation.
The structure of the client hello is as follows.
struct {
ProtocolVersion client_version;
Random random;
SessionlD session_id;
CipherSuite cipher_suites<2..2'%-1>;
CompressionMethod compression_methods<1..2%-1>;
} ClientHello;

client_version

The version of the SSL protocol by which the client wishes to communicate during this
session. This should be the most recent (highest valued) version supported by the client. For
this version of the specification, the version will be 3.0 (See Appendix E for details about
backward compatibility).

random
A client-generated random structure.
session_id

The ID of a session the client wishes to use for this connection. This field should be empty if
no session_id is available or the client wishes to generate new security parameters.

cipher_suites

This is a list of the cryptographic options supported by the client, sorted with the client's first
preference first. If the session_id field is not empty (implying a session resumption request)
this vector must include at least the cipher_suite from that session. Values are defined in
Appendix A.6.

compression_methods

This is a list of the compression methods supported by the client, sorted by client preference. If
the session_id field is not empty (implying a session resumption request) this vector must
include at least the compression_method from that session. All implementations must support
CompressionMethod.null.

After sending the client hello message, the client waits for a server hello message. Any other handshake
message returned by the server except for a hello request is treated as a fatal error.

Implementation note: Application data may not be sent before a finished message has been sent.
Transmitted application data is known to be insecure until a valid finished message has been received.
This absolute restriction is relaxed if there is a current, non-null encryption on this connection.

7.6.1.3 Server hello

The server processes the client hello message and responds with either a handshake_failure alert or
server hello message.
struct {
ProtocolVersion server_version;
Random random;
SessionID session_id;
CipherSuite cipher_suite;
CompressionMethod compression_method;
} ServerHello;

server_version

This field will contain the lower of that suggested by the client in the client hello and the
highest supported by the server. For this version of the specification, the version will be 3.0
(See Appendix E for details about backward compatibility).

random

This structure is generated by the server and must be different from (and independent of)
ClientHello.random.

session_id

This is the identity of the session corresponding to this connection. If the
ClientHello.session_id was non-empty, the server will look in its session cache for a match. If
a match is found and the server is willing to establish the new connection using the specified
session state, the server will respond with the same value as was supplied by the client. This
indicates a resumed session and dictates that the parties must proceed directly to the finished
messages. Otherwise this field will contain a different value identifying the new session. The
server may return an empty session_id to indicate that the session will not be cached and
therefore cannot be resumed.

cipher_suite

The single cipher suite selected by the server from the list in ClientHello.cipher_suites. For
resumed sessions this field is the value from the state of the session being resumed.

compression_method

The single compression algorithm selected by the server from the list in
ClientHello.compression_methods. For resumed sessions this field is the value from the
resumed session state.

7.6.2 Server certificate

If the server is to be authenticated (which is generally the case), the server sends its certificate
immediately following the server hello message. The certificate type must be appropriate for the
selected cipher suite's key exchange algorithm, and is generally an X.509.v3 certificate (or a modified
X.509 certificate in the case of Fortezza [FOR]). The same message type will be used for the client's
response to a server certificate request message.

opaque ASN.1Cert<1 221>

struct {
ASN.1Cert certificate_list<1..2%-1>;

} Certificate;
certificate list This is a sequence (chain) of X.509.v3 certificates, ordered with the sender's certificate
first and the root certificate authority last.
Note: PKCS #7 [PKCS7] is not used as the format for the certificate vector because PKCS #6 [PKCS6]
extended certificates are not used. Also PKCS #7 defines a SET rather than a SEQUENCE, making the
task of parsing the list more difficult.

7.6.3 Server key exchange message

The server key exchange message is sent by the server if it has no certificate, has a certificate only used
for signing (e.g., DSS [DSS] certificates, signing-only RSA [RSA] certificates), or fortezza/DMS key
exchange is used. This message is not used if the server certificate contains Diffie-Hellman [DH1]
parameters.

Note: According to current US export law, RSA moduli larger than 512 bits may not be used for key
exchange in software exported from the US. With this message, larger RSA keys may be used as
signature-only certificates to sign temporary shorter RSA keys for key exchange.

enum { rsa, diffie_hellman, fortezza dms } KeyExchangeAlgorithm;

struct {
opaque rsa_modulus<1 L2181
opaque rsa_exponent<]..2 101>,
} ServerRSAParams;
rsa_modulus The modulus of the server's temporary RSA key.
rsa_exponent The public exponent of the server's temporary RSA key.
struct {
opaque dh_p<1.2'%-1>;
opaque dh_g<1..2'%-1>;
opaque dh_Y<1..2'5-1>;
} ServerDHParams; /* Ephemeral DH parameters */

dh_p

The prime modulus used for the Diffie-Hellman operation.
dh g

The generator used for the Diffie-Hellman operation.
dh_ Y,

The server's Diffie-Hellman public value (g* mod p).

struct {
opaquer_s [128];
} ServerFortezzaParams;
rs
Server random number for Fortezza KEA (Key Exchange Algorithm).
struct {
select (KeyExchangeAlgorithm) {
case diffie_hellman:
ServerDHParams params;
Signature signed_params;
case rsa:
ServerRSAParams params;
Signature signed_params;
case fortezza_dms:
ServerFortezzaParams params;

15
} ServerKeyExchange;

params
The server's key exchange parameters.
signed params
A hash of the corresponding params value, with the signature appropriate to that hash applied.
md5_hash

MD5(ClientHello.random + ServerHello.random + ServerParams);

sha_hash
SHA(ClientHello.random + ServerHello.random + ServerParams);

enum { anonymous, rsa, dsa } SignatureAlgorithm;

digitally-signed struct {
select(SignatureAlgorithm) {
case anonymous: struct { };
case rsa:
opaque md5_hash[16];
opaque sha_hash[20];
case dsa:
opaque sha_hash[20];
15

} Signature;
7.6.4 Certificate request

A non-anonymous server can optionally request a certificate from the client, if appropriate for the
selected cipher suite.
opaque CertificateAuthority<0..2**-1>;

enum {
rsa_sign(1), dss_sign(2), rsa_fixed _dh(3), dss_fixed dh(4),
rsa_ephemeral dh(5), dss_ephemeral dh(6), fortezza_dms(20), (255)
} ClientCertificateType;

opaque DistinguishedName<1..2'%-1>;

struct {
ClientCertificateType certificate types<l..2%-1>;
DistinguishedName certificate authorities<3..2'°-1>;
} CertificateRequest;

certificate _types

This field is a list of the types of certificates requested, sorted in order of the server's
preference.

certificate_authorities
A list of the distinguished names of acceptable certificate authorities.

Note: DistinguishedName is derived from [X509].
Note: It is a fatal handshake failure alert for an anonymous server to request client identification.

7.6.5 Server hello done

The server hello done message is sent by the server to indicate the end of the server hello and associated
messages. After sending this message the server will wait for a client response.

struct { } ServerHelloDone;
Upon receipt of the server hello done message the client should verify that the server provided a valid
certificate if required and check that the server hello parameters are acceptable.

7.6.6 Client certificate

This is the first message the client can send after receiving a server hello done message. This message is
only sent if the server requests a certificate. If no suitable certificate is available, the client should send
a no certificate alert instead. This error is only a warning, however the server may respond with a fatal
handshake failure alert if client authentication is required.

Client certificates are sent using the Certificate defined in Section 7.6.2.

Note: Client Diffie-Hellman certificates must match the server specified Diffie-Hellman parameters.

7.6.7 Client key exchange message

The choice of messages depends on which public key algorithm(s) has (have) been selected. See
Section 7.6.3 for the KeyExchangeAlgorithm.
struct {
select (KeyExchangeAlgorithm) {
case rsa: EncryptedPreMasterSecret;
case diffie_hellman: ClientDiffieHellmanPublic;
case fortezza_dms: FortezzaKeys;
} exchange keys;
} ClientKeyExchange;
The information to select the appropriate record structure is in the pending session state (see Section
7.1).
7.6.7.1 RSA encrypted premaster secret message

If RSA is being used for key agreement and authentication, the client generates a 48-byte pre-master
secret, encrypts it under the public key from the server's certificate or temporary RSA key from a server
key exchange message, and sends the result in an encrypted premaster secret message.
struct {
ProtocolVersion client_version;
opaque random[46];
} PreMasterSecret;

client_version

The latest (newest) version supported by the client. This is used to detect version roll-back
attacks.

random
46 securely-generated random bytes.

struct {
public-key-encrypted PreMasterSecret pre_master_secret;
} EncryptedPreMasterSecret;

pre_master_secret

This random value is generated by the client and is used to generate the master secret, as
specified in Section 8.1.

7.6.7.2 Fortezza key exchange message

Under Fortezza DMS, the client derives a Token Encryption Key (TEK) using Fortezza's Key Exchange
Algorithm (KEA). The client's KEA calculation uses the public key in the server's certificate along with
private parameters in the client's token. The client sends public parameters needed for the server to
generate the TEK, using its own private parameters. The client generates session keys, wraps them
using the TEK, and sends the results to the server. The client generates I'V's for the session keys and
TEK and sends them also. The client generates a random 48-byte premaster secret, encrypts it using the
TEK, and sends the result:
struct {
opaque y ¢<0..128>;
opaquer c[128];
opaque y_signature[20];
opaque wrapped_client_write_key[12];
opaque wrapped_server write key[12];
opaque client_write _iv[24];
opaque server_write_iv[24];
opaque master_secret_iv[24];
block-ciphered opaque encrypted pre_master_secret[48];
} FortezzaKeys;

y_signature

y_singnature is the signature of the KEA public key, signed with the client's DSS private key.

y_ ¢

The client's Y, value (public key) for the KEA calculation. If the client has sent a certificate,
and its KEA public key is suitable, this value must be empty since the certificate already
contains this value. If the client sent a certificate without a suitable public key, y c is used and
y_singnature is the KEA public key signed with the client's DSS private key. For this value to
be used, it must be between 64 and 128 bytes.

The client's R, value for the KEA calculation.
wrapped_client write_key

This is the client's write key, wrapped by the TEK.
wrapped_server_write_key

This is the server's write key, wrapped by the TEK.
client_write_iv

This is the IV for the client write key.
server_write_iv

This is the IV for the server write key.
master_secret_iv

This is the IV for the TEK used to encrypt the pre-master secret.
pre_master_secret

This is a random value, generated by the client and used to generate the master secret, as
specified in Section 8.1. In the above structure, it is encrypted using the TEK.

7.6.7.3 Client Diffie-Hellman public value

This structure conveys the client's Diffie-Hellman public value (Y.) if it was not already included in the
client's certificate. The encoding used for Y. is determined by the enumerated PublicValueEncoding.
enum { implicit, explicit } PublicValueEncoding;

implicit
If the client certificate already contains the public value, then it is implicit and Y, does not
need to be sent again.

explicit
Y. needs to be sent.

struct {
select (PublicValueEncoding) {
case implicit: struct { };
case explicit: opaque dh_Yc<1..2'%-1>;
} dh_public;
} ClientDiffieHellmanPublic;

dh_Yc
The client's Diffie-Hellman public value (Y.).
7.6.8 Certificate verify

This message is used to provide explicit verification of a client certificate. This message is only sent
following any client certificate that has signing capability (i.e. all certificates except those containing
fixed Diffie-Hellman parameters).

struct {
Signature signature;

} CertificateVerify;

CertificateVerify.signature.md5_hash
MD5(master_secret + pad2 + MDS5(handshake messages +
master_secret + padl));

Certificate.signature.sha_hash
SHA(master_secret + pad2 + SHA(handshake messages +
master_secret + padl));
Here handshake messages refers to all handshake messages starting at client hello up to but not
including this message.

7.6.9 Finished

A finished message is always sent immediately after a change cipher specs message to verify that the
key exchange and authentication processes were successful. The finished message is the first protected
with the just-negotiated algorithms, keys, and secrets. No acknowledgment of the finished message is
required; parties may begin sending confidential data immediately after sending the finished message.
Recipients of finished messages must verify that the contents are correct.

enum { client(0x434C4E54), server(0x53525652) } Sender;

struct {
opaque md5_hash[16];
opaque sha_hash[20];
} Finished;
mdS_hash
MD5(master_secret + pad2 + MDS5(handshake messages +
Sender + master_secret + padl));

sha_hash
SHA(master_secret + pad2 + SHA(handshake messages +
Sender + master_secret + padl));

The hash contained in finished messages sent by the server incorporate Sender.server; those sent by the
client incorporate Sender.client. The value handshake messages includes all handshake messages
starting at client hello up to, but not including, the finished messages. This may be different from
handshake messages in Section 7.6.8 because it would include the certificate verify message (if
sent).

Note: Change cipher spec messages are not handshake messages and are not included in the hash
computations.

7.7 Application data protocol

Application data messages are carried by the Record Layer and are fragmented, compressed and
encrypted based on the current connection state. The messages are treated as transparent data to the
record layer.

Cryptographic computations

The key exchange, authentication, encryption, and MAC algorithms are determined by the cipher_suite
selected by the server and revealed in the server hello message.

8.1 Asymmetric cryptographic computations

The asymmetric algorithms are used in the handshake protocol to authenticate parties and to generate shared
keys and secrets.
For Diffie-Hellman, RSA, and Fortezza, the same algorithm is used to convert the pre_master_secret into
the master secret. The pre_master secret should be deleted from memory once the master secret has been
computed.

master_secret =
MD5(pre_master_secret + SHA('A' + pre_master_secret +

ClientHello.random + ServerHello.random)) +

MD5(pre_master_secret + SHA('BB' + pre_master_secret +
ClientHello.random + ServerHello.random)) +

MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
ClientHello.random + ServerHello.random));

8.1.1 RSA

When RSA is used for server authentication and key exchange, a 48-byte pre_master_secret is generated by
the client, encrypted under the server's public key, and sent to the server. The server uses its private key to
decrypt the pre_master_secret. Both parties then convert the pre_master_secret into the master_secret, as
specified above.

RSA digital signatures are performed using PKCS #1 [PKCS1] block type 1. RSA public key encryption is
performed using PKCS #1 block type 2.

8.1.2 Diffie-Hellman

A conventional Diffie-Hellman computation is performed. The negotiated key (Z) is used as the
pre_master_secret, and is converted into the master_secret, as specified above.

Note: Diffie-Hellman parameters are specified by the server, and may be either ephemeral or contained
within the server's certificate.

8.1.3 Fortezza

A random 48-byte pre_master_secret is sent encrypted under the TEK and its IV. The server decrypts the
pre_master_secret and converts it into a master_secret, as specified above. Bulk cipher keys and Vs for
encryption are generated by the client's token and exchanged in the key exchange message; the
master_secret is only used for MAC computations.

8.2 Symmetric cryptographic calculations and the CipherSpec

The technique used to encrypt and verify the integrity of SSL records is specified by the currently active
CipherSpec. A typical example would be to encrypt data using DES and generate authentication codes using
MDS5. The encryption and MAC algorithms are set to SSL NULL_WITH_NULL _NULL at the beginning
of the SSL Handshake Protocol, indicating that no message authentication or encryption is performed. The
handshake protocol is used to negotiate a more secure CipherSpec and to generate cryptographic keys.

8.2.1 The master secret

Before secure encryption or integrity verification can be performed on records, the client and server need to
generate shared secret information known only to themselves. This value is a 48-byte quantity called the
master secret. The master secret is used to generate keys and secrets for encryption and MAC computations.
Some algorithms, such as Fortezza, may have their own procedure for generating encryption keys (the
master secret is used only for MAC computations in Fortezza).

8.2.2 Converting the master secret into keys and MAC secrets

The master secret is hashed into a sequence of secure bytes, which are assigned to the MAC secrets, keys,

and non-export Vs required by the current CipherSpec (see Appendix A.7).
CipherSpecs require a client write MAC secret, a server write MAC secret, a client write key, a server write
key, a client write [V, and a server write [V, which are generated from the master secret in that order.
Unused values, such as Fortezza keys communicated in the KeyExchange message, are empty. The
following inputs are available to the key definition process:
opaque MasterSecret[48]
ClientHello.random
ServerHello.random
When generating keys and MAC secrets, the master secret is used as an entropy source, and the random
values provide unencrypted salt material and IVs for exportable ciphers.
To generate the key material, compute
key block =
MD5(master_secret + SHA('A' + master_secret + ServerHello.random +
ClientHello.random)) +
MD5(master_secret + SHA('BB' + master_secret + ServerHello.random +
ClientHello.random)) +
MD5(master_secret + SHA('CCC' + master_secret + ServerHello.random +
ClientHello.random)) + [...];

until enough output has been generated. Then the key block is partitioned as follows.
client write. MAC_secret[CipherSpec.hash_size]
server_write. MAC_secret[CipherSpec.hash_size]
client_write_key[CipherSpec.key material]
server_write_key[CipherSPec.key material]
client_write IV[CipherSpec.IV_size] /* non-export ciphers */
server_write IV[CipherSpec.IV_size] /* non-export ciphers */
Any extra key_block material is discarded.
Exportable encryption algorithms (for which CipherSpec.is_exportable is true) require additional processing
as follows to derive their final write keys:
final client write_key = MD5(client_write_key +
ClientHello.random + ServerHello.random);
final_server write key = MD5(server_write_key +
ServerHello.random + ClientHello.random);
Exportable encryption algorithms derive their [Vs from the random messages:
client write IV = MD5(ClientHello.random + ServerHello.random);
server_write IV = MD5(ServerHello.random + ClientHello.random);
MDS5 outputs are trimmed to the appropriate size by discarding the least-significant bytes.

8.2.2.1 Export key generation example

SSL_RSA_EXPORT_WITH_RC2 _CBC_40_MDS requires five random bytes for each of the two
encryption keys and 16 bytes for each of the MAC keys, for a total of 42 bytes of key material. MD5
produces 16 bytes of output per call, so three calls to MDS are required. The MDS5 outputs are concatenated
into a 48-byte key block with the first MDS5 call providing bytes zero through 15, the second providing
bytes 16 through 31, etc. The key block is partitioned, and the write keys are salted because this is an
exportable encryption algorithm.

client write. MAC secret = key_blockg_;s

server_write. MAC_secret = key blockig. 3

client_write_key =key_blocks;_ 36

server_write_key =key_blocks; 4

final client write_key = MD5 (client_write_key +
ClientHello.random + ServerHello.random) ¢ _;s;

final server write_key = MDS5 (server_write_key +
ServerHello.random + ClientHello.random) ¢_;s;

client write IV = MD5(ClientHello.random + ServerHello.random) ,_7;
server_write IV = MD5(ServerHello.random + ClientHello.random) _+;

Security of eCommerce Systems

A Netcraft White Paper
May 2001

Abstract

In the headlong rush to bring eCommerce applications to market, many
companies are neglecting the security of their systems, applications and
confidential data. This paper explores some of the most common
vulnerabilities that Netcraft security consultants uncover when performing
eCommerce security evaluations for clients. It is not intended to be a treatise
on computer, application or web security per se, more a collection of examples
of real errors and system misconfigurations from which, it is hoped, system

designers, developers and managers can glean a few ideas to prevent their
eCommerce systems from becoming yet another statistic for the archives. In
Netcraft's experience, it is very often an organization's attitude towards
security that is the problem more than the security of their eCommerce offering
itself.

Contents

Introduction

Security, What Security?

Plan Your Security Carefully
Follow the Basic Guidelines
Keep it Simple

What they See is What you Should Protect
"Thanks, now I can sleep nights"
Conclusion

About Netcraft

About the Author

Disclaimer

Introduction

One of the hardest aspects of the security evaluation work carried out by
Netcraft is explaining to clients, eager to join the "eCommerce revolution”, that
the web-based system that they have spent many hours planning, designing and
implementing, contains so many security vulnerabilities that a major re-
working is required before the system will be ready for deployment on the
Internet. In many cases, the flaws are so elementary that it is surprising that the
system was ever considered good enough to even reach the security evaluation
phase. Assuming it exists at all, the security evaluation can usually be found on
the last page of the project plan, leaving no option but to re-build the entire
project from scratch when security is found to be poor. This is not
exaggeration for effect, as this paper will attempt to show. We will outline
some of the problems that Netcraft consultants have uncovered in recent
months and highlight some of the more obvious traps and pitfalls into which
the unwary stumble on an all-too-regular basis.

Few of the problems presented here are inherent in any particular web server
or operating system, provided that the basic security guidelines are followed.
The major cause of system compromise is that the designers of a web service
have only considered security as an afterthought, not as a key component of

the system throughout the project's life cycle.

Security, What Security?

OK, so you're reading this to see how naive some organizations can be when
they first encounter the Internet or how even experienced developers fail to
apply sufficient thought to the security of web-based services . We'll try not to
disappoint, but the main aim of this paper is not to spread doom-and-gloom but
to try to highlight some basic principles that will assist you during the
development of your web-based applications. Throughout this paper, we use
the term application in preference to web-site, since many of the mistakes
made by web-site designers would be eliminated if the operating system, web

server, HTML pages, data entry forms, server-side scripts, databases and
whatever else makes up your web-site, are treated as an application delivering
a service to your customers, with due consideration of the overall security of
the system. It is not sufficient to consider the security of parts of a system
without looking at the security of the whole system. As we will see, failure to
assess the risks from this viewpoint (indeed, from the viewpoint of someone
with malicious intent), leads easily to a system open to compromise.

Plan Your Security Carefully

First rule - "Think security". Any computer system that is connected to the
Internet, be it a multi-million dollar server farm or a single machine costing a
few hundred dollars, is available for anyone to look at. That's as it should be.
The ubiquity of the Internet means that your business, your ideas, or merely
your idle ramblings, are available to whoever is interested and provides a great
opportunity for your business to thrive in the global marketplace. Of course,
this visibility comes at a price. Not everyone will like your ideas or your
products and some will have the wherewithal to cause disruption to your
service. Others represent the digital graffiti artists, keen to increase the spread
of their name at your expense.

Two prestigious organizations have recently scrapped eCommerce
applications, written by third-party developers, with less than a week to
go to the scheduled launch date. Our consultants were called in late in
the day - too late to influence the development of the applications. As a
result of our analysis and recommendations, both applications were re-
designed and re-written at a cost of tens of thousands of dollars.

At whatever level your eCommerce offering is pitched, make sure that you
consider the security of your service from day one. If you don't have the
experience or knowledge in-house, call in a professional security consulting
firm during the system's design. Work with them through the system
development to ensure that you safeguard your investment in your Internet
services.

Follow the Basic Guidelines

Sounds simple, doesn't it? With so much publicity about high-profile break-ins,
defacement of web-sites and theft of credit card details, one would hope that
anyone considering entering this perilous environment would, at least, take
basic precautions against unwanted intrusion. Again, in our experience, this is
far from the case. Over the past few years, Netcraft has developed its Security
Analysis Services, designed specifically, at the simplest level, to detect
common web-server misconfigurations and vulnerabilities or, at the most
detailed level, to find complex, subtle loopholes in web application designs,
implementation or configuration. The basic service has been offered to
organizations setting up secure eCommerce environments (based around the
use of SSL to encrypt transactions between the client and the web-based
application). Given that the organizations concerned have already decided that
the security of their customers' transactions is important, it is astonishing how
many of the sites examined are still open to attack using well-known exploits.

Of the SSL sites tested in the last

nine months, 62% of sites tested
are based around the Microsoft
NT/4, 1IS/4.0 or Windows2000,
I1S/5.0 platforms, of which:
A staggering

27% of sites are

vulnerable to

either the

Unicode

canonicalizatio

n or URL

double decode
vulnerabilities,

which leave

them wide open

for anyone to

run arbitrary

commands on

the server

28% of sites

still have the

IIS sample

pages installed,

exposing a

number of

loopholes that

can be used by

attackers to

obtain system

information or

privileges

20% are

vulnerable to

other loopholes

that allow

server-side

scripts to be

examined by

potential

attackers.

Figures from Alldas show that, in the first 5 months of 2001, over 11,000 web-sites have been
defaced, but it is clear that many more systems are "quietly" compromised without publicity (and
even without the knowledge of the owners of the systems themselves).

By not following the basic steps to secure your service, you leave yourself
open to a variety of attacks from remote users. Indeed, you may even be
contributing to the problem by allowing your system to become a stepping
stone from which attacks against other systems can be launched. Many of you
will have read about the Distributed Denial of Service (DDoS) attacks on high
profile eCommerce sites - the only way for these attacks to continue is the
proliferation of badly secured systems.

For 11S/4.0, Microsoft has produced a checklist (and set of guidelines) that all
web-site developers should read and follow closely. The guidelines provide
precise configuration instructions that must be followed before an eCommerce
application is deployed. For IIS/5.0 on Windows 2000, the security
configuration tool is a useful starting point for securing your system. More
details can be found at http://www.microsoft.com/technet/security/tools.asp.
Other eCommerce platform suppliers provide similar security advice, so take
advantage of it.

Keep it Simple

Many eCommerce systems that we come across when performing security
evaluations have large numbers of (often vulnerable) services open to all and
sundry. If the sole purpose of your web-based application is to provide normal
and secure channels for your customers to communicate with you, then it is
highly likely that you can make do with opening TCP port 80 (HTTP) and TCP
port 443 (HTTPS) for access by anyone. Why then, do we see many, many
sites with many other ports open to the world, providing many avenues of
attack against the site? The answer is obvious - security has not been
adequately considered before the system and its application have been
launched into the eCommerce world.

In a recent examination of the security of a new high profile "free"
Internet service, the service was found to provide a different kind of
freedom, as the NetBIOS services allowed us to remotely map their hard
disk systems with full read and write access. Even though we needed a
username and password to connect, these were not hard to guess (the
"administrator" account password was, ahem, "password".)

In the rush to embrace the web, many long established computer security
principles have been abandoned. Remember, deny access to all services and
then allow access to only those services necessary for your application to
function correctly. Furthermore, exposed services should be examined in detail
to ensure that they conform to an accepted level of security.

What they See is What you Should Protect

That's not to say that you should become complacent, but assuming that your
firewall/port filtering systems adequately protect your server by restricting
access to all but a limited number of services, it is clear that it is precisely
those services that an attacker will target in order to compromise your

application. Indeed, many of the recent high profile attacks have used frailties
in server and application software to penetrate a web site.

Many advertisements in the papers or on television press home the fact that
setting up a web-site is an easy task. In many cases, it is - but what the adverts
fail to mention is that configuring a secure system requires a reasonable
understanding of the risks involved. Of course the business world has to
balance risk against the cost of protecting itself against that risk. Many
professional security companies offer a range of risk assessment and risk
management services and these should be factored into your project's budget
wherever possible. However, there are some simple steps that can be taken to
reduce such risk and most suppliers of Internet-based hardware and software
solutions will provide such advice - all you have to do is follow that advice.

If we look at some of the most popular eCommerce platforms, the same risky
configurations occur time after time, largely because the default installation of
the platform has not been prepared specifically for Internet deployment.

Sample Scripts and Applications

One of the most frequently observed problems does, indeed, relate to the
deployment of standard installations without any real understanding of what is
being offered to external users. Simply leaving sample files and applications
installed on a server can have dire consequences. Very often, example scripts
contain code that is designed to show the advanced capabilities of a system but
will also allow intruders to abuse these capabilities to view files on the web
server and discover the structure of the file-system, thus providing valuable
information with which to locate sensitive data files or launch further attacks
against the system.

Netcraft finds that 3 out of every 10 web-sites tested
allows access to example server-side scripts with known
exploitable weaknesses.

Tidy Up After Yourself

Very many web-based applications are developed and tested on the actual
system that will be put into production when the project is ready. A couple of
dangers are immediately obvious - the developers will be working on a system
that is not designed to be secure during development and may well have an
open FTP service, FrontPage facilities, Telnet, remote database connections,
etc. and may even have been set up with explicit or implicit trust of other
machines in the network. In the rush to bring product to market, the existence
of some services is often overlooked and those services remain accessible by
anyone, albeit with a much wider audience than before!

Failure to "tidy up" before a system went live allowed our
consultants to retrieve the entire source of a trading
application from the web-site of a financial services
company, including database logins and passwords and
confidential customer data files.

Once the development (and, hopefully, application testing), has been
completed, it is imperative that editor backup files, other files used during

development and any non-essential data is removed from the web folders on
the server. Many "hacker scripts" test for known back-up files to try and
retrieve the source code of scripts and learn more about an application and its
weaknesses.

Files discovered by our consultants in publicly-accessible
areas include confidential e-mail messages, router and
firewall configuration data, application data files and, of
course, database logins and passwords.

Protect Your Sensitive Data

You'd have to say that protecting sensitive data is an obvious requirement of
any online system. By now, you won't be surprised to learn that many sites
blithely ignore such trivialities. Netcraft often tests sites where confidential
customer data is stored unencrypted in files within the web-server's file space
or unprotected database tables.

In a recent eCommerce Security Evaluation, Netcraft
managed to use a loophole in a system module to read
files in the web-server's file space. One such file
contained customer bank account details in an encrypted
form. The encryption key, however, was hard-coded into
the application's scripts.

Manage Your Sessions Carefully

There have been several cases reported in the last few months where per-
session data from one user of a web-site has been erroneously delivered to
another user. In each case, the reason for these errors is usually given as a
software "glitch" or malfunction, although many are really caused by
fundamental flaws in application design. Designing multi-user interactive data-
centric applications has always provided some stiff challenges for software
systems developers and requires experience and care if the subtleties of
complex interactions are to be both understood and handled in a proper
fashion. Unless the development of web-based applications is approached with
the same degree of care, security and performance problems are bound to
occur.

Common design errors seen by Netcraft are mismanagement of session state,
usually caused by a failure to use and understand the facilities provided by the
run-time environment of the tools used for the application. As an example, we
often see hidden fields in HTML forms (or worse still, parameters within
URLSs) used to select and maintain data on the server, when server-side session
variables, or their equivalent, are not used at all. Failure of applications to send
correct instructions to caching proxy servers can also lead to unexpected data
dissemination.

Shhh, Don't Tell Everyone

Trying to "break-in" to a web-based service involves some automated
procedures to locate and test for vulnerabilities in exposed systems and
services, followed by manual inspections of those services and the application
itself, both from an external (user's) viewpoint and by reviewing application

source code for common design faults and coding errors. Very often, however,
the secret to unlocking a system vulnerability lies in the gathering together of
fragments of information from (sometimes) unexpected places.

Using a list of contact names in a "forgotten" part of a
company's web-site, Netcraft was able to find several
other companies with which the owner of one of the e-
mail addresses had previously been associated. Once such
association led to his personal home page, where we
discovered his surname, his wife's name and even the
name of his cat. This candidate information actually gave
us an FTP login name on the targeted site. Fortunately for
the site in question, their password policy was sufficiently
strict that it resisted our attempts to probe further.
Nevertheless, the site had provided more information than
its creators intended.

People intent on compromising or defacing any web-based system will always
have more time than you would believe possible to explore every nook and
cranny of your web-site. Comments in HTML pages will often provide useful
information to an attacker, such as the developer's login name or clues as to the
structure of the application and the web-server. Other sources of useful data
include not only the obvious Whois entries, press releases, news items, contact
lists, etc., but also the less obvious partner web-sites and personal web-pages.
By far the greatest risk, however, comes from badly configured server software
and application errors, particularly errors in scripts that are used to interact
with back-end databases.

By providing invalid data that will form part of a database
query on the remote service, our security evaluation team
can often force error messages to be displayed by the
target application. In many cases, these give details of the
structure of the web-site, its directories and, most
worryingly, the structure of the database tables used by
the application. Once the structure has been determined, it
is often a simple matter to modify database records to
elevate privileges or to steal or disrupt data in the
database.

Once again, failure to think about the ways in which your system and
application could be abused can lead to simple ways for an attacker to cause
disruption. Another common mistake is the failure to properly validate data

from end-users and then using this potentially damaging data in the
application. All data presented to an application must be considered "tainted"
until the application itself has ensured that it is safe. Things may not always be
what they seem - HTTP headers, cookies, hidden form variables, IP addresses,
and so on, can all be faked; client-side form data validation can be bypassed
and URLs can be modified.

One eCommerce evaluation carried out by Netcraft found
that a simple modification to the parameters that formed

part of a URL would allow us to view customer orders
and invoices for any user of the system.

Just when you think that you've got your system "just so", there's the final,
unexpected configuration problem that makes you wonder how on earth you
missed such a simple thing. The classic example is perhaps the use of a search
facility on your web-site. It may seem obvious to index (that is, include in the
search) web-pages that you want your users to be able to search, but it is very
common to find all manner of files indexed. Search results that include
file/page summaries will show the contents of system files, configuration files,
etc. if they have been mistakenly included in the search database. Even if your
search engine only displays lists of pages found, you may still be giving away
more information than you expect. Be careful which files are looked at by your
search facility.

"Thanks, now I can sleep nights"

Many IT directors, CTOs and system administrators do sleep peacefully - some
because they have paid due consideration to the security of their on-line
systems and applications during their design, development and deployment,
but many because they do not yet understand the risks that their new
eCommerce system is facing as they sleep. Compared to the cost of cleaning
up the mess after a system has been broken into, the cost of testing the security
of your web application is "small beer".

A system that cost around $5,000 to put together, recently
had its home-page defaced. To date, the cost of
investigating the defacement, rebuilding and (this time)
testing the security of the new system, is in excess of
$50,000.

Here are some of the things that we have heard over the past year. How highly
these people rated the security of their systems, and at what stage in their
assessment of the problem they had reached, is left as an exercise for the

reader.

e "We only have a few static web-pages, so we can't be
vulnerable."

e "My SSL pages are private, why are you looking at THEM?"

e "Thanks, now I can sleep nights."

e "Why do I need to test my application, I've got a firewall."

e "Wow! That was sneaky. I'm amazed you found that."

e "I know we're vulnerable, but it's not a major issue for us."
Conclusion

In the process of surveying hundreds of web applications, Netcraft sees many
security flaws - some surprising, some expected, some so subtle that they aren't
immediately obvious - all potentially damaging to the organisation behind the
web presence or its customers and investors. Is there a common theme? Well,
yes and no. Whilst the variety of design, implementation or configuration

problems never ceases to amaze, the underlying problem is the general lack of
consideration of security as a fundamental part of the design of a web-based
application from its inception and throughout its life.

You might suppose that the entire blame can be laid at the door of the suppliers
of system software, the designers of an application or the developers who put
the whole thing together. Whilst these groups often contribute to the overall
problem, they are not always solely to blame. Suppliers are nowadays taking
responsible steps to ensure that their application environments provide a secure
base, upon which a web application can be developed. System designers are
(or certainly should be) aware of the perils awaiting their application when it is
launched into the hostile Internet environment. Very often, programmers do
not have sight of the entire application and cannot involve themselves in the
overall security of the system.

Often, however, the last say in bringing an application to the web lies with the
organization's management and they, of course, will have investors, customers
and competitors influencing the application's time-to-market. Until the people
commissioning new web-sites, applications and web-based businesses
understand the importance of security and work together with the suppliers,
designers and developers to ensure that security is uppermost in everyone's
minds, the hackers, crackers, script kiddies - call them what you will - will
continue to flourish.

About Netcraft

Netcraft is an internet consultancy based in Bath, England with the majority of
its work closely associated to the development of Internet services for its
clients or itself. In 1999, Deloitte & Touche ranked Netcraft as one of the fifty
fastest growing technology companies in the United Kingdom. In November
1999, the British Department of Trade and Industry short-listed Netcraft for an
award for export achievement.

Bob Metcalfe, inventor of Ethernet and co-founder of 3com, has pronounced
Netcraft "cool", while Tim O'Reilly called it "the best known example of a site
devoted to tracking technology on the Internet".

Clients for Netcraft's services include IBM, Sun, Hewlett Packard, Microsoft,
Intel, Verisign, Global Crossing, Energis, British Telecom, Cable & Wireless,
Demon Internet, Goldman Sachs, Morgan Stanley, Fidelity, Union Bank of
Switzerland, the Post Office and Lloyds of London.

