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Abstract

In this paper the credit risk model of Duffie and Lando (2001) is extended to cases

where the true asset value process and the noise term are correlated. I find theoretical

and empirical evidence for the importance of the inclusion of the correlation. In

particular, I find empirical evidence for a negative correlation. Under the assumption

that the true asset value and the noise term are correlated, I derive a corporate bond

pricing formula in nearly closed form. It is then demonstrated that introducing the

correlation has a statistical and an information effect. For small accounting noise the

statistical effect is dominant, whereas for large accounting noise the information effect

is dominant. Ignoring the correlation yields significant pricing errors in corporate

bond prices.
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1 Introduction

In this paper, I incorporate strategic behavior by the management into credit risk models

where investors have only incomplete information about the value of the assets of the

company. Credit risk models are often divided into structural models and reduced form

models. In structural models an asset value process is specified. Default occurs when the

value of the assets is lower than a given boundary, e.g. the nominal value of the liabilities.

The first structural models were Black and Scholes (1973) and Merton (1974). In these

models it is assumed that equity is a call option on the assets of a company with a strike

price equal to the nominal value of debt. As a consequence, the price of corporate debt is

the value of the assets minus the value of the call option or alternatively the value of a risk

free bond minus a put option written on the assets. While in these early models default

is only possible at maturity, Black and Cox (1976) allow for default prior to maturity.

In their model default occurs when an asset value process hits the default boundary for

the first time. Structural models that incorporate assumptions about the optimal capital

structure are Leland (1994) and Leland and Toft (1996). Longstaff and Schwartz (1995)

incorporate a stochastic interest rate into the structural model framework. Besides their

role in academia, structural models have also proven to be successful in the banking

industry. The company KMV provides a structural credit risk model to calculate the

expected default frequency. A description of the KMV model is given in Bohn and Crosby

(2003). Although structural models are a good description of an economic situation, they

fail to explain the observed credit spreads in bond and credit derivative markets. Since

the asset value process is usually specified as a geometric Brownian motion, credit spreads

should be close to zero for short times to maturity. But this is not the case. Reduced

form models avoid this problem by modeling default as the first jump of a pure jump

process, typically a Poisson process. Default intensities and recovery rates are assigned

exogenously to the model. It is possible to calibrate reduced form models to market prices

of debt. In contrast to structural models, default is not predictable. Models which study

reduced form models are Artzner and Delbaen (1995), Jarrow, Lando and Turnbull (1997),

Duffie and Singleton (1999), and Lando (1998). Reduced form models do not specify an

asset value process and do not use accounting based information. That is the reason why

they are criticized for lacking economic content.
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On first view, structural models and reduced form models seem to be very different.

This is not necessarily the case. Duffie and Lando (2001) are the first to show that

structural models can be transferred into reduced form models by reducing the information

set of the market participants. In their model, they assume that the investors cannot

observe the true asset value process, but instead receive a noisy signal about the asset value,

for example an accounting report. Duffie and Lando (2001) show that with the reduced

information set, a structural model can admit an intensity, hence default is unpredictable.

Giesecke (2005) extends this idea to the case where the default barrier is unobservable,

Zhou (2001) adds an unpredictable jump time to the asset value process, and Collin-

Dufresne, Goldstein and Helwege (2002) assume that investors receive lagged information

about the asset value process. Baglioni and Cherubini (2005) distinguish between noisy

accounting information resulting from estimation errors and noisy accounting information

resulting from fraud. Further models that assume incomplete information about the asset

value process are Giesecke and Goldberg (2004), Cetin, Jarrow, Protter and Yildirim

(2004), and Guo, Jarrow and Zeng (2005).

In this paper, the focus will be on credit risk models with an incomplete information

structure as given in Duffie and Lando (2001). In their model, it is assumed that the

noisy accounting signal consists of the true asset value and a normally distributed noise

term. Furthermore, it is assumed that the true asset value process and the noise process

are uncorrelated. But in practice the two processes are not necessarily uncorrelated,

because the management of the company acts opportunistically. Numerous studies in the

accounting literature give evidence that the management of a company has incentives to

do earnings management. Many of these studies come to the conclusion that companies

prefer to report smooth asset values through time. Smoothed asset values mean that in

the model of Duffie and Lando (2001) the true asset value term and the noise term are

negatively correlated. Other studies come to the conclusion that the management reacts

to bonus schemes which can yield in a positive correlation between the true asset value

term and the noise term.

The correlation is estimated for a data set consisting of accounting reports for German

companies for the years 1998–2003. Under the assumption that the market value of the

company is the true asset value and the asset value given in the financial statements is
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the noisy reported asset value, I derive a series of noise terms. I find that the correlation

between the logarithm of the true asset value and the noise term is −0.178 for the whole

sample, while for the sub-sample of Neuer Markt companies it is −0.672.

With the theoretical and empirical arguments at hand, I model the opportunistic

behavior of the management by a correlation between the logarithm of the true asset

value process and the noise process in the model of Duffie and Lando (2001). This is done

by assuming that the two processes are bivariate normally distributed with a correlation

coefficient ρ. Under this assumption, I derive a nearly closed form formula for the pricing

of corporate bonds. I then show that, for usual parametrization, the correlation between

the logarithm of the asset value and the noise term is very similar to the correlation of

the true asset value and the noise term.

Moreover, I study the effects of the correlation coefficient on credit spreads of cor-

porate zero bonds. I find that a correlation introduces two pricing effects: It (1) has a

statistical effect, and it (2) has an information effect. The statistical effect arises from

the new distribution of the reported asset values. For example for a negative correlation

extreme asset values become less likely. The information effect says that if the investor

observes a certain reported asset value, he rationally infers the asset value by taking the

correlation into account. For example, if the investor observes an extreme reported asset

value and the correlation is negative, the true asset value might be even more extreme.

Whether the first or the second effect is dominant, depends on parameters like the stan-

dard deviation of the noise process (accounting noise) and the level of the reported asset

value. I show that for small accounting noise, the statistical effect of the correlation is

dominant while for medium and large accounting noise the information effect is dominant.

Furthermore, I ask the question, how large the pricing error is if the correlation is

neglected. Assuming correlations scenarios of −0.178 and −0.672, as estimated in the

empirical analysis, I find pricing errors for corporate zero bonds with 5 years to maturity

between 2 and 10 basis points for the first scenario and between 16 and 33 basis points

for the second scenario.

The rest of the paper is organized as follows: Chapter 2 gives a brief review of the

basic model of Duffie and Lando (2001). In Chapter 3, I argue from a theoretical and an
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empirical point of view that a correlation between the noise term and the true asset value

process has to be included in the basic model of Duffie and Lando (2001). In Chapter 4, I

derive the conditional default probability and risky bond prices for the Duffie and Lando

(2001) model enhanced with a correlation. The implications of the enhanced model are

studied in Chapter 5, while Chapter 6 concludes.
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2 The Basic Model of Duffie and Lando (2001)

In this section, I briefly review the model of Duffie and Lando (2001). In the model, it

is assumed that the assets of a company follow a geometric Brownian motion. A default

occurs when the assets are worth less than a predefined boundary. While the assumptions

so far are standard in structural models, Duffie and Lando (2001) specify that investors

can only observe a noisy signal V̂t of the asset value, e.g. an accounting report, instead of

the true asset value Vt. They further assume that the logarithm of the noisy signal can

be decomposed into the logarithm of the true asset value and into a normally distributed

noise term Ut. The logarithm of the noisy signal can be written as

ln V̂t = lnVt + Ut. (1)

In Equation (1) it is assumed that lnVt and U(t) are independent. In this setup,

Duffie and Lando (2001) derive the default probability of the company conditional on the

noisy accounting signal and on the information whether the company is already in the

default state or not. With the default probability derived under reduced information, it

is possible to explain stylized facts observed in the corporate bond markets. For example,

even for very small times to maturity there is still a positive default probability and hence

a strictly positive credit spread. Duffie and Lando (2001) prove that — assuming the

reduced information set — the default time is completely unpredictable. Therefore, they

show that modeling default risk with incomplete information about the asset value can

link structural models, that are based on an economic concept, to reduced form models,

where default comes as a surprise.

The implications of the unobservability of the true asset values on corporate bond

prices is demonstrated in Figure 1. We see that introducing accounting noise bounds

the credit spreads away from zero for very short maturities. Duffie and Lando (2001)

interpret the noise term U as accounting noise. One can see in Figure 1 that the effect of

the accounting noise, measured by its standard deviation, depends on the parametrization

of the model. While economical considerations would predict that a higher accounting

noise increases the default probability and thus credit spreads (see first graph), one can
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see situations where a higher level of accounting noise decreases the default probability

and hence credit spreads (see second graph). To understand this anomaly, one has to

keep in mind that the model of Duffie and Lando (2001) does not make any assumptions

about strategic behavior of the management. Hence, we see a pure statistical effect. When

the reported asset value is very low then a high accounting noise is better for the investor

because the chance that the true asset value is above the reported asset value is higher than

the chance that the true asset value is lower than the reported asset value. In contrast,

if the accounting noise is small the investor knows for sure that the company is in a bad

situation. The model of Duffie and Lando (2001) ignores possible interactions between

accounting noise and true asset value models.
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3 Theoretical and Empirical Motivation for a Correlation

3.1 Theoretical Motivation for a Correlation

In the basic model of Duffie and Lando (2001) it is assumed that the logarithm of the

true asset value process and the noise process are uncorrelated. The expected value of

the noise term can be interpreted as a reporting bias regardless of the actual value of

the company. Usually, one would expect a downward bias because almost all accounting

regimes report rather prudently. The standard deviation of the noise term can be inter-

preted as accounting noise. Accounting noise can arise even when the management of

the company does not have perfect information when it assesses the asset value. As a

consequence the management has to rely on estimations. And even if the management

had perfect information about the asset values, it might be forced to report in accordance

to accounting rules that introduce noise. Neither of the two noise parameters, expected

value and standard deviation, does account for strategic behavior of the management. By

allowing for correlation, it is possible to make the noise process dependent on the true

asset value process. A negative correlation between the true asset value term and the

noise term can be interpreted as a smoothing of reported asset values. In states in which

the true asset value is relatively high, firms tend to report asset values lower than the

true asset values. In states of relatively low asset values, firms tend to report higher asset

values than the true ones. Alternatively, a positive correlation has the interpretation that

the management prefers high fluctuations in reported asset values.

Managers have different incentives to misreport the true asset value. Baglioni and

Cherubini (2005) argue that managers have incentives to hide bad asset values and to

understate performance in good states. Reasons for overstating the performance in bad

states are (1) that a low asset value might have the consequence of an intervention by

shareholders or debt holders, (2) that the good reputation of the manager can be damaged,

and (3) that the compensation of the manager is linked to market values or reported asset

values. In good states, reasons to understate the asset values are (1) the reduction of the

tax burden, (2) to hide profits to benefit personally, and (3) a strategic default.

The discussion of the management of reported asset values is related to the discussion

of earnings management. Under the assumption that a company does not change its
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financing, earnings for a certain period can be calculated as today’s reported asset value

minus the reported asset value of the previous period. Hence, there is a direct link between

reported earnings and reported asset values. In the accounting literature, there are two

competing hypotheses regarding earnings management. The first hypothesis says that the

management tries to smooth earnings. Models that support this hypothesis are Fudenberg

and Tirole (1995), DeFond and Park (1997), and Trueman and Titman (1988). All studies

conclude that the management has incentives to smooth reported earnings. Although, all

studies come to similar results, they assume different reasons in their models. Trueman

and Titman (1988) argue that the management wants to lower the costs of capital, whereas

DeFond and Park (1997) and Trueman and Titman (1988) argue that managers are led by

the goal to keep their job. According to the earnings smoothing hypothesis the correlation

between the logarithm of the true asset value and the noise term should be negative.

The second hypothesis mainly goes back to Healy (1985). He argues that the man-

agement observes the proceedings from operations and then chooses discretionary accruals

in a way to maximize benefits from bonuses. In years where the proceedings from oper-

ations are either significantly higher or significantly lower than the bonus boundary, the

management chooses negative discretionary accruals. In all other states the management

chooses positive discretionary accruals. According to the hypothesis of Healy (1985), it is

not clear which sign a correlation between the logarithm of the true asset value process

and the noise term would have. Closely related to the second hypothesis is the so called

big bath accounting. In a bad year the company’s income statements are manipulated to

look even worse. As a consequence the earnings in the following years are artificially high.

Taking a big bath can result in a positive correlation between the logarithm of the true

asset value process and the noise term.

Although there is still a discussion in the accounting literature whether and to what

extent firms smooth reported earnings, the theoretical arguments provide evidence to

control for correlation in credit risk models with incomplete accounting information.
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3.2 Empirical Estimations of the Correlation

In this subsection, I estimate the correlation between the logarithm of the true asset values

and the noise term for a sample of public traded German companies. The purpose of the

estimation procedure is to further motivate that the independence assumption between

the logarithm of the true asset values and the noise term cannot be assumed in practice

and hence the model of Duffie and Lando (2001) needs a modification.

3.2.1 Data

I use data from the Compustat (Global) Database for German companies of all industries

for the years 1998–2003. I use only German companies to keep country-specific influences

small. Restricting the analysis to German companies leaves me with 3, 035 company years

of observation. Out of this 3, 035 company years, 890 are from companies traded on the

Neuer Markt, a special trading segment on the Frankfurt Stock Exchange for growth-

oriented and innovative companies. A particularity of the German accounting rules is

that since 1998, companies are allowed to prepare their financial statements in accordance

to either German GAAP, US GAAP, or IAS. Using the accounting regime as a selection

criterion, the sample can be subdivided into 1, 639 company years of German GAAP

reports, 866 company years of IAS reports, and 530 company years of US GAAP reports.

3.2.2 Correlation Estimation

The estimation of the correlation between the logarithm of the true asset value process

and the noise term is not easy. Initially, one would want to infer the accounting noise

parameters and the correlation coefficient from bond data. Unfortunately, this approach

does not work properly. The main problem is that in most cases bond data is only available

for companies whose equity is also listed. In such a case it cannot be assumed that the

asset value process is unknown to the investor. Following Herkommer (2006), I employ a

different approach. I estimate the noise process from equity data.

It is known from the basic setup of Duffie and Lando (2001) that the observed asset
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value process V̂ can be decomposed into

ln V̂t = lnVt + Ut, (2)

where Vt is the true asset value and Ut is the noise term. To obtain values for Ut, I interpret

the book value of the assets (BVi) of the sample firms as V̂ . The corresponding equity

values 2.5 months1 ahead of the book values plus the book values of the liabilities (MVi)

are interpreted as Vt. Under these assumptions, one can calculate a sample of noise terms

Ui = lnBVi − lnMVi. (3)

For the derivation of the series for the noise term Ui, I need the assumption of a

naive investor. The investor is naive in the way that he uses the book value of the assets

as the only accounting signal. He then rationally infers the noise parameters from the

calculated series Ui, instead of using all available information such as other balance sheet

positions or ratios. A key assumption of this procedure is that the noise parameters that

are derived for public companies are also valid for private companies for which no true

market values are available. For further discussion of the assumption of a naive investor,

I refer to Herkommer (2006).

The correlation between U and lnV is estimated by the empirical correlation between

the series of logarithms of market values lnMVi and the calculated Ui series.

3.2.3 Results

The estimated correlation between the logarithm of the true asset value process and the

noise term depends on the chosen sub-sample. For the whole sample, I calculate a corre-

lation of −0.178. The negative correlation corresponds to the idea that companies tend

to smooth their reported asset values. Although, the correlation value is rather small

in absolute terms, the standard error of the correlation is very small (0.018) so that the

correlation is significantly different from zero for all usual significance levels.

1KPMG (2002) finds out that German companies need on average 2.5 months from the end of the

accounting year until they publish their financial reports.
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When looking at sub-samples, one gets further evidence for the importance of the

correlation between the logarithm of the true asset value and the noise term. In a first

step, I divide the sample into a sub-sample of companies that were traded on Neuer Markt

and into a sub-sample of companies that were traded in other markets. The estimated

correlation for the companies traded on Neuer Markt is −0.672 with a standard error

of 0.025. Estimating the correlation for companies that were traded on other markets

yields a correlation of −0.098 with a standard error of 0.021. The results for the sub-

sample of Neuer Markt companies demonstrate that the absolute size of the correlation

can be large. It seems that Neuer Markt companies make stronger use of smoothing in

their accounting reports than companies trading on other markets. This might stem from

the fact that there is more asymmetric information involved in the relationship between

growth companies and their financiers than for more established companies.

Furthermore, I investigate if the estimated correlation depends on the accounting

regime the company uses. Therefore, I estimated the correlation for sub-samples of com-

panies reporting according to IAS, US GAAP, and German GAAP. The estimated correla-

tion values are −0.195 (standard error: 0.033) for IAS companies, −0.221 (standard error:

0.042) for US GAAP companies, and −0.151 (standard error: 0.024) for German GAAP

companies. The estimated correlations are very similar. The less negative correlation for

German GAAP companies results from the fact that no German GAAP companies are

traded on Neuer Markt. It seems that different accounting regimes have no large influence

on the correlation between the true asset value and the noise term of a company.

In conclusion the data supports the idea that there is a non-zero correlation between

the logarithm of the true asset value and the noise term of a company. I estimated

negative correlations for all sub-samples. This corresponds to the idea that companies

have incentives to smooth their reported asset values. The absolute magnitude of the

correlation differs for several sub-samples. Especially for Neuer Markt companies the

magnitude of the correlation is significantly different from zero. Hence, the assumption

of independence between logarithms of true asset values and noise terms — as stated in

Duffie and Lando (2001) — is not supported in this empirical study.
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4 The Model of Duffie and Lando (2001) with Correlation

In this section, I extend the model of Duffie and Lando (2001) by allowing the noise term

U to be correlated with the logarithm of the true asset value process.

4.1 Setup

I assume a fixed probability space (Ω,F ,P ) on which an asset value process is defined

that follows a geometric Brownian motion. Under the risk neutral probability measure

the asset value process is given by

dVt = µVtdt+ σVtdŴt, (4)

where Ŵt is a standard Wiener process under the risk neutral measure. The parameters

µ and σ stand for the drift and the diffusion of a geometric Brownian motion. Like in

the setup of the basic model of Duffie and Lando (2001), default is modeled as the first

time τ that the process hits the default barrier Vb. The investor cannot observe the true

asset value V but instead receives noisy accounting reports V̂ at discrete points of time

t1, . . . , tn and the information I{τ≤s} if the company is already in default or not. Hence,

his information is modeled by the filtration (Ht)t>0 generated by

Ht = σ
(
V̂ (t1), . . . , V̂ (tn), I{τ≤s} : 0 ≤ s ≤ t

)
. (5)

The information of the investor is different from (Ft)t>0 the filtration generated by

Ft = Ht ∨ σ (V (t1), . . . , V (tn)) . (6)

As in Duffie and Lando (2001), I assume that the noisy asset value V̂t can be decom-

posed into

Yt = ln V̂t = Zt + Ut, (7)

12



where Zt = ln(Vt), and — in contrast to Duffie and Lando (2001) — Zt and Ut are bivariate

normally distributed. The main objective is to derive the conditional density of Vt given

the reduced information set Ht. I restrict the setup to the case where only one noisy asset

value report is observed at time t.2 To derive the desired density, I need in a first step the

density b(x|Yt, z0, t) of Zt stopped at τ = inf{t : Zt ≤ Vb} for a fixed Z0 = z0, conditional

on the observation of Yt. Assume that Zt and Ut are bivariate normally distributed with

mean ξ = (mt+ z0, ū) and covariance matrix

Σ =




σ2t aσ
√
tρ

aσ
√
tρ a2


 , (8)

where m = µ− 0.5σ2.

Then the density b(x|Yt, z0, t) of Zt stopped at τ = inf{t : Zt ≤ Vb}, conditional on

the observation Yt is given as

b(x|Yt, z0, t) =
ψ(z0 − vb, x− vb, σ

√
t)φUZ(Yt − x, x)

φY (Yt)
, (9)

where ψ(z0 −vb, x−vb, σ
√
t) stands for the probability that min{Zs : 0 ≤ s ≤ t} > 0 given

that Z starts on level z0 − vb at time 0 and ends at level x− vb at time t. This probability

can be written as

ψ(z0 − vb, x− vb, σ
√
t) = 1 − exp

(
−2(z0 − vb)(x− vb)

σ2t

)
. (10)

The term φUZ(Yt − x, x) stands for the density of the bivariate normal distribution

for U and Z, and φY (Yt) stands for the density of the observed noisy asset value Yt, where

Yt is normally distributed with mean mt + z0 + ū and variance a2 + σ2t + 2aσ
√
tρ. In

Proposition 1 I give an analytical expression for b(x|Yt, z0, t).

Proposition 1. The density b(x|Yt, z0, t) of Zt stopped at τ = inf{t : Zt ≤ Vb}, conditional

on the observation Yt can analytically be written as

2An extension to multiple observation times is given in Duffie and Lando (2001).
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b(x|Yt, z0, t) =

√
γ0

π
e−J(ỹ,x̃,z̃0)e

1

4

�
γ1

γ0 � (
1 − e

−2z̃0x̃

σ2t

)
,

with

J(ỹ, x̃, z̃0) =
1

2

1

(1 − ρ2)

{
(ỹ − x̃)2

a2
+

(z̃0 +mt− x̃)2

σ2t
− 2ρ

(ỹ − x̃)(z̃0 +mt− x̃)

aσ
√
t

}

γ0 =
a2 + σ2t+ 2aσ

√
tρ

2a2σ2t(1 − ρ2)

γ1 =
(ỹ − (mt+ z̃0))

2

a2σ2t(1 − ρ2)
.

The variables ỹ, x̃, and z̃0 stand for y − vb − u, x− vb, and z0 − vb respectively.

Proof. A proof for Proposition 1 is straight forward. Inserting the definition of φUZ(Yt −
x, x), φY (Yt), and ψ(z0 − vb, x − vb, σ

√
t) into Equation (9) results after some algebra in

Proposition 1.

It is known from Duffie and Lando (2001) that the density of the true asset value

process g(x|y, z0, t) conditional on the noisy information Y and on τ > t can be calculated

as b(x|y, z0, t) divided by the conditional survival probability Q(τ > t|Yt)

g(x|y, z0, t) =
b(x|y, z0, t)
Q(τ > t|Yt)

. (11)

To evaluate Equation (11) analytically, one has to solve for Q(τ > t|Yt) which can be

written as

Q(τ > t|Yt) =

∫ ∞

vb

b(z|y, z0, t)dz. (12)

Proposition 2 gives the analytical solution of Q(τ > t|Yt).

Proposition 2. The survival probability Q(τ > t|Yt) conditioned on the noisy accounting

information Yt can be written as

Q(τ > t|Yt) =

∫ ∞

vb

b(z|y, z0, t)dz

= γ6e
1

4

γ1

γ0

(
Φ(γ4)e

− 1

2
γ2 − Φ(γ5)e

− 1

2
γ3

)
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with

γ0 =
a2 + σ2t+ 2aσ

√
tρ

2a2σ2t(1 − ρ2)

γ1 =
(ỹ − (mt+ z̃0))

2

a2σ2t(1 − ρ2)

γ2 =
(ỹ − (mt+ z̃0))

2

σ2t+ a2 − 2aσ
√
tρ

γ3 =
(ỹ − (mt+ z̃0))

2 + 4ỹz̃0

a2 + σ2t− 2aσ
√
tρ

+ 4a2

(
a2ρ2z̃0

2 + a2z̃0mt− aσ
√
tρ(z̃0

2 + z̃0mt+ ỹz̃0)

(σ2t+ a2 − 2aσ
√
tρ)a2σ2t

)

γ4 =
ỹσ2t+ (mt+ z̃0)a

2 − (ỹ +mt+ z̃0)aσ
√
tρ√

a2 + σ2t− 2aσ
√
tρ

√
a2σ2t(1 − ρ2)

γ5 =
ỹ(σ2t− aσ

√
tρ) + z̃0(a

2(2ρ2 − 1) − aσ
√
tρ) +mt(a2 − aσ

√
tρ)√

a2 + σ2t− 2aσ
√
tρ

√
a2σ2t(1 − ρ2)

γ6 =

√
a2 + σ2t+ 2aσ

√
tρ√

a2 + σ2t− 2aσ
√
tρ
,

where ỹ and z̃0 stand for y − vb − u and z0 − vb respectively. Φ(·) denotes the cumulative

distribution function of a standard normal variable.

Proof. The Proof is given in Appendix A.

The density g(x|y, z0, t) is the integral building block to derive the risk neutral default

probability Q(τ < T |Ht) conditional on the reduced information set Ht. It is known

that the risk neutral default probability equals 1 minus the survival probability. Hence,

Q(τ < T |Ht) can be written as

Q(τ < T |Ht) = 1 −
∫ ∞

vb

Q(τ ≥ T |Ft)g(x|Yt, z0, t)dx. (13)

Note that Q(τ ≥ T |Ft) is the survival probability under the information set Ft that

contains the true asset values. The probability Q(τ ≥ T |Ft) has to be weighed for every

x with the density g(x|Yt, z0, t) to obtain the survival probability under the reduced infor-

mation set Ht. The risk neutral survival probability given the information set Ft is well

known3 and can be written as

3See e.g. Bielecki and Rutkowski (2002), Harrison (1990).

15



Q(τ ≥ T |Ft) = Φ(d1) − exp

(−2x̃m

σ2

)
Φ(d2) (14)

with

d1 =
x̃+m(T − t)

σ
√
T − t

and

d2 =
−x̃+m(T − t)

σ
√
T − t

.

The risk neutral default probability Q(τ < T |Ht) is needed in the bond pricing model

described in the following subsection.

4.2 Risky Bond Prices

In this subsection, I will derive a nearly4 closed form pricing formula for corporate bonds.

Thus, I consider a corporate bond promising the bondholders a face value F at time T .

Without loss of generality, I assume further that the bond does not pay any coupon and

the recovery rate ω is a constant fraction of the discounted face value of the bond.5 Using

the stated assumptions, the price of a corporate zero bond Pt,T is given by

Pt,T = Bt(T )F [1 −Q(τ < T |Ht)] + ωBt(T )FQ(τ < T |Ht), (15)

where Bt(T ) is the price of a risk free treasury bond and Q(τ < T |Ht) is given in Equation

(13). If a fixed recovery rate of the face value is assumed, the pricing formula becomes

more complicated. I refer to Herkommer (2006) for calculation details under the recovery

of face value assumption.

4The pricing formula will be closed form up to the numerical integral in Equation (13).

5The assumption concerning the recovery rate is called the recovery of treasure model (RT-model).

This particular assumption is often used in credit risk models, see e.g. Jarrow and Turnbull (1995).
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4.3 Credit Spreads

Credit Spreads are measured by the difference between the yield of treasury bonds and

the yield of corporate bonds that are identical in all aspects except the credit quality. I

calculate the credit spread CS as

CS = − 1

T − t
ln

(
Pt,T

F

)
− r, (16)

where T − t stands for the time to maturity, Pt,T stands for the price of a corporate bond,

F stands for the face value of the corporate bond, and r stands for the risk free rate or

the yield of a treasury bond.

4.4 Correlation between U and V

Up to now, I have introduced a correlation between the logarithm of the true asset value

and the noise term. In this subsection, I will show how this correlation relates to the

correlation between the true asset value and the noise term. As ln(V ) and U are bivariate

normally distributed, I know from Stein’s Lemma that

cov(V,U) = cov(lnV,U)E[V ]. (17)

Inserting the well known expressions for cov(lnV,U) and E[V ], Equation (17) simpli-

fies to

cov(V,U) = aσ
√
tρ(lnV,U)ez0+mt+0.5σ2

. (18)

Having found an expression for the covariance between V and U , it is now easy to

calculate the correlation ρ(V,U) between V and U

ρ(V,U) =
cov(V,U)√

var(V )
√

var(U)

= ρ(lnV,U)
σ
√
te0.5σ2t

√
eσ2t(eσ2t − 1)

. (19)
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One can see in Equation (19) that the difference between the correlation ρ(V,U)

and the correlation ρ(lnV,U) depends only on σ and t. For usual parametrizations the

two correlations are very similar. In Figure 3, I have plotted the relation between the

correlation ρ(V,U) and the correlation ρ(lnV,U) for volatility values σ of 0.01, 0.2, and

0.5. One can see that only for a volatility of 0.5 there is a notable difference between the

two correlations.
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5 Correlation Effects

5.1 Correlation Effects and Expected Reported Asset Values

Introducing a correlation coefficient between the logarithm of the true asset value and the

noise term has a direct impact on the expectation of the reported asset value. This effect

is important because the expectation of the reported asset value process is a reference

point for the assessment whether the observed reported asset value is relatively high or

relatively low. In the case of zero correlation, the expectation of the reported asset value

V̂t can be written as

E[V̂t] = E[Vt]E[eUt ]

= ez0+mt+0.5σ2t+ū+0.5a2

. (20)

When the correlation is different from zero, the expectation of the reported asset value

changes to

E[V̂t] = E[Vt]E[eUt ] + cov(Vt, e
Ut)

= ez0+mt+0.5σ2t+ū+0.5a2+aσ
√

tρ. (21)

The difference between Equation (20) and Equation (21) is the term aσ
√
tρ in the

exponent. It is important to be aware of this difference, especially when the investor knows

that the correlation is nonzero. When one analyzes the effect of introducing a correlation

one has to adjust other parameters such as ū or a to make E[Vt] equal to E[V̂t]. This can

e.g. be done by setting ū to

ū = −0.5a2 − aσ
√
tρ. (22)

With this mean adjustment one compensates for a bias that would otherwise be

introduced.
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5.2 Correlation Effects and Accounting Noise

In this subsection, I analyze the effect of introducing the correlation ρ between the loga-

rithm of the true asset value process and the noise term for different levels of accounting

noise a.

5.2.1 Base Case Parameters

The model of Duffie and Lando (2001) depends on several parameters. The base case

parameters are essentially taken from Herkommer (2006). Table 1 summarizes the para-

meter choices. The logarithm of the true asset value process has a risk neutral drift m of

0.07 and a diffusion σ of 0.15. The true asset value of the pre-period V0 is set to 86.3, the

default barrier is set to 60.0. As a basic security, I assume a corporate zero bond with a

time to maturity of 10 years and a face value F of 100. The interest rate r and the recovery

rate ω are constants taking values of 0.04 and 0.5 respectively. The expectation of the

noise process ū is set according to Equation (22) to guarantee that expected reported asset

values are equal to expected asset values. In such a setup, the investor anticipates that

the correlation also has an effect on the reported asset values. Therefore the investor has

the same reference point as in the case with zero correlation. The underlying assumption

of such a mean adjustment is that the investor knows that the true asset values and the

noise terms are correlated.

5.2.2 Statistical and Information Effect

The correlation between the logarithm of the true asset value and the accounting noise

does have an impact on the pricing of corporate bonds. The pricing impact stems from

two sources. The first source results from pure statistical effects. The correlation changes

the distribution of the noisy accounting report V̂ . Even if I adjust for the parameter ū,

as proposed in the previous subsection, the distribution of V̂ changes. E.g. for a positive

correlation, very high and very low reported asset values become more probable. Besides

this pure statistical effect, the correlation also introduces what can be called an information

effect. When the investor observes a noisy accounting report, and he knows that the noise
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term and the true asset value are correlated, he draws conclusions from this fact for his

personal assessment of the default probability. E.g. when he observes an extremely high

or an extremely low reported asset value and he knows that the correlation is negative, he

infers that the true asset value is even more extreme. Usually, the statistical effect and the

information effect have different signs. Which of these two effects is dominant, depends

on other parameters such as the noise parameter a and the reported asset value V̂ .

5.2.3 Numerical Example

The effect of the interaction between accounting noise and logarithm of the true asset

value on credit spreads depends on the level of the reported asset values relative to the

expected asset values given the parameters and the start value of the asset value process.

In this setup, the expected asset value — as well as the expected reported asset value —

is 93.6. I do the analysis for three different reported asset values. In the first scenario

the accounting report announces a high asset value of 120, in the second scenario the

accounting report announces a medium asset value of 93.6, and in the third scenario the

accounting report announces a low asset value of 65.

Scenario 1: High Reported Asset Value (V̂ = 120)

In Figure 4, I plot a graph that demonstrates the role of the correlation ρ and the ac-

counting noise a on credit spreads in the case of a high reported asset value of V̂ = 120.

One can see that for small accounting noise the credit spread decreases with increasing

correlation. For medium and large accounting noise the credit spread increases with in-

creasing correlation. This particular behavior can be explained by the statistical and the

information effects described in the previous subsection. The reported asset value of 120

seems very high for the investor in comparison to the expected asset value of 93.6. For

a small noise the statistical effect is dominant. When the correlation is high, the proba-

bility of extremely high reported asset values increases. Thus, the credit spread decreases

with a higher correlation. For medium and large accounting noise the information effect

dominates. When the correlation is high, the investor anticipates that the high reported

asset value results from the correlation. Thus, the credit spread increases with a higher

correlation.

Scenario 2: Medium Reported Asset Value (V̂ = 93.6)
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The graph for Scenario 2 is plotted in Figure 5. One can see that for small accounting noise

the credit spread is decreasing with higher correlation. For medium and large accounting

noise the credit spread is increasing with increasing correlation. This can be explained as

follows. The reported asset value is exactly the expectation of the unobserved asset value

process. For small accounting noise the statistical effect dominates. For high positive

correlations the probability of extreme reported asset values increases. Because one knows

that the firm is not in default, the probability of extremely high reported asset values is

higher than the probability of extremely low reported asset values. Hence, credit spreads

decrease with higher correlations. For medium and large accounting noise the information

effect dominates. For small correlations the investor anticipates that the medium reported

asset value arises from the negative correlation, and thus from income smoothing. Because

he knows that the company has not defaulted so far, the probability that the true asset

value is larger than the reported asset value is higher than the probability that the true

asset value is smaller than the reported asset value. Therefore, credit spreads are decreas-

ing for low correlations.

Scenario 3: Low Reported Asset Value (V̂ = 65)

The graph for Scenario 3 is plotted in Figure 6. As one can see, for small accounting noise

credit spreads increase as the correlation increases. For medium and large accounting noise

credit spreads decrease as the correlation increases. As in Scenario 1 and 2, the behavior

of the credit spreads can be explained by the statistical and by the information effect.

For small accounting noise the statistical effect dominates: higher correlations increase

the probability of extremely high and extremely low reported asset values, thus the low

reported asset value becomes more probable. For medium and large accounting noise the

information effect dominates. When the investor receives a very low reported asset value

and the correlation is high, he anticipates that this low asset value might arise from the

fact that the company reports a lower asset value than the true asset value.

In conclusion, for small accounting noise the statistical effect dominates in all three

scenarios. One explanation for this behavior is that the leeway for earning management is

very low if the accounting noise is low. For higher accounting noise, the management of the

company has more possibilities for earnings management, and the earnings management

has a greater impact. Therefore, for medium and high accounting noise the information
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effect is dominant.

5.3 Ignoring the Correlation: How Large is the Pricing Error?

In this subsection, I assume an investor who ignores that there is a correlation between the

logarithm of the true asset value and the noise term. I try to quantify the pricing error the

investor would make by ignoring the correlation. This is different from the situation in the

previous subsection, because neglecting the correlation also introduces a different expected

reported asset value so that the pricing error depends on the correlation effect described in

the previous subsection and on the change in the expected reported asset value. I assume

further that the investor has information about the asset value parameters as given in

Table 1. Moreover, he knows the noise parameters ū and a. For the calculations, I assume

that the expectation of the noise process ū is −0.272 and the standard deviation of the

noise process a equals 0.66.6 The pricing error is calculated for two correlation scenarios.

In the first scenario the correlation between ln(V ) and U is set to −0.178, in the second

scenario the correlation is set to −0.672. The two scenarios are based on my calculations

in Section 2. The first scenario corresponds to the case where I calculated the correlation

using the whole sample of German companies, the second scenario corresponds to the

case where I calculated the correlation using a sub-sample consisting only of Neuer Markt

companies. For both scenarios, I again assume three different reported asset values of 120,

93.6, and 65.

The calculated pricing errors are plotted in Figure 7. For all reported asset values

and for both correlation scenarios, the credit spreads differ from the base case where

a correlation of 0 is assumed. The pricing error for an investor who ignores that the

logarithm of the true asset value is correlated with the noise term, is particularly high for

short times to maturity. For a reported asset value of 120 the pricing error for a bond

maturing in five years is 10 basis points in Scenario 1 and 33 basis points in Scenario 2.

For a reported asset value of 93.6 the pricing error for a bond with five years to maturity

is as large as 7 basis points in Scenario 1 and 28 basis points in Scenario 2. For a reported

asset value of 65 the pricing errors for the same bond are 2 basis points for Scenario 1 and

6These are the values calculated by Herkommer (2006) for IAS reports.
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16 basis points for Scenario 2. For longer times to maturities the pricing errors decrease.

The calculated pricing errors demonstrate that ignoring the correlation between the

true asset value and the noise term yields significant pricing errors, especially if the time

to maturity is short.
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6 Conclusion

In this paper, the model of Duffie and Lando (2001) was extended to the case where the

logarithm of the true asset value and the noise term in reported asset values are bivariate

normally distributed with a correlation different from zero. I provided a theoretical and

an empirical motivation for the idea that this extension is important to better model the

behavior of the management for reporting asset values. Both theoretical consideration and

empirical analysis come to the conclusion that the correlation between the logarithm of

the true asset value and the noise term can be different from zero. The empirical analysis

showed that there is a negative correlation of −0.178 for a sample consisting of German

companies. For a sub-sample that consists only of companies traded on Neuer Markt a

correlation of −0.672 was estimated.

With the theoretical and empirical arguments at hand, I derived the conditional

density of the true assets given the reduced information set consisting of the reported

asset value and the information whether the company is in default. With the help of

the conditional density, I calculated conditional probabilities of default, bond prices, and

hypothetical credit spreads for corporate zero bonds. Furthermore, I showed that for usual

parameters the correlation between the logarithm of the true asset value and the noise

term is similar to the correlation between the true asset value and the noise term.

The analysis of the correlation effects demonstrates that introducing the correlation

has two effects: a statistical and an information effect. The statistical effect is responsible

for a new distribution of the reported asset value. The information effect arises from the

anticipation of the correlation by the investor. In a numerical example it was shown that

for small accounting noise the statistical effect dominates, while for medium and large

accounting noise the information effect is dominant.

In the further analysis, I looked at the pricing errors in the credit spreads of corporate

zero bonds that would arise if an investor ignored the correlation. For usual parametriza-

tions, these pricing errors can have high magnitudes, especially for short times to maturity.

My analysis in this paper shows that a correlation between the logarithm of the true

asset value and the noise term has to be incorporated into the basis model of Duffie and

25



Lando (2001). There is theoretical and empirical evidence for such a component, and the

effects of the correlation are of significant magnitude.
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A Proof of Proposition 2

Q(τ > t|Yt) is the integral of b(z|y, z0, t) with boundaries vb and ∞. From Proposition 1

it is known that b(z|y, z0, t) is given by

b(x|Yt, z0, t) =

√
γ0

π
e−J(ỹ,x̃,z̃0)e

1

4

�
γ1

γ0 � (
1 − e

−2z̃0x̃

σ2t

)

=

√
γ0

π
e−J(ỹ,x̃,z̃0)e

1

4

�
γ1

γ0 �
︸ ︷︷ ︸

:=b1

−
√
γ0

π
e−J(ỹ,x̃,z̃0)e

1

4

�
γ1

γ0 � e−2z̃0x̃

σ2t

︸ ︷︷ ︸
:=b2

, (23)

with

J(ỹ, x̃, z̃0) =
1

2

1

(1 − ρ2)

{
(ỹ − x̃)2

a2
+

(z̃0 +mt− x̃)2

σ2t
− 2ρ

(ỹ − x̃)(z̃0 +mt− x̃)

aσ
√
t

}

γ0 =
a2 + σ2t+ 2aσ

√
tρ

2a2σ2t(1 − ρ2)

γ1 =
(ỹ − (mt+ z̃0))

2

a2σ2t(1 − ρ2)
.

As one can see in Equation (23), b(z|y, z0, t) consists of two parts that can be in-

tegrated separately. To integrate the first part with respect to x, we have to bring the

expression into the form of the density of a normally distributed variable. Therefore, the

exponent has to have the form

−(A1x̃−Q1)
2

2D1
= − 1

2D1

(
A2

1x̃
2 − 2A1x̃Q1 +Q2

1

)
. (24)

The values of A1, Q1, and D1 are found by comparing the coefficients of (A1x̃−Q1)2

2D1

and J(ỹ, x̃, z̃0). The values are

A1 =

√
σ2t+ a2 − 2aσ

√
tρ

Q1 =
ỹ(σ2t− aσ

√
tρ) + (z̃0 +mt)(a2 − aσ

√
tρ)√

a2 + σ2t− 2aσ
√
tρ

D1 = a2σ2t(1 − ρ2).

With the parameters A1, Q1, and D1 the exponent in Equation (23) equals the expo-

nent (except for a correction term) in the density of a normally distributed variable with

mean Q1/A1 and variance D1/A
2
1. The correction term C1 can be written as
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C1 =
((ỹ − (z̃0 +mt))2

a2 + σ2t− 2aσ
√
tρ
.

To write b1 as the density of a normally distributed variable, I correct the term in

front of the exponent. Using all information so far, b1 can be written as

b1 =

√
a2 + σ2t+ 2aσ

√
tρ√

a2 + σ2t− 2aσ
√
tρ
e

1

4

�
γ1

γ0 � e− 1

2
C1

︸ ︷︷ ︸
constant

φ


 x̃− Q1

A1

D1

A2

1


 , (25)

where φ(·) denotes the density of a standard normally distributed variable. Obviously, it

is possible to rewrite b1 as a constant times the density of a standard normal variable.

Rewriting the second part of Equation (23) is more difficult as it additionally involves

x in e
−2z̃0x̃

σ2t . Again, I rewrite b2 as a normal density times a constant. Comparing co-

efficients in the exponential part of b2, I calculate the values for A2, Q2, and D2. This

yields

A2 =

√
σ2t+ a2 − 2aσ

√
tρ

Q2 =
ỹ(σ2t− aσ

√
tρ) + z̃0(a

2(1 − 2(1 − ρ2)) − aσ
√
tρ) +mt(a2 − aσ

√
tρ)√

a2 + σ2t− 2aσ
√
tρ

D2 = a2σ2t(1 − ρ2).

The correction term C2 of the exponent of b2 is

C2 =
(ỹ − (z̃0 +mt))2 + 4ỹz̃0

a2 + σ2t− 2aσ
√
tρ

+ 4a2 a
2ρ2z̃2

0 + a2z̃0mt− aσ
√
tρ(z̃2

0 + z̃0mt+ ỹz̃0)

(a2 + σ2t− 2aσ
√
tρ)a2σ2t

.

The term b2 can now be rewritten as a constant times a normally distributed variable

b2 =

√
a2 + σ2t+ 2aσ

√
tρ√

a2 + σ2t− 2aσ
√
tρ
e

1

4

�
γ1

γ0 � e− 1

2
C2
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constant

φ


 x̃− Q2

A2

D2

A2

2


 , (26)

where φ(·) denotes the density of a standard normally distributed variable. Defining
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γ2 := C1

γ3 := C2

γ6 :=

√
a2 + σ2t+ 2aσ

√
tρ√

a2 + σ2t− 2aσ
√
tρ
,

Equation (23) simplifies to

b(x|Yt, z0, t) = γ6e
1

4

�
γ1

γ0 �

e− 1

2
γ2φ


 x̃− Q1

A1

D1

A2

1


 − e−

1

2
γ3φ


 x̃− Q2

A2

D2

A2

2





 . (27)

Rewriting the integral of φ(·) as Φ(·) and inserting the integration bounds yields

∫ ∞

vb

b(z|Yt, z0, t)dz = γ6e
1

4

�
γ1

γ0 � (
e−

1

2
γ2Φ

(
Q1A1

D1

)
− e−

1

2
γ3Φ

(
Q2A2

D2

))
. (28)

Defining

γ4 :=
Q1A1

D1

and

γ5 :=
Q2A2

D2

gives the required result.
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B Tables and Figures

Table 1: The base case parameters were taken from Panel A of Herkommer (2006). See

Herkommer (2006) for a further discussion of the particular parameter choices.

Parameter T − t m σ r Vb V0 F ω

10 0.07 0.15 0.04 60.0 86.3 100 0.5

Figure 1: In the two figures credit spreads for the model of Duffie and Lando (2001) are

plotted for different levels of accounting noise a. In the first figure the reported asset value

is set to 90. In the second figure the reported asset value is set to 72. For the other model

parameters, the base case values are applied.
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Figure 2: In the figures the dependence between the logarithm of the true asset value and

the noise term are plotted for different sub-samples. In the left top figure the dependence

structure for the whole sample of 3, 035 companies is plotted. In the right top and in

the middle left figure the dependences for sub-samples of Neuer Markt companies and

other companies are plotted. In the middle right, lower left, and lower right figure the

dependence structure for sub-samples of companies are plotted that report according to

IAS, US GAAP, and German GAAP respectively.
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Figure 3: In this figure the correlation between the logarithm of the true asset value and

the noise term is compared to the correlation of the true asset value and the noise term

for three different levels of volatility.
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Figure 4: In this figure the effect of the correlation and the accounting noise on credit

spreads is plotted for a reported asset value of 120. For small accounting noise a, credit

spreads decrease as the correlation ρ increases. For medium and large accounting noise a,

credit spreads increase as the correlation ρ increases.
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Figure 5: In this figure the effect of the correlation and the accounting noise on credit

spreads is plotted for a reported asset value of 93.6. For small accounting noise a, credit

spreads decrease as the correlation ρ increases. For medium and large accounting noise a,

credit spreads increase as the correlation ρ increases.
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Figure 6: In this figure the effect of the correlation and the accounting noise on credit

spreads is plotted for a reported asset value of 65. For small accounting noise a, credit

spreads increase as the correlation ρ increases. For medium and large accounting noise a,

credit spreads decrease as the correlation ρ increases.

−1
−0.5

0
0.5

1

0

0.5

1
0

100

200

300

400

500

600

rhoa

cr
ed

it 
sp

re
ad

 (
in

 b
p)

35



Figure 7: In the first row, the credit spreads and the pricing errors are plotted for the

case that the reported asset value is 120. In the second row, the credit spreads and the

pricing errors are plotted for the case that the reported asset value is 93.6. In the third

row, the credit spreads and the pricing errors are plotted for the case that the reported

asset value is 65. In each of these cases I examine three correlation scenarios of 0, −0.178,

and −0.672.
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