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Abstract

An efficient method for solution of systems of linear equations with
many right hand sides is developed. The right hand sides are assumed to
depend smoothly on a parameter. The equations are solved by an iterative
method and a linear least squares approximation is used as initial guess.
The work spent on the iterations is bounded independently of the number
of right hand sides. The method is applied to the solution of Maxwell’s
equations of electromagnetics in the frequency domain. The efficiency of
the method is illustrated by computing the monostatic radar cross section
around an aircraft model.
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1 Introduction

In several applications, a system of linear equations is solved for many right hand
sides. Assume that the system is dense, the number of unknowns is N and the
number of right hand sides is M . If the equations are solved with Gaussian elim-
ination the solution time scales as O (N3) for the factorization and O (MN2) for
the backsubstitution. Iterative methods based on matrix-vector multiplications
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such as Krylov subspace methods [8] are appealing because their solution time
scales as O (KMN2), where K is the average number of iterations. If K and M
are small compared to N , an iterative method is faster than Gaussian elimina-
tion. The Fast Multpole Method (FMM) [5], [9], and similar methods [4] were
introduced in order to speed up the matrix-vector multiplication in an iterative
method when the source of the equations is a discretization of an integral equa-
tion. An iterative method combined with such a method can reduce the solution
time to O (KMN log N) or in special cases to O (KMN). Since the constant
in front of the scaling for the FMM is fairly large, Gaussian elimination is quite
competitive for problems that can fit into the computer memory. The same ar-
gument is valid in favor of Gaussian elimination compared to an iterative method
also for linear equations with a banded system matrix.

The presently used iterative approaches to solving problems with multiple
right hand sides are either to use a block method [7], [15], or a seed method [16].
The block method utilizes the information from a block of right hand sides in a
Krylov method to solve for the entire block at once. In the seed method, one
right hand side is used as a seed and then the solutions of the other right hand
sides are computed based on information from the seed system. Once the seed
system is solved a new right hand side defines the seed system. Faster convergence
is achieved with such methods and fewer expensive matrix-vector products are
computed. A disadvantage with these methods is that for maximum reduction
of the work per right hand side, many right hand sides must reside in memory.
Gaussian elimination on the other hand only requires the right hand side currently
solved for in addition to the factorization to be stored in memory. Our way of
reducing the computing time is to determine an accurate initial guess.

In the Minimum Residual Interpolation (MRI) method proposed in this paper,
an iterative method is combined with an accurate initial guess of the solution to
solve systems of linear equations with many right hand sides. The right hand
sides are assumed to depend smoothly on a parameter. The advantage is that
the method can be used together with block methods or single right hand side
solvers and is independent of the underlying iterative method. Furthermore, it
does not need all right hand sides to be stored in memory simultaneously. It
only needs the right hand side currently solved for and some additional vectors.
It is also able to predict the residual of the initial guess without computation
of a matrix-vector multiplication. The work for the iterative part is bounded
independently of M and for large M the operations count of the whole algorithm
grows as O(MN). The method is optimal in a certain sense.

The method is applied to the solution of electromagnetic scattering problems
in the frequency domain but other applications are possible e.g. panel methods
for linearized potential flow problems and acoustic scattering. In the Method of
Moments (MoM) in electromagnetics, the electromagnetic field satisfies an inte-
gral equation [12]. After discretization the result is a linear system of equations
with a dense matrix. When the monostatic Radar Cross Section (RCS) is com-
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puted for an object, each one of the incoming waves generates a right hand side.
The right hand sides vary smoothly with angle of incidence of the waves.

The paper is organized as follows. The solution method for multiple right
hand sides is described in the next section. Then the convergence is analyzed in
the third section. The integral equation and its discretization are presented in
the following section. Finally, the performance of the method is demonstrated in
numerical experiments. The norm in the paper is the Euclidean vector norm and
its subordinate spectral matrix norm. Vectors and matrices are typeset with a
bold font.

2 Minimum Residual Interpolation

The method for solution of a system of linear equations with many right hand
sides is discussed and an iterative algorithm is presented. By assuming that the
right hand sides depend smoothly on a parameter an accurate initialization of
the iterations can be computed.

The systems of linear equations to be solved are

Axi = bi, i = 1 . . . M, A ∈ CN×N , xi,bi ∈ CN . (1)

The system matrix is constant and the residual is

ri = bi −Axi.

The equations are solved with an iterative method such that ri satisfies a con-
vergence criterion ‖ri‖ ≤ ε for some given ε.

Assume that the solutions to m < M right hand sides are known to some
precision given by the residual and that the solutions are linearly independent.
The initial guess x

(0)
m+1 for an iterative method applied to the solution of

Axm+1 = bm+1 (2)

is generated based on the observation: if bm+1 ≈
∑m

i=1 yibi then setting xm+1 =∑m
i=1 yixi implies that Axm+1 ≈

∑m
i=1 yibi if we assume that ‖ri‖ ¿ ‖bi‖. A

linear least squares problem determines yi.
Let si, Sm, and Xm be defined by

Axi = bi−ri ≡ si, i = 1 . . .m, Xm = [x1 x2 . . . xm] , Sm = [s1 s2 . . . sm] . (3)

Using Gram-Schmidt or Householder transformations [2] one can compute the
QR-decomposition of Sm

AXm = Sm = QSmRSm . (4)
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A linear combination of si is chosen to minimize

‖rm+1‖ = ‖bm+1 −Axm+1‖ = ‖bm+1 −AXmym‖
= ‖bm+1 − Smym‖ = ‖bm+1 −QSmRSmym‖. (5)

Thus, ym = R−1
Sm

QH
Sm

bm+1 and the initial guess is

x
(0)
m+1 = XmR−1

Sm
QH

Sm
bm+1. (6)

If ‖rm+1‖ ≤ ε in (5), then a satisfactory solution x
(0)
m+1 is obtained without any

iterations. If m = N the exact solution is obtained already by the initial guess.
The residual for the initial guess x

(0)
m+1 in (6) is

r
(0)
m+1 = bm+1−AXmym = bm+1−SmR−1

Sm
QH

Sm
bm+1 = (I−QSmQH

Sm
)bm+1. (7)

This is an expression for r
(0)
m+1 which is cheap to evaluate since m ¿ N and

QH
Sm

bm+1 is already computed in (6). The residual is small if bm+1 is almost
spanned by the previous si. This is the case if bi depends in a smooth way on a
parameter φi so that bi = b(φi) and the difference ∆φ = φi+1−φi is small. This
is the starting point for the analysis in the next section.

If ‖r(0)
m+1‖ > ε then xm+1 has to be improved by the iterative method. Let the

k:th iteration of xm+1 be x
(k)
m+1 with its residual r

(k)
m+1. Then

s
(k)
m+1 = bm+1 − r

(k)
m+1 = Smym + r

(0)
m+1 − r

(k)
m+1.

If ‖r(k)
m+1‖ ≤ εI for an εI ≤ ε then the iterations are interrupted and s

(k)
m+1 is

included in the basis Sm if

‖(I−QSmQH
Sm

)s
(k)
m+1‖ = ‖(I−QSmQH

Sm
)(r

(0)
m+1 − r

(k)
m+1)‖ > εs, (8)

where εs > ε+εI . How to choose εI in relation to ε is treated in the next section.
Otherwise, s

(k)
m+1 is almost linearly dependent of the columns of Sm and RSm+1

would be ill-conditioned. This is particularly the case when xm+1 = x
(0)
m+1 and no

iterations are necessary.
Once the solution is found and (8) is satisfied we can construct Xm+1 =

[Xm xm+1] and Sm+1 = [Sm sm+1]. A problem with this approach is that the
memory requirements increase linearly with each new solution added. This is
also a drawback with the GMRES method [14]. The solution in GMRES is to
let the dimension of the Krylov space reach a maximum and then restart the
iteration. In our case, one of the columns in Sm and RSm is dropped when a new
one is introduced.

The QR-decomposition of Sm is updated after solution of (2) when a column
is appended to and deleted from Sm following [2]. This procedure can cause a loss
of orthogonality in Q because of round-off errors. If necessary, this is corrected
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by computing a new QR-decomposition of Q and multiplying the new R matrix
with the old one.

The Arnoldi process in the block version of the GMRES algorithm [14], [15],
adapted for multiple right hand sides as in [7] generates an orthonormal basis
Vq ∈ CN×q for Xm such that

AVq = Vq+1Hq+1×q, Xm = VqZm, (9)

where Hq+1×q ∈ Cq+1×q is an upper Hessenberg matrix, Vq+1 ∈ CN×q+1 is another
orthonormal matrix, and Zm ∈ Cq×m, q > m. This basis can be utilized to
determine an initial guess in the following way. Let

x
(0)
m+1 = Xmym = VqZmym = Vqzm.

Then the residual is

rm+1 = bm+1 −AXmym = bm+1 −AVqZmym = bm+1 −Vq+1Hq+1×qzm. (10)

The squared norm of rm+1 is (cf. (5))

‖rm+1‖2 = ‖bm+1 −Vq+1Hq+1×qzm‖2

= ‖(I−Vq+1V
H
q+1)bm+1‖2 + ‖VH

q+1bm+1 −Hq+1×qzm‖2.
(11)

Solve the linear least squares problem

min
z
‖VH

q+1bm+1 −Hq+1×qzm‖

for zm. The QR-decomposition of Hq+1×q is available from the GMRES iteration.
Then take

x
(0)
m+1 = Vqzm.

If r
(0)
m+1 determined by (5) is smaller or greater than in (11) depends on how well

bm+1 is represented by the columns of QSm and Vq+1. We note that this method
is similar to the seed method in [16] without Richardson iteration. This method
is competitive with our method if one obtains an improved convergence rate with
the same m.

Sometimes the purpose of the computation is not the solution xi of (1) but
rather the calculation of S linear functionals

Φ(xi) = CTxi, (12)

with C = [c1c2 . . . cS]. Let D be the solution of the adjoint or dual problem

ATD = C. (13)
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Then Φ in (12) can be written

Φ(xi) = CTA−1(bi − ri) = DT (bi − ri). (14)

If C is constant for more than S right hand sides bi, then (14) saves computing
time since only S systems of linear equations have to be solved instead of M . In
addition, the effect δΦ on Φ of the termination criterion on r is derived from (14)

‖δΦ‖ ≤ ‖D‖ε.

If the system matrix A also is smoothly varying such that Ai = A (φi)

Aixi = bi, i = 1 . . . M, (15)

then the initial guess x
(0)
m+1 for the (m + 1):th linear system can be interpolated

in a similar manner. Let

si = Am+1xi = bi − ri + (Am+1 −Ai)xi, i = 1 . . . m,

and define Xm and Sm as before. The linear combination of xi is chosen to
minimize the initial residual

r
(0)
m+1 = bm+1 −Am+1Xmym = bm+1 − Smym

as in (5). Note that in certain cases Am+1−Ai is easily obtained, for instance if
Ai = A + φiI.

In order to implement an algorithm based on the above observations we need
an iterative method for solution of (2). For simplicity we assume that the itera-
tive method returns the residual r. This will give us a method that can compute
an initial guess without any expensive matrix-vector multiplications. In an it-
erative method the residual is often used in the termination criterion and can
be computed by a simple update formula instead of computing it explicitly [1].
Then the number of expensive matrix-vector multiplications is reduced.

Algorithm 1 proceeds by solving for k right hand sides using an iterative
method. The method could be a block method, a seed method, a single right
hand side solver or another type of method. The QR-decomposition is then up-
dated. With the QR-decomposition, initial guesses for k new right hand sides are
computed. If there are initial guesses that do not fulfill the tolerance requirement
the solution is determined by the iterative method. The process continues until
the solutions to all M right hand sides are computed. The algorithm is slightly
more general than in (6) and (7) by computing the solution xi as a sum of an
initial basis vector (xi)0 given by e.g. a different method and a correction to
it. The residual corresponding to (xi)0 is (ri)0. The right hand sides for which
interpolation is not sufficiently accurate are collected in the set I.
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Algorithm 1 The Minimum Residual Interpolation algorithm for computing
solutions to systems of linear equations with multiple right hand sides.

Require: An iterative method, residual tolerances εI for the iterative method
and ε for the interpolation method, b1 . . .bM , X0.

Ensure: X where ‖bi −Axi‖ ≤ ε
Solve Axi = bi such that ‖ri‖ ≤ εI for i = 1 : k with the initial guess X0.
Compute si = bi − ri for i = 1 : k.
Compute Sk = QSk

RSk
.

for j = k + 1 : M stepsize k do
Set I = ∅.
for i = j : j + k − 1 do

x
(0)
i = (xi)0 + Xj−1R

−1
Sj−1

QH
Sj−1

(ri)0.

r
(0)
i =

(
I−QSj−1

QH
Sj−1

)
(ri)0.

if |r(0)
i | > ε then

Set I = I ∪ i.
end if

end for
Solve AxI = bI such that ‖rI‖ ≤ εI .
for i = j : j + k − 1 do

if i ∈ I and (8) is fulfilled then
Compute si = bi − ri.
Update Xi = (Xi−1,xi) and Si = QSi

RSi
.

else
Xi = Xi−1 and Si = QSi−1

RSi−1
.

end if
end for

end for

The work to solve the linear least squares problem for x
(0)
i and to update the

residual r
(0)
i is proportional to N in the algorithm. The QR-decomposition is

updated in O(N) operations. The solution of the system of equations depends
on the number of iterations K and the cost of one matrix-vector multiplication.
With a standard matrix-vector multiplication for a dense matrix the number of
operations is of O(KN2) and for FMM of O(KN log N). For a sparse matrix
with O(N) nonzero elements the cost of the iterative solution is proportional to
O(KN).

The order of processing of the vectors is not specified in Algorithm 1. Assume
that the right hand sides in (1) depend smoothly on an angle φ in an interval
[φ1, φM ] of length φI so that bi = b(φi), i = 1 . . . M and that φi+1 = φi + ∆φ.
Partition the set of right hand sides B into L + 1 subsets or levels Bl, l = 0 . . . L,
so that BL = B and Bl−1 ⊂ Bl. Let the number of vectors in Bl be ml and
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mL = M . At level l, the vectors are chosen so that the separation ∆φl between
the angles is γL−l∆φ for some integer γ > 1. At level 0 with m0 vectors, b1,bM ,
and m0 − 2 more vectors are included in B0 and

(m0 − 1)∆φ0 = (m0 − 1)γL∆φ ≥ φI = (M − 1)∆φ.

A simple method to generate the sequence of right hand sides with γ = 2 is
first to solve for b1, bM , and b2k with a k such that 2k+1 ≥ M . The process is
continued by solving for bj, j = 2k−1, and stepping with the increment 2k until
j ≥ M . Then k is reduced by one again and the process is repeated until all right
hand sides are solved. The right hand sides are thus picked level by level from a
binary tree.

In the numerical experiments in the last section and in Fig. 1, we let γ = 2
and the right hand sides are partitioned into the sets Bl. In the figure, L = 3 and
M = m3 = 16. The solutions at angles marked by X in the figure are computed
by an interpolated initial guess and possibly iteration. Those marked by O are
already known from the previous level. The solutions at I at level 0 are computed
by iteration from an initial guess provided by the user.

O O O

O O O O O

O O O O O O O O O

X X

X X X X

X X X X X X X

I I I 0

1

2

3

Figure 1: The right hand sides have been partitioned into four levels.

By initializing the iterative solution of linear systems accurately, the number
of iterations to convergence is reduced and may not be needed at all. Hence,
expensive matrix-vector multiplications for dense matrices are avoided in Krylov
subspace methods.

3 Convergence properties

In this section we study the convergence of the interpolated initialization for the
iterations. An upper bound on the computational work spent in the iterative
method is derived.

The analysis is simplified if we assume for all levels that ml = 1 + γl(m0− 1).
Let m̃l be the number of unknown solutions at level l. It follows that

ml = 1 + γ(ml−1 − 1), m̃l = ml −ml−1 = γl−1(γ − 1)(m0 − 1). (16)
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The relation between M, L, and γ is M − 1 = γL(m0 − 1). Hence, the number
of levels L grows as log M/ log γ when M increases. At level l the separation
between the angles is ∆φl = φI/(ml − 1) = φI/(γ

l(m0 − 1)). The computational
work to interpolate the initial guess for one vector at level l from data at level
l − 1 is denoted by wint. The work for one iteration with the Krylov method
to compute one solution at level l and the updating of the QR-decomposition is
denoted by wit which is much greater than wint. The total work to compute the
unknown m̃l solutions at level l is

m̃l(wint + Klwit) = γl−1(γ − 1)(m0 − 1)(wint + Klwit), (17)

where Kl is the number of iterations for one right hand side at level l. Under
certain assumptions there is an upper bound on the work spent on iterations in
(17) independent of the level and M .

Assume that the interpolation (6) from level l − 1 to l introduces an error in
the initial residual r(0) for the iterative solver so that

‖r(0)‖ ≤ c∆φp
l−1 = c(∆φ0/γ

l−1)p, (18)

where p is the number of bi involved in the interpolation and c is independent
of p, l, and ∆φ0. For simplicity we assume in the analysis in this section that p
is constant. This is not necessary in Algorithm 1 and p varies in the numerical
experiments in the last section.

With a constant convergence rate θ independent of l, the norm of the residual
after k iterations is

‖r(k)‖ ≤ θk‖r(0)‖, θ < 1, (19)

for the solution corresponding to one right hand side at level l. From (19) and
(18) we conclude that for the residual to satisfy a convergence criterion ‖r(0)‖ ≤ ε
if no iterations are necessary and ‖r(k)‖ ≤ εI ≤ ε if the iterative solver is invoked
we need at most Klmax iterations where Klmax is the smallest integer greater than
or equal to

max(0, (c1 − log εI − p(l − 1) log γ)/| log θ|), c1 = log c + p log ∆φ0. (20)

Since γ > 1 the criterion is satisfied immediately by the interpolated values if
l ≥ 1 + (c1 − log ε)/(p log γ). No iterations are necessary when

l ≥ lmax = max(0, 1 + (c1 − log εI)/(p log γ)). (21)

This bound increases with smaller εI and decreases with larger γ and p. The
total amount of work for the iterations at level l follows from (17) and (20):

wmaxit(l) = γl−1(γ − 1)(m0 − 1)Klmaxwit. (22)
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We are now prepared to show that the work for the iterative solution is
bounded independently of l and M .

Theorem 1
Assume that the number of vectors at each level l grows as in (16) with γ ≥ 2,
that the interpolation of the initial guess for the iteration satisfies (18) with p
constant, and that the convergence rate of the iterations is θ (19). Then the
computational work in (22) at level l ≥ 1 is bounded independently of l by

witbnd = p exp(p−1(c1 + | log θ| − log εI)− 1)(γ − 1)(m0 − 1)wit/| log θ|.

Let the iterative work at the initial level be w0wit. An upper bound on the total
work to solve (1) for the M right hand sides is

wtotal ≤ (M −m0)wint + w0wit + wlmaxwit,

where w0 and wlmax are independent of M .
Proof
The iterative work wmaxit(l) in (22) is bounded by

wmaxit(l) ≤ γl−1(γ − 1)(m0 − 1) max(0, α− βl),
α = 1 + (c1 − log εI + p log γ)/| log θ|, β = p log γ/| log θ|.

The maximum of the right hand side is found at l∗−1 = ((c1+| log θ|−log εI)/p−
1)/ log γ. Hence, wmaxit(l) ≤ witbnd = wmaxit(l∗).

It follows from (21) that no iterations are required when the level exceeds
lmax. The total iterative work for l ≥ 1 is bounded by

wittot ≤
lmax+1∑

l=1

wmaxit(l) ≤ (γ − 1)(m0 − 1)wit

lmax+1∑

l=1

γl−1(α− βl).

The sum is bounded independently of M and therefore, wittot = wlmaxwit is inde-
pendent of M . The work at level 0 depends on m0, wit, and the initial residual.
Initial data are interpolated for all M vectors except for the m0 vectors at level
0. The bound on the total work is proved. ¥

The conclusion from the theorem is that the work grows linearly with the
number of right hand sides and there is an upper bound on the total work spent
in the iterative method. The linear growth is slow thanks to the inexpensive
MRI. The work wint = O(pN) is small compared to wit = O(KN log N) also
for FMM, since the multiplying factor in front of the leading term is large there.
This is confirmed in the numerical examples in the last section. Problems with
sparse matrices where matrix-vector multiplications use O(N) operations will
also benefit from MRI as long as wint ¿ wit. The work witbnd increases with
smaller εI and decreases with larger p.
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In the next theorem, a sufficient condition on the regularity of b(φ) is derived
such that the leading term of the initial residual behaves as in (18) as required
in the previous theorem.

Theorem 2
Assume that the components in the right hand side vectors bi = b(φi) have p
continuous derivatives in φ, ‖ri‖ ≤ εI , and that an approximation to bα at φα is
computed at level l by the minimization

min
y
‖bα −

p∑
i=1

siyi‖.

Then

‖bα −
p∑

i=1

siyi‖ ≤
√

Nb(p)
max∆φp

l−1 +
√

p‖l‖εI ,

where b
(p)
max = maxj maxφ |b(p)

j (φ)|, b
(p)
j is the p:th derivative of bj, and l consists

of the coefficients of the Lagrange polynomial at the point φα.
Proof
Let γi be a set of coefficients different from yi. The triangle inequality together
with the equality si = bi − ri yields

‖bα −
p∑

i=1

siyi‖ ≤ ‖bα −
p∑

i=1

siγi‖ ≤ ‖bα −
p∑

i=1

biγi‖+ ‖
p∑

i=1

riγi‖.

To obtain an estimate of the first part we let l(φ) be the interpolating polynomial
of degree less than p of the j:th component of b through the points φi, i = 1 . . . p.
By an interpolation theorem [3] we have for all j

|bj(φα)− l(φα)| = |bj(φα)−
p∑

i=1

bj(φi)lαi| ≤ |b(p)
j ||Wα|/p!.

where |b(p)
j | = maxφ |b(p)

j (φ)|, Wα =
∏p

i=1(φα − φi), and lαi are the coefficients of
the Lagrange polynomial. Thus, if γi = lαi then

‖bα −
∑p

i=1 bilαi‖2 =
∑N

j=1 |bj(φα)−∑p
i=1 bj(φi)lαi|2

≤ ∑N
j=1 |b(p)

j Wα/p!|2 = (Wα/p!)2
∑N

j=1 |b(p)
j |2 ≤ (Wα/p!)2N(b

(p)
max)2.

Since φα ∈ [φ1, φM ], an upper bound on |Wα|/p! is ∆φp
l−1.

With R = [r1 . . . rp], the choice of Lagrange coefficients in the first part to-
gether with Cauchy-Schwartz’ inequality gives the estimate of the second part
since

‖∑p
i=1 rilαi‖2 =

∑N
j=1 |Rj,:l|2 ≤

∑N
j=1 ‖l‖2‖Rj,:‖2 ≤ ‖l‖2

∑p
i=1

∑N
j=1 |Rji|2

≤ p‖l‖2 maxi ‖ri‖2 ≤ p‖l‖2ε2
I ,
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and the theorem is proved. ¥
If εI ≤ ε and b varies smoothly with φ, then it is possible to satisfy ‖rm+1‖ ≤ ε

in (5) without any iterations. It is important here that εI is not chosen greater
than ε, i.e. the vectors si in the basis are close to the corresponding bi. However,
one should note that the proof is based on interpolation, while the method is
based on least squares. The method works adaptively and tries to reduce the
largest term in the estimate. Therefore it is likely that the method is able to
predict the correct residual even if εI = ε, which is indicated in the numerical
experiments.

The theorems will be applied to Maxwell’s equations with multiple right hand
sides in the next section. We choose the special case of scattering from plane
waves.

4 Integral equations

Consider the time-harmonic electromagnetic scattering from a perfect electric
conductor (PEC). Combining the Electric Field Integral Equation (EFIE) and the
Magnetic Field Integral Equation (MFIE) in variational form yields the Combined
Field Integral Equation (CFIE) [12]

α

∫

Γ

∫

Γ

G (x,x′)
(
J · J′ − 1

κ2
∇Γ · J∇Γ · J′

)
dΓdΓ

+ (1− α)
ı

κ

∫

Γ

n̂×
∫

Γ

∇x′G (x,x′)× J · J′dΓdΓ

= −α
1

ıκZ

∫

Γ

Ea · J′dΓ + (1− α)
ı

κ

∫

Γ

n̂×Ha · J′dΓ.

(23)

Here, J is the unknown electric current on the surface Γ of the scatter, J′ is the
test current, κ is the wavenumber, Z is the impedance in free space, n̂ is the unit
normal pointing outward from Γ, and ı =

√−1. The function G (x,x′) is the
free-space Green’s function for Helmholtz’ equation. The parameter α can vary
between 0 (MFIE) and 1 (EFIE). The right hand side depends on the applied
electric field Ea and the applied magnetic field Ha.

The equations are discretized with the Galerkin method and the rooftop or
RWG basis functions [13]. The discretization leads to a dense, complex system
of equations of the form (1). If α = 1 then A is complex symmetric but not
Hermitian. The unknowns in x are the coefficients for each basis function and
the right hand side b depends on the applied fields Ea and Ha. A change in the
applied field affects only the right hand side, while A is unchanged.

Gaussian elimination has been used for problems with up to the order of 105

unknowns, but beyond that computing time and memory requirements are pro-
hibitive. Our iterative solver is the GMRES method [14] with the fast multipole
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method [5] for the matrix-vector multiplications. The major cost in the iterations
is the multiplication of an arbitrary vector by the matrix. The matrix is precon-
ditioned with a modified Sparse Approximate Inverse Preconditioner (SPAI) as
in [10], [11], which improves the convergence rate especially for EFIE. For several
right hand sides, the block version of GMRES accelerates the convergence as in
[15].

The applied electric and magnetic fields in (23) at x can be written

Ea(x, κ̂a) = E0 exp(−ικκ̂a · x), Ha(x, κ̂a) = H0 exp(−ικκ̂a · x), (24)

for a plane wave traveling in the direction given by the unit vector κ̂a. With the
Cartesian unit vectors x̂, ŷ, ẑ, and the spherical angles φ and θ defining κ̂a

κ̂a = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ,

E0 in (24) is expressed as

E0(κ̂a) = (Eθ cos θ cos φ−Eφ sin φ)x̂ + (Eθ cos θ sin φ + Eφ cos φ)ŷ−Eθ sin θẑ.

(25)

The electric and magnetic fields are coupled in a plane wave so that

H0(κ̂a) = Z−1κ̂a × E0(κ̂a).

Then the right hand side in (23) is

b(φ, θ) =
ι

κZ

∫

Γ

(αE0 + (1− α)n̂× (κ̂a × E0)) · J′ exp(−ικκ̂a · x)dΓ

≡
∫

Γ

K(κ̂a) · J′ exp(−ικκ̂a · x)dΓ.
(26)

After Galerkin discretization with the test functions jj and approximation of the
integral with a quadrature rule with q positive weights wjk, the j:th component
of the discretized right hand side is

bj(φ, θ) =

q∑

k=1

wjkK(κ̂a) · jj(xjk) exp(−ικκ̂a · xjk). (27)

For plane waves one can prove a sharper bound on the interpolation error
than in Theorem 2. The bound is independent of the number of unknowns. In
order to show that bj in (27) is well approximated by MRI we need a bound on
the derivatives of the angles.

Lemma 3
Let

fjk(φ, θ) = K(κ̂a) exp(−ικκ̂a · xjk)

13



in (27) and xmax = maxjk ‖xjk‖. Then for ψ = φ or θ

‖ ∂pf

∂ψp
‖ ≤

p∑
i=0

cψ
i (κxmax)

i,

where cψ
i depends only on φ and θ.

Proof
In spherical coordinates we have

xjk = rjk(sin θjk cos φjkx̂ + sin θjk sin φjkŷ + cos θjkẑ).

The scalar product between κ̂a and xjk is

κ̂a · xjk = rjkg(φ, θ, φjk, θjk),

where g is a sum of products of sine and cosine of the angles. The same holds
true for all derivatives of g. From the definition of K(κ̂a) in (26) and (25) we
infer the same property for all derivatives of K. By induction it follows that

∂p

∂ψp
exp(−ικrjkg) =

p∑
i=1

(−ικrjk)
iGi(φ, θ) exp(−ικrjkg), (28)

where Gi is a sum of products of sine and cosine of φ and θ. From Leibnitz’
differentiation rule, (28), and ∂jK/∂ψj we arrive at the estimate for ∂pf/∂ψp. ¥

The lemma and the techniques in the proof of Theorem 2 are applied to the
discretized right hand side (27) in the following theorem. The object Γ is centered
around the origin so that xmax is a relevant measure of its size. Otherwise it can
be translated there by a coordinate transformation.

Theorem 4
Assume that the components in the right hand side vectors are computed by the
Galerkin discretization (27) so that

bi = b(φi) = (b1(φi, θ), . . . bN(φi, θ))
T ,

for a given θ and let ∆φ = φi+1−φi. Assume that an approximation to bα at φα

is computed by minimization

min
y
‖bα −

p∑
i=1

siyi‖,

and that κxmax ≥ η > 1. Let jmax = maxx maxj |jj(x)| and the area of Γ be A.
Then there is a constant C independent of κ, xmax, and ∆φ such that

‖bα −
p∑

i=1

siyi‖ ≤ CAjmax(κxmax∆φ)p +
√

p‖l‖εI .
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Proof
In the same manner as in the proof of Theorem 2 we have with the coefficients
lαi of the Lagrange polynomial l

‖bα −
p∑

i=1

siyi‖ ≤ ‖bα −
p∑

i=1

bilαi‖+
√

p‖l‖εI .

Inserting the expression (27) and letting the summand in (27) be wjkfjk(φ)·jj(xjk)
we obtain

‖bα −
∑p

i=1 bilαi‖2 =
∑N

j=1 |
∑q

k=1 wjk(fjk(φα)−∑p
i=1 lαifjk(φi)) · jj(xjk)|2

≤ ∑N
j=1 (

∑q
k=1 wjk|fjk(φα) · jj(xjk)−

∑p
i=1 lαifjk(φi) · jj(xjk)|)2

≤ ∑N
j=1

(∑q
k=1 wjk maxφ ‖f (p)

jk ‖‖jj(xjk)‖|
∏p

i=1(φα − φi)|/p!
)2

≤ maxj maxk maxφ ‖f (p)
jk ‖2∆φ2p

(∑N
j=1

∑q
k=1 wjk‖jj(xjk)‖

)2

.

The quadrature rule is such that

q∑

k=1

wjk =

∫

∆j

dΓ = A∆j
,

where A∆j
is the area of the two triangles supporting jj. At most three jj are

nonzero in every triangle. Hence,

N∑
j=1

q∑

k=1

wjk ≤ 3A,

and
∑N

j=1

∑q
k=1 wjk‖jj(xjk)‖ ≤ ∑q

k=1 maxj ‖jj(xjk)‖
∑N

j=1 wjk

≤ jmax

∑q
k=1

∑N
j=1 wjk = 3jmaxA.

The conclusion from Lemma 3 is

‖f (p)
jk ‖ ≤ ‖ ∂pf

∂φp‖ ≤ (κxmax)
p
∑p

i=0 cφ
i (κxmax)

i−p

≤ (κxmax)
p maxi c

φ
i /(1− η−1) ≤ C(κxmax)

p/3,

when κxmax ≥ η > 1 and the theorem is proved. ¥
The interpolation condition (18) in Theorem 1 is fulfilled by a Galerkin dis-

cretization of (23). If the other assumptions there also are satisfied, then the
work in the iterative solver is bounded independently of M . The error in the ini-
tial guess depends on the wavenumber, the size of the object, and the difference
between the angles.
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The radar cross section (RCS) is a measure of the electromagnetic field for an
observer at x far from the source. Let x = rκ̂, where κ̂ is a unit vector and let
the scattered field be Es(x, κ̂). Then the bistatic RCS is defined by

σ(κ̂, κ̂a) = lim
r→∞

4πr2 |Es(rκ̂, κ̂a)|2
|Ea(rκ̂, κ̂a)|2 . (29)

The monostatic RCS is the special case with κ̂ = κ̂a. The RCS is often computed
in decibels (dB) by the relation σdB(κ̂, κ̂a) = 10 log10 σ(κ̂, κ̂a). For large r, Es is
well approximated by the far field pattern Φ

Es(rκ̂, κ̂a) ≈ r−1 exp(ικr)Φ(κ̂,J)
= r−1 exp(ικr)κ̂× (

∫
Γ
exp(−ικ̂ · x′)J(x′)dΓ× κ̂),

(30)

and consequently,

σ(κ̂, κ̂a) = 4π|Φ(κ̂,J)|2/|E0|2.

The current J is the solution of (23) and depends on κ̂a.
It follows from (30) that Φ can be written as in (12) with S = 2, because

the far field has no radial component, and xi is the solution of the discretized
integral equation. This is the case when the RCS is computed at one position rκ̂
for many incidence fields κ̂a. If the number of different κ̂a is M , then with the
dual approach (12)-(14) only two systems of equations have to be solved compared
to solution of M systems for J in the usual strategy. For EFIE AT = A and the
dual equation can be solved with the same FMM solver as the primal equation.

If the wavenumber κ in (23) is not constant then we have the situation in (15)
when both the matrix and the right hand side depend on a parameter.

5 Numerical experiments

To illustrate some characteristics of the method we perform a few numerical
experiments with Maxwell’s equations in integral form (23). The aim of the
experiments is to find out what kind of performance that can be expected for
realistic objects and different parameters in the method.

In the first experiment, we consider scattering from a small airplane model
called RUND, see Fig. 2. The equations are solved by GMRES iteration [14],
[15]. The matrix-vector products in the Krylov method are computed by an
implementation of FMM [5], [11]. The size of the model is 0.8× 0.8× 0.2 m. Let
φ be defined in the wing plane with φ = 90o at the nose.
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Figure 2: The trianglated RUND model with about 4000 edges.

In Fig. 3 the method is validated by comparing the monostatic RCS σdB for
RUND at 6 GHz corresponding to κ = 40π. Our method (FMM–MRI) using
CFIE and α = 0.5 is compared with with measurements from FOI, The Swedish
Defence Research Agency, a time-domain hybrid method (FD–FE) [6], and a
straightforward MoM method using EFIE. The fine surface grid has approxi-
mately 65000 edges yielding an edge length of about 5 mm or ten points per
wavelength. The termination criteria are ε = εI = 10−3. The difference between
our method and the MoM solution is plotted. The difference is mainly due to the
different integral equations CFIE and EFIE.
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Figure 3: Comparison between different monostatic RCS solutions obtained for
RUND at 6 GHz.

In Fig. 4 the method is verified by computing the monostatic RCS for RUND
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at 1.5 GHz with ∆φ = 0.4o and two different grids. One grid is composed of about
16000 edges as in Fig. 2 and the other grid is same as in the previous experiment.
The termination criteria are as above. The symmetry of the airplane explains
the symmetric result around the nose at φ = 90o. The solution is almost grid
independent.
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Figure 4: The monostatic RCS for RUND at 1.5 GHz.

The monostatic RCS is computed at φ = 45o on the port side using inter-
polation with p vectors separated by ∆φ and centered around φ = 45o. The
polarization of the incoming plane wave is such that Eθ = 1 and Eφ = 0 in (25).
The purpose of these experiments is to validate the convergence theory from the
previous sections. The convergence rate of the relative residual ‖r(0)‖/‖b‖ is
shown to the left in Fig. 5 for different ∆φ. We choose εI = 10−9 small enough so
that r(0) is unaffected by that part. To the right in Fig. 5, the quotient between
two different r(0) is computed with 2∆φ and ∆φ. The expected asymptotic be-
havior of ‖r(0)(2∆φ)‖/‖r(0)(∆φ)‖ when ∆φ → 0 is 2p, see Theorem 4. The real
convergence rate is even slightly higher than the predicted one, once ∆φ is small
enough.
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Figure 5: The relative residual (left) and the quotient ‖r(0) (2∆φ) ‖/‖r(0) (∆φ) ‖
(right) as a function of ∆φ for different numbers of interpolating vectors .

To the left in Fig. 6 we examine the number of iterations required to reach
convergence for different p and ∆φ when ε = εI = 10−3. To the right in Fig. 6,
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∆φ = 5.6o, εI = 10−5, and the objective is to compare the convergence rate θ in
(19) of the iterative solver and a single right hand side for different interpolations
in the initial guess. The results indicate that the rate is insensitive to p and it is
almost constant, which is one of the assumptions in the theorems in the previous
section.
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Figure 6: The number of iterations required for convergence with different ∆φ
(left). The convergence history of the GMRES-solver for different numbers of
interpolation vectors (right).

The monostatic RCS in Fig. 4 is computed with k = 1 in Algorithm 1. The
number of vectors p in the interpolation is displayed to the left in Fig. 7 for
different values of φ. The order in which the solutions are computed is shown by
combining two consecutive data points with a solid line for the coarse grid and a
dashed line for the fine grid. They overlap each other in the left panel of Fig. 7.
As soon as a new solution xi is computed the corresponding si is added to the
basis S. At most 32 right hand sides were used in the interpolation.
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Figure 7: Number of vectors used for interpolation in MRI (left). The relative
residual of the initial guess from MRI (right).

The right plot in Fig. 7 shows the relative residual ‖r(0)‖/‖b‖ of the initial
guess. After 58 of 451 right hand sides the interpolated initial guess is so accurate
that no more iterations are necessary. The difference between the fine and the
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coarse grid is small as is expected from Theorem 4 where the error estimate is
independent of N .

The number of iterations to obtain convergence is recorded to the left in
Fig. 8 for the coarse and the fine grids. Most of the right hand sides do not
need any iterations at all. For the smaller case a total of 403 iterations was
required while the larger case required 422 iterations. On the other hand, from
Fig. 4 it is evident that a sampling density ∆φ of approximately 1o is sufficient
to represent the monostatic RCS. Hence, about 420/180 ≈ 2.3 iterations per
important right hand side suffice. Adding more right hand sides only incurs a
cost for the interpolation (cf. Theorem 1).

To the right in Fig. 8 we compare the total solution time Tk for all right
hand sides for different step sizes k in Algorithm 1. The order of interpolation p
increases with k up to 32. The solution times are normalized by the time T1 for
solving one right hand side at a time. The solution of one right hand side (k = 1)
without an interpolated initial guess with a standard algorithm was 5.3 % of the
total time. The relative time for this method would be 451 · 5.3 % ≈ 2390 %
in Fig. 8. The total time TIk used by the interpolation part of the method is
compared to the total solution time Tk for a given step size k. The fraction is 4 %
of Tk or less for k ≥ 4. Thus, the solution of 420 right hand sides was obtained
in less than the same time as the solution of 1 right hand side with a standard
method. Also note that if ε and εI are reduced the cost for the iterations is
increased while the interpolation cost is constant (cf. Theorem 1). When the
step size is greater than 32 there is an increase in solution time because it is more
favorable to interpolate instead of iterate for the remaining solutions.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

φ

N
r.

 o
f i

te
ra

tio
ns

 in
 G

M
R

E
S

N=16218
N=64959

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Stepsize (k)

R
el

at
iv

e 
tim

e 
(%

)

Relative solution time
Relative interpolation time

Figure 8: Number of iterations in GMRES for each right hand side (left) and the
relative solution times Tk/T1 and TIk/Tk for different step sizes k (right).

6 Conclusions

A method has been developed for iterative solution of systems of linear equations
with many right hand sides with a smooth dependence of a parameter. The work
in the iterations is bounded independently of the number of right hand sides
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and the initial guess for the iterations is rapidly becoming so accurate that this
guess is a satisfactory solution. The method is applied to a discretization of the
integral equation satisfied by Maxwell’s equation in the frequency domain. The
theoretical properties of the method are corroborated by numerical calculations
of the monostatic radar cross section of an airplane model.
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