Getting started... A crash-coursein PASCAL.

Lear ni ng PASCAL

By: MF. Soners, 2000.

Getting started...

Starting the Borland Turbo Pascal 7.00 |DE...

Bef ore you can start with the basic concepts of progranm ng in PASCAL, you
should install a PASCAL conpiler. The conpiler nost suitable for these | essons
is the Borland Turbo Pascal 7.00 conpiler

Three versions of this conpiler are available. The best one to use is the

i nteractive TPX. exe. This version has all the interactive possibilities the
TURBO. exe conpil er has, but the IDE (Integrated Devel opnent Environment) is
slightly better. Though this is not the nain reason for using this version, it
certainly nmakes a difference

Besi des the two | DE conpilers, the Borland package al so contains a comand |ine
conpiler. W won't use this one because the advantages of the |IDE version will
be enornous when trying to learn progranmng or PASCAL. It offers sinple nmenus
with on-line hel p-pages of everything.

These on-1ine hel p-pages will beconme very inportant for you throughout the
conpl ete course because lot’'s of references are made to them The idea is that
you' Il learn to programin PASCAL through practise and exanples interactively
and not just by reading a book but in a guided way through these hel p-pages.
This will probably be an easier |earning curve addressing the inportant things
first...

So, to get started, nake a copy of the ‘TurboP’ directory to some hard-disk. As
long as the copied directory is |located at the root |evel of the disk, things
have al ready been set up for you.

After having copied the conpiler, copy the exanple files wherever you want on
the sane disk. Go to the exanple directory and use the ‘Turbo Pascal’ short-cut
to fire-up the conpiler and it’s IDE...Now you can start with the first exanple...

After a while you might have a | ook at the extra exanples Borland has to offer
you. You can find themin the TurboP directory.

Good | uck!

Thefirst example... A crash-coursein PASCAL.

The first exanple...

Conpi |l i ng, running, output and help...

{ This is going to be your first PASCAL program.. So let's make things easy
for starters. First of all you probably have figured out how to open the
Exanpl el. pas file... You probably did this by having a | ook under the 'File'
nmenu and tried the ' Open' option. Good for you... That's the right way! Now
for sonething nore sophisticated... Have a | ook at the 'Conpile' nenu..

The first thing you'll see is the 'Conpile option. Try this one..
You should get a sinple window telling you the file conpil ed okay and
as you nmight thing... Yep, you just conpiled your first PASCAL program..

O course you can have a look in the current directory and find an . EXE

file with the nane Exanpl el has been created. This is the executabl e code
the conpiler made of this sinple first program Surely, it is clear that

the conputer can only execute nmachine instructions and not PASCAL statenents.
This is where the conpiler cones in... It translates the PASCAL programinto
instructions the CPU can understand and run your code at full CPU speed
instead of '"interpreting' the programlike BASIC does..

Now you know what conpiling is about and you are now able of compiling a
gi ven PASCAL program What about running it then? OF course, try the 'Run’

nmenu... Have a look at this nenu... Several options are available... But for
now, just use the 'Run' option. The other stuff will be explained |ater on...
or you'll find out yourself.

Havi ng pressed Run you probably saw your screen flicker... \Wat the @$ @&
happened ??? Well, you just ran the first exanple... How about that then..
Not hi ng on the screen, no input asked whatsoever... H nmm any ideas???
Have a | ook at the 'Debug’ nenu... Try the 'User Screen' thing... or press
CTRL- F5.

Aha, there's the output... Although just a sinple nessage, you just learnt to
open a file, conpile and run it and al so i nspect the output!

Havi ng dealt with these basic tasks first, let's start with the real thing..

PASCAL, that's what this is about... Well, have a | ook below. .. The code..
}
Program Exanpl el;
Begi n
Witeln('This is the first exanple..."');

End. { Program}

{ That was the conplete program Al the grey stuff between the parentheses {}
were coments. The conpiler just ignored it but hey, it explained you,
the programmer what to do... This will becone nore inportant |ater on.
So get used to putting in plenty of remark statenents in your sources!

Let's analyse the little program First of all, the program has a nane.
Guess what the nane is... Yep right, 'Exanplel ... Easy enough..
But then, wow, what's that ?!?!? Wll, a programhas to start sonewhere,

doesn't it ? O course the programstarts with the begin statenent.

Because a program needs to end as well, the End statenment is present at the
end. Easy enough | shoul d think

Thefirst example... A crash-coursein PASCAL.

You m ght have noticed, | use indents to 'beautify' sources. This wll
beconme nore and nore inportant when things get bigger. So again, get used
to doing this as well!

You al so might have noticed the extra coment at the end of the program
{ Program}. Wiy is this one needed you might ask... Again, when things get

nastier there will be quite a lot of 'End' statenents in your code... These
extra comments will help you to figure out which Begin and End bel ong
together... Not only the comments but also the indenting will help with this
in future...

Ch, | nearly forgot, the dot at the end of the 'End.' statenent is VERY
inmportant. You'll learn in the next few exanples that statenents |ike

"End;' also exist... They are quite different! The one with the dot tells the
conpiler it can stop and ignore the rest of the file.

EXERC! SES:

1) Make the program print out your name and try to find out by using the help
what Witeln does... Do this by putting the cursor on the Witeln statenent
and pressing CTRL-F1... Also find out what the difference between Wite and
Witeln is..

2) Browse through the 'File' and 'Wndow nenus of the IDE. Try to do some
sinmpl e tasks |ike opening, saving and creating nultiple files. Switch
bet ween wi ndows and try to rearrange them on screen or resize them

The second example... A crash-coursein PASCAL.

The second exanpl e...

Variabl es, basic arithmetic. input, If and For statenents...

{ The second exanpl e.

In this exanple you will learn howto get input, use sinple variables and do
basic arithnetic with them Have a |ook at the code below first...

Progr am Exanpl e2;

Var
TheNaneEnt er ed : String;
TheNunber Entered : | nteger;
ACount er ToUse : Integer;

Begi n
Wite('Enter your name: '); { get input }

Readl n(TheNaneEntered);
Wite('Enter a nunber between 1 and 20: ');
Readl n(TheNunberEntered);
{ verify the input }
1f((TheNunberEntered < 1) O (TheNunberEntered > 20)) Then
Begi n
Witeln(' The nunber is not between 1 and 20 ! Program stopped !');
Exit;
End; { If Then }
{ start doing the stuff }
For ACounterToUse := 1 To TheNunber Entered Do
Begi n
Witeln('Counter: ', ACounterToUse, ' Nane: ', TheNaneEntered);
End; { For Do }

Witeln('Programis done..."); { and we're done... }
End. { Program}

{ Well, this programis surely nore conplicated than the previous one.
Let's analyse it step by step:

First the program statenent again. This shouldn't be a problem

Then a new statenent appears. The 'Var' keyword. This keyword is used

to declare variables of different types. Just put the cursor on the Var and
press CTRL-F1... You'll see all sorts of possible types. Try to figure out
what each type neans and what kind of val ues they can contain

Question: What are bool ean, extended and word vari abl es?

kay, now you know how to declare variables. Now you could start using them
This is done in the rest of the code. As you m ght have noticed | used pretty
obvi ous nanmes so the nmeanings are clear. | recommend you to do the sane when
programming. This will nake Iife nore easier for you and others in future.
Sone hints: Use capitals and clear nanes and have a | ook in the hel p what
valid "identifiers' (variable nanes) are.

Using the variables. As you m ght have noticed, variables are just storage
pl aces for different kinds of data. These storage places, the nenory
associated with them do not have a defined contents when a programstarts.
The program shoul d either assign values to them before use or store the
users input in them This is done in this exanple by the Read and Readl n
statenments. Try to find the hel p-pages of these Read(ln) statenents.

The other new things in this exanple is the use of the "If"' statenent.
Again, go to the statenent and get the hel p-page of it... Also try to find
the hel p about the 'relational operators', the things |like <= and <>. What

The second example... A crash-coursein PASCAL.

will the results be for different types of variables being conpared? Wat
types can you conpare with these operators?

EXERC! SES:

1) Try to nodify the "If' statenent in such a way it contains an 'El se'
part that if the input has been validated it prints this on screen

As you might have noticed, the 'If' statenment and the next 'For Do' |oop also
use the keywords 'Begin' and 'End'. You can inagi ne the nunber of these
statenents will becone huge if the programgets bigger and bigger. Again this
enphasi ses the use of indents and comments for each 'Begin' and correspondi ng
"End" !

Next to the 'For Do'" loop. At first glance it appears sinple. Wll, go to
the 'For' statenment and get the help. Okay, mght have studi ed the exanpl es
gi ven on the hel p-pages and you shoul d now know how to [et the counter count
down.

2) Modify the programin such a way it will count down. If the counter value
is even print an '"even' string and if it is odd an 'odd' string. You m ght
use the 'Mdd' keyword for this. This operator calculates the nodul o of two
things: A Md B

After doing all this you probably also noticed the := operator in the program
This is the assignnment operator. It enables you to assign a value to a
variable. It is also used in the 'For Do' |oop

A question: Is it possible to use a 'Wile' statenent instead of the

For | oop construction? If so then try this. Also take a | ook at the 'Repeat'
statenment. Try to figure out the difference between the 'Wiile' and ' Repeat’
constructs. O course | ook at the correspondi ng hel p-pages.

3) Modify the programin such a way that if the user just pressed enter
i nstead of entering a nane, a default value string of 'Your name here' will
be used.

4) Try to wite a sinple programthat will solve the quadratic equation
A* Xh2+B* X+C=0. The program shoul d accept the A B and C values with the
types of 'Real' and give the two X values by using the well-known ABC
formula. Extend the programin such a way it will print out where the
maxi mum or mninumvalue is like "Max(X=....)=...." or "Mn(X=....)=...."
with the correct values placed on the positions of the dots. You m ght use
the "Sgrt' function for this. Look at the hel p-pages to get the information
of this "Sqgrt' function.

Try to nmake the program ' neat' and produce clear output to the user if
wong input is given and hints on what kind of input is expected. Al so nmake
use of comments and indents throughout the conplete code..

Try the following input after your programis finished and watch carefully
what your program does:

A=1, B=2, C=3
A=0, B=3, C=8
A=-1, B=0, C=7

The second example... A crash-coursein PASCAL.

I f your program aborts with some 'run-tine' error nmessage, press Fl to
figure out what crashes your programand then fix it.

Thethird example... A crash-coursein PASCAL.

The third exanple...

Top- Down nodel, procedures, functions, units, constants, arrays, global or local variables and pass-
by-references...

{ The third exanple... Introducing procedures and functions..

In this exanple small sub prograns are introduced. These little
progranms within the conplete programare called subroutines, procedures
or functions... Also units will be introduced in this exanple.

Have | ook bel ow at the code which inplenents two different nmethods to
calcul ate the faculty of a nunber..

}

Progr am Exanpl e3;
Uses DOCS; { use DOS unit for timng... }

Const Test Ti mes = 100000;

Var LoopVar : Byte; { global data }

Ti medRecur si on : Real ;

Ti medLoop : Real;

TemporaryTine : Array[1 .. 4] O Wrd;
{ - - - - - - - - - - - - - ALL FUNCTIONS - - - - - - - - - - - }
{ Calculates the faculty of Nr through a | oop nethod... }

Function Facul tyLoop(Nr : Byte) : Real;
Var LoopVar : Byte;

Faculty : Real;
Begi n

Faculty := 1.0; { calculate the faculty Nr }

For LoopVar := 1 To Nr Do { by using the loop }

Facul ty := Faculty * LoopVar; { notice if Nr < 1 the | oop does nothing }

{

Facul tyLoop : = Facul ty;
End; { Function }

return the result }

Tecccce s }
{ Calculates the faculty of N through recursion... }
Function Facul tyRecursion(Nr : Byte) : Real;
Begi n
If(N\t < 1) Then
Facul tyRecursion := 1.0 { if N\ is 1or Othenresult is 1}
El se { elseresult is N\r * (Nr-1)! }
Facul tyRecursion : = FacultyRecursion(Nr - 1) * Nr;
End; { Function }
------------- ALL PROCEDURES - - - - - - - - - - -}
{ Prints aresult... }
Procedure PrintResult(Nr : Byte; Result : Real);
Begi n
Wite('Faculty of ', N, " is : ', Result:9:0);
End; { Procedure }
eSSy s s s s s e }
{ Prints a given timer... }
Procedure PrintTiner(TheTimer : Real);
Begi n
Witeln(' TIME ', TheTinmer:4:5);
End; { Procedure }
S }
{ Starts a given timer... }
Procedure StartTiner(Var TheTinmer : Real);
Begi n
GetTime(TenporaryTine[1], TenporaryTinme[2], { store the current tine globaly }
TenporaryTinme[3], TenporaryTine[4]);
TheTiner := 0.0; { set specif. tiner to 0}

End; { Procedure }

Thethird example... A crash-coursein PASCAL.

________________________________ }
{ Stops a given tiner... }
Procedure StopTinmer(Var TheTiner : Real);
Var Hours,
M nut es,
Seconds,
Hundr : Word;
TenpTinme : Real ;
Begi n
Get Ti me(Hours, M nutes, Seconds, Hundr); { get current tine }
TenpTinme := (Hours - TenporaryTine[1]); { and calculate tine dif. fromglobal value in hundr.
seconds }
TempTinme := (Mnutes - TenporaryTine[2]) + 60 * TenpTi ne;
TempTinme := (Seconds - TenporaryTine[3]) + 60 * TenpTi ne;
TheTi mer := TheTiner + 100 * TenpTine + Hundr - TenporaryTine[4]; { return through pass-by-ref. }

End; { Procedu.re}

{ Starts a loop test and a recusion test... }

Procedure StartFacul tyTest(Nr: Byte);
Var NPOf Tines : Longlnt;
Resul t . Real ;
Begi n
Wite('RECURSION => "); { do the recursion test }
Start Ti mer(Ti nedRecursion);
For 'O Times := 1 To TestTi mes Do
Resul t := Facul tyRecursion(Nr);
St opTi mer (Ti nedRecursion);
PrintResult(Nr, Result);
PrintTinmer(TinmedRecursion);

Wite('LOOP => "); { now do the loop test }
Start Tinmer(TimedLoop);
For 'O Times := 1 To TestTi mes Do
Result := Facul tyLoop(N);
St opTi mer (Ti nedLoop);
PrintResult(Nr, Result);
PrintTimer(Ti medLoop);
End; { Procedure }

Begi n
For LoopVar := 1 To 15 Do { test for different values }
Start Facul tyTest (LoopVar);
End. { Program}

{ Wll, in this exanple lot's of things are denonstrated at once.

First of all, two general progranm ng techniques are shown. The Top- Down
nodel and t he Down-Top nodel. Let's analyse the code with the Top-Down nodel

Have a |l ook at the main program It |ooks sinple enough, just a | oop going
from1l to 15 and for each value a test is being done. In a way this is the
whol e concept of the program But of course, you should still know what ki nd
of tests are being done... To understand this, you go down a level in the
program Look at the StartFacultyTest procedure.

In the StartFacultyTest procedure, two variables are used of different types.
These variables are only present in the Procedure and not the conplete
program They are called 'local'. The variables defined at the begi nning of
the code, TinmedRecursion etc. are active throughout the conplete program and
can be used by any function or procedure. These are called 'global’

Wiy on earth not nake all variables 'global'? Well, think about the

Facul tyLoop function. In this function another |oop variable is used. If you
made all vars global, they should all have different nanes for the program
to work. Inmagine having lots of procedures with |loops... You see the problenf

Thethird example... A crash-coursein PASCAL.

For every | oop variable you need anot her nane... Mkes things conplicated huh?
Besi des the extra typing and conplexity you introduce by naking everything

gl obal, you cannot use the Top-Down or Down-Top nodel s of progranm ng anynore.
You are forced to study the code conpletely at once and not in parts..

But because | use local variables, we can use the Top-Down nodel and so let's

continue using it... If you take a closer look at the StartFacul tyTest
procedure, you'll notice the big problemis being reduced to sinpler ones by
going down to even lower levels... Atest is actually a test for the recursion

nmet hod and the | oop nethod consecutive. Also the use of timngs is done with
t he Top-Down nodel. Big and conpl ex tasks are broken down to sinpler tasks al
the way down to the | owest |evel!

For the StartFacultyTest procedure it just needs to start, stop or print
tinmers and results... Go another |evel deeper to the StartTi mer procedure.

Go to the Procedure keyword of this routine and press CIRL-F1... You see,

usi ng procedures and paraneters is actually very sinple. It nmakes your code
"neat' and nost of the tines smaller! You can use the StartTi ner procedure
multiple tinmes at different places in your programw thout doing all the work
over again each tinme.

A very inportant thing with functions or procedures is the 'pass-by-reference'
or the 'pass-by-value' nodels. PASCAL uses 'pass-by-value' by default.

Any paraneter used in the call to a function or procedure will only pass the
val ue of the variable to the subroutine. |If the subroutine alters the contents
of the paraneter being passed, the original value of the variable will not
change because a |ocal copy is actually created. So 'pass-by-value' neans that
paraneters are |ocal variables and can be nodified wi thout any trouble..

What is 'pass-by-reference' then? Well, have a | ook at the StartTi ner
procedure. The paraneter list contains an extra 'Var' statenent. This keyword
at that place tells PASCAL to use pass-by-reference for that paraneter. This
obviously neans that if the subroutine alters the contents of the passed
thingy, the value of the variable a |level higher (at the level of the caller)
wi Il change as well! Sonetines you need to use these pass-by-references as is
denonstrated in the StartTiner routine. It needs to '"reset' the tiner to zero
before things will work.

In the same routine you probably noticed the use of the global variable called
"TenporaryTime'. This global variable is actually an Array of reals. An array

is just a list of the sanme type of variables you can access with an index. It

is also possible to declare arrays of nultiple dinensions. Try to find the

hel p- pages of the Array keyword and study themcarefully... You'll use arrays
in lots of ways in the future..

EXERCI SE

1) Try to wite a small programthat cal cul ates the deterninant of a given
three by three matrix. Try to use a two dinensional array of reals for
this. Try to put the calculation of such a determ nant into a function
Also Wite a string on the screen telling the user a given matrix is
"singular' or not. If the determnant is zero, the matrix is singular.

The next thing you should have noticed in the StarTinmer routine is the use of

Thethird example... A crash-coursein PASCAL.

the Get Ti ne procedure. Skimm ng through the code you probably won't find a
routine called GetTine. Where does it conme fron? Well, this specific routine
is inplenented in an "unit'. The actual nanme of the unit that contains CetTine
is called '"DOS' . Units are just collections of variables, constants and
subroutines a programer will use frequently in several programs. In order

to | et PASCAL know whether or not to 'use' a unit... WIlIl you can guess, you
nust use the 'Uses' keyword. Look at the very start of the program.. CGo to
the keyword and get the hel p-pages..

As you mi ght have read fromthe hel p-pages the conpiler automatically |oads a
few units for you. One of these is called the '"system unit. It contains al
the basic routines needed for a PASCAL program Try to find out what routines
and variables the systemunit inplenents for you... Quite a |lot huh? | nmagi ne
you doing all that work every tinme you start a new progran?

Back a | evel higher, the StartFacultyTest procedure. The next thing that
happens is a | oop over the FacultyRecursion function. This function just
calcul ates the faculty of the paraneter given through a recursion nmethod. But

if you |l ook carefully you'll notice sonmething newin the for |oop. Instead of
just filling in the |loop ranges | used a constant for the maxi num val ue. Wy
did | do this? Well, inmagine a programwith |ots of |oops over the sane array.

Putting in the array maxi mumindex in each loop will work but what happens
when the array is nmade bigger or even worse snaller? You should adapt

all the loops to the new ranges. Quite a ot of work then... You can avoid
this by defining a constant for the ranges and use the sane constant to
declare the array variable itself. This way you only have to nodify the
constant and the whol e code works with the other array size..

Well that's the theory... How does it work in practice? Have a | ook at the top
of the code. You'll see the 'Const' keyword. Cet the hel p-page of it and
study it... Having dealt with that constant trick, the code becones nore

general, better to maintain in future and | ast but not |east even nore
readabl e. ..

Let's continue with the rest of the procedure... Well nothing really new
there... Some extra procedures are being called to stop the tinmers and print
out results. Have a | ook at each of these routines and nmake sure you
understand them Pay extra attention to the Wite(ln) formats used in this
exanpl e... Cet the hel p-pages again and notice they speak about ‘field
specifiers’ ...

Havi ng dealt with nost of the new PASCAL stuff with the Top- Down approach
let's pay our attention to the functions FacultyLoop and Facul t yRecursion. The
di fference between Functions and Procedures is the way you use them Functions
return a value and can be used in expressions like:

I f(FacultyLoop(10) > 100) Then
Begi n

End;

Procedures can't be used like this. Although they can give results back by
usi ng pass-by-references, they cannot be used |like in the above expression
Renenber even a function can use pass-by-reference and return nore val ues than
just the function value used in an expression. A function returns the result

it was assigned with the := operator in the function body. Have a | ook at one
of the functions and | ook for the :=.

10

Thethird example... A crash-coursein PASCAL.

Ckay, now what about the two algorithnms. They are quite different. The
recursive nethod |l ooks really sinple... The faculty of Nis Ntinmes the
faculty of N-1. That's the trick being used. The calculation of (N1)! ? Well,
you coul d use the FacultyRecursion routine again. Doing this the whole problem
will reduce at the end to the calculation of 1! which is easy and just 1

Recursion is a trick often used to nake al gorithns sinple and robust. But one
al ways needs to keep in mind the recursion rule should end with the sinplest
probl em being solved directly... If this is not done, the whole programwil|
end up getting stuck. 'It hangs' is what's being said.

The other trick of calculating faculties is using a loop. N is 1*2*3* .. *N so
a loop going from1l to N can be used to cal culate the products... Easy huh?
Though the code | ooks a bit nore conplicated then the recursion nethod, for
larger Nthis nmethod is actually faster as you night have noticed when runni ng
the program Wy is this?

Vell, in the loop nmethod, each calculation will just do a single call to the
Facul tyLoop function and will imrediately result in an answer. Wth the
Facul t yRecur si on et hod, each N value being calculated will result in N calls.
So the nunber of calls when calculating Mfactorials will becone N*M i nstead
of just M This takes tinme and becones noticeable with [arger Mand N s.

The | esson being learnt here is that the sinplest nost easiest algorithmis
not always the fastest... Wen progranmm ng fast code, one shoul d al ways keep
this in mnd!

EXERC! SES:

2) Try to figure out the workings of the program using the Down-Top nodel

3) Make two functions that cal culate x*n+x*(n-1)+...1 for a given x and n
using a |l oop and a recursion nmethod. O course n is an integer val ue.

Test the timngs of these routines. You m ght want to use the 'Pow
function present in the systemunit for this. A though, try to nmake the
functions NOT using this 'Pow function because it is relatively slow and
can be avoi ded by accunulative multiplication’s of X with itself...

Think things through first and then try to find recursion relations or

| oops tricks..

4) Try to adapt the programyou nade for calculating the quadratic equation
fromthe previous exanple in such a way it uses functions and procedures..
Make sure the conplexity of your program becones | ess!

5) kay, now a sinple thing, rewite all the prograns you've witten so far in
such a way that the code becones 'clean' and readable. Put in remark |ines
per routine and use separator lines like |I did. Get used to doing this!
You'll appreciate it later on... O course put in plenty of coments..

That goes w t hout sayi ng!

6) Study the 'Forward' keyword. Wiy is it used? What does this nmean for the

ordering of subroutines in your progranf

11

Thefourth example... A crash-coursein PASCAL.

The fourth exanple...

Types, file 1O the CRT unit and devel opnent ...

{ The fourth exanple. Things will get a bit nore conpl ex..

In this exanple we'll extend the use of variables, introduce records, types,
arrays of types and of course use units, constants, functions and procedures.

Take a | ook at the code first... It is a sinple database program..
Try to figure out how things work... If you don't understand a keyword
or sonething el se, use the hel p-pages... ;-)
Progr am Exanpl e4;
Uses Crt; { use the CRT unit for screen output }
Const NoNane = "No nane'; { define sone handy constants }
NoAge = -1;
MaxNr Of Per sons = 10;
Type ANanmeType = String[80]; { define the types for a person }
AnAgeType = | nteger;
APer son = Record { and define the persons record type }

TheNarme : ANaneType;

TheAge : AnAgeType;

| sEmpt yRecord : Bool ean;
End; { Record }

Var Al |l ThePersons : Array[1 .. MaxNrOf Persons] of APerson;

{-------- ALL FUNCTIONS - - - - - - - - - - - - - - - }
{ Returns true if record of nr RecNr in database is enpty... }
Function | sRecordEnpty(RecNr : Integer) : Bool ean;
Begi n
1f((RecNr <= MaxNrOfPersons) And (RecNr > 0)) Then { if RecNr within range }
| sRecordEnpty : = All ThePersons[RecNr].IsEnptyRecord { get the flag fromrecord }
El se
| sRecor dEnpty : = FALSE; { else default to false }
End; { Function }
------------------- T
{ Returns the nunber of an enpty entry in the database... }
Function Get EnptyRecNr : Integer;
Var Count : |nteger;
Begi n
For Count := 1 To MaxNr Of Persons Do { loop over all entries }
1f(IsRecordEnpty(Count)) Then { if we found an enpty one }
Begi n
Get Enmpt yRecNr : = Count; { then stop the search... }
Exit;
End; { If Then }
Get Empt yRecNr = -1; { else default to -1}
End; { Function }
________________ IR AP RIS
{ Returns the nunber of free entries in the database... }
Function NrOfFreeEntries : |nteger;
Var Countl1, Count2 : Integer;
Begi n
Countl := O; { start counting enpty records }
For Count2 := 1 To MaxNr O Persons Do
1f(IsRecordEnpty(Count2)) Then
Inc(Countl);
Nr Of FreeEntries : = Count1;
End; { Function }
{--=-----: ALL PROCEDURES - - - - - - - - - - - - - - }

Thefourth example...

A crash-course in PASCAL.

{ Cear all entries in table... }
Procedure SetAll Entri esEnpty;
Var Count I nt eger;
Begi n
For Count : =
Begi n
Al | ThePersons[Count].I|sEnptyRecord : = TRUE;
Al | ThePer sons[Count].TheNane : = NoNane;
Al | ThePersons[Count].TheAge : = NoAge;
End; { For Do }
End; { Procedure }

1 To MaxNr Of Per sons Do { | oop over

{ Prints the contents of a given person... }

Procedure PrintTheRecord(Entry :
Begi n

Witeln(' NAME ',
End; { Procedure }

APerson);

Entry. TheNane, ' and AGE: ',

{ Prints out the contents of a given entry...
{ This procedure uses the routines available fromCRT unit. }

all entries and set thementpy }

Entry. TheAge);

Procedure PrintEntryNr(RecNr I nteger);
Var 4 dCol or Wor d;
Begi n
A dCol or := TextAttr; { get old colors }
Text Col or (YELLOW) ; { set default colors }
Wite('"REC #: ', RecNr, ' ==>"');
1f(IsRecordEnpty(RecNr)) Then { if the given rec is enpty }
Begi n
Text Col or (RED);
Witeln("EMPTY !); { then say so... }
End { If Then }
El se
Begi n { else print out the requested result }
Text Col or (WH TE);
Pri nt TheRecord(Al |l ThePersons[RecNr]);
End; { If Then Else }
TextAttr := O dCol or; { restore the old colors... }
End; { Procedure }
{ Start filling in the entries until user stops or table is }
{ filled...
Procedure StartEnteringEntries;
Var TheNaneEntered : String;
TheAgeEntered : | nteger;
Enpt yRecNr | nt eger;
Begi n
Witeln('Sinple database programfor ages of persons...');
Witeln;
Witeln('Start entering data until database is full or an enpty name is given...');
While(NrOf FreeEntries > 0) Do { as long as the database is not full... }
Begi n
Wite('THE NAME '); { ask for a nane }
Readl n(TheNaneEntered);
| f(TheNaneEntered = '') Then { stop the while do loop if '' entered... }
Exit;
Wite('THE ACE '); { else ask the age }
Readl n(TheAgeEntered);
If(TheAgeEntered >= 0) Then { and if correct then enter it }
Begi n { in the database in an enpty spot... }
Enpt yRecNr : = Get Enpt yRecNr;
Al'l ThePer sons[EnptyRecNr].TheNane : = TheNaneEnt ered;
Al'l ThePer sons[EnptyRecNr].TheAge : = TheAgeEnter ed;
Al | ThePer sons[EnptyRecNr].I|sEnptyRecord : = FALSE;
End { If Then }
El se { else give an error nessage and start again }
Witeln('AGE MUST BE O ORBIGGER !!!");

End; { Wiile Do }

I1f(NrOfFreeEntries = 0) Then
Witeln(' DATABASE IS FULL !!'!l'")

{ specify why the while do | oop stopped }
{ either the database is full }

13

Thefourth example... A crash-coursein PASCAL.

El se
Witeln('USER STOPPED WTH INPUT !!!"); { or the user stopped filling in the data }
End; { Procedure }

{ Just dunp the conplete database to screen... }

Procedure DunpTheConpl et eDat aBase;

Var Count : Integer;

Begi n
Witeln(' DUWPI NG COVPLETE DATABASE ...');
For Count := 1 To MaxNrOf Persons Do { just print all entries }
PrintEntryNr(Count);

End; { Procedure }

I LI N L T R I LI I I R NI N SR }
{ Dunp only filled parts to screen... }
Procedure DunpFilledEntries;
Var Count : Integer;
Begi n
Witeln(' DUWI NG ONLY FI LLED PART OF DATABASE ...');
For Count := 1 To MaxNrOf Persons Do { only print filled entries }

1f(Not IsRecordEnpty(Count)) Then
PrintEntryNr(Count);
End; { Procedure }

{ec=coc=coa START MAIN PROGRAM - = - - = = - - - - - }

Begin { Main program}
drsScr;
Set Al | Entri esEnpty;
StartEnteringEntries;
DunpTheConpl et eDat aBase;
DunpFi | | edEntri es;

End. { Program}

use CRT again to clear the screen }
first clear all entries in database }
start filling the database }

dunp the lot to screen }

only dunp filled entries }

— e e

{ I'n this exanple code two major things are new First of all, it denonstrates
the use of the CRT unit. The second thing, it denonstrates the use of 'Types'.

What new things the Crt unit will give is easy to find out by using the help
pages. Try to find out what routines are present and what variables are
defined or declared in this unit. Also try to figure out what other units are
avail abl e in your PASCAL version

The other new thing, types, is sonmewhat nore interesting. But before we go
into the theory of data abstraction, go to the ' Type' keyword and get the help
pages. Try to find out what 'ordinal' types are. The other types listed in the
hel p- pages will be the subject in future exanples. Let's concentrate on the
"normal ' stuff first...

As you m ght have read, the ordinal types are the types that hold nunerical or
| ogi cal values or perhaps one or nore characters. The new type introduced in
this exanple is the 'Record type.

Have a |l ook at the 'APerson' type definition in the top part of the code. This
part of the code defines a new type called 'APerson' which is a conbined type
containing a nane field, an age field and an enpty flag field which are of the
types string[80], integer and bool ean resp. By defining the record type
‘ APerson’ one can use the trick of data abstraction. This neans throughout the
code one can speak of an APerson type and actually declare arrays or variabl es
of it. Look at the global Var statenent. An array of a specified size is
decl ared of the new type.

This neans nmenory will be allocated for this array of the size of the nunber

O elenents tines the nunber of bytes a record holds. Because the array is of
the type APerson, using the indexes of the array notation an APerson type

14

Thefourth example... A crash-coursein PASCAL.

will be the result. To bad you cannot do rmuch with it as such, but one can
surely do sonmething with it's fields..

This is done in the procedures and functions of this exanple. You m ght have
noti ced the 'Al |l ThePersons[RecNr].IsEnptyRecord' expression sonewhere. Wat
does it nmean? Well, of the array Al ThePersons, the RecNr entry is addressed.
This entry of course is of the type APerson. It is a record. The next thing
what happens is that the 'IsEnptyRecord' field will be used. The dot in the
expression enables you to specify the record field. So now you can define or
decl are records and structures of data types and access them.. You can al so
create arrays of them..

The techni que of using records and conbining different types into a new type

is called data abstraction! You can regard the new types as 'things' wthout

maki ng to nuch trouble of what actually is in it in higher levels of the code
when using the Top- Down point-of -view. ..

EXERCI SE

1) To denonstrate this, alter the programin such a way that not only the age
of APerson can be used but i.e. a tel ephone nunber as well... You m ght use
a String[15] field for this because a tel ephone nunber not only contains
digits but separators and other stuff as well.

Have a | ook at the PrintTheRecord procedure. You see that user defined types
can al so be used in paraneter list of subroutines. Only restriction exists
wi th functions. Functions cannot return a record based type as a result.
This is obvious when considering the follow ng piece of code:

I f(FindFirstRecord >= LastRecord) Then
Begi n

End;..”

Wth FindFirstRecord and LastRecord being two functions returning a sinilar
record type. What is the nmeaning of the = operator then? Should it conpare the
contents or the nmenory | ocations of both records? And even if it is clear it
shoul d check the contents, howis this done? Wich field needs to be conpared
to what and in what order? The relational operators are therefore only defined
for ordinal types!

A sinple trick to circunvent this problemis to nmake a function returning a
bool ean and accepting both things to conpare with each other in a way that is
suitable for the type used

EXERCI SE

2) Try to nmake a function called 'ArePersonsTheSane' which conpares two
APerson records and return TRUE if they have the same nanmes. Ages do not
matter in this function! Use this function to | oop over the database when
entering new data to check whether the user does not enter the data of the
same person twice in the table.

You can see, even in this exanple, the use of functions, constants, procedures
and a 'neat' programing style hel ps you to solve nore conpl ex tasks..

15

Thefourth example... A crash-coursein PASCAL.

A BI T Bl GGER EXERCI SE: Devel opnent . .

Extend the programwith a 'Del etePerson' procedure that ‘enpties’ the entry of
a person with a given nane. This neans of course you can use the search trick
fromthe previous exercise. If you did things clever enough you already nade a
' SearchPerson' function returning the array index of a person or -1 if not
found ki nd-a-like function which uses the 'ArePersonsTheSane' function in it's
turn to do the conparisons. If not, do this then... It will make things
easier. Wth this you' Il learn to think ahead and programin such a way that
bi g probl ens are broken down into smaller problens and nore easily to

mai ntai n. The Top- Down or Down- Top net hod, dependent on whether you start with
t he bigger conplex tasks or the sinple functions first!

Personally | use a mixture you mght call 'Down-Top-Down' nodel. Start with
the very first things |ike defining data types and 'easy' work routines for
the types. Then start with the big problemand reduce it to snaller things and
eventual ly end-up using the "work routines' already nade again. Try this

t echni que of solving problens as well!

After having extended the programw th this 'Del etePerson' thing, build a
procedure that gives the user a sinple nenu with choices |ike "enter data',
"dunp data', 'delete person' etc. You mght actually use the 'Case' statenent
for this which | find very suitable. Try to use colours in the nenu as well

Havi ng done this, build a ' ConparePerson(Personl, Person2)' function which
returns -1 if the nane of Personl is lower in order than the nane of Person2,
O if the nanes are the sane and +1 if Person2 nane is lower in order than the
nane of Personl. This function is a sort of conbination of the > <, <> and
= operators. Perhaps you where smart and you al ready nmade the

" ArePer sonsTheSane' function like this. Thinking ahead again... CGood for you!

Now you have a nore general conparison function, you can start sorting the
array of persons based on the nanmes of the persons. Try to think of a sorting
algorithmand inplenent it in a procedure called 'SortTheDat abase'. Al so
extend your menu routine with this new option. Things are going to | ook nore
conpl ete now aren't they ??

The last thing of course, just to finish of the program is wite a

' SaveDat aToFi |l ' procedure that wites the conpl ete database into a typed
file. Look in the hel p-pages for exanples on how to use files in PASCAL... You
m ght |1 ook for the words 'Assign', 'Wite', "Close', "Reset', 'ReWite' etc.
Also ook for the word 'File'. Study the exanples given there very well!

You' || need the know edge | ater on

Al so nake a routine called ' ReadDataFronfile' to read in the data froma given
filenane. Extend the nenu of course... Now the programis nore or |ess
conplete, start playing around with it and try to find any bugs... Fix themif
you find any! Believe nme, you probably nade sonme bugs but not to worry, this
happens all the tine and is part of devel opnent!

You actually learnt quite a | ot of progranming in PASCAL and in general now.
The exanpl es becane nore and nore conplex, you also learnt to extend your
know edge yoursel f by using the hel p-pages.

The foll owi ng exanples will be docunmented | ess than usual when PASCAL's

concerned and concentrate on general progranm ng techni ques, debugging,
algorithms etc. }

16

Thefifth example... A crash-coursein PASCAL.

The fifth exanple...

Poi nters, heap usage and nenory | eaks...

{ The fifth exanple..

In the previous exanple you actually nade a full-blown program Although

t he program works, still sone things could be inproved. One of the things

is the problemw th the table sizes. The program nakes use of a fixed table
size (database). What if the user wants to enter nore than the default 10

el enents? Things go wong... Seriously wong! A sinple trick is to increase
the corresponding constant to a size that's surely enough. That'll work but
the table will consune quite a lot of nenory even if it isn't used conpletely.

The nmenory usage night becone so big that things don't fit anynore. The
"neatest' way of dealing with situations like this is to have a programthat
uses just the right amount of nmenory it needs at a given point. But this neans
that the program should be able of extending or shrinking the arrays or nenory
usage at 'run-time'. Using static global data tables neans fixed sizes
defined at conpile-tine.

So anot her progranm ng techni que should be used and explored for this. The

technique |I'mtal king about is called 'dynam cal nenory usage'. Like the nane
says, things can grow or shrink in size as the programruns. Dynanical, so to
speak. That's a good idea but how are we going to inplenent this? For this one
needs a new data type called '"pointers' and that's what this exanple is about.

Not only pointers will be addressed but also the concept of 'heap' usage. The
heap is the rest of the nmenory the conputer has that is not filled with code,
stack or static data. As the programruns, heap nenory will be 'allocated and
"freed" when needed. Dynamical stuff thus... But we do not know yet where on
the conputer a block of menory is free or how to nake the programwork wth
bl ocks of nenory that can change shape or | ocation. The answer for this is
pointers again... Pointers and heap usage are |inked together |ike bread and
butter!

Lets ook at the code first...

}

Progr am Exanpl e5;

Type ADataType = Record { just an exanple data type }
Dat aFi el d1 : |nteger;
Dat aFi el d2 : Real ;
DataField3 : String[30];
End; { Record }

PADat aType = "ADat aType; { make new type which is a pointer to the thing... }
Var Poi nter One, { global variables used }
Poi nt er Two,

Poi nter Three : PADat aType;

St ati cDat aOne,
StaticDataTwo : ADataType;

Poi nter Tol nteger : ~lnteger;
Poi nt er ToReal : "Real ;
PointerToString : ~String;

{----------- PROCEDURES HERE - - - - - - - - - - }
{ Just to print the given datatype... }

Procedure PrintDataType(TheData : ADataType);
Begi n

17

Thefifth example...

A crash-course in PASCAL.

Witeln(Fieldl: ',

Field2: ',
' Field3: ',
End; { Procedure }

{...........

Begi n
St ati cDat aOne.
St ati cDat aTwo.
St ati cDat aOne.
St ati cDat aTwo.
St ati cDat aOne.
St ati cDat aTwo.

Dat aFi
Dat aFi
Dat aFi
Dat aFi
Dat aFi
Dat aFi

el dl :
eldl :
el d2 :
el d2 :
el d3 :
el d3 :

10;

20;

0. 36827
0. 2310;
'one';
"two';

PrintDataType(Stati
PrintDataType(Stati

cDat aOne);
cDataTwo);

Poi
Poi

types }

nter One :
nter Two :

Addr (
Addr (StaticDataTwo)

Poi
Poi

nter Three : = Poi nterOne;
nter Three”. Dat aFi el d1 : = 300;

Pri
Pri

nt Dat aType(StaticDataOne);
nt Dat aType(StaticDataTwo);

Poi
Poi

nter Three : = Poi nterOne;
nt er Thr ee”. Dat aFi el d2

Pri
Pri

nt Dat aType(StaticDataOne);
nt Dat aType(StaticDataTwo);

StaticDataOne);

TheDat a. Dat aFi el d1.
TheDat a. Dat aFi el d2,

TheDat a. Dat aFi el d3) ;

MAIN PROGRAM - - = = - - = = - - - - }

{ just init the static record with some data }

{ dunp the results }

{ setup the pointers to the data recs }
{ each pointer now contains the menory |ocations of the data

{ set 3rd pointer to first datatype }

{ dunp the results }

now let it point to 2nd type }

1= 0.25252525252;

{ dunp the results }

Poi
Poi
Poi

nt er Tol nt eger : =
nt er ToReal 1=
nterToString =

Addr (StaticDataOne. DataFiel d1);
Addr (StaticDataTwo. Dat aFiel d2);
Addr (Poi nter Three”. Dat aFi el d3);

{ and set

up other pointers }

Poi
Poi
Poi

8;
0.1111111;
"hi hi';

nt er Tol nt eger* :
nt er ToReal
nter ToStri ng"

Pri
Pri
Pri

nt Dat aType(StaticDataCOne);
nt Dat aType(StaticDataTwo);
nt Dat aType(Poi nter Three®);

Poi
Poi
Poi
Poi
Poi
Poi

nt er Tol nt eger
nt er ToReal
nterToString
nter Three

nt er Two

nt er One

W
P a4

{ Now show sorme dynam cal stuff }
New(Poi nterTol nteger);
Witeln(PointerTolnteger”);
Poi nter Tol nteger”™ : = 10101;
Witeln(PointerTolnteger”);
Di spose(Poi nter Tol nteger);
Witel n(PointerTolnteger”);
changed }
New(Poi nterToReal);
New(Poi nterTol nteger);
Di spose(Poi nter ToReal);
Witeln(PointerTolnteger”);

Di spose(Poi nterTol nteger);
End. { Program}

{ start altering data }

{ print out sone stuff }

{ and set pointers to nil }

al l ocate nenory for an integer and point pointer to it }
show what pi ece of mem contains }

alter contents }

show new val ue then }

free the menory allocated }

but pointer still points to that spot and contents hasn't

all ocate nenory for a real and point the pointer to it }

al l ocate nenory for an integer and point the pointer to it }
free the nenory allocated for the real }

show contents of new integer menory, different because

the nenory was at a different |ocation }

free the nenory }

B e W acn Teon e ata Taaa Rann)

{ Let's analyse the programin a bit

The first few line shouldn't
The next st atenent

poi nter to an ADat aType'

in the Type clause is new
PASCAL interprets this as 'a pointer to an xxx'
Because

nore detail ..

be a problem Just a new data type is defined
It contains a ™ character

So the "ADat aType neans
is witten in the Type cl ause we have

a
it

18

Thefifth example... A crash-coursein PASCAL.

defined a new type that is actually a pointer to a ADataType.

But what the hell are pointers? Well, as you know, a normal variable can
contain sone value. An integer can contain nunbers, a string characters, user
defined types |like records can hold whatever you put in them What about
pointers to data types then, what do they contain?

Well, a pointer to an ADataType contains the nenory |ocation of such an
ADat aType. It does not contain the data itself, but where in nenory an
ADat aType is located. It's an address. A location in nmenory. That's quite
di fferent! Make sure you understand the difference!

Because pointers only contain the | ocation of a given type, it can point to
different instances (variables) of the sane type. Just fill the pointer with
the address of the new or other data type. This is done in the lines after the
first two calls to the PrintDataType procedure. It uses the Addr() function
Cet the hel p-pages of this thing... In the exanpl es of these hel p-pages, the
use of the type 'Pointer' is denonstrated.

As | said before, nornally you use a pointer to a specified type. But when you
want to use addresses of things regardless their type, you should use
"Pointer'. Look at the hel p-pages of this type. A good exanple is given

t here. ..

Let's continue with the code. The next line will point the 3rd pointer

to the sane thing as the first pointer is pointing to. So now one can access
the static data fromtype 1 through the type itself, the first pointer
pointing to it and the third pointer.

Because pointers just contain nmenory | ocations, the conpiler needs to know
what to do when your programtries to access stuff. There are two different
situations when working with pointers: |Is the programtrying to alter the
contents of the pointer itself, when i.e. changing the address it points to,
or the actual data the pointer is pointing to?

To nmake the difference PASCAL uses the » synbol again. As soon as this " thing
is present at the end of a pointer identifier, the conpiler knows you are
trying to alter the data the pointer is pointing to and not just the pointer
contents (address of the type with sonme nenory associated to it) itself.

To denonstrate the difference, the exanple uses a few of these statenents.
Look at themagain and try to understand what's going on. |Is the pointer
bei ng changed or the data it points to?

On to the next thing... After a while when using pointers you don't need

them anynore in the program But as is denonstrated in the exanple they still
point to nmenory | ocations whether they are used, allocated, freed or whatever.
To make sure a pointer doesn't point to a nmenory spot that does not contain
valid or allocated data, a good programer assigns the value "Nil' to the
pointer. This will nake the pointer point to nothing at all!

Beware! When a pointer is used but not initialised, it points to a random
nenory | ocation. So before use, either assign '"Nil' or a valid address to
it... Go to the hel p-pages of the "N |I' keyword and read them

The basics and sone of the strengths of pointers have been denonstrated
now... But in the beginning of this exanple | was tal ki ng about dynam ca

19

Thefifth example... A crash-coursein PASCAL.

nmenory usage. Well, this is denonstrated in the second part of the exanple.
Read it carefully and read the hel p-pages of the 'New and 'Di spose
procedures. Then | ook at the exanple again. You can skip the parts about
"Cbjects'... Maybe in a latter stage we'll think about them Not for now. ..

The exanpl e continues. Because | put in plenty of remarks in this part of the
code, no problemis expected when analysing this... Do you understand what's
goi ng on?

One ngjor thing to remind is the disposure of everything you have ever
allocated in the program |f a program allocates nenory but doesn't free it
eventually, the programwll 'leak nenory' and after a while the nenory has
been all ocated conpletely so the program crashes... Make sure you free
everything you ever allocated after use! Also never let pointers 'dangle'..
G ve them a usable nenory address or nil. This enables you to do checks
whet her the thingy points to correct data or crap..

EXERCI SE

1) Try to nodify the programso it will allocate a chunk of nmenory for an
ADat aType record dynami cally through the use of PointerThree. Fiddle about
with the data for a while and then free the nenory.

Al t hough things are getting better and better, there's still a thing that

m ght go wong. Wat happens if the programuses so nuch nenory that it ran
out of free nenory? What happens then if you try to allocate nore? Things go
really wong so PASCAL has inplenented the "Nil' trick again. If trying to
all ocate nmenory and after the call to 'New the pointer contains "Nil', a
nmenory error has occurred. This neans no nore heap nenory is available and if
t he program doesn't use that nmuch nenory at a given point in tinme, a nenory
leak is likely to be present..

Anot her trick to check for nmenory leaks is to print out the amount of free
nmenory before you start allocating stuff and after disposing it again. Use the
MaxAvai | and MenmAvail functions for this. Find out in what unit they are

defi ned. .

EXERCI SE

2) Inplenment the nenory |eak check trick with MemAvail in the program exanple.
Al so inplenent the checks for "Nil' after the call to 'New .

kay, now we know how to allocate and free nenory, use pointers to these
chunks of nenory to access the data and safely nanage the heap a program has

access to. Still we haven't solved the database probl emdi scussed in the
begi nning. For this we'll use a '"linked Iist' and that's going to be the
subj ect of the next exanple.

20

The sixth example... A crash-coursein PASCAL.

The sixth exanple...

An unit, linked-lists, sets and procedural -types...

{ The sixth exanple..

In this exanple we'll try to solve the static database problemw th a
"linked [ist'. To denonstrate the use of a linked list, ook at the
code first... But because a linked list is a very general thing one
m ght use quite a lot, the list will be inplenmented in an unit. You'l

notice the only difference between making a programand an unit are a
few statenents at the very start of the code..

Unit LnkLst;
Interface { the public part of a unit }

Type PALi st Node = "ALi st Node;
ALi st Node = Record
TheDat a : Pointer;
TheNext Node,
ThePrevi ousNode : PAl i st Node;
End; { Record }

LoopThr oughAction = (LoopStop, ContinuelLoop, LoopForwards,
LoopBackwar ds, ChangelLoopDirection);

LoopMessages = (LastNodeOfList, FirstNodeOfList,
AnyNodeOf Li st, Onl yNodeOf Li st);
Sor t Met hods = (SortAscendi ngFor Wards, SortAscendi ngBackWards,

Sor t Descendi ngFor War ds, Sort Descendi ngBackWards);

Al | ocat eFunc
DeAl | ocat eProc
LoopThr oughFunc
Conpari sonFunc

= Function : Pointer;
= Procedure(Dataltem: Pointer);
= Function(Dataltem: Pointer; Message : LoopMessages) : LoopThroughAction;
= Function(Dataltenl, Datalten2 : Pointer) : Integer;
Function AllocateNewNode(TheFunc : AllocateFunc) : PALi st Node;
Function GetNodesData(TheNode : PAListNode) : Pointer;
Function SetNodesData(TheNode : PAListNode; Data : Pointer) : Pointer;
Function Get Next Nodel nLi st(TheLi st : PAListNode) : PALi st Node;
Function GetPrevi ousNodel nLi st(TheList : PAListNode) : PALi st Node;
Function LoopThroughLi st Of Nodes(TheLi st : PAListNode; StrtDirection : LoopThroughActi on;
TheFunc : LoopThroughFunc) : PALi st Node;
Function GetFirstNodeO List(TheList : PAlistNode) : PALi st Node;
Function GetlLastNodeOfLi st(TheList : PAlistNode) : PALi st Node;
Function Get Number Of Nodesl nLi st (TheLi st : PAListNode) : Integer;
Procedure | nsertTheNodel nLi st(TheNode : PALi st Node; Var TheList : PALi st Node);
Procedure Del et eTheNodeFronLi st(TheNode : PALi st Node);
Procedure DeAl | ocat eNode(Var TheNode : PALi st Node; TheProc : DeAllocateProc);
Procedure DeAl | ocat eConpl et eLi st(Var ThelList : PALi stNode; TheProc : DeAllocateProc);
Procedure SwapDat aCf Nodes(Nodel, Node2 : PALi st Node);
Procedure SortNodesCOf Li st(ThelList : PALi stNode; Method : SortMethods; TheFunc : ConparisonFunc);

| mpl enent ati on { the private part of the unit }
{----------- - GOBAL VARIABLES HERE - - - - - - - -}
Var _A Nr_Of _Calls_Counter_Ptr : “Integer;

{---- - - ALL FUNCTIONS HERE - - - - - - - - - - - - - - -}
{ Allocates a new node and calls user supplied AlocateFunc... }

Function Al |l ocat eNewNode(TheFunc : AllocateFunc) : PALi st Node;
Var TheNewNode : PALi st Node;

Begi n
New(TheNewNode); { allocate nenory }
I f(TheNewNode = Nil) Then
Begi n
Witeln('!!! ERROR ALLOCATING NODE !!!");
Halt(1);

End; { If Then }

TheNewNode”. TheDat a : = TheFunc; { call user supplied func }

21

The sixth example... A crash-coursein PASCAL.

TheNewNode”. TheNext Node := Ni|;
TheNewNode”. ThePr evi ousNode := Ni | ;

Al | ocat eNewNode : = TheNewNode; { and return new node }
End; { Function }
{ Returns a pointer to the data item of a node... }
Function Get NodesDat a(TheNode : PAListNode) : Pointer;
Begi n

1f(TheNode <> Nil) Then

Get NodesDat a : = TheNode”. TheDat a

El se

Cet NodesData := Ni|;
End; { Function }
{ Sets a datapointer in a given node, returns old pointer... }

Function Set NodesDat a(TheNode : PALi st Node; Data : Pointer) : Pointer;
Begi n

Set NodesDat a : = Get NodesDat a(TheNode) ;

1f(TheNode <> Nil) Then

TheNode”. TheData : = Data;
End; { Function }

{ Get pointer to next node in list or nil... }
Function Get Next Nodel nLi st(TheList : PALi stNode) : PALi st Node;
Begi n
1f(TheList <> Nil) Then
Get Next Nodel nLi st : = TheLi st”. TheNext Node
El se
Cet Next Nodel nList := Ni|;
End; { Function }
{ Get pointer to previous node in list or nil... }

Function Get Previ ousNodel nLi st (TheLi st : PAListNode) : PALi st Node;
Begi n
1f(TheList <> Nil) Then
Cet Previ ousNodel nLi st : = TheLi st”. ThePr evi ousNode
El se
Cet Previ ousNodel nList := Ni|;
End; { Function }

A general |ooping function to run through a linked list...
The start will be the node given as the list. The direction
will be of Direction and for each elenment a call to the
suppl i ed LoopFunc will be nmade... The return value of this
supplied function will define how the |oop continues...
The result returned of this function will be a pointer to
the | ast node bei ng accessed by supplied LoopFunc or Nil.

o A A A A A
o e e e e e e

Functi on LoopThroughLi st Of Nodes(TheLi st : PALi stNode; StrtDirection : LoopThroughActi on;
TheFunc : LoopThroughFunc) : PALi st Node;
Var Current Node : PALi st Node;

Direction : LoopThroughActi on;
Message . LoopMessages;
Begi n

1f((TheList = Nl) O ((StrtDirection <> LoopBackWards) And
(StrtDirection <> LoopForwards))) Then
Begi n
LoopThr oughLi st Of Nodes := N | ;
Exit;
End; { If Then }

Current Node : = Theli st; { set start of loop }
Direction := StrtDirection;

Wil e(Direction <> LoopStop) Do
Begi n
Message : = AnyNodeCf Li st ; { figure out the current position for the nessage }
{ passed to the user supplied function }
I f(CurrentNode”. TheNext Node = Nil) Then
Message : = Last NodeOf Li st ;

22

The sixth example... A crash-coursein PASCAL.

I f(Current Node”. ThePrevi ousNode = Nil) Then

Message : = FirstNodeOf Li st ;

1f((Current Node”. ThePrevi ousNode = Nil) And (Current Node”. TheNext Node = Nil)) Then
Message : = Onl yNodeOr Li st ;

StrtDirection := TheFunc(Current Node”. TheData, Message); { call the user func }
Case(StrtDirection) O { change direction if needed }

ChangeLoopDirection: |If(Direction = LoopForwards) Then
StrtDirection := LoopBackWards

El se
StrtDirection := LoopForwards;
Cont i nueLoop: StrtDirection := Direction; { or keep original direction }
End; { Case }
Direction := StrtDirection; { make it the current direction }
Case(Direction) O { and get the correct new node then }

LoopForwards: Current Node := Get Next Nodel nLi st (Current Node);
LoopBackWar ds: Current Node : = Get Previ ousNodel nLi st (Current Node);
End; { Case }

1f(CurrentNode = Nil) Then { if we hit dirt, stop looping }
Direction := LoopStop;
End; { Wiile Do }

LoopThr oughLi st Of Nodes : = Current Node; { return | ast accessed node or Nil if hit the dirt }
End; { Function }
{ Locates the first node of the list given a 'middle node... }
{ The function starts wal king through the list in BackWards direction }
{ and returns Nil or the last node encountered... }

Functi on _TheUsedLoopFuncFor Fi nds(Data : Pointer; Message : LoopMessages) : LoopThroughAction; Far;

Begi n
I f(Message <> AnyNodeOf Li st) Then { only stop |ooping at the start or end of the list }
_TheUsedLoopFuncFor Fi nds : = LoopSt op { because of this, any |oop maynot start at the end or }
El se { beginning or things wil stop at the first call! }

_TheUsedLoopFuncFor Fi nds : = Conti nueLoop;
{ also increase counter needed if present }
I1f(_AN_O_Calls_Counter_Ptr <> Nil) Then
Inc(_A N_O _Calls_Counter_Ptr”);
End; { Sub Function }

Function Get Fi rstNodeOf Li st(TheList : PAlistNode) : PALi st Node;
Var TnpPtr : “lnteger;

Begi n
Get Fi rst NodeOf Li st : = ThelLi st;
If(TheList = Nil) Then { nothing to do }
Exit;
I f(TheList”. ThePrevi ousNode = Nil) Then { if first is given then return }
Exit;
TheLi st : = TheLi st”. ThePr evi ousNode; { start with a 'mddle" one }
TmpPtr := _A Nr_Of _Cal | s_Counter_Ptr; { save old counter pointer }
_A N_O _Calls_Counter_Ptr := Ni|; { deactivate counter }
Cet Fi rst NodeOf Li st : = LoopThroughLi st Of Nodes(ThelLi st, LoopBackWards, _TheUsedLoopFuncForFinds);
_A Nr_Of _Calls_Counter_Ptr := TnpPtr { restore old counter pointer }
End; { Function }
{ Locates the last node of the list given a 'm ddle' node... }
{ Sane trick is used like the find of the first node but we start }
{ looping in the forwards direction now... }
Function Get Last NodeOf Li st(TheList : PAlistNode) : PALi st Node;
Var TnpPtr : ~lnteger;
Begi n
Get Last NodeOf Li st : = Theli st;
If(TheList = Nil) Then { nothing to do }
Exit;
I f(TheList”. TheNext Node = Nil) Then { if last is given then return }
Exit;
TheLi st : = TheLi st”. TheNext Node; { start with a 'mddle one ... }
TmpPtr := _A Nr_Of _Cal | s_Counter_Ptr; { save old counter pointer }
_A N_O _Calls_Counter_Ptr := Ni|; { deactivate counter }
Get Last NodeOf Li st : = LoopThr oughLi st Of Nodes(ThelLi st, LoopForWards, _TheUsedLoopFuncFor Fi nds);
_A Nr_O _Calls_Counter_Ptr := TnpPtr; { deactivate counter }

End; { Function }

23

The sixth example... A crash-coursein PASCAL.

{ Counts the nunber of nodes present in a list... }
Function Get Nunber Of Nodes| nLi st (ThelList : PAListNode) : Integer;
Var SavePtr . "l nteger;
Count er . Integer;
Begi n
If(TheList = Nil) Then
Begi n
Get Nunber Of Nodesl nLi st : = 0;
Exit;
End; { If Then }
SavePtr := _A Nr_Of _Calls_Counter_Ptr; { save old counter addr }
_A Nr_Of _Calls_Counter_Ptr := Addr(Counter); { set new counter addr }
TheLi st : = GetFirstNodeOf Li st (TheLi st). TheNext Node; { locate beginning of list }
Counter := 1; { set counter to 1 and count w th | oopthrough }
ThelLi st : = LoopThroughLi st Of Nodes(ThelLi st, LoopForWards, _TheUsedLoopFuncForFinds);
_AN_O _Calls_Counter_Ptr := SavePtr; { restore old counter addr }
Get Nunber OF Nodes| nLi st : = Counter; { return nr counted }
End; { Function }
- - - - - - - - - AL PROCEDURES HERE - - - = - - = = - = = - - -}
{ Inserts a given Node into the linked list |ocation specified... }
{ The routine will put the new node just infront of the location... }
{ If alist pointer of Nil is passed through the inserted node will }
{ becone the base of the list... }

Procedure | nsertTheNodel nLi st (TheNode : PALi st Node; Var ThelList : PALi st Node);

Begi n
If(TheNode = Nil) Then { check if node given is not allready part of list }
Exit;
1 f(TheNode”. TheNext Node <> Ni|l) Then
Exit;
1 f(TheNode”. ThePrevi ousNode <> Ni|l) Then
Exit;

TheNode”. TheNext Node : = Theli st ;

1f(TheList <> Nil) Then
Begi n
TheNode”. ThePr evi ousNode : = Theli st”~. ThePr evi ousNode;
TheLi st . ThePrevi ousNode : = TheNode;
I f (TheNode”. ThePrevi ousNode <> Ni|l) Then
TheNode”. ThePr evi ousNode”. TheNext Node : = TheNode;
End { If Then }
El se
Begi n
TheNode”. ThePrevi ousNode := Ni | ;
TheLi st := TheNode;
End; { If Then Else }
End; { Procedure }

{ Deletes a given Node fromthe linked list it is in...

{ The procedure doesnot release the menory used by the data and
{ the node itself! Use the DeAll ocateNode for this...

{ This routine just breaks the links of pointers in a list...

B]

Procedur e Del et eTheNodeFronii st (TheNode : PALi st Node);
Begi n
1f(TheNode <> Nil) Then
Begi n
{ relink the list first }
I f (TheNode”. TheNext Node <> Nil) Then
TheNode”. TheNext Node”. ThePr evi ousNode : = TheNode”. ThePr evi ousNode;

I f (TheNode”. ThePrevi ousNode <> Ni|l) Then
TheNode”. ThePr evi ousNode”. TheNext Node : = TheNode”. TheNext Node;

{ then break links fromthis node... }
TheNode”. ThePr evi ousNode := Ni | ;
TheNode”. TheNext Node 1= N |;

End; { If Then }
End; { Procedure }

{ Deal |l ocates a node and calls user supplied proc for the data...
{ This procedure also renoves the node fromthe list if it is part
{ of alist automatically...

B e ke ek

24

The sixth example... A crash-coursein PASCAL.

Procedure DeAl | ocat eNode(Var TheNode : PALi st Node; TheProc : DeAl |l ocateProc):
Var TnpNode : PALi st Node;

Begi n
1f(TheNode <> Nil) Then
Begi n
TrnpNode : = Get Next Nodel nLi st(TheNode); { save a link to the rest }
1f(TnpNode = Nil) Then
TnpNode : = Get Previ ousNodel nLi st (TheNode) ;

Del et eTheNodeFr onli st (TheNode); { first renpve the links of this node if it is linked in a list }
TheProc(TheNode”. TheData); { call supplied proc to deallocate data }

Di spose(TheNode); { and renove nenory for the node }

TheNode : = TnpNode; { and set pointer given to valid value }

End; { If Then }
End; { Procedure }

.................................}

{ Deal |l ocates the conplete |ist node for node... }

Procedure DeAl | ocat eConpl et eLi st (Var TheList : PALi st Node; TheProc : DeAllocateProc);
Begi n
Wil e(TheList <> Nil) Do
DeAl | ocat eNode(TheLi st, TheProc);
End; { Procedure }

{ Swaps the data of two nodes... }
Procedur e SwapDat aCf Nodes(Nodel, Node2 : PALi st Node);
Var TnpPtr : Pointer;
Begi n
1f((Nodel <> Nil) And (Node2 <> Nil)) Then
Begi n

TrmpPtr : = Node2”. TheDat a;

Node2”. TheData : = Nodel”. TheDat a;

Nodel”. TheData := TnpPtr;

End; { If Then }
End; { Procedure }

{ Sorts the list of nodes with a given conparison func... }
{ The TheFunc conparison function returns -1, 0, or 1 based on the }
{ ~conparison of the two data pointers given. }
{ The TheFunc returns -1 if Data2 is 'bigger' than Datal, O if they }
{ are equally '"big', 1if Datal is 'bigger' than Data2. }
{ The list will be sorted according to the nethod given: }
{ SortAscendi ngForWards: sort list fromsmall to big elenents }
{ going forwards in the list from node given. }
{ SortDescendi ngForWards: sort list frombig to small elenents }
{ going forwards in the list from node given. }
{ SortAscendi ngBackWards: sort list fromsmall to big elenents }
{ goi ng backwards in the list fromnode given. }
{ SortDescendi ngBackWards: sort list frombig to snall elenents }
{ goi ng backwards in the list fromnode given. }

Procedure SortNodesCOf Li st(ThelList : PALi stNode; Method : SortMethods; TheFunc : ConparisonFunc);

Function _Fi ndSwapNodel nLi st (TheSubLi st : PAListNode) : PALi st Node;
Var Current Node : PALi st Node;
SwapNodeSoFar : PALi st Node;

Begi n
SwapNodeSoFar : = TheSublLi st; { start at given node }
If(Method In [SortAscendi ngFor Wards, SortDescendi ngForWards]) Then
Current Node : = Get Next Nodel nLi st (TheSubLi st) { get next node }
El se

Current Node : = Get Previ ousNodel nLi st (TheSubList); { get previous node }

Wil e(CurrentNode <> Nil) Do { if nil then done else |oop }
Begi n
I1f(Method In [SortAscendi ngFor Wards, SortAscendi ngBackWards]) Then
Begi n { and check if current is smaller }
1 f(TheFunc(Get NodesData(CurrentNode), GetNodesData(SwapNodeSoFar)) < 0) Then
SwapNodeSoFar : = Current Node; { if so then found new smaller }
End
El se { or check if current is bigger }
I f(TheFunc(Get NodesData(CurrentNode), GetNodesData(SwapNodeSoFar)) > 0) Then
SwapNodeSoFar : = Current Node; { if so then found new bigger }

1f(Method In [SortAscendi ngFor Wards, SortDescendi ngForWards]) Then
Current Node : = Get Next Nodel nLi st (Current Node) { get next node }

25

The sixth example... A crash-coursein PASCAL.

El se
Current Node : = Get Previ ousNodel nList(CurrentNode); { get previous node }
End; { Wile Do }

_Fi ndSwapNodel nLi st : = SwapNodeSoFar ; { return best found so far... }
End; { Sub Function }
Begi n
Wi |l e(TheList <> Nil) Do
Begi n
SwapDat aCf Nodes(ThelLi st, _Fi ndSwapNodel nList(TheList)); { swap found with current one }
If(Method In [SortAscendi ngForWards, SortDescendi ngForWards]) Then
TheLi st : = Get Next Nodel nLi st(TheList) { get next node }
El se
ThelLi st := GetPrevi ousNodel nLi st(TheList); { else get previous node }
End; { Wile Do } { list is now sorted... }
End; { Procedure }
{------ UNIT INIT STARTS HERE - - - - - - - - - - - }
Begi n
_ANr_O_Calls_Counter_Ptr := Ni|; { init counter pointer to nil }
End. { Unit }

{ As you can see, the difference between a programand an unit is snall
The only extra statenents are the "Interface', '"Unit' and 'Inplenentation’
statenments. Surely these statenents speak for them sel ves but never the
| ess, | ook at the correspondi ng hel p- pages.

Ckay, now you know how to nmake an unit. Now the question arises 'why should
you bot her nmaking units? . To answer this question you should have a cl oser
| ook at this unit. Let's analyse the code then..

First of all, in this unit a type is defined. The type 'ALinkNode' is a
record containing three pointers. Two pointers point to the type itself but
the third pointer is declared with the 'Pointer' statenment. Perhaps you recal
that these pointers are just nornmal pointer that can point to anything you
want. That is one of the tricks you'll nake use of in nore prograns. Wth

t hese pointers you can handl e anything you |ike!

Back to the two other pointers. As the nanmes of the record type suggest these
will be used to nake a linked Iist of 'ALi nkNode' types. But what actually is
such a linked list? Have a | ook at the pictogram bel ow

(D (2) (3)

o e e e oo - + o e e e oo - + o e e e oo - +
Nil <---+ 'Previous' +<---+ 'Previous' +<---+ 'Previous' +
o e e e oo - + o e e e oo - + o e e e oo - +
+ Next +--->+ Next ' +--->+ Next +---> N |
o e e e oo - + o e e e oo - + o e e e oo - +
+ Dat a + + ' Dat a + + Dat a +
o e e e oo - + o e e e oo - + o e e e oo - +
I I I
[sonme data] <--+ [sonme data] <--+ [sonme data] <--+

In this pictogramthree nodes are 'allocated and placed sonmewhere in nmenory.
For conveni ence they are nunbered 1..3. Each of these nodes has a 'Data

poi nter pointing to sonme chunk of nmenory containing the data you like. That's
why you shoul d use type-less pointers for these. Now the node can point to any
data you |ike.

The nane linked list is also apparent now. Al the nodes are |inked together

by use of the other two pointers. By using 'Nil' one can signal the ending
nodes of a linked list. Using the 'Previous' pointers one can nove 'Downwards

26

The sixth example... A crash-coursein PASCAL.

or 'Left' in the list to the previous node. Using the 'Next' pointer... Well,
you can guess.

The list is set-up and ready to be used as soon as we know where in nenory a
node is. The rest we can find through the Iinks. But one nust always have at
| east one pointer in the code pointing to a single node of the list. If this
is not the case, the whole list is lost and the nenory it uses plus the data
is un-findable... Keep this in mnd! It is very inportant!

But let's assune, we are experts in coding linked lists and we have a pointer
to the 2nd node. Because we were the experts we called this pointer 'TheList'.
Wth this pointer and the right code, we can get anything fromthe list.

You now understand how to, 'in principle', walk through a list and we got

the pointer to a node of the list. Things would be very shanmeful if that was
all we could do so nore nust be possible. One of the maj or advantages of such
alist isit's dynamical nature. Surely it should be dynam cal because we are
trying to solve the static data problemw th such a list.

How cone it is dynamic then? Well, let's suppose we allocated a new node and
set the data pointer correctly to a new data entry or chunk of nmenory. We can
actually extend the list just by nanipulating the 'Next' and 'Previous

poi nters of a node.

The situation:

TheList ----------- +
|
(1) | (2) (3)
Y
o eemeaaa + o eemeaaa + o eemeaaa +
Nil <---+ 'Previous' +<---+ 'Previous' +<---+ 'Previous' +
o eemeaaa + o eemeaaa + o eemeaaa +
+ Next +-- - >4+ Next ' +-- - >4+ Next +---> Ni |
o eemeaaa + o eemeaaa + o eemeaaa +
+ Dat a + + ' Dat a + + Dat a +
o eemeaaa + o eemeaaa + o eemeaaa +
| |
[sonme data] <--+ [sonme data] <--+ [sonme data] <--+
(New node)
o eemeaaa +
Nil <---+ 'Previous' +
o eemeaaa +
+ Next ' +---> Ni |
o eemeaaa +
+ ' Dat a +
o eemeaaa +
|
+----> [new dat a]
VWhat if we fill the 'Previous' and 'Next' pointers of the new node with the

contents of the 'Previous' pointer of the TheList node and the address of the
TheLi st node resp. W are half way of inserting the new node in the list...
The rest that remains to be done is to actually get the pointers of nodes 1
and 2 (TheList). Point the 'Next' pointer of node 1 to the new node and point
the 'Previous' pointer of the TheList node also to the new node.

27

The sixth example... A crash-coursein PASCAL.

W now have the situation

TheList ----------- +
|
(1) (new node) | (2) (3)
Y
-------- + e e e
evious' +<---+ 'Previous' +<---+ 'Previous' +<---+ 'Previous' +
-------- + e e e
ext' +-- >+ " Next' +-- >+ " Next' oo >+ " Next' +---> Ni |
-------- + e e e
ata + + Dat a + + ' Dat a + + Dat a +
-------- + e e e
| |
[new data] <--+ [sonme data] <--+ [sonme data] <--+
O course with the 'Previous' pointer of node 1 still "Nil' to signal the end

of the I|ist.

You see, it is possible to "insert' new nodes. The reverse process is also
possi ble (take a l ook at the 'Del eteTheNodeFronii st' procedure) and the whol e
l[ist is dynamical. Have a |l ook at the 'InsertTheNodel nList' procedure and
make sure the above explained nethod is being used..

O course sone extra routines handling nodes or |ists of nodes would be

wel cone in an unit. That's why the unit is not just conposed of the routines
nentioned so far. The rest of the unit is code to run through a list of
nodes, sort them swap the data of two nodes etc. Have a very good | ook at

t he LoopThroughLi st function. By making it so general as | did, |I'mable

of using it for several things and 're-use' code w thout actually doing the
wor k nore than once..

Besides the idea of a linked list, this unit is also a good exanple of a
general unit. Through the use of typed procedures and functions |ike

' Conpari sonFunc' the unit doesn't care what data the list will hold, the user
wi Il supply the correct procedures or functions as paraneters when needed.
Look up in the hel p-pages the information of 'procedural-types'. It is a
useful tool for a progranmer

Anot her new thing introduced in this unit is the 'Set' of things... Have a
ook at the 'SortMethods' type definition. A variable of the type 'SortMethod'
can only be one of the four specified itens of the set. One can actually nake
statenents |ike:

If(Method In [.....]) Then

This is used in the 'LoopThroughList' function and the ' SortNodesCOf Li st
procedure.

QUESTI ONS:

1) Wiy did | inplenent a pointer to the counter instead of just using
an Integer itself? Wat consequences does this have for the code and
what are the advantages? G ve an exanple of a situation explaining why
this trick i s needed!

2) How would a line of code look like if |I wanted to insert a new data
iteminto a list? Try to use the 'All ocat eANewNode' function for this.

3) What happens if to press 'Run' now? How cone it gives this nessage?

28

The sixth example... A crash-coursein PASCAL.

EXERC! SES:

1) Renane this unit file to 'LnkLst.pas' and conpile that file to
"I nklst.tpu’ and do the next exanple first to get used to the use
of this unit...

2) CGet your version of the database programyou nade and put in a
correct 'Uses' statement so it will use this new unit.

3) Rewite your code now so it uses the routines of this unit.
A problem may arise when | oading or witing a database from or
to afile. The file may contain just one or perhaps 10 records.
The best option is to use the "I OResult' nethod... Look in the
hel p- pages for the exanple of this keyword... Now nmake the read
fromfile routines in such a way it keeps on reading data unti
an IOResult "error' is encountered... This nmeans the end of the
file was reached and all data was read... The other trick is to
deternmine the file size in bytes and divide by the nr of bytes
an APerson record holds. Now you now the nunber of records in the
file and you can start reading themwith a For loop... Even a
better trick is to use un-typed files (lookup the 'File' keyword)
and when dunping the data to file, first wite an Integer with the
nunber of records following and then all the records. Perhaps
you shoul d use the 'BlockWite' and 'Bl ockRead'" procedures wth
this... Plenty of options, so choose a variant you didn't think
of yourself..

Because you already did the next exanple and |I'm out of exanples, it

is nowtinme to start working with FORTRAN 90. Get the handbook of
FORTRAN 90 and try to find the statenments used so far in PASCAL. You'l
noti ce PASCAL and FORTRAN don't seemto different... but... there's a
catch... Wat is it? Try witing sone of the first exercises in FORTRAN
90. This will be a good experience for you... PASCAL is finished!

29

The seventh example... A crash-coursein PASCAL.

The seventh exanpl e...
Bui | di ng, meking and debugging with the Borland Turbo Pascal 7.00 |IDE...

{ Finally the [ast exanple..

Have a |l ook at the code first and see howthe linked list unit is
used to create a list of 150 records, each containing an integer
This list will be initialised with random nunbers, printed to
screen and then sorted. After the sort, the list is printed again
and deal | ocat ed.

Program Test Li st ;
Uses Crt, LnkLst;

Type ARec = Record { a sinple record containing an integer }
Val ue : Integer;
End; { Record }
PArec = "“ARec;

{ - - - - = - - - - - - - - GLOBAL VARI ABLES - - - - - - - }

Var TheLi st, Node : PALi st Node; { a general pointer to the list and a node }
Looper : Integer; { a loop variable }

{---------- ALL FUNCTIONS - - - - - - - - - - - - }

{ Allocate function... Must be far or else won't work... }

Function Allocate : Pointer; Far;

Begi n
Al locate := New(PARec); { easy huh ? }
End; { Function }
ST T T T Tttt s s s s s s s s s s s s s s }
{ A conparison function... Also far ! }

Function Conpare(Pl, P2 : Pointer) : Integer; Far;

Begi n
If(PARec(P1)~.Value > PARec(P2)”~.Value) Then { just like the unit describes it... }
Conpare : = 1;
If(PARec(Pl)”~.Value < PARec(P2)~.Value) Then
Conpare := -1;
If(PARec(Pl)”~.Value = PARec(P2)~.Value) Then
Conpare := 0;

End; { Function }

............................. }
{ A looper function... Also far ! }

Function Printlten(Data : Pointer; Message : LoopMessages) : LoopThroughAction; Far;

Var Thelnt : Integer;

Begi n
Thelnt := PARec(Data)”.Val ue; { get the data from pointed record into tenp var }
Wite('DATA: "', Thelnt, '" '); { print it and continue with the rest...

Printltem:= ContinueLoop;
End; { Function }

{--------- ALL PROCEDURES - - - - - - - - - - - - }
{ The deal |l ocation procedure. Mist be FAR !!! }
Procedure DeAllocate(P : Pointer); Far;

Begi n

Di spose(PARec(P)); { oh oh oh, how conplicated... }

End; { Procedure }

R T }
{ Just a sinple print routine for a list... }

Procedure PrintTheList(TheList : PAListNode);
Begi n { yep, also very conplicated !!! }
TheLi st := LoopThroughLi st Of Nodes(Get FirstNodeCOf Li st(TheList), LoopForwards, Printltem);
End;

The seventh example... A crash-coursein PASCAL.

Begi n
Randoni ze;
Witeln('MEM', MaxAvail); { a check for menory leaks... }
For Looper := 1 To 150 Do
Begi n
Node := Al |l ocat eNewNode(Al locate); { allocate a new node with a record init... }
I nsert TheNodel nLi st (Node, TheList); { insert it inthe list }

PARec(GCet NodesData(Node))”.Value := Randonm(100); { oh, right, also give the data sone value... }
End; { For Do }

Witel n(Get Number Of NodeslnList(TheList), ' NODES INLIST I'!!"); { just a sinple check... }
Print TheLi st(TheList);

Witeln("SORTING ... press the enter key to continue...'); { realy needs explaining huh? }
Readl n;

Sort NodesCOf Li st (Get Fi rst NodeOf Li st (TheList), SortAscendi ngForwards, Conpare);
Print TheLi st(TheList);
DeAl | ocat eConpl et eLi st (TheList, DeAllocate);
Witeln('MEM', MaxAvail); { the final |eakage check... }
End. { Program}

{ Well, the code is very sinple and straight forwards... No need to explain
things that nmuch. Wiy the hell then nmake this exanple? Well, you nearly |earnt
the nost common tricks of the book. There's still one thing we actually didn't

pay any attention too.

Debuggi ng. .. Wy debuggi ng? Wl |, perhaps you already found out that no
programyou wite runs as it should the very first tinme. You nearly always
nmake a little mstake or a bug. The trick is to find themin a fast and
structured way.

The best nethod for this is not to wite the conplete programat once, but to
build it routine for routine and check each one of them as soon as you think
it is finished. Try to test them and nmake sure they do what they should. This
way you can elimnate routines fromthe conplete code whi ch has been
val i dated al ready. The bug nmust be in the part you have just witten...

O course, knowi ng where nore or less the bug is doesn't help fixing it.
Sonetimes it would be nice if you were able to follow the code while it was
running step by step and | ook at the contents of variables along the way. This
is possible with the debugger. Because using debuggers is as general as
programm ng, we'll try and use the internal debugger of Turbo PASCAL to foll ow
the code of this exanple and the unit(s) it uses..

First activate the debugger. Check under the option nenu for the conpiler
options. Make sure all the checkboxes are checked except the ' Open Paraneters
one. Al so when view ng the options get the help of each item..

Now we have nearly activated all debug options in the conpiler. But the
i nternal debugger itself still has to be turned on. Do this by checking the
"Integrated...' option in the options of the debugger nenu..

So, having activated the 'internal' debugger and set the correct conpiler
options the code needs to be reconpiled with these options. Choose the Conpile
option of the conpile nenu. Now the currently viewed code is reconpiled. This
obviously neans that the unit this code uses is still conpiled with the ol der
options.

To make sure everything this code uses is reconpiled with the new options, do
a 'build . This option is also found under the conpile nenu. The difference

between a Conpile and a Build is that a Build reconpiles anything the current
code or '"primary file' uses. Any unit or includes... Nornally you wouldn't do

31

The seventh example... A crash-coursein PASCAL.

this because it only takes nore conpilation tinme and if nothing has changed in
the sources, it shouldn't do nore than needed. So a conpile is conpile
the currently viewed file and build is do the whole lot all over again.

The thing in the mddle is called a 'Make'. Also present in the conpile nmenu
this command only re-conpiles those files changed since the last tine things
where conpiled. O course this also is over anything the prinmary file or
currently viewed code is using..

Do a build now to nake sure everything is done over and correct now...

Havi ng done that, we are ready to use the debug facilities. Get the debug nmenu
and have a | ook at the possible options you have access to... Let's explain in
short what it all neans..

A breakpoint is a marker in the code. This marker can be put on any line of
the code and as soon as during a run this marker is encountered the program
stops and gives you all the debug capabilities it offers. To set a 'sinple'
breakpoint go to the Iine where you want to place one and press CTRL-F8.

Go to the line with the first Witeln statement of the main program Put a
si mpl e breakpoint there and start running the code. As you can see, the line
is inverted to signal the current run position. Now press F8 to do a single
step. The code is run for only that single Iine. Look at the user screen
(CTRL-F5) and nmeke sure the witeln statenent went okay...

Wth the single step you can step through the code line by line. As soon as a
function or procedure is encountered, the routine is called and executed and
the next Iine will be stepped to. Try to step through the first 5 iterations
of the For | oop.

Things would be nice if we could actually see what val ue Looper had each timne.
O course the debugger can do this for you. Try the 'add watch' option in the
debug nmenu and nake a watch for the 'Looper' variable. You'll find a new

wi ndow cal | ed 'Watches' is created on the desktop. In this w ndow the chosen
vari abl es are being 'watched' . Try and step through another couple of
iterations of the for loop and pay attention to the 'watch' you just set..
Neat huh? A very useful tool in debuggi ng conpl ex code!

But sonetines the code will be so conplex you al so want to know what all the
functions and subroutines do that are called. To step through a piece code and
to all the routines being called, try to use the 'Trace into' option fromthe
run menu. O just press F7 each tinme. Try this for a single iteration of the
for | oop. Make sure you end up in the for |oop again before we continue with
the lesson ! Enjoy... Ch, try to nmake sone watches along the route through the
code. ..

kay, you now actual ly have seen the trick of using typed-procedures in
action! Cool huh? Makes life easier for progranmers..

Now we have made sure the for | oop behaves as expected and contai ns no bugs,
we can run the code to the next statenent after the |loop. There are two

net hods for doing this. The first is using a breakpoint again. This is easy
and you should try this yourself. O course after this you shouldn't single
step or trace into anynore but just run the code. It will stop as soon as the
breakpoint is hit. Have a |l ook at the watch of 'Looper' now. .. Is the value

as expected?

32

The seventh example... A crash-coursein PASCAL.

But as | mentioned, there's another trick of running to a specified point

wi t hout using a breakpoint. To denonstrate this, put your cursor at the next
witeln statenent just after printing a list. Use the '"Go to cursor' option
fromthe run nenu or press F4. The code will run up to the cursor now Check
the watch again! Make sure things are okay and don't forget to check the user
screen as well! Is it okay ? Then this nmeans the print routine worked and
contai ns no bugs.

Now trace into the 'SortListOf Nodes' routine in such a way you are actually
executing the code of the sub function present in the 'SortListO Nodes
routine. Now use the 'Call stack' option of the debug nenu. Wat do you see?

You see the calling sequence of the code. The top routine is the one you're
currently in, the middle one is the one that called the routine you're in
etc... Helps alot to figure out where you are and how the code is desi gned!

Now create a watch for the Method paraneter and try to verify the contents.
Then trace into through the sorting procedure and take a close | ook at the
Call stack wi ndow. ..

Ckay, we had enough of this. It seens to work and everything is okay. Go to
the main program wi ndow, set the cursor on the following PrintList call and
press F4. Look at the call stack and the watch window .. Al Oay?!?!

The rest of the debugging is left as an exercise for you... Trace into the
PrintList procedure, set a breakpoint in the Printltemis wite statement with
a counter value of 10 (first set the breakpoint, then get the breakpoint

wi ndow and set the nunber of counts...). Run the code, check the value of the
data currently passed into the function and | ook at the Call stack... Al
seens okay and no bugs are present ??

Then press CTRL-F2 to reset the code and the debugger and fiddle around with
some breakpoints and watches. Try to trace into the 'InsertNodel nLi st
routine. ..

Havi ng done all this, you are now abl e of debugging a code... You can continue

with the exercises of the previous exanple... You'll find out the use of the
debugger in that 'bigger' |esson !

33

