Multitasking

The ability to execute more than one task at the same time, a task being a program. The terms multitasking and multiprocessing are often used interchangeably, although multiprocessing implies that more than one CPU is involved.

In multitasking, only one CPU is involved, but it switches from one program to another so quickly that it gives the appearance of executing all of the programs at the same time.

There are two basic types of multitasking: preemptive and cooperative. In preemptive multitasking, the operating system parcels out CPU time slices to each program. In cooperative multitasking, each program can control the CPU for as long as it needs it. If a program is not using the CPU, however, it can allow another program to use it temporarily. OS/2, Windows 95, Windows NT, the Amiga operating system and UNIX use preemptive multitasking, whereas Microsoft Windows 3.x and the MultiFinder (for Macintosh computers) use cooperative multitasking.

▶ Multi-Tasking/Multi-Programming Operating Systems
Most users were, initially, content with this single program facility but with the development of more powerful CPU�s, more memory and large, cheap disk drives, operating system�s have been developed that allow more than one PROGRAM or TASK to run at the same time. This is known as Multi-tasking or Multi-programming. A single processor cannot really process more that one task at the same time - it only appears to do this. Sometimes this is called CONCURRENT or SIMULTANEOUS processing. The Windows operating system does this by allowing each program it’s own portion of memory and common memory for cutting and pasting between applications. Each task can be given a certain portion of CPU time (known as TIME SLICING) and, typically, each task will be run as a ROUND ROBIN task where each task is serviced in turn. There is an analogy here of a teacher trying to answer several pupil questions by giving each question a slice of time and then moving on to the next. If some of the questions are not answered in the time slot available they are suspended and then answered when the pupil’s turn comes round again. In the computer situation each task is taken in turn until the last task is processed and then the whole process starts again.

[image: image1.png]time slice exhausted

scheduled to camplete

Processor Qe Processor

to run
runnable programs runriing [program

VO request granted

70 fueues

unrunnable programs

In the above example a task will enter the processor queue and, if it is runnable, be passed through to the processor when it’s time slice appears. At this stage there are three possible outcomes.

It could be finished.

It runs out of processor time and returns to the queue to await it’s turn.

It requires I/O time. When this happens it passes to the I/O queue where it waits for the device to be free.

The main problems with a multi-tasking system are as follows:

In the above example a task will enter the processor queue and, if it is runnable, be passed through to the processor when it’s time slice appears.

Some, or all, of the tasks have to be kept in memory at the same time,

If a task was to be re-loaded every time it was required it’s time slice would probably be exhausted. By leaving the core of the program in memory some processing can take place. The most efficient multi-tasking systems need a great deal of memory to work efficiently.

If too many tasks are initiated the system will slow down to an unacceptable speed.

In the simplest arrangement two tasks would each be given 50% of the CPU time. Unfortunately the operating system also requires some CPU time and this will increase as the task list increases. Eventually the system will grind to a halt.

Large programs will need to have some information stored on disk and the recall takes time.

The usual technique for dealing with this problem is to split the program into “pages” of data. The most frequently used pages would be left in memory and only when the program tries to access a page which is NOT in memory would the operating system bring in the appropriate page. In large or badly behaved programs the time can still build up and leads to the idea called THRASHING where pages are brought to and from disk to memory and very little processing takes place. If the system works well we have a VIRTUAL MEMORY system. Imagine the following situation:-

A computer has 10MB of memory which is paged into 10 x 1MB pages. Each page has a physical (real) address and address space. A program takes up 20MB and again is “paged”. When the program starts the first 10MB is loaded into memory. Processing will start and continue until an address outside the 10MB is required. At this point the operating system will generate an interrupt which will be processed and responded to. In this case the system will replace a page in memory with one stored on disk. In principle the memory looks, to the user, to be the real (RAM) memory plus the capacity of the hard drive.

Sophisticated memory management techniques have to be used in order to stop one program overlapping the memory area of another.

Each program must be given it’s own area of memory and no other program, under normal conditions, will have access to this. In a situation where two programs were occupying memory at the same time then if program A altered the data in program B’s area then program B would probably crash. In early versions of Windows it crashed the OPERATING SYSTEM as well. There are circumstances when this rule is broken. With Windows programs it is possible to cut and paste from one application to another. The data is cut into an overlap area and then pasted from this area.

http://e-subjects.co.uk/mod/resource/view.php?id=1643

PAGE

