Java' Data Access

JDBC

and JAXP

[

+ JNDI

Todd M. Thomas

0

Features coverage of JDBC 3

Updanes and sarepde oo

Visrt us ot mandibooks.com

30 This Cewsyruise 'iel 5o

. _-._..r

N _..

Java Data Access—JIDBC, JNDI, and JAXP

Todd M. Thomas

Published by

M&T Books

An imprint of Hungry Minds, Inc.
909 Third Avenue

New York, NY 10022
http://www.hungryminds.com/

Copyright © 2002 Hungry Minds, Inc. All rights reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced or transmitted in any form, by any means
(electronic, photocopying, recording, or otherwise) without the prior written permission of the
publisher.

Library of Congress Control Number: 2001092891
ISBN: 0-7645-4864-8

Printed in the United States of America
10987654321

10/RR/QR/QYIN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG Books
Australia Publishing Corporation Pty. Ltd. for Australiaand New Zealand; by TransQuest Publishers
Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop Information Inc.
for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for France; by
International Thomson Publishing for Germany, Austria, and Switzerland; by Distribuidora Cuspide
for Argenting; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA
S.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the Philippines; by
Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for the Caribbean
and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A.
de C.V. for Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops for
Finland.

For genera information on Hungry Minds’ products and services please contact our Customer Care
department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For salesinquiries and reseller information, including discounts, premium and bulk quantity sales,
and foreign-language translations, please contact our Customer Care department at 800-434-3422,
fax 317-572-4002 or write to Hungry Minds, Inc., Attn: Customer Care Department, 10475
Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer
Care department at 212-884-5000.

For information on using Hungry Minds’ products and services in the classroom or for ordering

examination copies, please contact our Educational Sales department at 800-434-2086 or fax 317-
572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public
Relations department at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY : THE PUBLISHER AND
AUTHOR HAVE USED THEIR BEST EFFORTSIN PREPARING THISBOOK. THE
PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTSOF
THISBOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESSFOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIESWHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN
THISPARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVESOR WRITTEN SALESMATERIALS. THE ACCURACY AND
COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY
PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE
PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL,
INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks. Hungry Minds, the Hungry Minds logo, M& T Books, the M& T Books logo, and
Professional Mindware are trademarks or registered trademarks of Hungry Minds, Inc., in the United
States and other countries and may not be used without written permission. Java and JDBC are
trademarks or registered trademarks of Sun Microsystems, Inc. All other trademarks are the property
of their respective owners. Hungry Minds, Inc., is not associated with any product or vendor
mentioned in this book.

Credits

Acquisitions Editor
Grace Buechlein

Project Editor
Michael Koch

Technical Editor
Terry Smith

Copy Editor
S. B. Kleinman

Editorial Manager
Mary Beth Wakefield

Senior Vice President, Technical Publishing
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Nancee Reeves

Graphics and Production Specialists
Sean Decker Melanie DesJardins
Laurie Petrone

Jill Piscitelli

Betty Schulte

Jeremey Unger

Quality Control Technicians
Laura Albert

David Faust

John Greenough

Andy Hollandbeck

Angel Perez

Proofreading and I ndexing
TECHBOOKS Production Services

Cover Image
© Noma/lmages.com

About the Author

Todd M. Thomas isan Oracle Certified DBA and Java developer with more than six years’
experiencein the IT industry. He currently works as an independent consultant, software devel oper,
and trainer focusing on Java database and network programming. His work has ranged from building
and managing data warehouses to architecting enterprise Java server applications. His most recent
assignment was helping develop the network and database interface layers for BlueMoon, Airtuit
Inc.’ s wireless application gateway. His education includes aB.S. in Industrial Engineering and an
M.S. in Engineering Science from the University of Tennessee in Knoxville.

About the Contributors

Johennie Helton has been an architect, devel oper, and software consultant on numerous n-tier—
distributed systems and products. She has worked with databases and database design and
implementation since 1990. Her database design projects include an application to make available
automobile inventory online, a material management application for the health-care industry, and an
application for customer coupon redemption for the grocery and coupon industries. During her
career, her focus has been on creating applications with |eading-edge technology, including
application modeling, database design and implementation, and using J2EE and Java technologies to
provide enterprise solutions to customers. She has a strong background in object-oriented analysis
and design aswell asin hypermedia systems. She has an M.S. in Computer Science from the
University of Colorado.

Steve Nobert got hisfirst taste of programming in 1983, when he took a mathematics classin his
senior year in high school. The class entailed devel oping computer programs on an Applellieto
solve math problems. He hasn’ t looked back since. As much as Steve |oathed school, he still went on
to receive his Associate of Science degree from Northern Virginia Community Collegein 1988, his
Bachelor of Science degree from James Madison University in 1990, and his Master of Science

degree from George Mason University in 1996, all of them in Computer Science. He has more than
twelve years of professional programming experience involving myriad heterogeneous computing
languages, operating systems, and state-of-the-art technologies. Steve’s primary career focus has
been developing GUI applications on various flavors of UNIX. In 1996, Steve recommended that an
unmaintainable and internationalized cross-platform application be rewritten using Java technology.
He taught himself Javato develop the application/applet, and Java technology instantly became his
primary career focus and has been so ever since. He has been involved in database technology since
1990. Steve has lived most of hislife overseas and then in the northern Virginia area for almost
fifteen years. Steve and hiswife, Misti, reside in Knoxville, Tennessee.

Table of Contents

Part I: Getting Started with JavaData ACCESS..........cooooiiii i 1
CRAPLEILIST. ...
Chapter 1: Introducing JavaData AcCeSSDEVEIOPMENL...........cooiiiiiiiii i 2
LT I £ 4 = o (= PP ‘
Taking Stockof ENterpriSEDAtASTONES.cvvviiiiiiiieiieeeeeee e, 2
(D= 1tz L0 T2 LT) (=] 0 =T PP 4
NamMINGANAAIrECIONYSEIVICES......cviiiiiiiiiieee ettt 5
XML SEBIVICES. ... ttteeeeeee e e eet ettt e e e et ettt et e e e e e e bttt e e e e e e e e an st bttt e e e e e e e aannsbe s e e e e e e e e aannsbbneeaaeeeenannnnnes 6
IntroducingJavaDataAcCesSTEChNOIOGIES..........ooviviiiiiii 6
N |3 T O X 0 PSS PR S PPUPPRSRRR ’
B | RS PPREPPR |
B | I3 TP |
JAVAXIML APIS...eeeeiiee ettt e ettt e e e e e e ettt et e e e e e e e e et aee e e e e nnrrreeeeeeeeaanns 10
IS L 0] 1
Chapter 2: A Relational DatabasePrimer...........oooo i 12
T T I LY =T o (= RS 1.
ThEeRDBMS N @NULSNEIL........eiiiiiiiiee e e e e e e e e e e e s eaeeeeeannneeees 12
UNderstandin@latastOrage..........uuuieeeiiiiiiiiiieeeeeeeeee et 14
ENSUNNGAAtaiNtEIItY.....ceeeieieiieeeeeeeeeeeeee e, 15
REVIEWINGSQL BASICSciiiiiiiiiiiiieeeeeeeee ettt e e e 19
Using DataManipulationLanguag€DML)...........cccccciiiiiiiii 20
Using DataDefinition LanguageDDL).............cooooiiiiiiiiii s 25
ST L 0] = 2
Part 1l: Understanding JDBC Programming BaSICS........ccuviiiiiiiiiiiiiiiiiieee e 29
CRAPLEILIST. ..o 2
Chapter 3: Setting Up Your First IDBC QUETY.......cccooiiiiii i 30
T T I LY =T o (= RS 3(
(@70 o ilo U7 5T o 8] =1 PP 3(
ObtaiNINGIDBCAINVEIS.......oo i, 31
INSTAIlINGTNEIDBC ANVELuuiiiiiiiiiiieiiiitiee et ee e e e e e e e e e e e e e e e e ee e et e e e e e e e e e e e et aeaaeaaaaaaaaaaaaaaaaaaaaas 31
Examiningthe CommonIDBC COMPONENLS.......coooiiiiiii i 32
Writing Your First IDBC APPHCALION.........c.oooiiiiiiiii 33
(O(g=T: (] aTo 11 a[oRST= TagT o= =T o]] L{ox= L To] o FON 33
CompilingandrunningtheappliCation...............ooooiiii i 41
Troubleshootinghe sampleappliCation.............ooeiiiiiiieiiiei i 42
RS 0] = 4
Chapter 4: Connectingto Databaseswith JDBC............uuuuuiiiiiiiiiiiiiiiiiiiiiiieeirrrreerereereerreeeerrrrererrrreeee 44
T T I LY =T o (= RS 4
UNAErstandinGIDBC DIIVELS.uuuuuiiiiiiiiiiiirriieiiererrerresrreereereeereee ...ttt 44
Whatar€IDBC ANVEIS?......iiieeieee ettt e ettt e e e e e e st e e e e e e e e s bbb e eeaeesasnnseneeeeeeeeanns 46
O LY T To Ao TU Il =@ o)= PP 49
Working with ConneCtioNDDJECES.........oooiiiiee 53
UnderstandingDBCURLS...........ooooiiiiiiii 53

Table of Contents

Chapter 4: Connectingto Databaseswith JDBC
(@] 01=T alTaTo{oT0] o aT=Tot i o] o |- 54
(O[T T To NI D] 2T @FeloT] aT=Tod 1T0] o 57
IS L 0] = 5
Chapter 5: BUIldING JDBC StatEMENTS......uuuiiiiiiiiiiieiiieeieeeeeeeeee ea e e e e e e aaaaaaaaaaaaaaaaaans 59
T T I LY =T o (= RS 5¢
USINGIDBC STALEMENLS......coiiiiiiiiiieeeeeeeeee ettt 59
INtroducCingStateMENODJECES. ——— 60
Creatingthe StatemMENDDJECL.uuiiiiiiiiiiiiiii e aerreereeereeererererereerrerreerraeeeeees 61
USING e STAIEMENODJECL......eviiiieiieeeeeeeeeeeeeee e 61
N[2104 0T (od g o o ToT=T-T=] 1T N PP 70
| ST O i = 1 1S7= 1o 1o o ST PPERP 72
ClosiNgthe STAtEMENDDJECL. bbb e b b ee b b eseeeseesessessssssesssesseees 76
Working with PreparedStateMeMDJECTS.uiiiiiiiieiiieeieeeeeeeeee e 76
Creatingthe PreparedStatemenbject ... 77
Usingthe PreparedStatemeabject............ooovvvviiiiiiiiii 77
Working with CallableStatememDhjECES.coooo i 83
Creatingthe CallableStatememibject......... ... 83
Usingthe Callable StatemMEMIDJECL.vuiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e aaaees 84
IS L 0] = 8
Chapter 6: Working With RESUILSELS.........oooviiiiiii 88
T T I LY =T o (= RS 8¢
What Are IDBC RESUISEIS?.....oiiieiiiiiiiiieee ettt e e e e st e e e e e e s ennst e e e e e e e e e s nnnnnreeeeaeeeas 88
INtroducCiNgRESUISELCONCEPLScco e 89
U] CS1] (o] U] £ o] PRSP 89
LTS U1 RS 11 0= 90
RetrieVINGrESUISEIAALA.uvviiieiiieiieeeeeeeeee et 91
USING STANAAITRESUISELSt e b e e e e ee s sesssesseessesssesssesssesseeeseeseeeeeeeeeeeeeeees 93
Creatinga Standard@SUILSEL..........ciiiiiiii bbb e e ee e b eeaeessessssesssessessseeseees 93
Moving dataaroundin astandard@SUISEL................coviiiii 94
UsSING SCrollableERESUILSELS. ... ———— 96
(O(=T (] gTo S e o] =T o] L=l g TS U €Y=y £ P 97
Moving aroundsCrollabler@SUITSELS.........uuuuuiiiiiiiiiiiiiiiiiiiiiiierirerrrre e eerrerreeeereees 98
USINGUPAAEADIERESUILSELS.eviiiiiiiiiieiiiie ettt e aaaaa e 103
Creatingupdateabl@eSUILSELS...........ooooiiii i 104
Updatingdatawith updateabl@eSUItSeL.............oooooii 105
Insertinganddeletingdatawith updateablEeSUltSetS.............uvviviiiiiiiiiiiiiiiiieeeeeeeee e, 108
ST L] = Y 10
Chapter 7: Understanding JDBC Data TYPES.......ociiiiiiiiiieiieeeeeeeeeeeeeee e, 110
T I L4 g =) (= PP 110
Java, DatabasSe NI D AtATYPES. .. uuuuuuuiririreiiriiiieirrrrrerererrerrreereee——e————————————teer—reeeerteerrrrrrrrtrrrrer 110
Java—to—IDBMata—TypeMapPiNgS.......cccooiiiiiie e, 111
JDBC-to—Javadata—TypeMappingS.......cccooiiiiiie e, 114
Y= 10 F= 10 ST @ T Io F= L t= 10/ 01T TR 114
Yo vz T lod=To S @] o F= = 14 o[118

Table of Contents

Chapter 7: Understanding JDBC Data Types
CustomDataType Mapping

... 128
Building CUStOMAAtatyPEMAPS. ... oo i bbbt ab e bbbeaabebbesbeesssesssesssssssensees 128
USING CUSTOMMEAPPING.....eeiieieiiiiiieiiiee ettt e 131
T L] Y 13
Chapter 8: Mining DatabaseMetadatawith JDBC.............ccccccoiiiiiiiii 134
T T I £ g F= o (= PR 13
The IDBCMetadatanNterfaCes..........oiiiiiiiiiieii et e e e e e e e s e e e e e e e e snnrneeees 134
The ResultSetMetaDatterfaCe.uueiiiiii e as 135
CreatingResultSetMetaDatabjeCtS...........coooiiiiiii . 135
Using ResultSetMetaDatabjects............coovviiiiiiiiiie e, 135

ResultSetMetaDat@XamPIE............uuuuuiiuiiiiiiiiiiiiiiiieerre e ... 136
The DatabaseMetaDatlaterface

... 140
CreatingDatabaseMetaDat@h]ECTS.uuuuiiiiiiiiiiiiiiiieiieeieeereeeeeee e e e e e e e e e e e e e reeeeeeeeeeaees 141
Using DatabaseMetaDal@]ECISuuuuriiiiiiiiiiieiieeiieeieeereeereeeeeeeeeeeerererrrrrrrrrerrerrrrrrrrreereee 141
DatabaseMetaDaEXaAMPIE..........uuuuiuuiiiiiiiiiiuii et 144
ST 1= Y 14
Part 1ll: UsingJavaData ACCESSDESIGNPALIEINS.uuuuuiiiiiiiiiiiiiiiiiieerieerreereerrerrreerrerrererr e 150
CRAPLIEILIST. ... 15
Chapter 9: Understanding DesignPatterns............oooov i, 151
T T I L4 g F= o1 (= PR 15
What Are DESIGNPAIEINSZ....eeeiiiiiiieeieeeeeee ettt e aaaaaaaaeas 151
CategorieDf DESIGNPALIEITIS. e e eaaeesses s besesessssssssssssssssssasssssssenssnnsnees 152
(O(=T Lol gFoT =1 u =] £ 1= TP 152
SHUCTUIAIPAIEINS. ... e ea bbb nr e earrrnrenrrrrree 154
Behavioralpatterns. ... ———————————- 154
JavaandDeSIgNPAIEINS.coo o ———— 156
18] g =T 1 = g T = PSSR 15€
(70 g a1 o L0371 1 0] o F 159
Design—patterimplementatiorgUIdeliNES.............uviiiiiiiiiiiiiiiiieiiiereereeeeeee e eee e 161
ST L] 16
Chapter 10: Building the SingletonPattern.............ccoooo e, 163
T T I L4 g = 1 (= PR 16
Whatls @ SINGIEIONPALIEIN?..........coiii i aa e a b e aneeaaeseesanneenrennres 163
Structureof the SINGIEtONPALIEIM...........cooi i bbb be b brebaesseeeeressreseseesees 164
USING e SINGIEIONPAMEITL......ceiiiiieeeeeeeeeeeeeee e 165
R o] le] =100 g oY= Taq] o1 F PP 165
ConnectiormanageiSingletoneXample.......... 168
ST 1= Y 5 17

Chapter 11: Producing Objects with the Factory Method Pattern.................oooooee oo, 174
T T I L4 g = o (= PP 17

Table of Contents

Chapter 11: Producing Objects with the Factory Method Pattern

UsINgthe FactoryMethOd....... ... e err e aneenrreneees 176
T] = 18
Chapter 12: Creating @ Fagad@Patlerm..........ooi i e e e e e s e e e e e e e nnnees 188
T T I L4 g T= o (= PR 18t
What s the FAGAAEPAIIEIN?.........oe i e e e e e e et e e e e e e e e annaaeeeeaeens 188
Introducingthe Structureof the Fagad@PattermL............oocuviiiiiiie e 189
Implementingthe FAGATEPAIIEINL.............coii e e e e e e e e e e e e e e e e nnnes 189
ST 1= Y 7P 20
Part IV: Taking It t0 the ENEIPriSE.......ccovviiiiiiiiiiie e, 203
CRAPLEILIST. ... 20
Chapter 13: Accessingenterprise Data With JNDI...........cooiiiiiiiiiiiiiiii e 204
T T I L4 g = 1 (= PR 20:
Nl TaTo F= g o | BT g=Ter (o] g A L= Vi o] =Y 3SR 204
NAIMINGSEIVICES. .. eetteeteeirieeeeeeeeeeee e et e e e et e e e e et e et e e et e ettt e ettt ettt ettt et ettt e et e e et aeeeaeeaeaeaaaaaaaaaaeaaaaaaaaaans 205
DT g=Tor (0] Y AT=] WY/ 01T PP PPPPPPPP 206
DAtaACCESSNITN INDIL.........iiiiiiiiiee e e e e e e e e e e st e e e e e e e s annbane e e e e e e e e s annaneeeeaeens 208
JNDI AICRITECIUE. ... eeiiiee et e e e e e et e e e e e e e s e e e e e e e e e annnnneeeaaeeas 209
[N Il oTgeTe] =Taa Ty a1] o To TR 211
Working With the INDILDAP SPl......ooo 214
ST L 1= Y 5P 22
Chapter 14: Using Data Sourcesand ConnectionPooling...........ccccccvi 224
T T I L4 g F= o) (= PR 22
Working with JavaDataSourCEECTS........ccovvviiiiiii 224
UsiNg DataSOoUrC®DECES.. ... ——— 225
Looking at DataSourcémplementations...........coooooiieeiiieiiii e 226
A DataSourc@EXample...........oooiiii i —— 227
Using DataSourc®bjectSWith INDL.............uuuiiiiiiiiiiiiiiiiiiiiiiiriiirrirerreeereereee———————————————.—" 228
IMplementingConNectioNPOOIING...........ooiiiiii e nneaanes 231
Understandingonnection—poolin@ONCEPLS...........oooeieiiiiiiiiii i 232
A connection—poolin@Xample............cco 232
ST] = Y 23
Chapter 15: Understanding Distributed TranSactions.............cooooiiiiiiiiiiiii e 235
T T I L4 g = o (= PP 23!
(0] oo [T g ez Ta o [TaTe | g =] S 7= LS o 235
Transactiordefinition andproperties. ... ——— 235
TWO—PhASEOMMIL.....ciiiiiiiiii 236
Transaction—processimerformancendavailability..........................L 236
=T 0] o= 1 T0] o Rt 237
UnderstandindistributedTranSaCtONS.uuiuiiiiiiiiiiiiiiriiiiiireirrerree e rerrrrrrrrererereeeeeess 238
Understandinghe TransactionVIONItOL.............covvvviiiiiiiiiiicieeeee e, 238
Understandindhe TranSacCtiOmSeIVICE..........uuuuuuiuiiiiiiiiiiiiuiiirrirrrarrerrrrrrrerrrrrrrrrrrr———————————. 239
Distributed TranSaCtiONSINAJAVA..........uuuiiiiieeiiiiiiiiiie e e e e e e st e e e e e s s eeeeeseesnnnneeeeeens 242

Table of Contents

Chapter 15: Understanding Distributed Transactions

EIS @NUEAL ... ettt e e e e e e e ettt e e e e e e e e bbbt e e e e e e e e nnberneeeeeeeaaanns 243
B Y PSRRI 24
B ST 1 To S PSRRI 244
| P EPPRP 24
ST L] Y 24
Chapter 16: Working With JDBC ROWSELS........uuuuuiuuuiuiuiiuiiiuiiiriirteirrerrrerrererrrrreeer—..—————————————————————————————. 248
T T I £ g = o (= PP 24
INtrOdUCINGIDBC ROWSELScoiiiiiiiieeeeeeeee e, 248
UnderstandindROWSEICONCEPLS.......cooeiie i nneaanennnes 249
ROWSEIMPIEMENTALIONS. .. . uvviieiiiiiiiiiiiiiieiieeieeeeeeeeeeseeeeeeeeeeeeeeesseeereeeeeerereeeereeerreerrerreeeeeeeeeees 249
EXaminingthe rowWSetarChitECIUIE.uuiiiiiiiiiiiiiiiiiiiieiir e ebeesreeeeesseesssessessssesreeeeees 250
WOrKing With ROWSEIODECESuuuuiiiiiiiiiiiiiiiiiiiiiiiirtiestreeiressreereesseseseesseeseresrererereeerrrerrreteeeeareaeeeeeeess 251
Y= ual gl oYt (o] o1 1T P PPPPPPP 253
ConfigUNNGIOWSEIEBVENIS.o 253
SettingrowsetconNNEeCiOMIOPEITIES.coeviiiiieee e, 254
ExecutingSQL commandEISINGrOWSEIS.......cciviiiiiiiiiiiicccceeeeeeeeee e, 255
Fetchingdataffom arOWSEL. ... 256
Traversingdatain @lrOWSEL..........oooiiiiii e e e nn e 256
Controlling scrollableandupdateabl@roperties. ... 257
SettiNGIrANSACHOMEVEIS........uuiiiiiiiiii bbb eee b esseessesssessessssssssssssesssessees 257
CleaningUpP aftEraROWSEL.........cvviiiiieeeeeeeeeeeeee e 258
USINGThe JADCROWSEEIASS. oo bbb bbb b e b e b ebbeesbeesessssssssssssesssensens 258
USINGThe CaChedROWSEEIASS..........uuuuiiiiiiiiiiiiiiiiiiiiiiite rerieereeeeaeeaeeerressresreesseessessessssessresrreerenrreeerees 260
Serializinga CachedROWSEIDJECL............uuuuuiiiiiiiiiiiiiiiiiiiirreererr e ... 261
Updatingandinsertingdisconnectedowsetdata...............cccccccoeviiiiiiii 264
USINGTNEWEDROWSEICIASS. b b b e e b eebeesbsesessssssssssssnssensnens 265
T L] =T 5 26
Chapter 17: Building Data—centric Web AppliCations............ooooiiiiiii s 271
T I L4 g F= T o (= PP 27
ReviewingEnterpris@NVeb ApPlICAtIONS..........cooo i, 271
TWO—tIEr WED ArChItECTUIE.ce it e e e e e e e e ennes 272
Y A L R o (=TS To o] o= 1= o PP 273
Three—tieAWVED ArChItECIUIE.ooi e as 273
N—=tier WEDArCNIEECIUN.eeiiiii it e e e e e e e anes 274
J2EEenterpriseapplicationframework..........ccccccvvvvi 275
USINGIDBCWIth SEIVIELS...... oo e r e rrerarreneees 276
SEIVIBLOVEIVIEW. ...ttt e ettt e e e e e e ettt e e e e e e e ans st e e eeeaeeeaannnnneeeaaens 276
Constructinga JDBCSEIVIEL.........coo o —— 277
Y= AV/=T 0 [=T] [0) V70 0T=] o) PP 283
(DT (o] aledo] a TS o =T =i o] o 1= PP 284
USINGg IDBCWIth JAVASEIVEPAQGES........vvviieiiieeieeiieeeeeeeeee ettt e e e e 286
NS 0= V= PRI 286
CoNStrUCHNGAISPPAGE.o e 287
USINGJIDBCIN JSPPAGES....ccco i e —— 290
UsSIiNg JSPWIth JIDBC JAVABEANS.........uuvviiiiiiiiiiiiiieeiresieeereesreeereereeeeererererrrrerrerrerrerrrrrrereen 299

Table of Contents
Chapter 17: Building Data—centric Web Applications

(DTS (o] aledo] a TS o =T =i o] o 1P 306
ST] = Y R 30
Chapter 18: USING XML WIth JAXP..... ..ttt et eeeeeeseesaassssssssssssesssssssssssssseresrssseererrrereeeees 307
T T I L4 g T= T o (= PR 30’
INFOAUCINGXML. ... 307
WNALIS XML, ettt e e e e e e s ettt e e e e e e e bbbt e e e e e e e ennnb b e e aaeeeeennnnnneees 307
I F= T 0TS = Lo =Y 308
DocumentTypeDefinitionsandXML Schemas..............cccccc . 309
XML DAtADASES. ...ceiieeieiiiiie et e et e aan 310
WOrKing With XML——TRE BASICS........cuuviiiiiiiiiiiiiiiieeeieeeeeee ettt ettt ettt e et a e e e e e e e e e e e e e e e e e 312
ParsingXML: The Simple APl for XML (SAX).....cooooiiiiiii e 312
TraversingXML: TheDocumentObjectModel (DOM)............oooeiiiii . 317
TranSTOrMINGXIML: XSLT ittt bbb e e ab b araeeeeessesssessesssssssssssssssssssssssnnssens 321
USINGTNEJAXP APL ...ttt e et ettt e e e e e e e ettt e e e e e e s e ss b et e e eeeeeeannsbaaneeeeeeeaannns 323
Whereto gettheJAXP APL.... ..o bbb e b e e b b eebesereesssssssesseeeeees 323
USING IAXP . ettt e e e ettt e e e e e e sttt et e e e e e e e s a bbb et e e e e e e e e n bttt e e e e e e e e nnnnareeeeeens 324
ParsingXML With JAXP........oooi 326
TraversingXML With JAXP.........oooiieee 328
TransformingXML With JAXP.. ..o enernrenanes 330
ST L] = Y 33
Chapter 19: AccessingData with Enterprise JavaBeans.........ccccooiieiiiiiiiiiiiiiie e 332
T T I L4 g = o (= PR 33!
WOTKING With tNE EIB TIEE....ueviiiiiiiieieieeeeeeee ettt e 332
ENterpriSEDEANTYPESo —————— 333
The PartSOf ANEJIB.......oooiiiieiieiii et e e e e e e e e e e e e e e eeaaeeas 335
INtroducingEJB ClasSeRNAINIEITACES...........uuuuuiiiiiiiiiiiiiiii e rees e rererererrerrrreereeeees 337
Y ESTS 0] 0= g F OO PRRRT 337
a1 o1=T= o SRR PURPRRRR 341
MESSAgE—DIVEIEANS. ... ——— 348
UnderstandindheEJBLIfe CYCIa.........oooo e 348
Y ESTS 0] p 0= g IO PRRRP 348
a1 YA o1=T= T o SRR USPRRRR 349
MESSAgE—DIVEIEANS. ... —— 350
DealingWith DataPerSiStENCE.ccoo i 350
ODbJeCtSENAliZAtION.......ceeiiieieiieeieeeeeee e 350
MaANAGEAIEISISIENCE.eviiiiiieieeeeeeee et 351
USING DataACCESSODECES. ittt b aa bbb ae e e ettt ee e e eeeseeeses s bsssssessssssssssenssanssnsssnsenesnnns 355
USING VAlUE ODJECTSt ee e et b et et e s s eeses s st ss s s s s ss s st sesssesssnssanssnnssnnsnneeseeseees 356
TranSaCHONBNAEJIBS. ...t e e e et et e e e e e st e e e e e e e aannteeeeeeeeeesannnssneeeeeens 356
Guidelinesfor WorkingWith EJBS.......c.ooviiiiiiiiiie e 358
ST 1= Y R 35
Appendix A: JDBC 3.0NeW FeatUreSSUMMAINY.........cccoiiiii e 359
= L 7= U3 10 L= PO 35
Y= =T - USRS PRRR 36

Vi

Table of Contents
Appendix A: JDBC 3.0New FeaturesSummary

(Of0] g1 gT=Tei1[0] g 2loTo] 10T B PPPPPPPPR 36(
DataTypPeENNANCEMENLS.o 361
Appendix B: Java DatabaseProgramming 0N LINUX...........ooooiiiiiiiiiii e 362
BN S o I T RO PESRRP 36:
D= =L o T TSY =T < o N 11 3PP EURT R OORPRPR 363
RelationalDatabasManagemMenBYSEIMS.uuuuuuuuiiriiiiiiiiiirirrerreerreereeererer e 363
ObjectDatabasManagemenByStEMS.........coooeieiiii i 364
Object—RelationaDatabasélanagemenByStems..........ccccccvvviiiieiiiie 365
Appendix C: JIDBC Error HandliNg............ooooiiiiiiiiiii 366
SOLEXCEPLION. ... —————————————————————————— 36
SOQLWAINING ... uututtiiitiiiiiiiii e e e e eeesseessaessessaeeeeeeaeseseeeeeeeeeretaetaeetaeeeatatteaaaaaataaaaaaaaaaaaaaaaaaaaaaaaes 36
BatChUPAAtEEXCEPLION.......ciiiieiiieeeeeeeeeeeeeeeee e, 371
DALATTUNCALION. ...eeie e ittt e e e e e ettt e e e e e ettt e e e e e e ettt e e e e e e e asnnsees e e e e aeeeaaannsbeneeeeeeeesanssnneeeeeeeeaanns 37:
Appendix D: UML ClassDiagram QUICK RefErencCe. ..., 373
(1= TSI D IT= To [= £ F S USSP URPPRPRRR 37
O3 =TSRSS 37
10 (T = o = PR 37¢
Y 013 (= od (o3 =T EPOR P 374
(01 F= TSI =T = T ToT 1] o PP PPPPPPT 37¢E
F TS0 ol - 11T PRSP 37E
(1=t Lo =172 4o 1 o P PPERRR 376
[E =114 (o] o W PRSPPI 37¢€
DEPENUENCY.c..cciiiiiieeeeeeee e 376
AGOIrEALION......ccii i ——— 376
(70 g a1 o L0311 0] o F 377
1S3 7= T 1= U1 T PP POPPRRRR 377

Vii

Part I. Getting Started with Java Data Access

Chapter List

Chapter 1: Introducing Java Data Access Development
Chapter 2: A Relational Database Primer

Chapter 1: Introducing Java Data Access
Development

In This Chapter

« Understanding how enterprises use and store data
« Using the Java technologies for accessing the different enterprise data stores

Now more than ever, Java developers need to understand how to create data— centric applications. Data is
important commodity and organizations now try to capture, store, and analyze all the information they
generate. As a result, many different forms of data exist and an equal number of different methods exist to
store it. As a Java developer, you will likely face the challenge of writing an application that enables an
organization to effectively use its data stored in either a single source or multiple sources.

Your chances of having to build an application that accesses enterprise data increase because Java contint
to gain market share as the language of choice for creating server applications and the J2EE platform becot
increasingly popular. In addition, most server applications require access to data stores for information. As &
example, an EJB component may need to update inventory levels in a database or send XML messages to
other applications. As a result, your knowing how to access the different data stores is paramount in enterpr
development.

However, client applications also need access to enterprise data stores. For example, a human-resources
application that tracks employee vacation time must retrieve and store information from a database. In
addition, you now have mobile clients that need access to enterprise data stores. Writing data—centric
applications for these devices is challenging, as they operate with little memory, minimal processor speeds,
limited power supplies, and intermittent network access.

Fortunately, Java provides a robust set of data—access technologies that enables you to access the most
common types of enterprise data. Using these same technologies you can create both server—side compon
and client-side applications. The technologies consist of APIs for accessing databases, naming and directo
services, and XML documents.

This chapter introduces the most common types of data enterprises used in their operations, from simple te;
files to complex specialty databases. This chapter also covers the various Java—based technologies that yo
can use to access the data stores.

Taking Stock of Enterprise Data Stores

As you know, enterprises rely on data to make business decisions, generate revenue, and run daily operatic
For example, managers generate sales forecasts based on historical sales data stored in a data warehouse
Companies also build online stores using live inventory levels that sell directly to their customers. Accountin
departments use financial database applications to generate payroll checks and track accounts receivables.
These are only a few examples of how enterprises use data.

As you also know, data can take many forms. Figure 1-1 illustrates some of the more common kinds of datz

Chapter 1: Introducing Java Data Access Development

an enterprise uses and how it stores them. It also shows how clients access the information residing in the c
stores.

Enterprise
J2E1

Client Serve Data Stores

Web
Container

Web Client > | | AN

L . ’,”,'”'"'”4 . - £IB 1081 Obwer]
Web Client \\ { | Container {10Ck

Naming and
Directory
Services

Databases

[—

Figure 1-1: This figure shows an example of the more common kinds of data an enterprise uses and how it
stores them.

For example, data most commonly takes the form of files stored in file systems on central servers or
individual workstations. There are as many different forms of data files as there are applications. However,
some categories include word—- processing documents, spreadsheets, multimedia (graphic, sound, and vide
and XML documents.

Most companies also use databases to store information and model business processes. Databases enable
corporations to store, organize, and retrieve large amounts of data. Some organizations use them for data
warehouses containing hundreds of gigabytes of information. Others may use databases to support
high—-volume transactional applications such as an airline—reservation system. Databases also offer a lot of
flexibility in terms of how you interact with them. Almost all have proprietary data—access tools as well as
mainstream APIs such as JDBC drivers for you to use.

Other forms of data exist as hame—value pairs stored in a naming or directory service. These services store
data in a hierarchical database system optimized for lookups. In addition, some organizations may use a
directory service as an object repository. Distributed applications use the directory service to locate and
download objects. This minimizes the problems associated with distributing updated code because
applications always have access to the latest version.

When an organization uses different forms of data, it requires you, as a developer, to use different access
methods as well. For example, most file access occurs across a LAN and so the network software and
operating system handles the communication details. However, retrieving data from a database or directory
service requires additional components. You will likely need special drivers or APls. In addition, some
organizations let clients access their data stores over the Internet. You must consider security issues as wel
client—activity levels if you decide to do this.

Chapter 1: Introducing Java Data Access Development

As a developer, your job is to create applications that enable people, or processes, to interact with any form
data that contains the information they need. Therefore, you should understand the many different forms an
how enterprises typically store them. In addition, you need to consider how clients access the information as
affects your application as well.

The following sections describe the most common data stores enterprises use to house their information.

Database systems

Next to file systems, enterprises use databases to store most of their information. This enables centralized
information storage, meaning that both clients and server have one data source. That is, everyone — onsite
staff, field employees, and Web clients — looks at the same data. Centralizing data storage also enables
administrators to perform maintenance routines such as data updates and backups more frequently and
reliably.

Today’s databases can store more than just simple character or numerical data. The Internet has pushed
database vendors to support more varied forms of data. For example, most database systems now enable y
to store multimedia data such as sound and video. In addition, support for persisting native programming
objects, such as those used by Java, also exists. Vendors developed this support because of the difficulty o
combining object-oriented programming models with standard referential database systems.

There are many types of databases, including hierarchical, relational, object, and object-relational. Each ha
its strengths and weakness. However, by far the most popular type of database is the relational database. It
used by almost all enterprises employing database solutions.

The relational database gained popularity by providing the following benefits:

« Data integrity — Relational databases incorporate integrity rules to help protect against data
corruption, duplication, and loss. You can use the built—in integrity rules or define your own.

« Common access language — SQL provides a universal access language for relational databases. T
language enables you to build database structures, model business processes, and to add, delete,
modify, and retrieve data. The core SQL language works with most relational database systems.

XRef For more details on relational databases and how to interact with them, refer to Chapter 2, “A
Relational Database Primer.”

Because of their popularity, you should familiarize yourself with relational- database theory, SQL, and acce:

technigues. Chances are that you will need them at some point as a developer.

Different Database Types

Many different databases are available to meet an organization’s data—storage needs. For example, some
companies may need to persist Java objects. Others may want to model business processes or create datal
optimized for retrieving data.

The following list describes the different database types available:
 Relational database — Stores all data in tables, among which you can define relationships in order t

model most real-world processes. By default, relational databases have entity (table) and referential
(relationship) constraints to protect against data loss or corruption. Relational databases are the mo:s

Chapter 1: Introducing Java Data Access Development

widely used database system.

« Hierarchical database — Stores data in records. Only parent—child relationships can exist between
records. This creates a hierarchy wherein each record can participate in only one parent—child
relationship, which makes it hard to model complex processes. Hierarchical databases provide fast
data retrieval, but slow write operations. Directory services often use hierarchical databases.

* Network database — Similar to hierarchical databases except that they enable you to model more
complex relationships. Network databases support many—to—many relationships among records.

» Object database — Supports storage of native programming objects and custom data types. Many
object databases support object-oriented programming concepts such as inheritance, polymorphisir
and encapsulation of the user—defined data types. Some support SQL while others have proprietary
access languages.

» Object-relational database — A cross between an object database and a relational database. Most
often, object-relational databases are relational databases that treat objects as new data types.

Naming and directory services

Naming and directory services are hierarchical (not relational) databases optimized for read (not write)
operations. Therefore, you should not use them where significant insert, update, or delete activities occur.

Naming services store objects using a simple name-value format. A common example is a file system whos
objects are files. As a nhaming service, the file system associates a name, the filename, with a value, the file
handle. A user requests a file by its name and the operating system retrieves it by the associated file handle
An RMI Registry provides another example of a naming service. In this case, the name is the object identifie
and the value is the object itself.

A directory service extends the capabilities of a naming service by allowing you to attach attributes to object
An example of a directory—service application is an employee directory stored in an LDAP—-enabled director
service. In this example, an employee is an object and can have attributes in addition to his or her name. Fa
example, you may attach attributes such as department, e—-mail address, and phone number to each emplo
In addition, you can search a directory service for objects based on attribute values.

XRef Chapter 13, “Accessing Enterprise Data with JNDI,” provides more detail on naming and directory
services as well as how to interact with them using the Java Naming and Directory Interface (JNDI)
API.

The Lightweight Directory Access Protocol (LDAP) is often associated with naming and directory services.
Contrary to popular belief, LDAP does not define a data—storage model or schema. Instead, it defines a
communication protocol for interacting with directory services. Vendors use LDAP for communications and
store data however they wish.

However, unlike with relational databases, with naming and directory services you cannot easily model
processes or protect data using integrity constraints. Naming and directory services also lack a common
data—access language like SQL and you usually rely on a vendor’s API for access. Fortunately, Java’s JNDI
API addresses this lack of a standard access method by providing a common interface to many different
naming and directory services.

Nonetheless, naming and directory services provide you with a powerful tool for retrieving data. In addition,
they are useful when you do not need the overhead of hardware and DBAs to run a relational database.

Chapter 1: Introducing Java Data Access Development

XML services

The eXtensible Markup Language (XML) enables you to create self-documenting data. Enterprises now use
XML as the standard for exchanging data and messages with other organizations or among applications. In
addition, organizations use it in conjunction with XSLT to develop a single source of online content viewable
from a variety of devices. As a result, most enterprise applications use some form of XML-service.

An XML=service is an application, whether EJB components or specific application classes that consume ol
generate XML. These services are quickly becoming a major component of distributed architectures and
applications. Some examples of XML-services include:

 Processing configuration files such as EJB deployment descriptors
 Transforming data from one format to another
« Exchanging messages with other applications using JMS

Java provides significant support for XML. In fact, both technologies appeared in the mid—1990s and have
grown together. During this time, many developers created numerous free Java tools for working with XML
documents. Now the Java JDK and JRE distributions include many of these same tools, such as the SAX
parser.

XML provides many benefits that have boosted its adoption rate. The following is a partial list of its
advantages:

« XML is an open-standard — The World Wide Web consortium controls the XML specification,
and therefore no one industry or company can control its direction.

« XML is text-based — XML documents are text files. As a result, you can read and edit them using
text editors.

« XML is self-describing — An XML document can contain information about itself, meaning that it
is self-contained. Other applications can use the document without any extra information.

« XML has free tools and processors — A multitude of Java tools exist to help you create,
manipulate, read, and exchange XML documents.

Along with relational-database knowledge, a solid understanding of Java—XML technologies will help you
significantly as you work with enterprise data using Java. Mastering both technologies definitely won't hurt
your career either.

Introducing Java Data Access Technologies

As | previously mentioned, the Java platform plays a dominant role in server—side application programming,
as demonstrated by the recent increase in J2EE applications. Java succeeds because it has the right
combination of tools and technologies that enable developers to create robust and scalable server applicatic
Corporations now use Java technologies for tasks such as providing the presentation layer for Web sites, th
business logic on application servers, as well as creating custom client—server solutions.

Part of being a successful server-side technology is the ability to interact with data. Fortunately Java has th
ability. It provides numerous APIs that help you access the different types of data stores. Figure 1-2 shows
the role Java Data Access Technologies (JDATS) play in the enterprise environment.

Chapter 1: Introducing Java Data Access Development

From the figure you can see that JDAT includes JDBC, JNDI, JDO, and the XML APIs. You use the JDBC
API to access data stored in a SQL database. The JNDI API gives you access to haming and directory serv
such as iPlanet’s Directory Server or Novell's NDS. JNDI also supports LDAP so you can communicate with
LDAP-enabled directory services. The JDO API provides a tool you can use to persist Java objects into a d
store such as a relational database. This APl does not compete with JDBC but rather complements it. Lastly
the XML APIs enable you to perform many different tasks with XML. For example, you can employ the APIs
to use XML for inter—application messaging, making remote procedure calls, as well as parsing and
transforming XML documents using SAX, DOM, and XSLT.

Notice in Figure 1-1 that any application can use the JDAT. Java Server Pages (JSP) technology, servlets,
Enterprise Java Beans (EJBs), and stand—alone clients can take advantage of the APIs. Therefore, you do |
need to rely on J2EE applications to access enterprise data stores. An application written using the Java 2
Standard Edition (J2SE) has equal access. The JDBC API provides a good example. A considerable amour
JDBC development does not reside in a J2EE container. Most often developers create clients that use the A
to access relational databases without involving J2EE.

The remaining sections provide more details on the different Java data—access technologies shown in Figur
1-2.

Figure 1-2: The role Java Data Access Technologies (JDATS) play in the enterprise environment.

JDBC 3.0

JDBC, the Java database—access technology, is probably the most widely known Java data—access APIl. M
books and Web sites exist to help educate you on its use. In addition, JDBC has wide industry support and
you can find JDBC drivers for most databases on the market.

Note Here’s a piece of trivia. Contrary to popular belief, JDBC is not an acronym. It is a trademarked name
by Sun Microsystems that represents a type of technology. It does not stand for “Java Database
Connectivity” as most people think.

When Sun Microsystems released the original JDBC API 1.0 in 1997, the API had very limited features. It
provided only a basic call-level interface to SQL databases. JDBC 2.0 touted more practical features such &
scrollable cursors and batch updates. Along with the JDBC 2.0 release came the 2.0 Optional Package, whi
added a new package, javax.sql, and provided advanced features such as connection pooling, distributed
transactions, and the RowSet interface.

Chapter 1: Introducing Java Data Access Development

Now at release 3.0, JDBC adds a few missing features to the API, such as transactional savepoints and mo
support for SQL99 data types. In addition, the core package, java.sql, and the optional API, javax.sql, are
included with the Java 1.4 distribution. No longer must you separately download the javax.sqgl package to ge
access to its features.

Where to Get the JDBC API

Both the 1.4 JDK and JRE distributions include the JDBC 3.0 API. You can download both of these software
packages at the JDBC homepage: www.javasoft.com/products/jdbc. However, the API only includes the
JDBC-ODBC bridge driver, which enables you to use an ODBC driver to access a database. As a result, to
use the bridge you must have an ODBC driver compatible with your database.

The API does not ship with drivers for other databases. You should contact your database vendor to determ
if they have a JDBC driver available. If they do not, most likely a third party provides an implementation.
You can find a list of driver vendors on the JDBC homepage.

In short, JDBC provides database developers with a powerful and flexible toolbox. It enables you to write
database applications using one database interface. The methods defined in JDBC operate independently c
the underlying database. For example, you use the same programming techniques to do any of the following
tasks whether you are using DB2, Oracle, Informix, SQLServer, mSQL, or any other database:

* Open a connection

« Call stored procedures

» Add, modify, or delete data using SQL DML statements
» Execute DDL statements

» Handle database errors

As you can see, having one programmatic interface provides many benefits. If each vendor ignored JDBC a
built its own API, dozens of different database programming paradigms would exist. Working with multiple
databases would then require learning multiple interfaces. Fortunately, industry’s widespread adoption of
JDBC has helped make it a standard.

JNDI

The JNDI API 1.2 gives you a tool for accessing a variety of naming and directory services using Java. The
JNDI API, like JDBC, also provides a single, consistent programming interface for access naming and
directory services. Most enterprises use a directory service of some type. They may use one included with &
operating system, such as Microsoft's Active Directory Services, or a commercial product like iPlanet’s
Directory Server.

JNDI plays an important role in the J2EE platform, as it enables you to locate and use objects stored in
naming and directory services. For example, a J2EE deployment may use a naming or directory service as
repository to store objects like EJBs or JDBC DataSource objects. JNDI gives you the tools to create
applications that can manage, retrieve, and use those objects from the services.

The JNDI API architecture consists of two components. The first, or core, API, provides the methods and
properties you work with when writing client applications. You use this same API regardless of your target

Chapter 1: Introducing Java Data Access Development

naming or directory service. Vendors use the second component, the Service Provider Interface (SPI), to
develop drivers, creatively named service providers, for accessing naming and directory services. Just like &
JDBC driver, the service provider abstracts the communication details used to interact with a naming or
directory service. A service provider also plugs into the core API, which enables you to easily add support fc
different naming and directory services.

The JNDI 1.2 API ships with Java 1.3.1 or greater and includes the following service providers:

* LDAP

« Domain Name Service (DNS)

« CORBA’'s Common Object Services (COS naming)
* RMI Registry

In addition, from Sun’s JNDI Web site (www.javasoft.com/jndi) you can also download other service
providers created by Sun and third parties for the following naming and directory services:

» Sun’s Network Information Service (NIS)

* Novell's Network Directory Service (NDS)

* File system

« Directory Services Markup Language (DSML)

The SPI architecture makes it easy for naming and directory vendors to create service providers. Because ¢
the increased role these data stores are beginning to play in enterprises, you will probably see more service
providers appearing — especially ones focused on high—performance LDAP access.

JDO

Java Data Obijects (JDO) is a relatively new technology intended to make it easier to persist Java objects. Y
you can easily persist objects by serializing them to disk, but no easy method exists for storing them in
transactional systems like databases.

As of this writing, JDO is in development and only a reference implementation, version 0.95, exists. Thus, |
do not cover the details of JDO in the book. However, the available code enables you to transparently store
and retrieve Java objects from a B-tree storage structure stored on a hard drive. Support for relational
databases should appear soon.

JDO fills a void that has plagued Java developers for some time. Often a developer needs to persist the stat
an object in order to be able to resume at the same point later or share the object’s state with other
components. Unfortunately, simple serialization does not enable you to use objects in transactions. Storing |
objects in a database can alleviate the problem; however, doing so requires significant planning, as you mu:
map an object’s fields to database fields. It also creates a maintenance challenge because object changes
require database—schema changes as well.

JDO mitigates these problems. It provides an API with consistent interfaces that enable you to persist Java
objects in different data stores. It also provides mechanisms for using stored objects in transactions as well
for searching for objects that meet certain criteria.

To obtain the latest information and JDO distribution, visit the JDO homepage at accessl.sun.com/jdo.

Chapter 1: Introducing Java Data Access Development

Java XML APIs

Java has strong support for XML. In fact, both have quickly positioned themselves as indispensable players
server—side development and messaging applications. To support XML, Java has a suite of APIs that enabl
you to create, transform, and exchange XML documents. In addition, an API also exists that enables you to
create Java classes representing an XML document based on its schema. The resulting classes handle par:
and transforming the XML document without you needing to worry about using the SAX parser and DOM
trees.

The Java XML APIs also provides the foundation for the Web-services programming model. Using the APIs
you can create distributed components that use XML to exchange information or look up application and
business services.

As | mentioned earlier, Java provides several XML-centric APIs. The following list provides a partial list of
what's available:

» Java API for XML Parsing (JAXP) provides support for parsing and transforming XML
documents. It supports SAX and DOM parsing as well as XSLT.

« Java API for XML-Based Remote Procedure Calls (JAX-RPC) enables you to use XML to make
remote procedure calls across a network.

« Java API for XML Messaging (JAXM) gives an application the ability to send and receive
XML-based messages. Based on Simple Object Access Protocol (SOAP) 1.1 with Attachments.

« Java Architecture for XML Binding (JAXB) provides a mechanism for creating Java classes based
on XML schemas. Objects instantiated from the classes parse XML documents and enforce schema
constraints.

« Java API for XML Registries and Repositories (JAXR) is a tool that enables you to search for
registered business services listed in well-known XML business registries.

At the time of this writing most of the previous APIs were available as reference implementations or were
under specification development. However JAXP, the parsing and transformation engine, is available. At
version 1.1, it provides a fast, reliable, and flexible tool for working with XML documents. Visit
www.javasoft.com/xml for more information.

Summary

This chapter presented an overview of the different types of data an enterprise may store, the structures the
use to store it, and the Java technologies that can access it. In a nutshell, you will find an enterprise storing
data in:

» Operating system files such as word—processing documents and spreadsheets

» Databases, including hierarchical and relational databases

» Naming and directory services such as RMI Registries and LDAP-enabled directory services

« XML documents containing self-describing data from databases or used in inter—application
communication

To help you access the various types of data storage containers in the previous list, Java provides the
following data—access technologies:

10

Chapter 1: Introducing Java Data Access Development

« JDBC 3.0, which provides support for accessing relational databases

« JNDI 1.2, which provides support for interacting with naming and directory services

« JDO, which enables you to easily persist Java objects in a variety of data stores

« XML APIs, which consist of JAXP, JAX-RPC, JAXM, JAXB, and JAXR, and that enable you to
parse, send, and transform XML document

11

Chapter 2: A Relational Database Primer

In This Chapter

» Understanding relational database systems

 Leveraging the features and benefits of relational databases
» Understanding SQL concepts

» Using DML and DDL SQL statements

It is often said that data is a company’s real asset. The data can include marketing research, sales history,
customer lists, online content, or many other types of information, all of which companies use to generate
revenue. In most scenarios, enterprises use database systems to store the information and provide access |
As a result, the database has become an important component in a corporation’s IT infrastructure.

Different types of database management systems (DBMSSs) exist to help enterprises store data. However,
enterprises most often use the relational DBMS (RDBMS), which has characteristics that provide
organizations with everything they need to meet their data storage needs. An RDBMS handles large quantit
of data, allows a high volume of read/write activity, provides default integrity constraints to protect data, and
gives you flexibility in modeling business processes and entities.

Enterprises use RDBMSs for a variety of purposes. Some use them to store hundreds of gigabytes, or even
terabytes, of data. Others use them for CRM solutions such as field—force automation and field—sales suppc
They are also used for high—volume transaction processing such as handling call-center activities. Because
the pervasiveness of RDBMSs, you will likely interact with one at some point in your career.

As with most technologies, if you do not apply the theory and concepts of relational databases frequently yo
may forget the basics. This chapter provides a refresher on the fundamentals of relational database system:
However, the chapter does not provide information on designing schemas for RDBMSs.

| start by covering what comprises an RDBMS, its architecture and components. Next | provide a quick
synopsis of the Structured Query Language (SQL), the non—procedural language used to communicate with
an RDBMS. At the end of the chapter you should have a renewed understanding of relational database
systems that you can use to develop JDBC applications.

The RDBMS in a Nutshell

In 1970, E. F. Codd developed the relational data model from which the RDBMS was born. The concept
centered around tables, called relations or entities, to store data. Codd called the model “relational” after the
name he used for tables, not the relationships you can build among them.

From his model Codd created 12 rules summarizing the features of a relational database. One rule specifies
that a system must have integrity constraints to protect data. The constraints apply both to tables and table
relationships. He also created a rule stating that the relational database system should have a single langua
that supports all the data—access and system—management needs. This rule provided the impetus for creati
the universal database language called SQL.

12

Chapter 2: A Relational Database Primer

Codd'’s relational model was revolutionary at the time and stood in stark contrast to existing database syster
Soon after he presented his model companies began building database systems around it. Vendors also ad
features, such as indexing logic and custom procedural languages to enhance their systems. As a result,
enterprises quickly adopted the RDBMS and it is nhow the default database system.

The benefits an RDBMS provides over the other database—-systems helped increase its adoption rate. The
following list summarizes some of the model’s advantages:

« Data integrity — The relational model defines integrity rules that help guard against data corruption.
That is, the data you place into an RDBMS do not change, disappear, or become corrupt.

« Flexibility — In some respects an RDBMS server acts as an application—development platform. It
provides an environment in which you can create data—centric applications. By definition, an RDBMS
enables you to create entities and build relationships among them. More advanced RDBMSs
incorporate a procedural language enabling you to build store procedures. Using these languages, ir
conjunction with entity relationships, enables you to model business processes and company
workflow and store the resulting data in the database.

« Universal data access — SQL has evolved as the default language for interacting with an RDBMS.
Although some RDBMSs extend SQL to take advantage of proprietary features, the core language
still remains portable.

An enterprise RDBMS is a complex system. It must provide robust data storage, incorporate integrity rules,
and include server capabilities to share data. Figure 2-1 shows a conceptual view of a relational database
system in a client-server deployment. As you can see, many pieces must come together to form the system

Database Server

L
A4
N\
|

] - N
TN RO L

. —

x -

Figure 2-1: Conceptual view of an RDBMS

Most RDBMSs use a client—server architecture, an architecture wherein clients communicate with the serve
over a network. Most often TCP/IP is the protocol for sending requests and receiving responses. The host
server houses the database kernel, which consists of several internal-server processes that manage client
connections, process SQL statements, and communicate with the host’s file system to manage data.

Despite the number of different enterprise RDBMSs on the market, they all share two common components
data—storage structures and data—integrity rules. The following sections provide an overview of the major
components.

13

Chapter 2: A Relational Database Primer

Understanding data storage

The purpose of a database is to safely store data. How it organizes the data on the physical storage device
depends on the vendor. Regardless, an RDBMS has two basic storage structures, tables and indexes. Tabl
the center of an RDBMS, hold the data. Indexes, although not technically required, improve data access
performance.

A database system typically stores the tables and index data in files on a local file system. Depending upon
database, it may use either multiple files or one large file to hold the data. Some database systems also eng
you to create distributive systems and store data on other hosts.

Tables

Tables consist of rows and columns. Rows represent entries like patient medical records or customer invoic
Each table row is called a record and is unique in a purely relational model. Without uniqueness, you canno
ensure consistent access to the same row. In addition, non—-unique data can create data—corruption problen
when you start creating relationships among tables.

Columns, often called attributes, describe each record. A table can have one or more columns. In general,
columns define the information you want to track. The data type of the columns varies between databases.
However, SQL standards such as SQL-92 and SQL3 define data types that most databases support. Some
example data types include CHAR, NUMBER, and DATE.

As Codd mentioned, an RDBMS is based on tables. In fact, all data, even the table definitions themselves, ¢
stored in tables. To store them, the relational database relies on system tables to completely describe itself.
Storing the database metadata in tables enables database administrators (DBAS) or other authorized clients
manage the system using the same language as other users.

Indexes

Indexes help SQL queries quickly locate records. The way indexes work depends upon the index type. In
general, an index ranks, or sorts, records based on a column in the table. The indexed column is known as
key. Indexes can also use composite keys consisting of multiple columns.

Without indexes a search for a record usually requires a table scan, which starts at the first row and looks
sequentially at each entry for a match. Table scans do not provide quick access to a particular record or gro
of records, especially when a table has thousands or millions of records.

For example, imagine a phone book in which nhames and numbers were listed in the order in which the
subscribers initially obtained their phone service. In this scenario it is nearly impossible to locate a person’s
phone number. You have to perform a table scan, starting with the first entry, and look at every entry until yc
find a match. Fortunately, a phone book indexes entries alphabetically to help you locate the person you're
looking for. Although RDBMS indexes organize the data differently, the end result is the same: You can
locate the information quickly.

Indexing is a science unto itself and many different types exist. Some common types include B-tree,
clustered, non—clustered, and function—based indexes. However, most databases employ B-tree, or
balanced-tree, indexes as the default. This type provides very quick access to data with minimal storage
requirements. The actual implementation details of a B-tree index vary between vendors.

14

Chapter 2: A Relational Database Primer

Figure 2-2 shows a conceptual view of a B-tree index for the alphabet. It consists of nodes that contain key
pointing to the location of data. The top node is called the root, subsequent nodes are branches, and the lov
nodes are leaves. A B-tree index minimizes the path from the root node to any leaf node in the tree. Using t
index you can locate any letter in the alphabet in three steps or fewer.

The keys in a database B-tree index point to individual records. The figure shows only three levels in the
index; real indexes often have more levels.

Levels

Root _‘_I__

Node _i),D] E] VQ«;Y\‘
leats [AIBIC] [ETFIG) (TIIKILIM] [OTP) [RISITIU) WIXIVIZ]

Figure 2—-2: Conceptual view of a B-tree index

Note Proper indexing of a table can significantly speed up “read” operations such as SQL SELECT
statements. However, too many indexes can slow down INSERT or UPDATE operations. In
general, a database system updates indexes whenever the column data that they represent
change. Therefore new records, and updates to existing records, can cause index updates as
well. The more indexes, the more updates needed, and therefore the slower the response.

Ensuring data integrity

One of the biggest benefits an RDBMS provides is that it protects the integrity of the data. Once you place
data into a relational database you can remain confident that it will not change. To help provide this
protection, the relational model defines integrity rules.

Different types of data corruption can occur in a database. Some, like disk—drive corruption, an RDBMS
cannot guard against because it occurs at the physical layer. A whole drive does not have to become damay
for this type of corruption to occur; one bad block can cause significant problems. A DBA usually handles thi
situation by restoring the database from the last good backup. Unfortunately, an RDBMS can only mitigate
the effects of this type of corruption, not prevent it.

However, two types of corruption exist that the RDBMS can protect against. The first occurs when the data
among related tables become unsynchronized, creating orphan records. For example, suppose a
Medical_Claims table contains records for patients, which requires a link between the Medical_Claims table
and the Patients table. Deleting records from the Patients table without removing the corresponding records
from the Medical_Claims table will create orphan records in the Patients table. Under relational-database
rules, each medical record should map to a patient. In this situation you cannot retrieve any information on t
patients associated with the orphan claims records.

Duplicate table records constitute the other form of data corruption. Data duplication can lead to incorrect
values generated during queries. For example, when you have two or more identical line items in an Order
table, reports based on that table may be flawed. Duplicate records also create problems when you define a
relationship between two tables. For instance, you cannot reliably locate the correct record that provides the
link between the two tables if one of the tables has duplicate entries.

Theoretically you may create database designs to allow orphan and duplicate records. However, you will

rarely encounter these designs. Remember, an RDBMS provides you with the flexibility to create good data
models as well as bad ones. You should always design with data integrity in mind.

15

Chapter 2: A Relational Database Primer

Ensuring data integrity requires both entity and referential integrity. Entity integrity pertains to individual
tables while referential pertains to table relationships. The following sections describe both in greater detalil.

Entity integrity

Entity integrity ensures that table data remain unique, which is a requirement of Codd’s relational model. As
mentioned in the previous section, duplicate rows can lead to erroneous values on reports or in summary
gueries. In addition, you cannot effectively create a relationship between two tables when duplicate records
exist. RDBMSs rely on data integrity as a foundation.

To ensure uniqueness a table employs a primary key, a single attribute that is unique for every record in a
table. You may also define a composite primary key consisting of multiple attributes that remain unique for
each record. In any given record the other columns may contain identical data, but the column(s) representi
the primary key must be unique. In general, a primary key, when combined with the table name, acts as a
pointer to a particular record.

Figure 2-3 illustrates the primary key for the Employees table | use as an example throughout this book. |
have defined the column SSN, which represents an employee’s Social Security number, as the unique
identifier for each row. No two rows can have the same value as this column.

Primary Key
o= SSN NAME SALARY | HIREDATE LOC_ID
1M1 Todd | 500055 |16 Sep-89 100
419876541 Larry | 150075 | 5-Mar-01 200
312654987 Lori 2000.95 11-Jan-99 300
123456789 Jimmy | 3080.05 | 7-Sep-97 400
987654321 John 4351.27 | 31-Dec-96 500
454020576 Andy | 140051 [5-May-01 400
;'7—717’7!71;111;:-;' Krt.&

Figure 2-3: Example of a primary key

A column that represents a primary key carries some additional constraints. For example, you cannot store
NULL values in these columns. The column(s) that define a primary key must contain meaningful data.
NULL values represent uncertainty. In addition, you must always specify a primary key value when adding a
new record to a table. Not doing so is equivalent to adding a NULL value.

Note A database NULL value represents unknown values or indecision. Contrary to what many
believe it does not represent the number zero or an empty character string.

Referential integrity

You may build RDBMS applications that contain multiple unrelated tables. However, this creates a database
application good for looking up information in only one table at a time. Most RDBMS applications consist of
multiple tables related in some manner to model real-world objects and processes.

To relate two tables you must create a link from one table to the other table. Foreign keys provide that link.
Foreign keys are primary keys from one table used in another table. Because they are primary keys, they ac

as pointers to unique records in the other table.

For example, consider the Employees and Location tables in Figure 2—-4. The Employees table has a colum
Loc_Id, which holds the code from the Location table that indicates the home-office location. In this exampli

16

Chapter 2: A Relational Database Primer

the Loc_Id column in the Employees table is a foreign key. Each entry points to a unique record in the
Location table. Regarding nomenclature, the Employees entity is called the relational table and the Location
table is known as the base table.

Primary Key
o=~ LOC_ID| LOCATION
o™ Primary Key 100 Knoxville
o= Foreign Key | 200 | Atanta
300 New York
[400 | LA
Primary Key 500 Tulsa
' : Foreign Key
o=SSN__ | NAME | SALARY [HIREDATE [LOC_ID &
11 Todd 5000.55 | 16-Sep-89 100
419876541 | Larry 1500.75 | 5-Mar-01 | 200 |
312654987 Lori 200095 | 11-Jan-99 300
123456789] Jimmy | 308005 | 7-Sep-97 | 400 |
987654321 John 4351.27 | 31-Dec-96 500
454020576 | Andy 140051 | 5-May-01 | 400 |

Figure 2—-4: Example of a foreign key

Foreign keys also limit data duplication, which minimizes your database’s size. If you reference the primary
key in a base table you do not have to include the whole record. The foreign key points to it. For example,
when querying the Employees table you can easily retrieve the location by joining the two tables in a
SELECT statement. | provide an example of this operation in the section "Reviewing SQL Basics" later in th
chapter.

Like primary keys, foreign keys have usage rules. For instance, foreign keys must contain valid values in the
base table. However, unlike primary keys, a foreign key can also contain NULL values. A table may even
have multiple rows containing NULL values for the foreign key. Why? In some situations a record may not
have valid value in the foreign key’s base table.

Figure 2-5 provides an example of a situation in which you might store a NULL value in a foreign key.
Notice that in the Family table the foreign key, Pet_Type, references a Pet lookup table. In some cases a
family may not have a pet, in which case a NULL value is appropriate.

o= Family_ID NAME Pet ID &=
1 Hitt 3
2 Jansen 3 |
3 D'Amico 4
4 Thomas null |
5 Williams 2
6 Hamby 2|
7 Treanor 5
A
[o= Primary Key | Y
&= Foreign Key o= Pet_ID ! Pet_Name
1 Fish
2 | Cat
3 Dog
4 | Bid
5 lguana

Figure 2-5: Example of a NULL value for a foreign key

However, a NULL value introduces ambiguity because it represents the unknown. In the previous example,
you encounter a NULL value you don’t know whether the family doesn’t have a pet, forgot to answer the

17

Chapter 2: A Relational Database Primer

guestion, or has a type of pet that is not listed. Good database design suggests including a "no pet" or "not
listed" entry in the Pet table to deal with this problem.

Table relationships

As | mentioned above, the ability to relate entities enables you to model systems and processes. Table
relationships describe how records in one table map to records in another table. When creating the relations
you rely on primary and foreign keys to glue the entities together. Because the keys have integrity constrain
associated with them, they also help to ensure that the relationship remains valid.

The following sections present the different table relationships with examples explaining them.

One-to—one relationships The one-to—one relationship is the simplest. It specifies that only one record in a
table maps to only one record in another table. This relationship seldom occurs in database applications.
However, you will need it in some obvious situations.

Figure 2—6 shows an example of a situation in which you might encounter a one—to—one relationship. In this
case, it describes the relationship between an automobile and an engine. As you know, an automobile can c
have one engine and vice versa. In the model, both the Automobile and Engine tables have composite prim;
keys: Auto_ID and Engine_ID, respectively. The Automobile table stores data about the vehicle, such as col
and model. The Engine table stores engine specific information. The two tables share a one-to—-one
relationship based on their primary keys. In this example the one-to—one relationship is obvious.

Automobile Engines
PK | Auto ID L el PK | Engine ID
PK | Engine ID PK | Auto 1D
[Auto Description ‘ann:u Description

Figure 2—-6: Example of a one—to—one relationship

You can also use the one-to—one relationship to split a table into two parts. For example, suppose you have
table with a large number of columns. To make administration and documentation easier, or circumvent
system limitations, you may want to split the table into two smaller entities. When splitting a table you keep
the same primary key for each table and create the one—to—one link based on it.

Splitting a table also makes sense if it contains both confidential and non— confidential data. You can keep t
confidential data in a separate table and allow only authorized personnel to access it. Again, identical primal
keys in each table create the link.

One-to—many relationships The most common entity relationship is the one-to—many relationship. It
occurs when a record in one table has zero, one, or many matching records in another table. You may also
hear this relationship appropriately called a parent—child or master—detail relationship.

The relationship frequently occurs when a relational table includes information from a lookup table. Figure
2-7 shows an example of a one—to—many relationship used in the data model for an online store that sells
computer systems. All the lookup tables — Mouse, Monitor, and Keyboard — contain unique inventory item:
for the different components.

18

Chapter 2: A Relational Database Primer

Monitors
PK | Monitor Id]
Monitor_Name
Computer_System
Mice 1 2/ PK | Computer System Id
PK | Mouse Id - — 21TK1| Monitor_Id
Mouse_Name (—GE FK2| Mouse_Id
FK3| Keyboard_|d
Keyboards
PK | Keyboard Id !
| Keyboard_Name

Figure 2-7: Example of a one—to—many relationship

The lookup tables have a one-to—many relationship with the Computer_System table. That is, every record
a lookup table can have zero, one, or many records in the Computer_System table. For example, a certain
style of mouse is used in many different systems. The same holds true for keyboards and monitors.

Many—-to—many relationships Two tables share a many-to—many relationship when a record in Table A has
many matching records in Table B, and a record in Table B has many matching records in Table A.

Unfortunately, the relational model does not enable you to directly implement this relationship between two
tables. To implement the relationship you need to use a third table that indirectly join the two other tables to
each other. The third table, often called a joining, linking, or association table, has a one-to—-many
relationship with each table.

Figure 2-8 illustrates this relationship between an Order and a Products table. A single product can exist on
many different orders, and a single order can contain many different products. To uniquely identify a specific
product—-order combination you need an association table, Order_Details. It has two one-to—many
relationships, one with the Products table and another with the Order table. Each entry in the Order_Details
table represents a specific order—product combination.

As you can see, many—to—many relationships can become complex and confusing. This underscores the
importance of understanding the data model before developing an application.

Order_Details
SO PK | Order Number i
PK | Product id pr—-

Product ‘, 1 | Orders

PK lPtndnxtl I)_1, 1 [PK [Ordor Number
iption e |

| Customer

| Address
| State
| Ship_Date

Figure 2—-8: Example of a many—-to—many relationship

Reviewing SQL Basics

The Structured Query Language (SQL) is the foundation for interacting with an RDBMS. The language
enables you to build a database and the structures that hold data, as well as to insert, delete, and retrieve d
from it. All RDBMSs use SQL. In fact, the universal acceptance of SQL has helped make the relational

19

Chapter 2: A Relational Database Primer

database the most widely used database system. As a result, an understanding of SQL will enable you to w
with many different databases with relative ease.

SQL is a non—procedural language. You cannot create a sequence of statements and execute them as a wt
When using SQL you submit one statement, or command, at a time and wait for the result. A query provides
good example. You submit a SELECT statement and the database server returns the results. It is not possik
to chain two statements together and execute them simultaneously.

However, some database vendors have developed procedural languages around SQL to create a programn
environment. With a vendor’s language you can create stored procedures, which are mini—-programs
equivalent to Java methods. Stored procedures enable you to sequentially execute multiple statements as v
as to control the flow of execution.

ANSI published the first SQL standard in 1986. The specification defined the basic functions and syntax for
database interaction. The next major version, SQL92, published in 1992, provided the major language
components we use today. In a nutshell, it gives us language constructs for manipulating schemas and
database administration. SQL3, adopted in 1999, provides support for custom data types and supports certe
object-oriented programming concepts, such as polymorphism and inheritance. Using SQL3 you can create
your own object hierarchy within the database using custom data types.

Although an SQL standard exists, different database vendors have modified it slightly to exploit their differer
proprietary features. Think of the national language of a country. It's understood everywhere, but different
dialects exist in different regions. It's the same with the modern RDBMS. Each vendor uses SQL, but each
has its own dialect.

For example, Oracle developed an SQL version called PL/SQL with extensions that apply to Oracle—specific
features. SQLServer uses T-SQL, or Transact-SQL, in the same manner. Nonetheless, if you understand ¢
concepts, you should have few problems adopting an individual database’s SQL dialect.

SQL has two major components with which you can work: the Data Manipulation Language (DML) and the
Data Definition Language (DDL). DML is the language for interacting with the data. With it you can add,
change, or remove table data. DDL is the language for building the data—storage structures within the
database. It enables you to create or destroy structures such as tables, indexes, or even a database itself.

The following two sections describe DML and DDL. I've also provided some examples to illustrate the
concepts.

Using Data Manipulation Language (DML)

DML is the name given to a subset of SQL commands used for manipulating records in a relational databas
It defines commands for retrieving, inserting, updating, and deleting table data. As a developer you will likely
use DML statements more often than any other SQL statement type. | list the four most commonly used DM
commands and a brief description of each in Table 2—-1.

Table 2-1: Data Manipulation Language (DML) Commands

20

Chapter 2: A Relational Database Primer

SQL DML Command Description

SELECT Retrieves records from one or more tables in a relational database.
UPDATE Modifies existing columns for one or more records in a single table.
INSERT Adds a new record into a single database table.

DELETE Removes one or more records from a single table.

You use the SELECT command to retrieve data from one or more tables. It does not affect the underlying
data, it only returns it. The other statements — UPDATE, INSERT, and DELETE — alter the underlying tabl
data. Improperly using these commands can cause data loss or corruption.

However, most RDBMSs protect against misuse or mistakes by using transactions. Generally, a database
system buffers your changes until you issue the COMMIT statement, which tells the database to make the
changes permanent. If you decide not to apply changes, and have not yet issued the COMMIT statement, y
can use the ROLLBACK statement to undo them.

Caution JDBC automatically performs commits after each DML statement. You can
change this behavior by using the Connection.setAutoCommit() method to
change the auto—commit state to false. This will require you to explicitly commit
changes with the Connection.commit() method. Your driver may function
differently, so you should check the documentation provided with it.

Not only do the UPDATE, DELETE, and INSERT statements affect table data, they also affect indexes.
Generally, a database system will update an index whenever a record changes or you add new data. For
example, when you add a record to a table, the database adds an entry to the appropriate index. The same
holds true for updating and deleting records; the index entry is modified appropriately.

The following sections provide more detail on the SELECT, INSERT, UPDATE, and DELETE DML
statements. Figure 2-9 provides a schema for the examples used in this section.

Employees
PK | SSN_
Name
Salary
Hiredate
= 1K | Loc_td
~Tocation | |
PK |Locld

Location

Figure 2-9: Employee-Location entity—relationship diagram

SELECT statements

The SELECT, or query, statement is used to retrieve data from the database. Almost all your database
programming work will use this statement in some capacity. Besides being a vendor—specific tool for bulk
extraction of data, the SELECT statement provides the only way to retrieve and view records. The general
form of a SELECT is as follows:

SELECT column_1, ..., column_N
FROM table_1, ..., table_N
[WHERE condition]

[]= optional

21

Chapter 2: A Relational Database Primer

The column names after the SELECT keyword indicate the table attributes you want to retrieve. You may
include one or more of the table columns in the query. You indicate the tables you want to query after the
FROM keyword. You can also retrieve data from multiple tables by specifying more than one table in a
comma-—delimited list. However, the list must contain related tables.

The optional WHERE clause acts as a filter to limit the number of rows returned. You use it to evaluate a
column’s content against some criteria. Table 2-2 lists the conditional symbols you can use with a WHERE
clause. You may also use the WHERE clause with the UPDATE and DELETE statements to limit their
effects.

Table 2-2: WHERE Clause Evaluation Symbols

Evaluation Symbol Description/Meaning
= Equal to
Greater than
Less than
>= Greater than or equal to
<= Less than or equal to
<>orl= Not equal to
LIKE Special keyword that allows wildcard searches using % to match any possible

character. Example: LIKE Name="T%’ retrieves all names starting with T.
The following snippets provide some examples of the SELECT statement:

SELECT Ssn, Name
FROM Employees

Query output:

SSN NAME

111111111 Todd
419876541 Larry
312654987 Lori

123456789 Jimmy
987654321 John
454020576 Andy

Notice that the previous query returns the SSN and Name for all the rows in the table. Using the WHERE
statement enables you to select which rows to return. For example, the following SQL statement retrieves ol
my record:

SELECT Ssn, Name
FROM Employees
WHERE Name= ‘Todd’

Query output:

22

Chapter 2: A Relational Database Primer

SSN NAME

111111111 Todd

If you want to list all the columns you have two choices. First, you can specify every table column in the
SELECT statement. This might be impractical if you have a lot of columns. The second option is to use the
asterisk (*), to return all the columns. The following SELECT statement demonstrates this option:

SELECT *
FROM employees
WHERE name= ‘Todd’

Query output:

SSN NAME SALARY HIREDATE LOC_ID

111111111 Todd 5000.55 16-SEP-89 100

I mentioned earlier that you can retrieve data from multiple tables using the SELECT statement. This enable
you to pull records from related tables. To build this type of query you must use create join between the tabl
involved.

Joins enable you to combine two tables based on the values in specific columns. In general, if you want to |
two related tables, you use the foreign—key columns to create a join. It is the inclusion of the foreign key in &
relational table that creates the link with the base table. When using a join you usually want to retrieve
descriptive data from a lookup table based on the foreign key in the relational table.

For example, suppose | want a list of the home offices for all the records in the Employees table. From Figu
2-9 and the preceding query, you can see that the Employees table has a foreign key, Loc_ld, that is the
primary key of the Location table. As a result | will use the Loc_ld column to create the join between the
tables. The following query retrieves the information | want:

SELECT Employees.Name, Location.Location
FROM Employees, Location
WHERE Employees.Loc_Id = Location.Loc_Id

Query output:

NAME LOCATION
Todd Knoxville
Larry Atlanta

Lori New York
Jimmy L.A.

John Tulsa

Andy L.A.

One problem can arise when using joins. Because you include columns with identical names from both table
the SQL processor may have difficulty identifying to which table a column belongs. As a result, you need to
uniquely identify the column names. Prefixing them with table names solves the problem. Notice that in the
previous query | qualified the columns with the table name and a dot (.) to remove any ambiguities associate
with the foreign—key name.

23

Chapter 2: A Relational Database Primer

INSERT statements

The INSERT statement enables you to add data to a table. The general form is as follows:

INSERT INTO table_name (column_1, ..., column_N)
VALUES (value_1, ... ,value_N)

You can add only a single record to a table with each INSERT statement. With the column list you can
specify which columns of the new record you want to contain data. You may specify individual columns or al
the columns in the table. The entries in the VALUES list must correspond one—to—one with the entries in the
column list.

If adding values for all the table columns you do not need to include the column list. (This is a shortcut for
tables with a large number of columns.) An INSERT statement of this type has the following form:

INSERT INTO table_name
VALUES (value_1, ... ,value_N);

When using the previous statement you need to supply values for all columns in the table. In addition, the
order of the values must match the order of the columns in the table definition. Here’s an example of an
INSERT statement that adds another office location to the Location table:

INSERT INTO Location
VALUES (600, ‘London’)

Unlike the SELECT statement, which does not modify data, the INSERT statement carries some restrictions
on its use. Therefore, when using the INSERT statement you must follow some guidelines. For instance:

* You must always specify values for primary keys and columns designated as NOT NULL.
* New data must match the respective column’s data type.
* When using foreign keys you must include valid values in the relational table from the base table.

The RDBMS performs checks on the data you insert to ensure that these rules are not broken. If you issue «
illegal INSERT statement the database will throw an error and not allow the change.

UPDATE statements

UPDATE statements enable you to modify one or more column values for existing table data. You can apply
the change to all the rows in the table, a related subset, or a single row. The UPDATE statement has the
following form:

UPDATE table_name
SET column_1 =value 1
[,column_N = value_N]
[WHERE condition]

[]=optional

As with the INSERT statement, several restrictions apply to the UPDATE statement. In fact, they share
several of the same constraints. First, the data type of the new value must match the data type of the table’s
column. However, some drivers, or databases, will coerce the data types for you. Nonetheless, don't rely on
this behavior. Another restriction is that you can update only a single table with the UPDATE statement. Thi
statement does not support joins between tables.

24

Chapter 2: A Relational Database Primer

As with the SELECT statement, you can use the optional WHERE clause to limit the rows affected. This
enables you to selectively apply changes. For example, the following snippet gives all the employees in the
Employees table a 3 percent raise:

UPDATE Employees
SET Salary = Salary * 1.03

However, you can use the WHERE clause to select the records you want to update. I'm greedy, so | will use
the following statement to give myself an additional 10—percent raise:

UPDATE Employees
SET Salary = Salary * 1.10
WHERE Name = ‘Todd’

The UPDATE statement also enables you to modify columns containing either a primary or foreign key — a:
long as you follow the general integrity rules | discussed in the previous section.

DELETE statements

As you might expect, the DELETE statement removes one or more records from a table. It has the following
form:

DELETE table_name
[WHERE condition]
[]=optional

You will find that using the statement is straightforward, as the following snippet illustrates:

DELETE Employees
WHERE Name = ‘Todd’

The previous statement deletes my record from the Employees table. Dropping the WHERE clause from the
DELETE statement removes all the records in the table. Use this form with caution, as it completely remove
a table’s contents. This DELETE statement takes the form:

DELETE table_name

Just as with the other statements, you must abide by the entity and referential integrity rules when using the
DELETE statement. For example, you cannot delete a record from a base table containing a value used as
foreign key in another table. You must first break the relationship using DDL or remove the dependent recor
from the relational table.

Using Data Definition Language (DDL)

DDL enables you to build, manipulate, and destroy database structures. With this subset of SQL you create
the database infrastructure, such as tables and indexes, in which to store data. You also use DDL statemen
build integrity constraints, such as primary and foreign keys to define table relationships.

DDL statements differ drastically from DML statements because they do not participate in transactions. As &
result, you cannot roll them back. DDL statements work directly with the data dictionary and changes occur
immediately. If you issue a DROP TABLE statement, the database system removes the table immediately.

You cannot get it back. Therefore, use these commands, especially the ALTER and DROP statements, with

25

Chapter 2: A Relational Database Primer

care — you do not have the safety net of transactions.

You usually need privileged security permissions to execute DDL statements because they affect the datab:s
infrastructure. Typically you need DBA, database “super—user,” or schema—manipulation rights.

As a developer you are not likely to use DDL statements very often. When you do, you will likely only use
the CREATE, ALTER, and DROP statements. Table 2—-3 presents a quick listing of these statements, along
with a brief explanation of each. The following sections provide an overview of the statements as well.

Table 2-3: Data Definition Language (DDL) Commands

SQL DDL Command Description

CREATE Builds or makes new database structures. Used specifically for tables, indexes,
and integrity constraints.

ALTER Modifies an existing database structure. Used typically for adding new
columns to tables or adding integrity constraints.

DROP Removes a database structure.

CREATE statements

You use the CREATE statement to build all database structures. For example, to build a database, index, a
table you use the CREATE DATABASE, CREATE INDEX, and CREATE TABLE statements, respectively.

Most RDBMSs use the CREATE keyword to build custom proprietary structures as well as the standard SQ
ones. The syntax for the CREATE statement varies according to the structure you want to build. However, i
general form is as follows:

CREATE OBJECT attributes

For a specific example, examine the following CREATE TABLE syntax:

CREATE TABLE table_name
(

coulumn_namel datatype [constraint,]
[coulumn_name2 datatype] [constraint,]
[coulumn_name3 datatype] [constraint]...

)

[]=optional

In this example the keyword TABLE and the column definitions identify the OBJECT and the attributes,
respectively. The column definitions consist of two components. The first, which is mandatory, is the databa
data type. You must give a valid type for your database system because it may not support all ANSI SQL dz
types or use different nomenclature specific to the system. The second component, which is optional, specif
any constraints you want to place on the column. Some examples are PRIMARY KEY , NOT NULL, and
UNIQUE.

XRef Chapter 7, “Understanding JDBC Data Types,” provides more information on both Java and
SQL data types.

26

Chapter 2: A Relational Database Primer

The following snippet shows the CREATE statement used to build the Employees table shown in Figure 2—¢

CREATE TABLE Employees

(SSN number(9) CONSTRAINT PK_EMP PRIMARY KEY,

Name VARCHAR(20),

Salary number(9,2),

Hiredate DATE,

Loc_ld NUMBER(3) CONSTRAINT FK_LOC REFERENCES Location(Loc_Id)

)

In the preceding example, each column includes the data type and constraints | need to define the table. Th
two columns with constraints are the Ssn and Loc_ld columns, which have the PRIMARY_KEY and
REFERENCES, or foreign—-key, constraints, respectively.

As | mentioned earlier, the structures you can build with the CREATE statement vary according to your
database. You should check your documentation to determine your options.

ALTER statements

The ALTER statement modifies an existing database structure, much like the UPDATE DDL statement. As
with the CREATE statement, the syntax for this command depends upon the target—database structure and
the following general form:

ALTER OBJECT attributes

For example, when the OBJECT is a table, the ALTER command enables you to add a new column or chan
the data type of an existing one. The following form adds a column:

ALTER TABLE table_name
ADD column_name datatype

This form modifies an existing column:

ALTER TABLE table_name
MODIFY column_name datatype

For an example of the ALTER statement, the following snippet adds a ZIP_CODE column to the Location
table:

ALTER TABLE Location
ADD Zip_Code VARCHAR(10)

When using the ALTER statement, you still need to adhere to the integrity constraints defined in the databa:
For example, you must exercise caution when modifying the data type of a primary key column, especially if
you use it as a foreign key in another table. In addition, you cannot change a column data type to an
incompatible data type, such as changing a DATE to a DECIMAL.

DROP statements
The DROP statement is analogous to the DELETE DDL statement used to remove table records. However,

this statement removes an entire database structure and any reference to it in the data dictionary. So use th
command with caution, as you typically cannot undo the changes.

27

Chapter 2: A Relational Database Primer

The syntax for the DROP statement is simple:

DROP object

The following snippet removes the Employees table from the database:

DROP Employees

As with the ALTER command, you need to respect the integrity rules of the database before issuing the
DROP statement. For example, you cannot drop a base table that provides foreign keys to a relational table
Consider the Employees—Location relationship shown in Figure 2-9. You cannot drop the Location table
without incurring a database error, as doing so breaks the referential integrity constraint. To remove the
Location table you need to either break the relationship or drop the Employees table first.

To break the relationship you can use the CASCADE CONSTRAINTS keyword along with the DROP
statement. This keyword removes the integrity constraints associated with the table so you can remove it.
Therefore, to remove the Location table you issue the following command:

DROP Location CASCADE CONSTAINTS

Because the DROP statement permanently removes a structure, use it with caution. Contact your DBA to
ensure a valid backup exists before issuing the DROP statement against any mission—critical table. That tak
does not have to be a production table; development tables are just as valuable. Especially once you get
everything working the way you want, if that ever occurs.

Summary

The RDBMS plays a major role in enterprises today by storing mission—critical data used to make business
decisions or generate revenue. As a developer you will likely build an application that will interact with
database in some manner.

This chapter serves as a refresher on relational database systems. In it | covered:
* The basics of the RDBMS architecture
« Entity and referential integrity constraints

* SQL, DML, and DDL statements

Although not a treatise on SQL, this chapter should provide the essentials to help revive your SQL
knowledge. Now let's move on to JDBC programming.

28

Part Il: Understanding JDBC Programming Basics
Chapter List

Chapter 3: Setting Up Your First JDBC Query
Chapter 4: Connecting to Databases with JDBC
Chapter 5: Building JDBC Statements

Chapter 6: Working with Result Sets

Chapter 7: Understanding JDBC Data Types
Chapter 8: Mining Database Metadata with JDBC

29

Chapter 3: Setting Up Your First JDBC Query
In This Chapter

» Understanding JDBC configuration issues

» Obtaining and installing JDBC drivers

« Identifying common JDBC components

* Creating a simple JDBC application

» Understanding the steps used in a JDBC application

Database programming may seem daunting at first glance. After all, it encompasses many facets, such as
client/server communications, drivers, APIs, incompatible data types, and SQL statements. You may think
you need to know about all these issues before you can start to develop database applications. Frankly, yoL
need to know something about them in order to create reliable database applications; however, JDBC
minimizes the learning curve for those just getting started.

The JDBC API abstracts much of the work needed to create robust database applications. Its core compone
consist of simple, intuitively named objects that do the work for you. To create an application, you just
configure and assemble the components in the correct order. However, if you move into JDBC enterprise
development, things change a little. You use different objects for opening database connections, but their
functionality remains the same.

JDBC programming is very methodical. Ninety percent of JDBC applications use the same objects and
methods regardless of what you want to accomplish. For example, you always load a driver, open a
connection, submit an SQL statement, and examine the results. The details of each step vary very little from
task to task.

In this chapter, | guide you through building a simple JDBC application from start to finish. | start by
discussing how to configure JDBC. Next, | identify the common components used in all JDBC applications,
and then | present a sample application and cover the discrete steps involved in it. Lastly, | cover how to
compile and run a JDBC application as well as how to troubleshoot any problems that may occur.

Configuring JDBC

JDBC is an API that encapsulates the low—-level calls needed for database access and interaction into one

common interface. Both the Java Development Kit (JDK) and Java Runtime Environment (JRE) contain the
API as part of the standard distribution. The API’s interfaces and classes reside in the java.sqgl and javax.sq
packages. The standard components are packaged in java.sqgl while the enterprise elements are in javax.sq

The JDBC API differs from a JDBC driver. The API defines the interfaces and methods vendors implement
when writing a driver. If you examine the API source code you will find it consists mainly of interfaces. As a
result, before you can write a JDBC application, you need to obtain and install a JDBC driver, which
implements the interfaces. However, a single JDBC driver does not enable you to access different “brands”
databases. In other words, you cannot access an SQL Server database using an Oracle driver. You must us
driver specifically targeted for your database.

30

Chapter 3: Setting Up Your First IDBC Query

To help you understand the role of a driver, Figure 3—1 depicts how JDBC and a Java application interact. A
communications with a database must go through the JDBC driver. The driver converts the SQL statements
a format the database server understands and makes the network call using the correct protocol. The JDBC
driver abstracts the database-specific communication details from you. All you need to learn in order to cree
a database application is SQL and JDBC.

Client Computer Database Server

—

Java oec| |osc Network [‘ —
-y - [

=

- - N
Application APl Driver Communications

Figure 3—-1: JDBC-Java relationship

In the following two sections | explain how to obtain and install a JDBC driver for your database. The proces
is straightforward, as you will see.

Obtaining JDBC drivers

As | mentioned in the previous section, you must obtain a JDBC driver for your target database before you
start to write database applications. Most often your database vendor can supply a JDBC driver. If not, you
can likely find a third—party implementation that works with your database. Regardless of how you obtain a
driver, the point to remember is that it must target your database.

To help you get started more quickly, both the JDK and JRE contain a JDBC-ODBC bridge driver that
enables you to use ODBC drivers for database access.

Figure 3-2 illustrates how JDBC and ODBC function together. Database calls in an application still use JDB
methods. However, instead of communicating directly with the database, the JDBC driver communicates wit
the ODBC driver, which in turn communicates with the database. As a result, you still need an ODBC driver
for your database. Again, your database vendor, or a third party, will likely have an ODBC driver available fc
your use.

Client Computer

Java JBC | JOBC H(l:-‘.l'Fj Network
aaa 8 i M - - |
| Application API Driver Driver ‘ Communications

) (S el \)

Figure 3-2: JDBC-ODBC bridge architecture

Sun’s Web site, http://java.sun.com/products/jdbc/, provides information on JDBC drivers and vendors. It als
features a search engine to help you locate a driver to match your database and application needs.

Installing the JDBC driver

Once you obtain a JDBC driver, you must install it. Fortunately, installing JDBC drivers is identical to
installing other Java APIs: Just add the driver path to the classpath when running or compiling the applicatic
If you mistype the path or forget to add it, numerous errors will occur.

This step might sound trivial but neglecting it often creates frustration in new JDBC programmers. They ofte
think they have faulty code when they really have classpath issues.

31

Chapter 3: Setting Up Your First JIDBC Query

When you are using the JDBC-ODBC driver the classpath requirement does not apply. Sun has built the
driver into the distribution, so you need not worry about the classpath settings. However, to use the
JDBC-ODBC bridge you must meet different requirements.

One requirement, as | mentioned previously, is that you have an ODBC driver for your database. The
JDBC-ODBC bridge will not operate without it. Second, you must configure a valid ODBC Data Source
Name (DSN) before you can run an application. Chances are that you already have one configured for your
database if you do any work with ODBC. If not, your ODBC driver documentation should contain
instructions on configuring a DSN.

However, you might opt to forgo the JDBC-ODBC bridge and use pure Java instead. This approach gives y
the luxury of not having to ensure that the ODBC driver and DSN exist on all workstations. This is a real
benefit when it comes to deploying and maintaining the application.

Examining the Common JDBC Components

You can use JDBC to create very diverse database applications. For example, you can write an application
an EJB component that manages inventory or processes customer orders for an online store. Or you can cr
a JDBC application to help DBAs manage their databases. Regardless of the purpose, all JDBC application:
have similar requirements.

First, the application must be able to communicate with the database. This means that it must understand tf
protocol and low-level language the database server uses when communicating with the client. Second, the
application must be able to establish a connection with the database server in order to create a communicat
channel for sending SQL commands and receiving results. Finally, the program must have a mechanism for
handling errors. Database applications use complex operations and numerous opportunities for failure exist
such as intermittent networks and malformed SQL commands.

To meet these requirements the JDBC API provides the following interfaces and classes:

« Driver — This interface handles the communications with the database server. It encapsulates the
"know-how" for interacting with a database. Very rarely will you interact directly with Driver
objects. Instead, you use DriverManager objects, which manages objects of this type. It also abstrac
the details associated with working with Driver objects.

» Connection — Instantiated objects of this interface represent a physical connection to the database.
You can control result set behavior and transaction operations using Connection objects.

» Statement — You use objects created from this interface to submit the SQL statements to the
database. Some derived interfaces accept parameters in addition to executing stored procedures.

» ResultSet — These objects hold data retrieved from a database after you execute an SQL query usi
Statement objects. It acts as an iterator to allow you to move through its data.

* SQLEXxception — This class handles any errors that occur in a database application.

Regardless of the JDBC application, you always work, directly or indirectly, with these four components.

Once you understand them, writing JDBC applications becomes easier. The next section shows the
components in action as | demonstrate the steps required to create a simple JDBC program.

32

Chapter 3: Setting Up Your First JIDBC Query

Writing Your First JDBC Application

Now that you have your JDBC driver, know how to install it, and have familiarity with the common JDBC
components, I'll provide an example of how to create a simple JDBC application. This will show you how to
open a database connection, execute a query, and display the results. This example can serve as a templat
when you need to create your own JDBC application in the future.

You will find JDBC programming very much like following a recipe. To accomplish any one programmatic
task requires repeating the same steps. For example, you must always load a JDBC driver and open a data
connection. Each operation has its own set of steps, which remain the same regardless of the application. A
result, you may choose to build classes to take care of most of the drudgery.

Creating the sample application

For the example, I'll use the database schema | built in Listing 5-1 of Chapter 5, “Building JDBC
Statements.” You can either run that example first to create the schema, modify this example to fit your
environment, or just follow along and pick up the concepts.

XRef Part Ill, “Using Java Data Access Design Patterns,” covers object-oriented programming
techniques that reduce the repetitiveness of JDBC programming. Design patterns focus on
building robust, scalable, and reusable programs using object-oriented concepts.

Figure 3-3 illustrates the six steps required to make a connection, submit a query, and retrieve data. Unless
you use a different query, such as one that accepts parameters, these basic steps do not change.

From the figure you can see that the major steps you must complete include:

1. Import the packages — Requires that you include the packages containing the JDBC classes neede
for database programming. Most often, using import java.sgl.* will suffice.

2. Register the JDBC driver — Requires that you initialize a driver so you can open a communications
channel with the database.

3. Open a connection — Requires using the DriverManager.getConnection() method to create a
Connection object, which represents a physical connection with the database.

4. Execute a query — Requires using an object of type Statement for building and submitting an SQL
statement to the database.

5. Extract data from result set — Requires that you use the appropriate ResultSet.getXXX() method to
retrieve the data from the result set.

6. Clean up the environment — Requires explicitly closing all database resources versus relying on the
JVM'’s garbage collection.

A little later in the chapter I'll provide the details of each step shown in Figure 3—3. For now, let me present

simple example | use to illustrate the steps. For your convenience, | provide the example in Listing 3—1 befo
beginning the discussion.

33

Chapter 3: Setting Up Your First JIDBC Query

Import
packages

',

Reqister
JDBC
driver

l

Myon
Open a
connection

Y

Execute a
query

Extract
data from
result set

'

Clean-up
environment

Figure 3-3: The six steps involved in building a JDBC application

In brief, the application opens a connection with the Employee database, submits an SQL query asking for
data from the Employees table, and finally displays the results. As | mentioned earlier, | am keeping the
example simple to illustrate the distinct steps involved in JDBC programming.

Before continuing let me also mention exception handling. Most JDBC methods throw an SQLEXxception.
Those that don’t generally don't throw any exceptions. For this reason you need to catch the SQLException
your code. In my example | place all the commands in a try—catch block and explicitly handle the
SQLEXxception error.

Also notice that in the example | initialize the Connection object before entering the try—catch block. This
enables me to access the variable in a finally clause to ensure it is properly closed.

Listing 3—1: FirstQuery.java

package Chapters3;

/ISTEP 1. Import packages
import java.sgl.DriverManager;
import java.sgl.Connection;
import java.sgl.Statement;
import java.sgl.ResultSet;
import java.sgl.Date;

import java.sql. SQLException;
public class FirstQuery {

public static void main(String[] args) {

34

Chapter 3: Setting Up Your First JIDBC Query

/IDefine Connection variable
Connection conn = null;

//Begin standard error handling
try{

/ISTEP 2: Register JDBC driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver);

/ISTEP 3: Open a connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
String user = "toddt";

String password = "mypwd";

conn = DriverManager.getConnection(jdbcUrl,user,password);

/ISTEP 4: Execute a query

Statement stmt = conn.createStatement();

String sq;

sql = "SELECT SSN, Name, Salary, Hiredate FROM Employees";
ResultSet rs = stmt.executeQuery(sql);

/ISTEP 5: Extract data from result set
while(rs.next()){

/IRetrieve by column name

int ssn=rs.getInt("ssn");

String name = rs.getString("name");

//Retrieve by column index as an example
double salary = rs.getDouble(3);
Date date = rs.getDate(4);

/IDisplay values

System.out.print("SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.print(", Salary: $" + salary);
System.out.printin(", HireDate: " + date);

}

/ISTEP 6: Clean-up environment
rs.close();

stmt.close();

conn.close();

}catch(SQLException se){
/[Handle errors for JDBC
se.printStackTrace();

Jcatch(Exception e){
/IHandle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(conn!=null)
conn.close();
Jcatch(SQLException se){
se.printStackTrace();

35

Chapter 3: Setting Up Your First JIDBC Query

Ylend finally try
Hlend try
System.out.printin("Goodbye!");

}/end main
Mlend FirstQuery

The output from Listing 3—-1 is as follows:

Connecting to database...

SSN: 111111111, Name: Todd, Salary: $5000.55, HireDate: 1995-09-16
SSN: 419876541, Name: Larry, Salary: $1500.75, HireDate: 2001-03-05
SSN: 312654987, Name: Lori, Salary: $2000.95, HireDate: 1999-01-11
SSN: 123456789, Name: Jimmy, Salary: $3080.05, HireDate: 1997-09-07
SSN: 987654321, Name: John, Salary: $4351.27, HireDate: 1996-12-31
Goodbye!

Examining the output from Listing 3—1 shows that the query retrieved the SSN, Name, Salary, and HireDate
from the Employees table. Now, let me give you the details of each step required to make it happen.

Step 1. Import the packages

As with all Java applications you must import the packages that contain the classes you need for your
program. Fortunately, all the JDBC interfaces and classes exist in either the java.sql or javax.sgl package.

The java.sql package contains the JDBC core libraries. You use classes or interfaces from this package in
every JDBC application. The javax.sgl package contains the classes and interfaces that support
enterprise-level JDBC programs. You need this package only when dealing with connection pooling, rowset
distributed transactions, or other advanced features.

XRef Part IV, “Taking It to the Enterprise,” provides more information on using the javax.sql package. It
covers connection pooling, rowsets, distributed transactions, and more.

The following is a list of the classes and interfaces | import in the example:

« java.sgl.DriverManager — Manages JDBC drivers. Maintains an internal collection of Driver objects
and provides them as needed for database communications.

« java.sgl.Connection — Represents the physical connection to the database. Objects instantiated fror
this interface also control transaction levels and the types of result sets created when a query return:

* java.sgl.Statement — Sends SQL statements to the database. This interface enables you to send or
static statements. The java.sql. PreparedStatement interface defines methods that allow you to use
SQL statements that accept parameters.

« java.sgl.ResultSet — Holds the SQL query results and provides an iterator so you can traverse the
ResultSet object’s data.

« java.sgl.Date — JDBC data type identifier that maps to the SQL DATE data type.

« java.sgl.SQLException — Handles database errors and JDBC programming exceptions.

Now that | have provided the import statements so my application can find the JDBC components, | can mo
on to registering a JDBC driver.

36

Chapter 3: Setting Up Your First IDBC Query

Step 2: Register a JDBC driver

As | mentioned earlier, the driver contains the “know—how” for communicating with the database. Therefore,
in your application you must always register a driver when working with JDBC. You can do this using either:

« DriverManager.registerDriver(Driver driverClassName) method
* Class.forName(String driverClassName) method

The Class.forName() method affords more flexibility because it accepts a String parameter representing the
driver class name. This enables you to dynamically obtain driver values at runtime from the command line o
a properties file. Using DriverManager.registerDriver() method requires a parameter of type Driver. Generall
you must hard code the fully—qualified path name for the parameter, which limits your flexibility.

The following snippet from Step 2 of the example illustrates my use of the Class.forName() method to
initialize a driver:

/ISTEP 2: Register JDBC driver.
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver);

For this example | use Oracle’s 8.1.7 JDBC driver; the String variable driver represents the fully qualified
name of the class. Although | use the Class. forName() method, DriverManager still manages the driver in tt
background. Per the JDBC specification, all objects implementing the Driver interface must self-register witl
DriverManager. As a result, examining the objects in memory shows an instance of DriverManager even
though you use the Class.forName() method.

XRef Chapter 4, “Connecting to Databases with JDBC,” provides more information on registering JDBC
drivers using the Class.forName() method and the DriverManager object.

A note on exceptions: The Class.forName() method throws a ClassNotFoundException if the driver specifie(
by the parameter cannot be located during runtime. In the example, | handle this error by catching a stan—
dard Exception. The DriverManager.registerDriver() method throws an SQLException if a problem occurs
during driver registration.

Now that | have initialized my driver | can begin setting the connection parameters and open a database
connection.

Step 3: Open a database connection

Most database applications operate in a client—server environment. JDBC applications act as clients and to
work with the server they must establish a physical connection to it. This is true regardless of whether the
application resides on the database host or on a different host.

As mentioned, Connection objects represent a physical connection with a database. As a result, Connectior
objects provide the conduit for server communications. If the object is not directly involved, it indirectly
participates.

For example, you don’t execute a query using a Connection object. However, it does act as a factory to

produce a Statement object, which references it for server interaction. Here’s how it works: When you call tt
Statement.executeQuery() method, the Statement object uses the Connection object to submit the query to
database. The results come back through the Connection object and into the Statement object, which in turr

37

Chapter 3: Setting Up Your First IDBC Query

populates a ResultSet object.

To open a database connection you call the DriverManager.getConnection() method. Before calling the
method you must set several DriverManager parameters used to open the database connection. The numbe
parameters required varies among databases. However, you usually supply the following parameters:

« JDBC URL — Specifies the database location as well as driver configuration information. This
parameter’s format depends upon vendor and driver requirements.

» Username — Indicates the database login account you want to use when opening the connection.

» Password — Specifies the password associated with the username parameter.

The following snippet from Step 3 of the example shows how | set these parameters:

/ISTEP 3: Open a connection.

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
String user = "toddt";

String password = "mypwd";

conn = DriverManager.getConnection(jdbcUrl,user,password);

Of all the parameters required to make a connection, the JDBC URL generates the most confusion. It
represents three pieces of information. The first part of the URL, JDBC:oracle:thin, gives the driver specific
information about how to connect to the server. This information means more to the driver than it does to yo
or me.

The next part, @localhost:1521, tells the driver the database server’s location, using the server’s host name
and port. In this example, it resides on the localhost and listens on port 1521. The last piece of information,
ORCL, indicates the target database name as used by the database server. This is not the database server
name. Note that these JDBC-URL settings apply to the Oracle 8.1.7 JDBC driver. If you use a different
driver, you will need to use a different format. Check your driver's documentation for details.

XRef Chapter 4, “Connecting to Databases with JDBC,” covers the intricacies of opening
connections using DriverManager and working with Connection objects.

With the parameters set, | call the DriverManager.getConnection() method to open a database connection. |
the connection attempt fails, an SQLEXxception occurs. The Connection object returned represents a physice
connection to the server. | will use this object throughout the example to interact with the server, such as wh
executing a query.

Okay, | have established a database connection, now | can submit my SQL query to retrieve information.
Step 4. Execute an SQL query

You can start preparing to issue SQL commands once you establish a database connection. Using JDBC yc
can execute any SQL command you wish. You can use DDL to build database structures or DML to
manipulate and retrieve data. However, you must ensure you have the appropriate security privileges within
the database to execute the command. If you do not have proper privileges, an SQLException will occur.

Querying the database requires two objects. The first object implements the Statement, PreparedStatement
CallableStatement interface. Each of these interfaces has a different purpose, as outlined in Table 3-1. In
brief, use the Statement interface for simple, static SQL statements, the PreparedStatement interface for
parameterized SQL statements, and the CallableStatement interface to execute stored procedures in the

38

Chapter 3: Setting Up Your First JIDBC Query

database.

XRef Chapter 5, “Building JDBC Statements,” provides more detail on how to use Statement,
PreparedStatement, and CallableStatement objects.

Table 3-1: The Family of Statement Interfaces

Interface Description
java.sqgl.Statement Enables you to submit static SQL queries or commands.
java.sgl.PreparedStatement Works with SQL statements that accept parameters. The parsed

form of the SQL command remains cached, which speeds the
next execution.

java.sgl.CallableStatement Allows you to access and execute database stored procedures.

The second required object is a ResultSet. This object holds the query results and provides an iterator with
which you can traverse the result set and view the row and column data returned.

XRef Chapter 6, “Working with Result Sets,” covers the different ways to use ResultSet objects to
view and update query results.

In this example, | use a basic Statement object to submit a simple, static, SELECT statement. The following
snippet, from Step 4 of the example, illustrates how | create a Statement object and execute a query:

/ISTEP 4: Execute a query

Statement stmt = conn.createStatement();

String sq;

sql = "SELECT SSN, Name, Salary, Hiredate FROM Employees";
ResultSet rs = stmt.executeQuery(sql);

To instantiate a Statement object | call the Connection.createStatement() method. As | mentioned in the
previous section, the Connection object provides the main interface with the database, and objects that inte!
with the server originate from the Connection object.

Next | define a String variable, sql, to hold the SQL query. The next statement, stmt.executeQuery(), execut
the query. The method returns a ResultSet object, which | store in the variable rs. As usual, any errors that
occur generate an SQLException.

At this point | have successfully executed my query. Now | can view the data residing in the ResultSet objec
Step 5: Display the query results

As | mentioned before, the ResultSet object holds the data returned by an SQL SELECT statement. It store:
the data as a table of rows and columns. The rows of a result set fulfill the query’s criteria. For example, if |
limited the query to people with the last name Thomas, all the rows in the result set would meet that criterior
The result set columns map one—to—one to the attributes listed in the SELECT statement. In my example |
chose the SSN, Name, Salary, and Hiredate column from the Employees table. The data type of the result s

columns is the same as the data type on the server. The ResultSet.getXXX() method used to return column

39

Chapter 3: Setting Up Your First JIDBC Query

coerces the database data into a type compatible with Java.

XRef Chapter 7, “Understanding JDBC Data Types,” covers SQL and Java data type issues and their
compatibility.

The ResultSet object uses a cursor to point to rows in the result set. To access the result set data, you must
move the cursor from row to row and retrieve the data from each row’s columns. Moving through the result
set is simple: Just call the ResultSet.next() method, which advances the cursor to the next row.

However, two special cursor locations exist, one Before the First Row (BFR) and one After the Last Row
(ALR). These areas do not contain data and trying to retrieve information from them throws an
SQLException. After initially populating a ResultSet object, the cursor points to the BFR position. As a resull
you must advance the cursor to a row containing data before calling a getXXX() method.

Generally you call the ResultSet.next() method to position the cursor on the first row. However, you can use
any cursor movement method to position the cursor.

Now that | have explained the basics of using a ResultSet object, let me illustrate how to apply them with St
5 from the example:

/ISTEP 5: Extract data from result set
while(rs.next()){

/IRetrieve by column name

int ssn=rs.getInt("ssn");

String name = rs.getString("name");

/IRetrieve by column index as an example
double salary = rs.getDouble(3);
Date date = rs.getDate(4);

/IDisplay values

System.out.print("SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.print(", Salary: $" + salary);
System.out.printin(", HireDate: " + date);

}

Step 5 lists all the records in the Employees table, along with the column values. To do so | use a while-loo
with the rs.next() method as the conditional statement. The method returns true when the cursor moves into
valid row, and false when it enters the ALR position, which causes the loop to terminate.

The operations within the while—-loop extract the result set data. | retrieve data from the columns by calling
the ResultSet.getXXX() method, where XXX maps to the Java data type of the variable | want to assign a ve
To illustrate the different getXXX() methods, | purposely included many of the same data types (NUMERIC,
DATE, VARCHAR) you may encounter when writing your applications.

The getXXX() method requires one parameter, either a String or an int, that identifies the column from whict
to retrieve data . You can use a String to identify the column by name or an int to specify the ordinal positior

Tip The parameter i in the ResultSet.getXXX(int i) method represents the ordinal position of the target

column. Unlike Java arrays’ numbering system, the column’s numbering system starts with one, not zere
For example, to access the third column you use getXXX(3), not getXXX(2).

40

Chapter 3: Setting Up Your First JIDBC Query

The while—loop exits once the cursor moves through all the result set rows. At this point | have finished with
my application. However, one important task remains: | have to clean up the JDBC environment.

Step 6: Clean up your environment

Properly closing all the database resources is an important step in JDBC programming. Keeping resources
open, such as a Connection object, requires client, server, and network resources. As a responsible
programmer, you should try to minimize your application’s impact on these resources, as it will negatively
affect other users and processes.

Fortunately, closing database resources is simple: Just call the close() method of each JDBC object. The
following shippet from Step 6 of the example illustrates:

/ISTEP 6: Clean—up environment
rs.close();

stmt.close();

conn.close();

}catch(SQLException se){
/[Handle errors for JDBC
se.printStackTrace();

}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();

Hinally{
/ffinally block used to close resources

try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
Mlend finally try
Mlend try

Notice that | close all ResultSet, Statement, and Connection objects. In general, closing the Connection obje
also closes the ResultSet and Statement object. However, depending upon the vendor’s driver implementat
this behavior may not occur. Therefore, | explicitly close the objects in accordance with good programming
practice. Lastly, notice that | use a finally block to ensure the proper cleanup of the Connection object. | do
this in case an Exception occurs and the explicit close() methods are skipped.

Compiling and running the application

If you know how to compile and run standard Java applications, you should have no problem doing the sam
with JDBC programs. As | mentioned at the beginning of the chapter, the most common problem has to do
with the classpath setting. You must include the path to your JDBC driver in the classpath when compiling
and executing an application.

How you configure the classpath setting does not matter. You can create a CLASSPATH environment
variable to hold the setting. This technique is useful if you have a static environment and can rely on prograr
locations remaining constant. You can also set the classpath using the classpath option when running javac
java. This method provides more consistency in how you start an application, because it self-documents the
startup command.

41

Chapter 3: Setting Up Your First JDBC Query

In my example | need only to set the classpath when running the application. Because | am using the
Class.forName() method, which uses a String parameter representing the driver, the compiler does not try tc
reference the driver class. Instead, the class is dynamically loaded at runtime.

The following examples show how to compile the sample application on Windows NT/2000 and Linux using
the JDK1.4:

On Windows NT/2000:
E:\jda\code>javac Chapter3\FirstQuery.java
On Linux:

$ javac Chapter3\FirstQuery.java

Executing the application does require setting the classpath properly. The following are examples of how to
execute the application on Windows 2000 and Linux:

On Windows NT/2000:

E:\jda\code>set ORACLEJDBC=d:\oracle\ora81\jdbc\lib\classes12.zip
E:\jda\code>java —classpath .;%0RACLEJDBC% Chapter3.FirstQuery

On Linux:

$ export ORACLEJDBC=/oracle/ora81/IJDBC/lib/classes12.zip
$ java —classpath .:30RACLEJDBC Chapter3.FirstQuery

Troubleshooting the sample application

JDBC programming has lots of room for errors. | guarantee that SQLEXxception errors will occur while you're
debugging and testing your applications. Fortunately, most errors are relatively simple to fix. The JDBC API
is very robust and most mainstream driver implementations are equally solid.

To understand what can go wrong, consider the operations that must occur to retrieve data from a database
First you must make a connection to the database server over a network. Client—server programming is not
trivial and lots of failure points exist. Next you must issue a correctly formatted SQL statement to the
database. This requires understanding your target schema so you can specify the correct table and column
names. In addition, you need to know the column data types so you can use the correct getXXX() method tc
retrieve the data. Any problems that occur in these operations can generate an SQLException.

Table 3-2 provides you with a quick reference for troubleshooting JDBC problems. Most often your problem
will be the result of an incorrectly set classpath or an invalid SQL statement.

Table 3—-2: Common JDBC Problems and Solutions

Problem Possible Solutions

42

Chapter 3: Setting Up Your First JIDBC Query

Cannot compile or execute Java applicatidBnsure that the classpath contains the location of the the JDBC
driver.

Ensure you have spelled the fully qualified name of the driver
correctly. Some driver names are large and easily misspelled.

Cannot connect to server. Check the server name.
Ensure that you have a network connection.
Check your username and password.

Ensure that you have used the correct JDBC URL format for
your driver.

Check the database name and port.
SQL commands fail. Check the SQL syntax.
Ensure that you are using the correct column and table names.

Ensure that you have sufficient rights to execute the SQL
statement

Ensure that your SQL statement does not violate integrity
constraints.

Summary

In this chapter | showed you how to write a simple JDBC application. Now you should have a basic
understanding of the components and steps required to start JDBC programming.

In particular this chapter covered:

» Understanding the JDBC environment

» Working with JDBC drivers

 Importing the correct Java packages for JDBC programming

* Opening database connections

» Executing SQL queries and viewing the results

 Troubleshooting problems you may encounter while creating JDBC applications

43

Chapter 4: Connecting to Databases with JDBC

In This Chapter

» Choosing a JDBC driver type

 Loading and managing JDBC drivers

» Using DriverManager objects

» Opening and closing database connections

» Understanding the role of the Connection object in JDBC

Chapter 3, “Setting Up Your First JDBC Query,” provided the basics on connecting to a database and on
retrieving and updating information. In this chapter, | provide more details on the steps involved in connectin
to a database — such as registering JDBC drivers, opening database connections with DriverManager, and
working with the Connection objects. To begin the chapter, I'll explain the architectural differences among
the four JDBC driver types and when you would use each. Next, I'll illustrate how to register and manage th
drivers with DriverManager. Finally, I'll show you how to connect to your database with DriverManager
objects, and some good programming practices associated with them.

Understanding JDBC Drivers

Just as a country has its own language for communication among its citizens, a database system has its ow
language or protocol for communication between the server and the client.

Most modern databases are client—server implementations using either single, two-, or three-tier
architectures. Single-tier systems, such as applications that execute on the database server host, house bo
the client and the server on the same host. Daemons and other automated tasks, like database maintenanc
programs, may be implemented as a single—tier system.

However, you will likely find most deployments using either two— or three- tier architectures. Figure 4-1
shows an example of the two— and three—tier architectures. In two—tier systems, the client and server
generally reside on different hosts and communicate with each other using their own protocol over a networ
These implementations are most common. Standard Oracle and SQL Server implementations use a two—tie
architecture.

A three-tier system uses a server, commonly known as the application server, between the client and DBM:
This server location is often called the middle tier. Developers often place business logic on the servers to
help minimize the deployment of code to the client, which makes code maintenance easier. If the code
containing the business logic changes, developers can make updates to the software on the application sen
without affecting the client configurations. J2EE and web servers often play the middle tier role.

44

Chapter 4: Connecting to Databases with JDBC

Two~Tier Client-Server
Architecture

Database
Client Server
Proprietary
Vendor Protocol

il

Ao

PIESIN
A8

o)

Network
Communications

J

.J

Three-Tier Client-Server

Architecture
Middletier Database
Client Server Server
Any Protocol- Proprietary
Http, TCP, UDF, etc Vendor Protocol

Network
Communications

Network

- = =h) - H
\.___»; Communications

Figure 4-1: Two— and three—tier architectures

Regardless of the “tier” architecture, all client—server systems essentially function the same way. Clients
package SQL or database commands to the DBMS for execution in the language, or protocol, they both
understand. Once the server completes the request, it sends the client the response using the same protocc
The response may contain data that meet the criteria defined in an SQL query, or it may contain a success
failure result code.

As you can see, if you want to write a client database application you must communicate with the server. Yc
can do this in two ways:

* Provide a custom implementation of the DBMS communication protocol. To use this approach, you
must understand the details of the communication protocol used by the database system. You packe
any calls you make to the database in this protocol. Once you receive a response, you unpackage al
use the results. This option is hardly practical, because implementing a full protocol stack requires a
tremendous programming effort.

« Use the database vendor’s or a third—party provider’'s implementation of the communication protocol
Such implementations are called software drivers or Application Program Interfaces (APIs). This is
the more popular option.

A database API, or driver, defines methods and properties that enable you to send, retrieve, and obtain stat
information about the database as well as extract data. You can obtain database drivers from a variety of

sources. Most often, database distributions, either commercial or open-source, provide drivers you can use
addition, third parties develop drivers for popular database platforms such as Oracle, SQL Server, and DB/2

To address some of the previously mentioned challenges associated with writing database applications, anc
avoid the chaos that would inevitably result if every database vendor provided a proprietary API, Sun
Microsystems defined a standard API to provide a consistent interface for driver writers to use when writing
their drivers. Sun named this API, or the whole database connectivity technology in general, JDBC. Oddly,
JDBC is not an acronym. But it is a registered trademark used to identify the Java database connectivity
technology as a whole.

45

Chapter 4: Connecting to Databases with JDBC

What are JDBC drivers?

JDBC drivers implement the defined interfaces in the JDBC API for interacting with your database server. F
example, using JDBC drivers enable you to open database connections and to interact with it by sending SC
or database commands then receiving results with Java.

Where do you get a JDBC driver? Database vendors and third parties can produce them. However, chance:
are that you will use the driver supplied by your database vendor. Once you obtain a JDBC driver you shoul
only have to worry about registering it using DriverManager objects and creating the proper JDBC URL in
order to use it.

JDBC driver types

JDBC driver implementations vary because of the wide variety of operating systems and hardware platform:
in which Java operates. Thus, Sun has divided the implementation types into four categories, Types 1, 2, 3,
and 4, whose characteristics vary greatly. Figure 4-2 provides a high—level overview of the various types.

Types 1 and 2 rely heavily on additional software (typically C/C++ DLLS) installed on the client computer to
provide database connectivity. Java and JDBC use these components to interact with the database. Types :
and 4 are pure Java implementations and require no additional software to be installed on the client, except
the JDBC driver. Fortunately, packaging the JDBC driver with your software distribution is trivial.

Figure 4-2: JDBC driver types

Type 1: JDBC-ODBC bridge This category works with ODBC drivers supplied by your database vendor or
a third party. Although you may find ODBC implementations for UNIX, they are usually used with Microsoft
Windows. To use the bridge, you must first have an ODBC driver specifically for your database and any
additional software that you need for connectivity. Figure 4-3 shows how a client interacts with the database
using the JDBC-ODBC bridge.

Qlient Computer

Database
Server

46

Chapter 4: Connecting to Databases with JDBC

Using ODBC also requires configuring on your system a Data Source Name (DSN) that represents the targe
database. You may find solutions using this driver type difficult or impossible to implement if your
application requires dynamically downloading and running Java programs such as applets. In addition you
may find it harder to package and distribute software relying on ODBC. Not only must you ensure that the
ODBC driver installs properly, but you must also create the proper DSN.

However, Type 1 drivers do have some uses. For example, you may save some development and deploym:
costs by using inexpensive desktop or workgroup databases such as Microsoft Access with Type 1 drivers.
addition, ODBC bridges may be extremely useful in (Windows—based) two— and three—tier applications in
which only a small number of clients need access to the database.

Type 2: JDBC-native APl This category requires an operating system—specific API that handles the
database communications. Usually the vendor implements the API using C/C++ so it will be optimized for th
client’'s environment. As a developer, you do not have to worry about the details of the native API, a Type 2
driver handles the interaction. Figure 4—4 illustrates a Type 2 JDBC driver configuration.

Client Computer

Jara Apglication

Database

Figure 4-4: JDBC Type 2 driver: native API

The Type 2 driver is like the Type 1 driver in that JDBC calls are converted by the native API into the format
recognized by the target database. One interesting note is that you may realize some speed increase with a
Type 2 driver, because it eliminates ODBC'’s overhead. However, as with ODBC, you still bear the burden o
properly installing the vendor’s API on each of your client's computers.

Type 3: 100% Pure Java, JDBC—-network Type 3 drivers use a three—tier approach to accessing databases
J2EE deployments often implement this architecture. Clients use standard network sockets to communicate
with an application server. The socket information is then translated by the application server into the call
format required by the DBMS, and forwarded to the database server. Figure 4-5 shows a typical three-tier
configuration that uses a Type 3 driver for database connectivity.

Figure 4-5: JDBC Type 3 driver: 100% Pure Java, JDBC-network

You can think of the application server as a JDBC “proxy,” meaning that it makes calls for the client
application. As a result, you need some knowledge of the application server’s configuration in order to
effectively use this driver type. For example, because your application server might use a Type 1, 2, or 4
driver to communicate with the database, understanding the nuances will prove helpful.

Nonetheless, you may find this approach most flexible. Application server vendors often provide support for
multiple database back—-ends. This feature may enable you to write a single code base that supports numer
databases. The middle tier will handle the SQL syntax and data—type nuances that exist among databases.

47

Chapter 4: Connecting to Databases with JDBC

Type 3 drivers make deployment easier than types 1 or 2 because the client does not need any additional
software, other than your application, to access the database.

Type 4: 100% Java This driver is implemented entirely in Java and encapsulates the database-specific
network protocols to communicate directly with the DBMS. As with the Type 3 driver, clients do not need
additional software. Because of the proprietary nature of their network protocols, database vendors usually
supply type 4 drivers. Figure 4-6 illustrates how a Type 4 driver operates on a client.

Client Computer

Proprietory g -

Vendor Protocol

Figure 4-6: JDBC Type 4 driver: 100% Pure Java

Each type of driver has its benefits and weaknesses. Your job as a developer is to understand them so you
make good design decisions. For your convenience, Table 4-1 provides an overview of the pros and cons
associated with each driver type.

Table 4-1: JDBC Driver Types

Pros Cons
Can access local databases suchYasu must set up and maintain

Driver Type: Category
Type 1: JIDBC-ODBC bridges

Type 2: Native API

Type 3: JIDBC-Network

Type 4: 100% Java

Microsoft Access and FoxPro.

No enterprise—level database
required.

Useful for testing basic JDBC

ODBC data sources.

Slow. The extra ODBC layer
necessitates additional processing.

May require additional client

features on stand alone Windowssoftware such as database network

computers.

Faster than Type 1 because the
ODBC layer is removed.

Native code optimized for your
platform and DBMS

No additional client software
required.

Application server may give you
access to multiple DBMSs.

48

connectivity components.

Not usable when deployment
requires automatic downloading
and configuration of applications.

A vendor-specific APl must be
installed on client computer.

Not usable when deployment
requires automatic downloading
and configuration of applications.

Middleware product or application
server required.

May require additional
configuration for Internet use.

Chapter 4: Connecting to Databases with JDBC

No additional client software May require additional
required. configuration for Internet use.

Direct communication with
database server.

Which JDBC driver type to use?

Before you can choose the correct driver type, you must know how your solution’s intended deployment will
influence your choice of driver types. The primary question is: Do | have control of the computer that will
need database connectivity? The computer may be the client in some cases or an application server in othe

If you answer no, then you are limited to using Type 3 or 4 drivers. This is not necessarily bad. These driver
enable you to focus on the implementation without considering the client configuration because they do not
require you to install additional components like ODBC drivers and DBMS software.

Note If your application must access a database across the Internet, using any driver type become:
challenging. Database servers do not communicate with their clients using standard Internet
protocols, such as HTTP and FTP. The vendor’s proprietary protocols can create security anc
firewall issues. If you need to provide access to your database via the Internet, you are better
served by embedding JDBC logic into JavaServer Page (JSP) technology and servlets to
provide database access. These topics are covered in Chapter 13, “Building Data—centric We
Applications.”

JDBC driver vendors

Most DBMS vendors provide JDBC APIs for their product. Oracle, for example, has JDBC drivers available

for each version of its database. Microsoft, however, does not supply a commercially available JDBC driver
for SQL Server. You must purchase a third—party vendor’'s package. In addition, several open—-source JDBC
drivers are available for open—source databases such as mSQL and PostgreSq|.

Note Sun provides a JDBC-ODBC bridge that enables you to connect to ODBC data sources. However, the
bridge is currently not production—quality and should only be used for testing purposes. You will find
the bridge in the sun.java.odbc package. To use Sun’s JDBC-ODBC bridge, include the following
import statement in your code:

import sun.jdbc.odbc.JdbcOdbcDriver.

Refer to Sun’s JavaSoft Web site (http://industry.java.sun.com/products/jdbc/drivers) for information about
driver vendors for your database platform. The site contains plenty of details about the type and feature sets
most JDBC drivers. It also has links to vendor Web sites so you can find more information, such as price an
availability.

Using your JDBC driver
This section explains how to use JDBC drivers in your applications. Before getting started, you need to
determine the exact class name for the driver from your vendor. Typically, vendors follow the Java

package—naming convention when naming their drivers. For example, Oracle’s JDBC driver is:
oracle.jdbc.driver. OracleDriver.

49

Chapter 4: Connecting to Databases with JDBC

Driver and DriverManager

The java.sgl.Driver interface and java.sql.DriverManager class provide the tools for working with JDBC
drivers. Figure 4-7 shows a UML class diagram illustrating the relationship between the DriverManager clas
and the Driver interface.

XRef Appendix D, “UML Class Diagram Quick Reference,” provides information on how to interpret UML
class diagrams.

Figure 4-7: UML class diagram of Driver and DriverManager

All JIDBC-compliant drivers must implement the Driver interface. In the real world, however, you may find
that working directly with a Driver object is not very useful. It does provide a method for obtaining
connections, but DriverManager provides more flexible connection alternatives.

In addition, a DriverManager object manages JDBC drivers for you. With this class you can explicitly
register, select, or remove any JDBC-compliant driver from your application. This gives you the flexibility to
store numerous drivers programmatically and choose the one you need at runtime. Factory design patterns
benefit from this feature.

Registering JDBC drivers

To use your JDBC driver you must first register it with the DriverManager object, which, as you might
expect, has a driver—registration method. However, two alternate techniques are available for registering
JDBC drivers. The following is a list of the three different ways to register a JDBC driver:

« Class.forName(String driverName).newlInstance()
« DriverManager.registerDriver(Driver driverName)
« jdbc.drivers property

Using Class.forName(String driverName).newlnstance() is the most common way to register a JDBC driver.
Besides instantiating a new JDBC Driver object, it also allows the object to register itself with
DriverManager. Well how can this happen when DriverManager is not involved? The JDBC specification
requires Driver objects to register themselves with DriverManager via a static initializer that calls the
DriverManager.registerDriver() method. This mechanism allows for dynamic driver registration at runtime
regardless of how you register your driver. The following code snippet provides a template for using
Class.forName(). newlnstance():

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
try {

50

Chapter 4: Connecting to Databases with JDBC

Class.forName(driver).newlnstance();
} catch(ClassNotFoundException €) {

/[Thrown if the driver class
/lis not found in classpath.
e.printStackTrace();

}

The Class.ForName() method provides a lot of flexibility because it takes a String object as a parameter. Yo
can define the parameter at runtime using a variety of methods. One technique is to supply the driver name
the command line when the application starts. Another is to read it from a properties file. Either method
enables you to change the driver at startup.

Tip To ensure that your Driver is properly registered with DriverManager, always use the
Class.forName().newlnstance() method. This ensures that the Driver object is instantiated and the
required static initializer is called.

As you already know, DriverManager provides the DriverManager. registerDriver(Driver driverName)
method for registering JDBC drivers. The following code sample shows you how straightforward this methoc
is; notice that you create a new instance of a Driver object and pass it as a parameter:

try {

DriverManager.registerDriver (new sun.jdbc.odbc.JdbcOdbcDriver());

}
catch(SQLException e) {

e.printStackTrace();

Tip The DriverManager.registerDriver() method limits your flexibility during runtime
because it requires a Driver object as a parameter. Class.forName().newlInstance()
accepts a String value that you can obtain from a command-line parameter or a
properties file.
Setting the jdbc.drivers.property system property works great for testing. You can use the —D option on
startup to specify a valid driver when starting the application and it will be automatically registered with
DriverManager. This technique may prove useful in production as well. For example, in UNIX operating
systems you can control database access by setting environment variables to specific drivers based on a us
login. This enables you to point individual users to specific databases. You may also set this value in a syste
property file on a client. The downside of this technique is that you must control your client’s environment.
Here is an example of using the jdbc.drivers.property at startup:

D:>java —cp —Djdbc.drivers=sun.jdbc.odbc.JdbcOdbcDriver MyJDBCProg
Note Remember to place the jar file containing your driver in your CLASSPATH. Neglecting to do this will

cause compilation and execution errors. See Chapter 3, "Setting Up Your First JDBC Query," for more
details.

51

Chapter 4: Connecting to Databases with JDBC

Selecting and de-registering JDBC drivers

During the course of your application you may need to select or remove specific drivers from the
DriverManager list. These methods are useful if, for example, you implement a Factory design pattern to
support multiple databases.

Within your Factory class you could use DriverManager to pre-register the JDBC drivers you need for
connecting to the supported databases. When a request for a Connection object occurs, your factory select:
proper driver from DriverManager and then creates the Connection object. In this manner you can support
multiple databases and provide the correct Connection object to the client based on its request.

XRef Part lll, “Using Java Data Access Design Patterns,” covers the Factory pattern and other standard
design patterns that you may apply to JDBC.

The two methods for selecting drivers are DriverManager.getDriver() and DriverManager.getDrivers(). The
first returns a specific Driver object when you pass it the JDBC URL identifying your database. (I cover
JDBC URLs in the next section.) The second returns an Enumeration object so that you can iterate through
list of Driver objects until you find the one you want. The following shippet provides an example of how to
use the DriverManager.getDrivers() method:

//Assume valid JDBC drivers have been registered

/[Enumeration object needed to obtain registered drivers
Enumeration driverEnum = DriverManager.getDrivers();

/IList the drivers.
while(driverEnum.hasMoreElements()) {

/ICast to a Driver object
Driver driver = (Driver)driverEnum.nextElement();

String str = "Driver name is: " + driver.getClass().getName();
System.out.printin(str);

}

Although 1 just list the driver's name in the snippet, you can use the Driver object retrieved from the
Enumeration object to connect to a database or use the driver with DriverManager.deregisterDriver() to
explicitly remove it from the DriverManager object’s internal list.

XRef | cover JDBC URLSs in the next section, “Opening connections.” In brief, a JDBC URL provides
instructions to the JDBC driver on how to connect to your database.

If for any reason you need to remove support for a database you can call the

DriverManager.deregisterDriver() method to remove a registered Driver from DriverManager. The method is
similar to the registerDriver() method in that it takes a Driver object as a parameter.

52

Chapter 4: Connecting to Databases with JDBC

Working with Connection Objects

In JDBC, an instantiated Connection object is a physical connection to the database. The Driver.connect()
method does the work of supplying you with a Connection object. You can use the Driver object directly, but
DriverManager wraps the call with its getConnection() method.

For a number of reasons, using DriverManager is the preferred way to open database connections. To nam
one, if you have registered several drivers DriverManager will determine the appropriate driver to connect
with. In addition, the getConnection() method is overloaded to provide you with a variety of ways to open
connections.

The previous UML class diagram in Figure 4-7 shows that each DriverManager. getConnection() method he
the common String parameter, url. This value is called a JDBC URL and has special meaning.

Understanding JDBC URLs

JDBC requires a naming system so you can connect to your database. The JBDC URL provides this systen
Here is the general structure:

jdbc:<subprotocol>:<subname>

When creating a JDBC URL you need to supply values for the <subprotocol> and the <subname>
placeholders. The value of <subprotocol> indicates which vendor—specific protocol to use when connecting
to the database. Some DBMS vendors use multiple proprietary protocols to communicate with the database
server.

The <subname> value indicates the data source, or database, you want to connect with. Some servers may
hold more than one database and use logical names to represent each one. In general, the <subname> valt
the logical name of the database on your database server.

Tip The exact <subprotocol> and <subname> values for your JDBC URL depends on your driver. Drivers
from the same vendor may have different subprotocols. There is no standard format for either paramete
Consult your documentation for the correct format.

The following two examples may help you understand the JDBC URL format better:

« JDBC-ODBC example
String url = "jdbc:odbc:MyDB";
In this example, the <subprotocol> value is odbc and you want to connect to the ODBC DSN called
MyDB, which is the value provided for <subname>. Remember that when using ODBC you are
responsible for properly configuring the DSN on the client’'s computer before using your application.
 Oracle example
String url = "jdbc:oracle:thin:@dbServerName:1521:0RCL";
In this example, the <subprotocol> value is oracle:thin. The oracle portion is standard for Oracle’s

driver. The next part, thin, refers to the Oracle—specific connection mechanism to use. Some vendor:
may encapsulate many different network protocols for connecting to their databases in the driver. Th

53

Chapter 4: Connecting to Databases with JDBC

is what Oracle does with its Type 4 driver. Finally, the <subname> value,
@dbServerName:1521:0RCL, tells the Oracle driver which host, port, and database instance to
connect to.

Note The value for <subprotocol> is unique. Driver vendors must register their <subprotocol> names with
Sun Microsystems, which acts as an informal registrar.

Opening connections

Now, let me return to the DriverManager.getConnection() methods. For easy reference, let me list the three
overloaded DriverManager.getConnection() methods:

 getConnection(String url)
 getConnection(String url, Properties prop)
« getConnection(String url, String user, String password)

The first method requires one parameter, a JDBC URL, to make a connection. Notice that the security
information is lacking in this method. Chances are that if you use this method your database does not direct
provide user—authentication services. However, some databases will assume that if you can log onto the clie
you should have the rights to use the system.

The next method takes an additional parameter, a Properties object, besides the String url. Use this method
you need to pass specific information to your database when connecting. Just set the appropriate name-val
pairs in the object and supply it as a parameter when you call the method.

The last method, the most common one, is fairly straightforward. It requires three Strings, the url, user, and
password.

When you call the getConnection() method, DriverManager returns a valid Connection object. Behind the
scenes, DriverManager passes your parameters to each registered Driver object in its list. DriverManager
begins with the first JDBC driver and tries to make a connection; if it fails, DriverManager tries the next one.
It repeats this process until it finds a driver that can connect to the database described by your JDBC-URL.

Using the getConnection() method in your code is also straightforward. Here is the basic format for using
DriverManager to open an Oracle database connection:

String url = "jdbc:oracle:thin:@myServer:1521:PROD";

String user = "boss";

String pwd = "bosspwd";

Connection conn = DriverManager.getConnection(url,user,pwd);

If the connection fails, DriverManager throws an SQLException containing database—specific error message
As a result, it is helpful to know something about the semantics involved in connecting with your database s
you can interpret the error messages.

You may wonder what happens if you register two drivers that can connect to your database. The answer is
simple. DriverManager chooses the first driver that makes a successful connection.

Note As J2EE gains more popularity in the enterprise, the DataSource interface is becoming the preferred w
to open database connections. Usually a DataSource interface works in conjunction with the Java
Naming and Directory Interface (JNDI) to provide the connection. DataSource objects do not require
you to supply the driver name to make the connection. It also enables connection pooling and distribute

54

Chapter 4: Connecting to Databases with JDBC

transactions.

XRef 1 discuss the DataSource interface in Chapter 14, "Using Data Sources and Connection Pooling," an
Chapter 19, "Accessing Data with Enterprise JavaBeans."

You can override this behavior by retrieving the particular driver you want from the DriverManager object’s
list. (The previous section shows you how to do this.) Once you get the desired driver, just call its connect()
method to obtain a connection.

Similarly, you can instantiate a Driver directly and use it to connect. The following code snippet shows you
how to make the connection using a newly created Driver instance:

Driver drv = new sun.jdbc.odbc.JdbcOdbcDriver();
Properties prop = new Properties();
Connection conn = drv.connect("jdbc:odbc:authors",prop);

The prop variable is used to hold a set of parameters, such as user and password, that you need in order to
connect to your database. | leave it empty in this case.

To demonstrate, Listing 4-1 shows an application that registers a JDBC—-ODBC driver and obtains a
connection to a local DSN using each of the three getConnection() methods.

Listing 4-1: JdbcConnect.java

package Chapter4;

import java.sql.*;
import java.util.Properties;

public class JdbcConnect {

public static void main(String[] args) {
/IDefine 3 Connection variables
Connection connl = null;
Connection conn2 = null;
Connection conn3 = null;

//Begin standard error handling
try {

/lLoad a driver with Class.forName.
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newlnstance();

//Define JDBC URL, user, and password
String jdbcUrl = "jdbc:odbc:authors";

String user = "toddthomas";
String pwd = "mypwd";

System.out.printin("Opening database connections...");

/IUse first getConnection method using only a JDBC URL.
connl = DriverManager.getConnection(jdbcUrl);

/[Test to see if connection succeeded.

if (connl!=null) {
System.out.printin("Connection 1 successful!");

55

Chapter 4: Connecting to Databases with JDBC

}

/lUse the second getConnection method. This requires
/la Properties object to store specific information.
Properties prop = new Properties();
prop.put(“user",user);

prop.put("password”,pwd);

conn2 = DriverManager.getConnection(jdbcUrl,prop);

/[Test to see if connection succeeded
if (conn2!=null) {
System.out.printin("Connection 2 successful!");

}

/lUse third getConnection method that requires three
//String parameters; JDBC URL, user, and password.
conn3 = DriverManager.getConnection(jdbcUrl,user,pwd);

/[Test to see if connection succeeded.
if (conn3!=null) {
System.out.printin("Connection 3 successful!");

}

/[Explicitly close all connections. ALWAYS DO THIS!
connl.close();
conn2.close();
conn3.close();

/[Test to see if connections are closed

System.out.printin("Closing all connections...");

if (connl.isClosed()) {
System.out.printin("Connection 1 is closed");

}

if (conn2.isClosed()) {
System.out.printin("Connection 2 is closed");

}

if (conn3.isClosed()) {
System.out.printin("Connection 3 is closed");

}

} catch(SQLException se) {
/[Handle errors for DriverManager
se.printStackTrace();

} catch(Exception €) {

/[Handle errors for Class.forName and all other exceptions
e.printStackTrace();

} finally {

/ffinally block

try {

if (conn1!=null)
connl.close();

if (conn2!=null)
conn2.close();

if (conn3!=null)
conn3.close();

catch(SQLException se) {

se.printStackTrace();
} /lend finally try

56

Chapter 4: Connecting to Databases with JDBC

}lend try
} /lend main

} /lend JdbcConnect class

The output from Listing 4-1 follows:
Opening database connections...
Connection 1 successful!
Connection 2 successful!
Connection 3 successful!

Closing all connections...
Connection 1 is closed

Connection 2 is closed

Connection 3 is closed

Closing JDBC connections

In Listing 4-1 | explicitly close all the connections to the database to end each database session. However,
you forget, Java’s garbage collector will close the connection when it cleans up stale objects.

Relying on garbage collection, especially in database programming, is very poor programming practice. You
should make a habit of always closing the connection with the close() method for a couple of reasons.

Note The purpose of the Connection.isClosed() method is misleading and does not provide
you with the information you might expect. The method does not test for a valid open
connection; it is only guaranteed to return true if you close the connection with the
close() method. You would be better off trying a JDBC operation and catching the
exception to determine if the connection is actually valid.

First, it will ensure that your client session is properly closed on the database server. Some databases beha
erratically when a user session ends improperly. Second, the DBMS may assume that the user session cras
and roll back any changes you made during your program. For example, Oracle databases will roll back
uncommitted statements if a user’s session ends in the middle of a transaction. Explicitly closing the
connection ensures that the database cleans up the server—side client environment the way you expect it to

Secondly, explicitly closing a connection conserves DBMS resources, which will make your database
administrator happy. For example, if your database licensing is based on open sessions, failing to close a
session can keep others from using the system. Also, each open connection requires some amount of RAM
and CPU cycle time. Unclosed connections unnecessarily consume database—server and client resources.
When you close connections properly you free these resources for other use.

To ensure that a connection is closed, you could provide a finally block in your code. A finally block always
executes, regardless if an exception occurs or not, so it will ensure that the database resources are reclaime
by closing the connection. Listing 4-2 demonstrates how to use the finally block to close connections.

Listing 4-2: Finally.java

package Chapter4;

import java.sql.*;
import java.util.Properties;

public class Finally {

57

Chapter 4: Connecting to Databases with JDBC

public static void main(String[] args) {
/IDefine Connection variable
Connection conn = null;

//Begin standard error handling
try {

//Load a driver with Class.forName.
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newlnstance();

System.out.printin("Opening database connection...");
conn = DriverManager.getConnection("jdbc:odbc:authors");

/[Handle errors for JDBC
} catch (SQLException se) {
se.printStackTrace();

/[Handle other exceptions
}catch(Exception e) {
e.printStackTrace();

/ffinally block used to close connection

} finally {

try {
if (conn!=null) {

String msg = "Closing connection from finally block.";
System.out.printin(msg);
conn.close();
}
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try

}lend main
Ylend Finally

The output from Listing 4-2 is as follows:

Opening database connection...
Closing connection from finally block.

Summary

Registering JDBC drivers and opening database connections are the foundations of Java database
programming. The most important items to remember from this chapter are:

* Use the right JDBC driver type for your application.

» Use the Class.forName().newlnstance() method to load your JDBC drivers for the most runtime
flexibility.

» Use the DriverManager.getConnection() method to obtain a database connection.

» Use the Connection.close() method to explicitly close your database session

58

Chapter 5: Building JDBC Statements
In This Chapter

» Understanding the JDBC statement family

» Working with Statement objects

« Creating prepared and parameterized SQL statements using PreparedStatement objects
» Accessing database stored procedures using CallableStatement objects

In Chapter 4, “Connecting to Databases with JDBC,” | illustrated how to connect with your database using
DriverManager and the Connection object. Now that you can connect with your database you will likely wan
to interact with it.

How you interact with the database will vary. You may need to submit an SQL query to retrieve data from
tables or build a database schema. Sometimes you may not know the values for several database fields use
a query and must collect them at runtime. In this case you will need to create parameterized SQL statement
or database commands to collect unknown values. At other times you may need to use stored procedures ir
your database.

Whatever your task, the Statement, PreparedStatement, and CallableStatement objects provide the tools to
accomplish it. This chapter covers the details of working with these objects. In particular, | cover how to
create the objects, and submit commands using them. In addition | provide several examples illustrating the
use.

Using JDBC Statements

The JDBC Statement, CallableStatement, and PreparedStatement interfaces define the methods and prope
that enable you to send commands and receive data from your database. They also define methods that he
bridge data type differences between Java and SQL data types used in a database. This is not a trivial task.

As an example of the data type differences consider the Java int primitive data type, which cannot represen
NULL. Yet databases use NULL values extensively to represent empty data, even for numerical data. Anoth
example is date and time types. Java’s representation of these data types are completely different from thei
counterparts defined by the SQL-92 standard. Nonetheless, the statement interfaces define methods that
enable you to convert the data types from Java to JDBC correctly.

When you reach into the JDBC toolbox for one of the statement objects, you need to know which one to use
for the job. Sometimes you may need to retrieve data and present it to the user; at other times you may nee
update database information, create new tables, or even execute stored procedures in the database.

Although they are used for different tasks, the three statement interfaces have a lot of similarities. Examine
Figure 5-1, which shows a UML class diagram of the statement interface family. Notice that Statement is th
parent, that PreparedStatement extends Statement, and that CallableStatement extends PreparedStatemer
Driver vendors provide classes that implement these interfaces. Without a JDBC driver you cannot create
objects based on these interfaces.

59

Chapter 5: Building JDBC Statements

<<interface>>
Prepaced Statomment

Figure 5-1: UML diagram of Statement, PreparedStatement, and CallableStatement interfaces

So how do you decide which interface to use? Table 5-1 provides a summary of each interface’s purpose.
Notice that both the PreparedStatement and CallableStatement can use SQL statements that can accept in
parameters at runtime.

What Is a ResultSet Object?

ResultSet objects hold the data returned from SQL queries produced with the executeQuery() method. In sc
instances, the execute() method also returns one. ResultSet objects vary in functionality. Some only let you
view the data, while others enable dynamic updating.

Table 5-1: Summary of Statement, PreparedStatement, and CallableStatement Interfaces

Interfaces Recommended Use

Statement Use for general—-purpose access to your database. Useful when you are
using static SQL statements at runtime. The Statement interface cannot
accept parameters.

PreparedStatement Use when you plan to use the SQL statements many times. Quicker than
the generic Statement object because the SQL statement is precompiled.
The PreparedStatement interface accepts input parameters at runtime.

CallableStatement Use when you want to access database stored procedures. The
CallableStatement interface can also accept runtime input parameters.

Introducing Statement Objects

This section focuses on the Statement object, the foundation of the statement interface hierarchy. A firm
understanding of this object will help you understand and use the PreparedStatement and CallableStatemer
objects.

60

Chapter 5: Building JDBC Statements

The Statement object provides you with basic database—interaction capabilities. However, it still gives you
significant capabilities. It enables you to use all types of DML, DDL and other database specific commands.
In addition, it supports batch updating, which enables you to implement transaction management.

Creating the Statement object

Instantiating a Statement object is a straightforward procedure. You create the object from a valid Connectic
object, as shown in the following example:

Connection conn = DriverManager.getConnection(url, "toddt", "mypwd");
Statement stmt = conn.createStatement();

Using the Statement object
A Statement object provides three methods — execute(), executeUpdate(), and executeQuery() that act as

conduits to your database for sending database commands and retrieving results. Table 5-2 highlights the
differences between methods.

Table 5-2: The execute(), executeQuery(), and executeUpdate() Methods

Method Recommended Use

executeQuery Use to query the database with SELECT statements. This method returns a resul
set.

executeUpdate Use to submit INSERT, UPDATE, DELETE, or DDL SQL statements. The

method returns a count of the rows affected by the statement for INSERT,
UPDATE, or DELETE, or O for statements that return nothing such as DDL
statements.

execute Use to process any DDL, DML, or database specific command. This method can
return one or more ResultSet objects or update counts depending on the
statement type. In some instances it can even return a combination of both.
Although this method provides the most flexibility, you may find processing the
results more difficult.

The executeQuery() method, if successful, always returns a ResultSet object. Chapter 6, "Working with Res
Sets," describes this object in greater detail. For now, | want to cover the executeUpdate() and execute()
methods. These methods enable you to send action statements to the database, such as INSERT, UPDATE
DELETE and DDL statements. Most of the concepts | cover apply to the executeQuery() method as well.

Working with the executeUpdate() method

Now for an example that uses the executeUpdate() method to build a small Oracle database schema that h
employee information. The database is simple. It has two tables, Employees and Location. The Employees
table stores data such as Social Security Number (SSN), name, salary, hire date, and Loc_Id. The foreign k
Loc_ld, links to the Location table containing the employees’ field—office locations.

Figure 5-2 provides the entity relationship diagram (ERD) for the sample database. Although small, the
database contains most of the data types you are likely to encounter in the real world: DATE, NUMERIC, an

61

Chapter 5: Building JDBC Statements

VARCHAR. However, it does not contain any advanced SQL3 data types, such as BLOB or CLOB.
Nonetheless, the database provides a good starting point for demonstrating the executeUpdate() method’s
functionality and how to interact with different data types.

XRef For more details on data—type issues, see Chapter 7, “Understanding JDBC Data
Types.”
Employees)
PK_|SSN | NUMBER(9,0) | [ation
Name | VARCHAR2(20) [P PK | Locld | NUMBER(3,0)

Salary NUMBER(9.2)
Hiredate | DATE
FK8 | loc_Id NUMBER(3,0)

Figure 5-2: Employee database ERD

Location | VARCHAR2{20)

The executeUpdate() method takes a String parameter representing the SQL statement you wish to execute
You will receive the count of affected rows when the method returns. The following code snippet provides a
qguick demonstration:

String SQL = "UPDATE employee SET salary = 100000 WHERE name = ‘toddt™;
Statement stmt = conn.createStatement();
int count = stmt.executeQuery(SQL);

If successful, the value of count should equal 1, the number of rows affected by the UPDATE statement.

Tip Checking the update count value can be a sanity check when you're executing your SQL statements. If
you update a row by its primary key then you should always receive an update count of 1. Any other
value may indicate an error. If you issue a broad UPDATE statement, such as applying a cost-of-living
adjustment to all employees’ salaries, the update count may be any value. When you issue an INSERT
statement the executeUpdate() method should return a value of 1. However, DDL statements such as
CREATE TABLE and CREATE INDEX always return a value of 0. Testing for the expected value can
help you determine whether your statement executed as expected.

Listing 5—1 provides the code needed to create the Employee database schema. Remember, this example
builds a schema in an Oracle database. The syntax used to build tables and data types is Oracle-specific. 1
program builds the database from scratch every time it executes. You generally use an application like Listir
5-1 as a backup if you lost your original database, writing a generic installation routine, or if you need a clez
slate for the purpose of testing JDBC features.

Listing 5-1: MakeEmpDb.java

package Chapter5;
import java.sql.*;
public class MakeEmpDb {

/IGlobal Statement object
static Statement stmt = null;

public static void main(String[] args) {
//Standard Connection object
Connection conn = null;

//Begin standard error handling

62

Chapter 5: Building JDBC Statements

try {
/IRegister driver

String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create a Statement object
stmt = conn.createStatement();

/ICreate tables and load data
createTables();
insertData();

/IProvide success message
System.out.printin("Employee DB created successfully.");

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
/IHandle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try

System.out.printin("Goodbye!");
}lend main
public static void createTables() throws SQLException {

/[Create SQL statements

String locationSql = "CREATE TABLE Location "
+ "(Loc_ld number(3) CONSTRAINT PK_LOC PRIMARY KEY,"
+ "Location VARCHAR(20))";

String employeeSql = "CREATE TABLE Employees "
+ "(SSN number(9) CONSTRAINT PK_EMP PRIMARY KEY,"
+ "Name VARCHAR(20), Salary number(9,2), Hiredate DATE,"
+ "Loc_Ild NUMBER(3) CONSTRAINT fk_Loc "
+ "REFERENCES Location(Loc_Id))";;

try {

String dropSqgl = "DROP TABLE Location CASCADE CONSTRAINTS";
stmt.executeUpdate(dropSql);

} catch(SQLEXxception se) {

63

Chapter 5: Building JDBC Statements

/lignore Oracle DROP table error.
if(se.getErrorCode()==942) {
String msg = se.getMessage();
System.out.printin("Error dropping Employees table: " + msg);

}
}

//Build the Location table
if(stmt.executeUpdate(locationSql)==0)
System.out.printin("Location table created...");

try {
String dropSql = "DROP TABLE Employees CASCADE CONSTRAINTS";

stmt.executeUpdate(dropSql);

} catch(SQLException se) {
/lignore Oracle DROP table error.
if(se.getErrorCode()==942) {
String msg = se.getMessage();
System.out.printin("Error dropping Employees table: " + msg);

}
}

//Build the Employees table
if (stmt.executeUpdate(employeeSql)==0)
System.out.printin("Employees table created...");

} /I end of createTables method
public static void insertData()throws SQLException {

/[Load Location table with data
stmt.executeUpdate("INSERT INTO "
+ "Location VALUES(100,' Knoxville)");

stmt.executeUpdate("INSERT INTO "
+ "Location VALUES(200,Atlanta’)");

stmt.executeUpdate("INSERT INTO "
+ "Location VALUES(300,'New York’)");

stmt.executeUpdate("INSERT INTO "
+ "Location VALUES(400,'L.A.")");

stmt.executeUpdate("INSERT INTO "
+ "Location VALUES(500, Tulsa’)");

/lLoad Employee table with data

stmt.executeUpdate("INSERT INTO Employees VALUES(111111111,"
+"Todd’,’'5000’,{d ‘1995-09-16},100)");

stmt.executeUpdate("INSERT INTO Employees VALUES(419876541,"
+"Larry’,’1500’,{d ‘2001-03-05},200)");

stmt.executeUpdate("INSERT INTO Employees VALUES(312654987,"
+"Lori’,’2000.95’,{d ‘1999-01-11},300)");

stmt.executeUpdate("INSERT INTO Employees VALUES(123456789,"
+"Jimmy’,’3080’,{d ‘1997-09-07'},400)");

64

Chapter 5: Building JDBC Statements

stmt.executeUpdate("INSERT INTO Employees VALUES(987654321,"
+"John’,’4351",{d ‘1996-12-31"},500)");

/IGive feedback
System.out.printin("Finished inserting data...");

}lend insertData method

Y end MakeEmpDb class

Output from Listing 5-1.:

Connecting to database...

Location table created...
Employees table created...
Finished inserting data...

Employee DB created successfully.
Goodbye!

Note Typically you would not build database schemas using JDBC. The previous example only serves to
illustrate the flexibility of the executeUpdate() method. You need to consider JDBC-to—Java data—type
mappings if you want to write applications that create database schemas.

| begin the application with the standard JDBC initialization routines:

1. Register a JDBC driver with Class.forName().newlnstance().

2.0Open a database connection with DriverManager.getConnection().

3. Create a Statement object for submitting the DDL and INSERT statements using the
Connection.createStatement() method.

After the driver registration | use two methods to build and populate the schema. The first method,
createTables(), creates the table structures. Within the routine, | start by issuing a DROP statement so | can
a fresh build. Notice that | trap the SQLException "ORA-942 Table does not exist." The initial execution of
the DROP statement throws this exception because the tables do not exist, therefore | ignore it by issuing a
simple natification to the console. | pass any other exceptions back to the main() method and handle them
there. Next | submit the CREATE TABLE statements to build the tables and the entity relationship.

CautionJDBC is not completely database agnostic. You need specific knowledge of the target database’s
syntax and data types before executing most DDL operations. Listing 5-1 demonstrates this fact
because the DDL is Oracle—specific. However, the JDBC API methods will work with any database.

Once the createTables() method returns successfully, | insert data into the tables using the loadData() meth
Notice that | populate the Location lookup table before inserting the employee data to ensure that no
referential—integrity constraint violations occur.

One additional item to note is the format of the INSERT statement | use. Here is a snippet from Listing 5-1.:

String SQL = "INSERT INTO Employees VALUES" +
"(145985369,'Todd’,’'5000’ {d ‘1995-09-16'},100)";
stmt.executeUpdate(SQL);

| use the JDBC SQL escape sequence to set the value of parameter four, Hiredate. This format tells the driv

to convert the date into Oracle’s date format (DD-MON-YY) before sending the statement. This is one
example of how JDBC helps abstract from you database data type and formatting issues.

65

Chapter 5: Building JDBC Statements

JDBC SQL escape syntax

Most database languages provide you with a “programming” language so you can interact with the database
ways you cannot achieve just using standard DML or DDL SQL statements. The languages also generally
provide you with internal helper functions that you can use to format character and numeric data as well as
mathematical functions that help you perform useful calculations.

However, all databases have unique syntaxes for their programming languages. For instance, Oracle uses
PL/SQL and Microsoft SQL Server uses Transact—-SQL. Because of the uniqueness of each database’s
programming language, JDBC provides you with access to the functions and their special features using the
JDBC SQL escape syntax. When you specify a command using the syntax, the driver translates the comma
into the necessary database—specific format.

The escape syntax gives you the flexibility to use database specific features unavailable to you by using
standard JDBC methods and properties. However, use escape clauses with caution. Overusing them can m
your code database-dependent because you are using specific functions unique to your database.

The general SQL escape syntax format is as follows:

{keyword parameters}

Table 5-3 lists and describes the escape keywords.

Table 5-3: SQL Escape Keywords

Keyword Description Example
d, t, ts Helps identify date, time, {d ‘yyyy—-mm-dd’}
and timestamp literals. As where yyyy = year, mm = month; dd = date (for example, {d
you know, no two DBMSs ‘2002-08-03'} is March 8, 2002
represent time and date the
same way. This escape {t ‘hh:mm:ss’}
syntax tells the driver to where hh = hour; mm = minute; ss = second (for example, {t
render the date or time in ‘13:30:29'} is 1:30:29 PM)
the target database’s format.

{ts‘dt.f..}
where d = date format; t=time format; f = optional fractional
second
fn Represents scalar functiongn length(*Hello World")} returns 11, the length of the
used in a DBMS. character string ‘Hello World'.
escape Identifies the escape String sgl = "SELECT symbol FROM MathSymbols

character used in LIKE =~ WHERE symbol LIKE \%’ {escape \'}";
clauses. Useful when using

the SQL wildcard %, whiclstmt.execute(sql);

matches zero or more

characters.

call Use for stored procedures.

66

Chapter 5: Building JDBC Statements

For a stored procedure requiring an IN parameter, use {call
my_procedure(?)}

For a stored procedure requiring an IN parameter and
returning an OUT parameter use {? = call
my_procedure(?)};

o]] Use to signify outer joins. String sgl = "SELECT emp from {oj ThisTable RIGHT
The syntax is as follows: OUTER JOIN ThatTable on empid = 111111111},
{oj outer- join} where
outer— join = table {LEFT| stmt.execute(sql);
RIGHT|FULL} OUTER
JOIN {table | outer—join}
on search—condition.

Using the execute() method

The execute() method provides the most flexible way to interact with a database because it enables you to
process any type of SQL statement. For example, you may issue statements that return update counts or re
sets. The executeUpdate() and executeQuery() methods can only return update counts or result sets,
respectively. The execute() method can return both.

However, the execute() method’s flexibility bears a price tag. Because you may know nothing about the
statement type passed to the database, you may also know nothing about the result the database will return
You might receive one or more ResultSet objects, one or more update counts, or one or more of both.

Figure 5-3 is a flow chart that demonstrates how to interpret and process this command’s return value.

To begin, the execute() method always returns a boolean. If it returns true, a ResultSet object was returned.
this point you call the Statement object’s getResultSet() method to obtain the ResultSet object populated wit
data satisfying the SQL query. Once you finish processing that result set, call the Statement object’s
getMoreResults() method to determine if another result set exists. If the method returns true, call the
getResultSet() and process that result set. Continue this loop until the getMoreResults() method returns fals

Now you must check for update counts using the getUpdateCount() method. A value of >=0 indicates that a
update count exists. As | mentioned earlier, a 0 denotes an SQL DDL and anything else represents the upd:
count of the number of rows affected by an INSERT, DELETE, or UPDATE statement or stored procedure.
Continue processing update counts until the getUpdateCount() method returns —1. At this point you have
processed all the results from the execute() method.

As you can see, the execute() method can be fairly complex to implement if you do not know what type of
SQL statement you are processing. Fortunately, in the real world you usually know whether to expect a restL
set or an update count.

Listing 5-2 provides an example of processing the execute() method’s return value. In the application, |
submit an INSERT statement to demonstrate the case in which an update count is returned, and a SELECT
statement to illustrate the case in which a result set is returned. After | execute each statement | call the
method processExecute() to determine the return value and display the appropriate message.

67

Chapter 5: Building JDBC Statements

e R
\ Start)
. b4
true
execute
false
null X
- getResultSet()
resultSet
Process
result set
1
true
false tr
getUpdateCount() > 4 ue

getMoreResults()
>=1/0

Figure 5-3: This flow chart shows how to process the results from the execute() method.

Listing 5-2: ExecuteMethod.java

package Chapter5;

import java.sql.*;
public class ExecuteMethod {

public static void main(String[] args) {

/IDeclare Connection, Statement, and ResultSet variables
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

/[Holds the execute method’s result
boolean executeResult;

//Begin standard error handling
try{

/IRegister driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection
System.out.printin("Connecting to database...");

68

Chapter 5: Building JDBC Statements

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/ICreate a Statement object
stmt = conn.createStatement();

/linsert data and process result

String sql="INSERT INTO Employees VALUES" +
"(868653391,'Greg’,'4351",{d ‘1996-12-31"},500)";

executeResult = stmt.execute(sql);

processExecute(stmt,executeResult);

/IList employees

sql = "SELECT * FROM Employees ORDER BY hiredate";
executeResult = stmt.execute(sql);
processExecute(stmt,executeResult);

//Standard error handling.

} catch(SQLEXxception se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
//Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
Ylend finally try
Ylend try

System.out.printin("Goodbye!");
}lend main

/IMethod to process the execute() statement
public static void processExecute(Statement stmt,
boolean executeResult) throws SQLException {

/Icheck executeResult to see what was returned
if(lexecuteResult) {

System.out.printin("Update count returned...");

int updateCount = stmt.getUpdateCount();

System.out.printin(updateCount + " row was " +
"inserted into Employee table.");

}else {

//IResultSet returned
ResultSet rs = stmt.getResultSet();
System.out.printin("SQL query issued...");

/[Table header information

System.out.println("Listing rows for Employee table.");

System.out.printin("SSN" + "\t\t" + "Name" + "\t" + "Salary"
+"\t" + "Hiredate" + "\t" + "Loc_id");

69

Chapter 5: Building JDBC Statements

/ILoop through ResultSet showing all Employees
while(rs.next()){

System.out.printin(rs.getint("SSN") + "\t"
+ rs.getString("Name")+ "\t"
+ rs.getDouble("Salary") + "\t"
+ rs.getDate("Hiredate") + "\t"
+ rs.getint("Loc_id"));

}/end while-loop
Ylend if(lexecuteResult)

Ylend processExecute()
}lend ExecuteMethod Class

The output from Listing 5-2 is as follows:

Connecting to database...

Update count returned...

1 row was inserted into Employee table.

SQL query issued...

Listing rows for Employee table.

SSN Name Salary Hiredate Loc_id
111111111 Todd 5000.00 1995-09-16 100
987654321 John 4351.00 1996-12-31 500
868653391 Greg 4351.00 1996-12-31 500
123456789 Jimmy 3080.00 1997-09-07 400
312654987 Lori 2000.95 1999-01-11 300
419876541 Larry 1500.00 2001-03-05 200
Goodbye!

JDBC batch processing

The statement interface family supports batch processing that enables you to submit multiple DML statemer
with one call to the database. This can help you minimize the number of database calls you make and
implement transactional control over your database.

For example, suppose you have an application that uses INSERT and UPDATE statements to refresh the d
in a data warehouse using a text file as a source. Most data warehouse refresh files are large and you will
likely process a large number of database calls that perform nearly identical tasks. With every call you are
issuing either an INSERT statement to add data or an UPDATE statement to update existing data.

To minimize the number of calls, you can send a batch of statements with one call and execute them togeth
You can also inform the database to undo all the changes in the batch if one statement fails. This transactio
approach will ensure data integrity and consistency by preventing “orphan” data from being written to the
database.

JDBC 2.0 and beyond supports batch processing of INSERT and UPDATE statements, which may be usefu
in the scenarios | describe here. However, JDBC drivers are not required to support this feature. You shoulc
use the DatabaseMetaData. supportsBatchUpdates() method to determine if the target database supports b
update processing. The method returns true if your JDBC driver supports this feature.

70

Chapter 5: Building JDBC Statements

XRef Chapter 8, “Mining Database Metadata with JDBC,” covers how to get and use database
information with JDBC Metadata interfaces.

To take advantage of batch processing with a Statement object you must use the setAutoCommit(),
addBatch(), and executeBatch() methods. The setAutoCommit() method controls when your database make
your changes permanent. | cover commits more thoroughly in the next section. With each call to the
addBatch() method you add an INSERT or UPDATE SQL statement to a list for execution. When you're
finished adding all the statements, call the executeBatch() method to submit the batch to the database for
execution.

The executeBatch() method returns an int[] containing the individual update counts for each SQL statement
the order in which you added them to the batch. If an error occurs while executing the batch, processing sto
and a BatchUpdateError exception occurs. At this point the number of elements in the int[] equals the numb
of successful statements executed within the batch.

To help visualize how batch updates work, Figure 5-4 shows a flow chart that illustrates the process. Notice
that auto—commit is set to false, and pay attention to the flow of the addBatch() and executeBatch() method:
and the explicit commit() call.

Figuré 5-4: This flow chart shows JDBC batch processing.

The following code snippet provides an example of a batch update:

/[Create a Statement object and add SQLstatements with the

71

Chapter 5: Building JDBC Statements

/laddBatch() method. Assume a valid connection.

Statement stmt = conn.createStatement();

/ISet auto—commit to false
conn.setAutoCommit(false);

String SQL = "INSERT INTO Employees (Id, Name) VALUES(9517,'Jane’)";
stmt.addBatch(SQL);

SQL ="INSERT INTO Employees (Id, Name) VALUES(9518,'Betty")";
stmt.addBatch(SQL);

/[Create an int[] to hold returned values
int[] count = stmt.executeBatch();

/[Explicitly commit statements to apply changes
conn.commit();

In this example | use batch updating to add additional entries to my Employees table. Notice that the first
thing | do is set auto—commit to false with a call to setAutoCommit(). Next | add two SQL INSERT
statements to the batch. Then | call the executeBatch() method to execute the SQL statements. Finally, | ca
commit() to ensure that the changes are applied.

Note Turning off auto—commit may yield some performance increases because the number of commits is
reduced. However, remember that any DML statement may force the database to lock the row, page, ¢
even the table until you issue a commit. You may find this locking behavior undesirable, as it may
prohibit other users from accessing information.

As a final comment, just as you can add statements to a batch for processing, you can remove them with th
clearBatch() method. This method removes all the statements you added with the addBatch() method.
However, you cannot selectively choose which statement to remove.

JDBC transactions

Transactions enable you to control if, and when, changes are applied to the database. It treats a single SQL
statement or a group of SQL statements as one logical unit, and if any statement fails, the whole transactior
fails.

For example, Figure 5-5 illustrates a banking transaction that transfers funds from a checking account to ar
investment account. If the investment—-account credit operation fails, you need to undo the debit to the
checking account. This is a simple example, but it illustrates the point. Transactions are a science unto
themselves and beyond the scope of this book.

72

Chapter 5: Building JDBC Statements

\ /

Figure 5-5: This flow chart illustrates a banking transaction.

Working with transactions has both pros and cons. For example, with transactions you can maintain both da
consistency and integrity. While you make changes to a row, the DBMS prevents others from simultaneousl
changing the same row. This guarantees that when you execute your commit() method you actually change
the data you expect to change, not data that was changed by someone else between the time you began th
transaction and the time you issued the commit.

CautionDo not count on transaction control or batch update support for DDL statements. Most databases wi
not roll back these SQL statements once you submit them.

For the same reasons that transactions provide benefits, they can also cause problems. To prevent data fro
being manipulated while a transaction takes place, the database locks the data being updated. Some syster
use row-level locks, which prevent others from changing the row you are currently working with. Others use
page-level locks that prevent others from changing data located near yours. Some systems even lock entire
tables. For obvious reasons this is undesirable.

JDBC enables you to manage transactions by manipulating the Connection object’s auto—commit mode anc
using its rollback() method, which undoes all changes, up to the last commit.

JDBC 3.0 Enhancement

73

Chapter 5: Building JDBC Statements

The new JDBC 3.0 Savepoint interface gives you additional transactional control. Most modern DBMS
support savepoints within their environments such as Oracle’'s PL/SQL.

When you set a savepoint you define a logical rollback point within a transaction. If an error occurs past a
savepoint, you can use the rollback method to undo either all the changes or only the changes made after tt
savepoint.

The Connection object has two new methods that help you manage savepoints:

« setSavepoint(String savepointName) defines a new savepoint. It also returns a Savepoint object.
« releaseSavepoint(Savepoint savepointName) "deletes" a savepoint. Notice that it requires a Savepo
object as a parameter. This object is usually a savepoint generated by the setSavepoint() method.

The following example illustrates the use of a Savepoint object:

try{

/IAssume a valid connection object conn
conn.setAutocommit(false);
Statement conn.createStatement();

String SQL = "INSERT INTO Emp(ld, Name) VALUES (10, ‘Ted")";
stmt.executelnsert(SQL);

/[set a Savepoint
Savepoint savepoint = conn.setSavepoint("Savepointl1");

//Submit a malformed SQL statement that breaks
String SQL = "TRESNI OTNI Emp(ld, Name) VALUES (10, ‘Ted)";
stmt.executelnsert(SQL);

}catch(SQLException se){

conn.rollback(svptl);

XRef Refer to Chapter 15, “Understanding Distributed Transactions” for more information on
transactions.
Listing 5—-3 demonstrates transaction management using the Connection object’'s auto—commit mode and
rollback() method. In this example, | add a new employee and their field office location information. If the
employee INSERT statement fails, which it does in my example, then the location data are removed with the
rollback() method.

Listing 5-3: Rollback.java

package Chapter5;
import java.sql.*;
public class Rollback {

public static void main(String][] args) {

74

Chapter 5: Building JDBC Statements

/IDeclare Connection and Statement objects
Connection conn = null;
Statement stmt = null;

//Holds the execute method’s result
boolean executeResult;

//Begin standard error handling
try {

/IRegister driver.
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection.

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create a Statement object.
stmt = conn.createStatement();

//Set Autocommit = false and verify.

conn.setAutoCommit(false);

if (lconn.getAutoCommit())
System.out.printin("Auto—commit is set to false");

/lInsert location data.
String sql = "INSERT INTO Location VALUES(715,'Houston’)";
stmt.executeUpdate(sql);

/[This statement will fail for invalid date.

sql = "INSERT INTO Employees VALUES" +
(888653321, 'Kirk’,’4351" {d ‘1996-02-31'},715)";

stmt.executeUpdate(sq|l);

//ICommit data to database.
conn.commit();

/IStandard error handling.
} catch(SQLException se) {
/[Handle errors for JDBC
String msg = se.getMessage();
msg = "SQLException occured with message: " + msg;
System.out.printin(msg);

//Rollback transaction
System.out.printin("Starting rollback operations...");
try {
conn.rollback();
} catch(SQLEXxception se2){
se2.printStackTrace();
}

System.out.printin("Rollback successfull!");
} catch(Exception e) {

/IHandle errors for Class.forName
e.printStackTrace();

}Hinally {
try {

75

Chapter 5: Building JDBC Statements

if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try

System.out.printin("Goodbye!");
Y/end main

}lend Rollback class

Output from Listing 5-3:

Connecting to database...

Auto—commit is set to false

SQLException occured with message: ORA-01839:
date not valid for month specified

Starting rollback operations...
Rollback successfull!
Goodbye!

Closing the Statement object

Just as you close a Connection object to save database resources, you should also close the Statement ob
for the same reason. A simple call to the close() method will do the job. If you close the Connection object
first it will close the Statement object as well. However, you should always explicitly close the Statement
object to ensure proper cleanup.

Working with PreparedStatement Objects

As you know, the PreparedStatement interface extends the Statement interface. Its added functionality also
gives it a couple of advantages over a generic Statement object.

First, it gives you the flexibility of supplying arguments dynamically. Although you can use the Statement
object to build and execute your SQL statements on the fly, the PreparedStatement object reduces your wol
All you do is assign the values you want to use to the appropriate parameter placeholders.

Caution Not all DMBSs support the concept of a PreparedStatement. In those that don't, the
database flushes the compiled SQL statement from memory after it is executed. Refer t
your database or JDBC documentation for details.

Second, when you create a PreparedStatement object JDBC "prepares” the SQL statement for execution by
sending it to the database, which then parses, compiles, and builds a query execution plan. This parsed
statement lives in memory and remains ready to use during your database session or until you close the
PreparedStatement object.

76

Chapter 5: Building JDBC Statements

Tip PreparedStatement objects can improve performance of frequently used SQL statements. Tt
database pre—processes the SQL statements, which saves time when you reuse the stateme

Creating the PreparedStatement object

Just as a Connection object creates the Statement object, it also creates a PreparedStatement object. The
following code snippet shows how to employ its prepareStatement() method to instantiate a
PreparedStatement object:

/[Assume conn is a valid Connection object
String SQL = "Update employees SET salary = ? WHERE ename = ?";
PreparedStatement prepStmt = conn.prepareStatement(SQL);

What Are JDBC Parameters?

All parameters in JDBC are represented by the ? symbol, which is known as the parameter marker. You mu
supply values for every parameter before executing the SQL statement. The setXXX() methods bind values
the parameters. If you forget to supply the values, you will receive an SQLException.

Each parameter marker is referred to by its ordinal position. The first marker represents position 1, the next
position 2, and so forth. This method differs from that of Java array indices, which start at 0.

Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement object only uses the IN
parameter. The CallableStatement object, which works with database stored procedures, can use all three.
Here are the definitions of each:

* IN — A parameter whose value is unknown when the SQL statement is created. You bind values to
IN parameters with the setXXX() methods.

* OUT — A parameter whose value is supplied by the SQL statement it returns. You retrieve values
from theOUT parameters with the getXXX() methods.

* INOUT — A parameter that provides both input and output values. You bind variables with the
setXXX() methods and retrieve values with the getXXX() methods.

The SQL String you supply when calling the method can represent an DELETE, UPDATE, SELECT,
INSERT, or DDL SQL statement. Notice too that a ? represents the unknown values that you supply at
runtime.

Using the PreparedStatement object

All of the Statement object’s methods for interacting with the database — execute(), executeQuery(),
executeUpdate(), and executeBatch() — work with the PreparedStatement object. However, the methods ar
modified to use SQL statements that can take input the parameters. When using the PreparedStatement ob
you must bind values to all parameters otherwise a SQLEXxception occurs.

To bind values to parameters you use the setXXX() methods. (XXX represents the Java data type of the val

you wish to bind to the input parameter.) JDBC uses the setXXX methods to convert the Java data type to t
appropriate SQL data type for your target database, as shown in the following code snippet:

77

Chapter 5: Building JDBC Statements

/IAssume conn is a valid Connection object
String SQL = "UPDATE employees SET salary = ? WHERE ename = ?";
PreparedStatement pstmt = conn.prepareStatement(SQL);

//bind variables
pstmt.setint(1,"100000");
pstmt.setString(2,"toddt");
pstmt.executeUpdate();

Note The parameter values are not reset after you execute the prepared statement. You can
overwrite them with another setXXX() method call or use the clearParameters() method.
Sometimes you may not know the data type of a value supplied at runtime. The PreparedStatement object’s
setObject() method handles this situation by taking any Java object and converting it into the appropriate
JDBC data type. This method is extremely useful when you're working with SQL3 data types.

Listing 5-4 provides an example of how to use the PreparedStatement object. In this example | am simply
adding a record to the Employees table. First | create the PreparedStatement object with parameter
placeholders for SSN, Name, Salary, Hiredate, and Loc_Id. Next | bind these values to the corresponding
parameter with the appropriate setXXX() method. Finally, | call the executeUpdate() method to insert the rov
into the table. This example only uses the executeUpdate() method, but the execute() and executeQuery()
methods work in a similar fashion.

Listing 5-4: PrepStmt.java

package Chapterb;
import java.sql.*;
public class PrepStmt{
public static void main(String[] args) {

//Declare Connection object
Connection conn = null;

/IDeclare PreparedStatement object
PreparedStatement pstmt = null;

//Begin standard error handling
try {

/IReqister driver.
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection.

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create PreparedStatement object
String SQL = "INSERT INTO Employees VALUES (?,?,2,2,?)";
pstmt = conn.prepareStatement(SQL);

/[Bind values into the parameters.

78

Chapter 5: Building JDBC Statements

int randomSsn = ((int)Math.floor(Math.random() * 899999999));
randomSsn = randomSsn + 100000000;
pstmt.setint(1,randomSsn);

pstmt.setString(2,"Andy");

pstmt.setDouble(3,1400.51);
pstmt.setDate(4,Date.valueOf("2002-06-11"));
pstmt.setint(5,400);

/ICheck to ensure that the INSERT worked properly

int updateCount = pstmt.executeUpdate();

iflupdateCount==1)

System.out.printin("Record inserted into " +
"\"Employees\" table.");

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
/IHandle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");
}lend main

}! end PrepStmt class

Output from Listing 5—-4:

Connecting to database...
Record inserted into "Employees" table.
Goodbye!

Streaming data with PreparedStatement objects

A PreparedStatement object has a feature that the Statement object does not: the ability to use input and
output streams to supply parameter data. This enables you to place entire files into database columns that c
hold large values, such as CLOB and BLOB data types. Streaming this data to the database saves you frorm
having to assign it to a variable or an object in your application. This technique reduces the memaory footprin
of your program by not having to store the data in memory.

The following list explains the methods you use to stream data:
« setAsciiStream() is used to supply large ASCII values.

 setCharacterStream() is used to supply large UNICODE values.
« setBinaryStream() is used to supply large binary values.

79

Chapter 5: Building JDBC Statements

The setXXXStream() method requires an extra parameter, the file size, besides the parameter placeholder.
parameter informs the driver how much data should be sent to the database using the stream. Listing 5-5
provides an example storing and retrieving an XML file in a database.

Listing 5-5: StreamingXML.java

package Chapter5;

import java.sql.*;
import java.io.*;
import java.util.*;

public class StreamingXML {

public static void main(String[] args) {
/IDeclare Connection, Statement, PreparedStatement and ResultSet
[Ivariables

Connection conn = null;
PreparedStatement pstmt = null;
Statement stmt = null;
ResultSet rset = null;

//Begin standard error handling
try {

/IReqister driver.
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection.

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create a Statement object and build table
stmt = conn.createStatement();
createXMLTable(stmt);

//Open a FilelnputStream

File f = new File("employee.xml");

long fileLength = f.length();

FileInputStream fis = new FilelnputStream(f);

/[Create PreparedStatement and stream data

String SQL = "INSERT INTO XML_Data VALUES (?,?)";
pstmt = conn.prepareStatement(SQL);
pstmt.setint(1,100);

pstmt.setAsciiStream(2,fis, (int)fileLength);
pstmt.execute();

/[Close input stream
fis.close();

/I Do a query to get the row
SQL = "SELECT Data FROM XML_Data WHERE id=100";
rset = stmt.executeQuery (SQL);

/l Get the first row
if (rset.next ()){

80

Chapter 5: Building JDBC Statements

/IRetrieve data from input stream
InputStream xmlinputStream = rset.getAsciiStream (1);
int c;
ByteArrayOutputStream bos = new ByteArrayOutputStream();
while ((¢ = xmlinputStream.read ()) != -1)
bos.write(c);

/IPrint results
System.out.printin(bos.toString());

}

/IStandard error handling.

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
/[Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
Ylend finally try
Ylend try

System.out.printin("Goodbye!");
}lend main

public static void createXMLTable(Statement stmt)
throws SQLException{

/[Create SQL Statement
String streamingDataSql = "CREATE TABLE XML_Data
(id INTEGER, Data LONG)";

/[Drop table first.
try{
stmt.executeUpdate("DROP TABLE XML_Data");
}catch(SQLEXxception se){
/[Handle Oracle DROP table error
if(se.getErrorCode()==942)
System.out.printin("Error dropping XML_Data table:"
+ se.getMessage());
Ylend try

//Build table.
stmt.executeUpdate(streamingDataSql);

}lend createStreamingXMLTable

}lend StreamingXML class

The output from Listing 5-5 is as follows:

81

Chapter 5: Building JDBC Statements

Connecting to database...

<?xml version="1.0"?>

<Employee>
<SSN>123963741</SSN>
<name>Art</name>
<Salary>56321.87</Salary>
<Hiredate>08-08-1988</Hiredate>
<Loc_ld>200</Loc_id>

<Employee>

Notice that to use streaming data requires binding an input stream to a parameter. Any class derived from tt
InputStream interface will work. In this instance | read a file from a disk, but you can just as easily use a
network socket as a data source.

Batch updates with PreparedStatement objects

As | mentioned earlier, PreparedStatement objects support the Statement object’s executeBatch() method.
only difference between the two is that you add "parameter sets" to the batch once you supply the SQL
statement.

The following code snippet demonstrates how to use the executeBatch() method with a PreparedStatement
object:

/IAssume conn is a valid Connection object
String SQL = "UPDATE employees SET salary = ? WHERE ename = ?";
PreparedStatement prepStmt = conn.prepareStatement(SQL);

/ISet the variables
int sal = 150000;
prepStat.setint(1,sal);

String name = "toddt";
prepStmt.setString(2,name);

/ladd it to the batch
prepStmt.addBatch();

/ladd more batches

prepStmt.addBatch();

/INow send the batch to the database
prepStmt.executeBatch();

All of the guidelines regarding batch updates that apply to the Statement object apply to the
PreparedStatement object, particularly the auto—commit property. Remember, if you want every statement
permanently applied to the database when it is executed, leave auto—commit on its default value of true. Wt
you need transactional control, set auto—commit to false and explicitly use the commit() method to apply yot
changes.

82

Chapter 5: Building JDBC Statements

Working with CallableStatement Objects

CallableStatement objects enable you to execute stored procedures located on the database from your Javs
application. If you look back at Figure 5-1 you can see that the CallableStatement interface extends the
PreparedStatement interface. One extra feature is that the CallableStatement object not only handles IN
parameters, but also has additional support for handling OUT and INOUT parameters. The CallableStateme
object can use all three to adequately represent a stored procedure’s behavior.

Creating the CallableStatement object

Just as a Connection object creates the Statement and PreparedStatement objects, it also creates the
CallableStatement object.

Before you can create the object you need to know about the stored procedure you want to access. Suppos
for example, that you need to execute the following Oracle stored procedure:

CREATE OR REPLACE PROCEDURE getEmpName
(Emp_SSN IN NUMBER, Emp_Name OUT VARCHAR) AS
BEGIN
SELECT name
INTO Emp_Name
FROM Employees
WHERE SSN = EMP_SSN;
END;

The following code shippet shows how to employ the Connection.prepareCall() method to instantiate a
CallableStatement object based on the preceding stored procedure:

/[Assume conn is a valid Connection object
String SQL = "{call getEmpName (?,?)}";
CallableStatement cstmt = conn.prepareCall (SQL);

The String variable SQL represents the stored procedure, with parameter placeholders, using JDBC’s SQL
escape syntax. The escape syntax tells the driver, which is database-specific, to convert the call into the
correct format. As you can see, you must know the stored procedure’s name and signature.

JDBC 3.0 JDBC 3.0 enables you to use named OUT parameters in the registerOutParameter() method. Pri
versions only enabled you to refer to OUT parameters by their ordinal position. Enabling you to
specify the name of the parameter makes the method function like the getXXX() methods in term:
of parameter identification.

Table 5-4 shows the valid formats for the escape syntaxes you can use, depending on whether you need IN
OUT parameters.

Table 5-4: PrepareCall() Parameter Formats

Format IN Parameter OUT Parameter

83

Chapter 5: Building JDBC Statements

{call stored_procedure_name} No No
{? = call stored_procedure_name} No Yes
{call stored_procedure_name Yes No
?,?,...,?2)}

{? = call stored_procedure_name Yes Yes
?,?,...,?2)}

As you can see, the first prepareCall() in Table 5—-4 calls only the stored procedure and accepts no paramet
You would use this format to call a stored procedure that performs some internal operation within the
database and does not supply feedback — for example, if you are purging historical data from a data
warehouse.

The next format returns an OUT parameter at the completion of the stored procedure. The value might
represent a method’s success or failure flag, or a value calculated within the stored procedure.

The third format enables you to supply IN parameters. You would likely use this format to call a stored
procedure to update tables with the values you supplied.

The last format enables you to supply both IN and OUT parameters. Here you supply values as IN paramete
perform calculations or query a table, then get the result as an OUT parameter.

Using the CallableStatement object

Using CallableStatement objects is much like using PreparedStatement objects. You must bind values to all
parameters before executing the statement, or you will receive an SQLEXxception.

If you have IN parameters, just follow the same rules and techniques that apply to a PreparedStatement obj
use the setXXX() method that corresponds to the Java data type you are binding.

When you use OUT and INOUT parameters you must employ an additional CallableStatement method,
registerOutParameter(). The following sections describe each type of parameter and how to use each with tl
method.

OUT parameters

The registerOutParameter() method binds the JDBC data type to the data type the stored procedure is expe
to return. This method is different from the setXXX() method that associates a Java data type with an IN
parameter. OUT parameters require the JDBC type, which maps to SQL data types, for database
compatibility.

Once you call your stored procedure, you retrieve the value from the OUT parameter with the appropriate
getXXX() method. This method casts the retrieved value of SQL type to a Java data type.

Listing 5—-6 shows you how to access the getEmpName stored procedure | presented at the beginning of thi
section. Notice that it uses both IN and OUT parameters. First | bind the SSN to parameter 1 with the setint(
method. Then | use the registerOutParameter() method to set the JDBC data type for the OUT parameter.
Finally, | use the execute() method to execute the stored procedure and use the getString() method to retrie
the data.

Listing 5-6: CallableStmts.java

84

Chapter 5: Building JDBC Statements

package Chapter5;
import java.sql.*;
public class CallableStmt {

public static void main(String[] args) {

/ICreate Connection, Statement, and ResultSet objects
Connection conn = null;
CallableStatement cstmt = null;

//Begin standard error handling
try {

/IReqister driver.
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection.

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:0RCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create CallableStatement object
cstmt = conn.prepareCall ("{call getEmpName (?,?)}");

/[Bind IN parameter first, then bind OUT parameter
intssn=111111111;

cstmt.setint(1,111111111);
cstmt.registerOutParameter(2,java.sqgl. Types.VARCHAR);

//Use execute method to run stored procedure.
cstmt.execute();

//Retrieve employee name with getXXX method

String empName = cstmt.getString(2);

System.out.printin("Employee with SSN:" + ssn
+"is " + empName);

//Standard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
//Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try

System.out.printin("Goodbye!");
}lend main

85

Chapter 5: Building JDBC Statements

}lend CallableStmt

The output from Listing 5-6 is as follows:

Connecting to database...
Employee with SSN:111111111 is Todd
Goodbye!

INOUT parameters

An INOUT parameter plays the role of both an IN and an OUT parameter. Using an INOUT parameter is
relatively simple. First, use the setXXX() method to bind a value to the parameter. This will cause the
parameter to act as an IN parameter. Next, use the registerOutParameter() method to register the same
parameter as OUT.

Consider the following Oracle stored procedure, which has both an IN and an INOUT parameter:

CREATE OR REPLACE PROCEDURE updateEmpName (Emp_SSN IN NUMBER,
Emp_Name IN OUT VARCHAR)

AS
BEGIN

UPDATE Employees

SET name = Emp_name

WHERE SSN = EMP_SSN;

COMMIT;

SELECT name

INTO Emp_Name

FROM Employees

WHERE SSN = EMP_SSN;
END;

The following code snippet shows how to use the preceding stored procedure:

String SQL = "{call updateEmpName (?,?)};
CallableStatement cstmt = conn.prepareCall (SQL);

//Set the IN parameter
cstmt.setint(1,111111111);
cstmt.setString(2,"Todd Thomas");

//Set the same parameter as OUT
cstmt.registerOutParameter(2,java.sql. Types.VARCHAR);

//[Execute the call to the stored procedure
cstmt.executeUpdate();

//IRetrieve the result from the stored procedure.
String str = cstmt.getString(2);

Note Be aware of data type compatibility issues when using INOUT parameters. You should use Java and
JDBC data types that map to each other for both the setXXX() methods and the registerOutParameter(
method. For example, if you use a setBoolean() method to bind the IN parameter, you should register t
OUT parameter as a JDBC BIT data type with the registerOutParameter() method. Or, if you are using
JDBC 3.0, you can register the OUT parameter as a JDBC BOOLEAN data type.

86

Chapter 5: Building JDBC Statements

Batch updates with the CallableStatement object

Because the CallableStatement interface extends PreparedStatement interface, it inherits the executeBatch
method. However, the CallableStatement object cannot use OUT an INOUT parameters in batch update
operations. A BatchUpdateException is thrown if:

* you try to use either OUT or INOUT parameters.
« your stored procedure returns anything but an update count.

All other aspects associated with using batch updates remain the same as with prepared statements.

Summary

This chapter illustrated how to interact with your database once you open a connection. JDBC 3.0 provides
you with several different ways to submit SQL statements and control how the database processes them. In
particular you should remember:

* You can use the Statement object to submit static DDL and DML commands.

* You use the PreparedStatment and CallableStatement objects to submit SQL statements with
parameters.

* You use a CallableStatement object to access database stored procedures.

* You use Connection.setAutoCommit() and Connection.commit() methods enable you to control
transactions.

87

Chapter 6: Working with Result Sets
In This Chapter

« Creating different types of result sets

» Moving around and viewing data in a result set
» Updating data in a result set

 Retrieving data from a result set

» Handling data—type issues

In Chapter 4, “Connecting to Databases with JDBC,” and Chapter 5, “Building JDBC Statements,” | covered
how to create and use Connection and Statement objects. These objects, combined with the ResultSet obje
provide all the components you need to build a full-featured JDBC application.

ResultSet objects hold data from SQL queries you execute using a Statement, PreparedStatement, or
CallableStatement object. In some respects a result set is a view into your database. To use the data contai
in a ResultSet object you must extract it using one of the getXXX() methods defined by the ResultSet
interface.

In this chapter | introduce the ResultSet object and explain its purpose in a JDBC program. | also detail the
different types of ResultSet objects, what each one does, and how to decide which one to use. Finally | disc
data type differences that exist between SQL and Java; a topic that is important when you begin to extract a
use data from a ResultSet object.

What Are JDBC Result Sets?

Connection objects represent database connections; Statement objects enable you to execute SQL stateme
against the database. These objects provide the foundation that enables you to build views of data in your
database.

The term “result set” refers to the row and column data contained in a ResultSet object. This is a logical viev
of row and column data in your database that meets the criteria of your SQL query. A result set can have an
number of rows and columns: the actual number depends on the query. If you place a WHERE clause in yo
SQL statement, only the row data meeting those criteria will be retrieved.

The ResultSet interface defines methods that enable you to interact with the data in the database. The JDB!
driver provides the ResultSet class that implements the interface. When a Statement, PreparedStatement, ¢
CallableStatement object executes an SQL query successfully it returns a ResultSet object.

Note Not all databases support stored—procedures that return result sets, and so the CallableStatement obje
might not be able to return a result set. Check the developer’s guide for your DBMS, or the
documentation for your JDBC driver, to determine whether your database supports this feature.

The default ResultSet object enables you to only view the data in your database that meet the criteria of yoL
SQL query. However, you can also create ResultSet objects that can update the data in the row you are
viewing, insert a new row into the table, or even delete a row. Thus, a ResultSet object can enable you to
perform DML statements programmatically without having to explicitly issue SQL INSERT or UPDATE

88

Chapter 6: Working with Result Sets

statements.

The following section provides an overview of the concepts you need to understand in order to work
effectively with a ResultSet object.

Introducing Result Set Concepts

Although JDBC defines different types of result sets to meet different programmatic needs, many concepts
apply to all types. This section is devoted to describing these common concepts. Ideally, this will provide you
with a foundation for understanding the different types of result sets.

Result set cursors

Despite the number of rows in a result set, you can only access one row at a time. A ResultSet object points
this "active" row using a cursor. If you want to reference another row in the result set you must explicitly
move the cursor with one of the ResultSet object’s cursor-movement methods.

Figure 6-1 illustrates a result set cursor and how it moves through the data set. Notice that the cursor point:
the third row of a seven-row result set. If you issue the ResultSet.next() method, the cursor advances one
position to the fourth row. Remember, when working with result set data you always work with the row wher
the cursor points.

Two cursor positions within a result set warrant special mention. These are the “before first row” (BFR) and
“after last row” (ALR) cursor positions in the result set. These areas are devoid of data and an SQLExceptio
occurs if you use the getXXX() or updateXXX() methods in these locations. Figure 6-1 also illustrates these
positions within a result set.

Result Set

Tack
1D. Poe 229
cursor
=D Ange

ResultSetnext() { s— " . o B —
h f\/ K Aaron Shoopman 34

Doana Brown
€ Michael Hamby i
Chris Roden 30

AFTER LAST ROW

Figure 6—1: Result set cursor illustration

When a ResultSet object is initially populated the cursor defaults to the BFR position. You must explicitly
move the cursor to a location that contains data before invoking any data—access methods. In addition, whe
scrolling through a result set you may run past the last row of data. This will place the cursor in the ALR
position. Depending upon the result set type, you may or may not be able to go backwards to a valid cursor
position. If you are unable to do this you must recreate your result set by executing the SQL statement agair

89

Chapter 6: Working with Result Sets

Result set types

JDBC provides different types of ResultSet objects that enables you to interact with the database in a variet
of ways. The first, which is the default, has minimal functionality and enables you only to move forward
through the result; it does not enable you to update data. The second type enables you to move forward,
backward, or to any row within the result set. The third enables you to update the contents in the result set.

JDBC 3.0 Prior to JDBC 3.0, the Connection.commit() method could close ResultSet objects. The driver
implementation determined this behavior. A new ResultSet interface property, holdability, enables
you to specify when a ResultSet object is closed. Your options are to close it when you call the
Connection.commit() method or to close it explicitly some time after a commit.

When creating either a Statement, PreparedStatement, or CallableStatement object you define the type of
result set it creates by passing in parameters to the respective create statement method of a Connection ob
You do not need to pass any parameters to create a standard result set.

Table 6-1 provides a quick summary of each result set type, and the following sections provide more detail.

Table 6-1 : Result Set Types

ResultSet Description

Standard Enables basic access to the result set data. Does not reflect changes to underlying
data on server. Moves in one direction, forward. Data within the result set cannot be
updated.

Scrollable Provides enhanced movement capabilities over the standard ResultSet object. Moves

forward, backward, or to any row. Can reflect data changes on the server. You set
this type with the resultSetType parameter when creating the Statement,
PreparedStatement, or CallableStatement object.

Updateable Enables you to update underlying database information through the ResultSet object.
You set this type with the resultSetConcurrency parameter when creating the
Statement, PreparedStatement, or CallableStatement object.

Note Scrollable and updateable ResultSet objects are mutually exclusive. For example, you can have an
updateable ResultSet object that is forward only, or a scrollable ResultSet object is not updateable.
Standard result sets

A standard result set is forward—only and non—updateable. This type enables you to move the cursor forwar
through the result set but does not enable you to update the result set data. An SQLException is thrown if y
try to move the cursor backward, or insert or update the data in the result set.

You should consider using standard result sets when you need to do basic work with result set data. For
example, if you need to populate a listbox to display a list of inventory items, using a forward—only result set
makes sense. Or, this type will prove useful if you need to loop through the result set to count the number of
rows in a database that meet some criteria defined by a WHERE clause.

90

Chapter 6: Working with Result Sets

Scrollable result sets

To traverse a result set you need to use a scrollable ResultSet object. Introduced in JDBC 2.0, this type
enables you to go forward or backward, or to jump to a specific row in the result set. You will find this type
useful when you need to move the cursor to a different row in the result set based on some event or when y
present a form with a data control to allow users to scroll forward and backward through the result set.

You can also create scrollable ResultSet objects that are sensitive to changes in the underlying data on the
server. As you move the cursor through the result set the ResultSet object determines if the data on the sen
has changed. If it has the ResultSet object updates the result set with the new data. This feature is useful w|
you need to provide the user with up—to—date information such as with real-time applications like airline
reservation systems.

Tip Use scrollable, change—sensitive, and updateable ResultSet objects only when necessary. The overhea
associated with these types may compromise performance. However, do not neglect them if they
represent the best solution.

Using scrollable and change-sensitive result sets creates additional overhead because of the extra process
the ResultSet object must perform. Only use these types when you feel your application needs these feature

Updateable result sets

You can update the column data in the current row with an updateable ResultSet object. Doing this enables
you to make changes without explicitly submitting additional SQL statements to the database. However, as
with scrollable ResultSet objects, you will experience a performance decrease while using an updateable
result set.

Retrieving result set data

Data returned from an SQL query are JDBC data types, and you must convert them to Java data types befo
you can use the information in your application. A ResultSet object provides the getXXX() method to perforn
this conversion.

The XXX placeholder in the getXXX() method represents the Java data type you wish to retrieve. For examy
if you want to retrieve a column value as a Java int then you use the getint() method. Each JDBC data type
has a recommended Java data type. You should always try to use the recommended getXXX() method to
decrease the risk of data corruption.

XRef Chapter 7, “Understanding JDBC Data Types,” provides more detail on JDBC and Java
data types.

However, the getXXX() method gives you the freedom to coerce JDBC data types to different,
noncorresponding Java data types. For example, you can use the getString() method to retrieve any SQL
numeric data types, such as an INTEGER, DOUBLE, and NUMBER. You can also convert from numeric
data types of high precision to ones of lesser precision, but this will cause you to lose data. For example, the
getint() method enables you to retrieve JDBC DOUBLE data types. During the conversion the digits to the
right of the decimal point are dropped. This operation is akin to assigning a double to an int, and as a result
the value is floored.

The getXXX() method is overloaded to provide you with flexibility with regard to retrieving the column
values. The following are the ResultSet object’s methods:

91

Chapter 6: Working with Result Sets

ResultSet.getXXX(int columnindex)
ResultSet.getXXX(String columnName)

The first method enables you to retrieve the result set data based on the ordinal column position. The colum
numbers start at 1, not 0 as Java array indices do. The second method uses the column name to retrieve th
data, as shown in the following code snippet:

/IAssume a valid Connection, conn.
Statement stmt = conn.createStatement();

/ICreate a ResultSet object
String SQL = "SELECT Name FROM Employees";
ResultSet rset = stmt.executeQuery(SQL);

/IRetrieve by ordinal column position
String byColumnNumber = rset.getString(1);

/IRetrieve by column name
String byColumnName = rset.getString("name");

Tip You can refer to columns in a result set by their names, which may be easier for you than having to
remember the column number.

The ResultSet object also has getXXX() methods with which to access the following SQL3 data types: CLOI

BLOB, ARRAY, STRUCT, REF, and DISTINCT. This method gives you access to the data using an SQL

LOCATOR, which is a logical pointer on the client that refers to data on the server. As a result you do not

materialize the data on the client using the getXXX() methods. You must explicitly perform this task to

retrieve the data on the client.

You may use an input stream to materialize columns that contain large amounts of binary or character data
such as BLOB and CLOB. The methods getBinaryStream() and getAsciiStream() return InputStream object:
S0 you can control the data download to prevent extremely large values from consuming too much memory.

XRef Refer to Chapter 7, “Understanding JDBC Data Types,” for a more complete explanation of
using the SQL3 data types and the ResultSet. getObject() method.

Here is an example of using an InputStream to retrieve column information:

/IAssume a valid Statement object
Sting SQL = "SELECT Data FROM DataTable";
ResultSet rset = stmt.executeQuery (SQL);

//Loop through the result set

while (rset.next()){
//Use an input stream to store the data
InputStream is = rset.getBinaryStream (1);

/ICollect results from InputStream into a
//ByteArrayOutputStream object
inti;
ByteArrayOutputStream bos = new ByteArrayOutputStream();
while((i = is.read ()) '= —-1){
bos.write(i);
}
}

92

Chapter 6: Working with Result Sets

The getObject() method will enable you to retrieve any data type. The method returns an Object. If you want
more specific type you must cast it appropriately. You can also access UDTs on the server using the
getObject() method. This is especially helpful for custom data mappings.

Using Standard Result Sets

A standard ResultSet object enables you to view and retrieve data in a result set. This type is the default wh
you do not supply parameters to the Connection object’s createStatement(), prepareStatement(), and
prepareCall() methods. The standard result set is forward—only and non-updateable.

How the result set is populated varies. For standard SELECT statements without sorting or grouping
commands, the result set data are materialized incrementally.

That is, as the cursor moves through the result set, the data are retrieved from the server and placed in the

user's application space. If someone makes a change to the data on the database server, and you have not
viewed the data or the cursor is not on that row, you will see the changes when you move the cursor to that
row. If you issue a SELECT statement that groups or sorts the result set the data is materialized on the clier
immediately.

A standard ResultSet object also provides the fastest access to the result set data. The other types, scrollak
and updateable, must maintain additional information about the result set, and this can degrade performanc

Creating a standard result set

You do not directly instantiate a ResultSet object as the JDBC specification only defines an interface, not a

ResultSet class. The Statement, PreparedStatement, or CallableStatement returns an instance of a ResultS
object when it successfully completes the execute() or executeQuery() method. As | discussed in chapter 5,
the executeUpdate() method returns an update count, not a result set.

The following code snippet demonstrates how to instantiate a ResultSet object using both a Statement and
PreparedStatement object:

/IAssume a valid Connection, conn.
Statement stmt = conn.createStatement();

/[Create ResultSet object with Statement
String sqll = "SELECT Name, Salary FROM Employees";
ResultSet rsetl = stmt.executeQuery(sqll);

/ICreate ResultSet object with PreparedStatement

String sql2 = "SELECT Name, Salary FROM Employees WHERE Ssn = ?";
PreparedStatement pstmt= conn.prepareStatement(sql2);
pstmt.setint(1,876349372);

ResultSet rset2 = pstmt.executeQuery();

That's it. The stmt.executeQuery() and pstmt.executeQuery() methods create rsetl and rset2, respectively.
result set for rsetl contains the Name and Salary information for all the employees in the Employees table.
The result set for rset2 holds the same data, except for one employee. | used a parameterized query to limit
number of rows returned to one for this snippet.

93

Chapter 6: Working with Result Sets

XRef Chapter 8, “Mining Database Metadata with JDBC” explains how to obtain information about your
ResultSet object. You can retrieve property and type information about the columns contained in a
ResultSet object using the ResultSetMetaData object.

Moving data around in a standard result set

A result set is of little value unless you can move its data around. For a standard result set object you can ol
use the ResultSet.next() method to the move the cursor through the result set rows. As you might expect, th
next() method moves the cursor to the next valid row of the result set.

When using the next() method you need to ensure you do not move the cursor to the ALR area. Fortunately
the next() method tests for this boundary condition. The method returns true if the cursor moves into a valid
row. If you move the cursor into the ALR position the method returns false. This behavior enables you to
process the data within a result set with a while loop by using the ResultSet.next() method as the test
condition, as shown in the following code:

//Assume a valid Statement object stmt
ResultSet rs = stmt.executeQuery("SELECT * from Employees");

while(rs.next()){
/lprocess rs data

}

As you move through the result set you may need to determine where your cursor is located. For example,
may want ensure that the cursor is not located in the ALR position before calling a getXXX() method. A
ResultSet object enables you to determine cursor position in several different ways. Table 6-2 illustrates the
methods related to cursor position.

Table 6—-2: Result Set Cursor—Position Methods

Method Description

isBeforeFirst() Returns true if the cursor is in the "before—first—-row" position.
isFirst() Returns true if the cursor is on the first row.

isAfterLast() Returns true if the cursor is in the "after—last-row" position.

isLast() Returns true if the cursor is on the last row.

getRow() Returns an int specifying the ordinal row number. The first row is 1,

the second 2, and so on. The method returns O if no row exists.

You will likely use the cursor position method getRow() more than any other method. This method returns th
cursor’s current row number in the result set. Notice that it returns the ordinal row number. That is, all row
numbers begin with 1 and increment by one. The method returns 0 when called if the cursor is in the BFR ol
ALR position.

The other cursor—position methods also help you determine where your cursor is located within the result se
The isBeforeFirst() and isAfterLast() methods return true if the cursor is in the BFR or ALR positions,
respectively. You can see if the cursor is on the first or last row by using the isFirst() or isLast() methods.
Again, these methods return true if the cursor is located in the relevant position.

94

Chapter 6: Working with Result Sets

Listing 6—1 brings together the concepts presented in this section. In this example | open a database
connection, create a Statement object, and submit a query to retrieve the SSN, Name, and Salary columns
from the Employee table.

Next, | demonstrate several of the cursor—position methods. First | call the ResultSet.isBeforeFirst() method
which returns true because | have not advanced the cursor to the first row of data and as a result it is still in
BFR position. Next | loop through the result set using the ResultSet.next() method and print the column
values to the screen. (Notice that | use the ResultSet. getRow() method to obtain the row number of the cur:
location.) Before exiting the application | call the ResultSet.isAfterLast() method to illustrate its use. This
method returns true because the last call to the rs.next() method places the cursor in the ALR position.

Listing 6-1: StandardRs.java

package Chapter6;
import java.sql.*;
public class StandardRs {
public static void main(String[] args) {

/IDeclare Connection, Statement, and ResultSet variables
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

//Begin standard error handling
try{

/IRegister driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create a Statement object and execute SQL query

stmt = conn.createStatement();

String sql = "SELECT SSN, Name, Salary FROM Employees";
rs = stmt.executeQuery(sql);

/IVariables to hold information
int ssn;

String name;

double salary;

System.out.printin("\"Before—first—row\" = "
+ rs.isBeforeFirst());

while(rs.next()){
/IRetrieve by column name
ssn= rs.getint("SSN");
name = rs.getString("Name");

/IRetrieve by column index
salary = rs.getDouble(3);

95

Chapter 6: Working with Result Sets

/IDisplay values

System.out.print("Row Number=" + rs.getRow());
System.out.print(", SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.printin(", Salary: $" + salary);

}

System.out.printin("\"After—last—-row\" =" +

rs.isAfterLast());

//Standard error handling

} catch(SQLEXxception se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
//Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

}lend main
}lend StandardRs class

The output for Listing 6-1 is as follows:

Connecting to database...
"Before—first-row" = true

Row Number=1, SSN: 111111111, Name
Row Number=2, SSN: 419876541, Name
Row Number=3, SSN: 312654987, Name
Row Number=4, SSN: 123456789, Name
Row Number=5, SSN: 987654321, Name
"After—last-row" = true

Goodbye!

: Todd, Salary: $5000.00

: Larry, Salary: $1500.00

: Lori, Salary: $2000.95

: Jimmy, Salary: $3080.00
: John, Salary: $4351.00

Using Scrollable Result Sets

Standard result sets enable you to
However, you will sometimes need

With scrollable result sets you can
maneuverability proves handy whe
set data. For example, users of an

move in only one direction, forward. You may find this acceptable at time
to traverse the result set’s data freely in any direction.

move forward, backward, and to specific rows within the result set. This
n you develop an application that requires user interaction with the result
inventory—control program may need to scroll forward and backward
through a result set to check current inventory data. A scrollable result set enables them to do this.

96

Chapter 6: Working with Result Sets

If properly configured, scrollable result sets can also recognize changes in the underlying data on the datab:
If you have a scrollable result set that is sensitive to changes then you will always see the most current view
the data. You might find this beneficial if your application, like the inventory—control system described earliel
in this chapter, needs up—to—date information. However, result sets sensitive to changes may prove
troublesome if you need to provide a “snapshot” view of the data.

Tip The getXXX() methods used to access data are the same for standard, scrollable, and updateable Resu
objects.

The following section shows you how to create and use scrollable result set objects and gives an example
illustrating their use.

Creating scrollable result sets

As | mentioned earlier, you specify the type of result set you want a query to return when you are creating
Statement, PreparedStatement, or CallableStatement objects.

To denote a scrollable result set you must supply predefined parameter values to a Connection object’s
createStatement(), prepareStatement(), or prepareCall() methods. The following are the method calls with
signatures:

createStatement(int resultSetType, int resultSetConcurrency);
prepareStatement(String SQL, int resultSetType, int resultSetConcurrency);

prepareCall(String sql, int resultSetType, int resultSetConcurrency);

The first parameter, resultSetType, indicates how scrollable, and how sensitive to data changes, to make th
result set when creating it. Table 6-3 lists the valid resultSetType parameter values for creating scrollable
ResultSet objects.

The next parameter, resultSetConcurrency, creates an updateable result set, which | cover in the next sectic

Table 6—3: Scrollable Result Set Parameter Constants

Constant Comment
TYPE_SCROLL_INSENSITIVE Provides a ResultSet whose cursor can move
forward, backward, and to any row.

Does not reflect changes to the data on the database
4

as cursor moves through the data set.
TYPE_SCROLL_SENSITIVE Provides a ResultSet whose cursor can move

forward, backward, and to any row.

Provides a dynamic view of the data on the server.

The most current value is always provided.
TYPE_FORWARD_ONLY Default result set type.

97

Chapter 6: Working with Result Sets

Does not reflect changes to the data on the database
as the cursor moves through the datdSet.

[This depends on the data type referenced. Some SQL3 data types use logical pointers, called LOCATOR
to the data on the database server. Using these data types may enable you to see changes because the da
not materialized on the client.

You create scrollable result sets using the TYPE_SCROLL_INSENSITIVE and
TYPE_SCROLL_SENSITIVE parameter values. The TYPE_SCROLL_INSENSITIVE parameter creates a
result set whose cursor can move in any direction through the data but does not enable you to see changes
the data in the database — you only have a static view.

You can create a dynamic view of the data using the TYPE_SCROLL_SENSITIVE parameter. Underlying
data changes on the server will be available to you as the cursor moves through the result set when you use
this program.

The TYPE_FORWARD_ONLY parameter creates a default, forward—only result set. You only need to suppl
this parameter if you want to control the concurrency settings of a forward—only result set.

CautionUsing scrollable result sets will slow down your application. The ResultSet object must do more worl
in order to enable you to scroll through the result set. If you also want the ResultSet object to be
sensitive to data changes, even more overhead is incurred because the ResultSet object must chec
the database as the cursor moves through the data set. Only use these types when necessary.

Moving around scrollable result sets

A scrollable ResultSet object has methods to permit you to move the cursor forward, backward, and to a
specific row. The cursor movement methods apply regardless of whether the result set is sensitive to the
underlying data changes or not. Table 6—-4 provides an overview of the methods used to control the cursor. .
the methods return true if they complete successfully.

Table 6—4: Scrollable Result Set Movement Methods

Method Description

next() Moves the cursor to the next row.

previous() Moves the cursor to previous row.

beforeFirst() Positions the cursor in the “before-the—first” row location.

Calling the getXXX() method immediately after this method
will produce an SQLEXxception.

afterLast() Positions the cursor in the “after-the—last” row. Calling the
getXXX() method immediately after this method will produce
an SQLException.

first() Moves the cursor to the first row of the result set data

last() Moves the cursor to the last row of the result set data.

absolute() Moves to a specific row relative to the first row of the data
set.

98

Chapter 6: Working with Result Sets

relative() Move to a specific row relative to the current row.
moveToCurrentRow() Moves cursor to the remembered rol.
moveTolnsertRow() Moves cursor to the insert rdt.

Blvalid for updateable ResultSet objects. See the next section "Using Updateable Result Sets" for details.
The next() and previous() methods move the cursor forward to the next row or back to the previous row,
respectively. If your cursor is on the first row and you call the ResultSet.previous() method, you will move th
cursor into the BFR area. Likewise, you can move the cursor forward into the ALR with the ResultSet.next()
method when the cursor is positioned on the last row.

However, the next two methods, beforeFirst() and afterLast(), explicitly move the cursor into the BFR and
ALR regions. These two locations can provide you with a starting point to begin other cursor movements. Fc
example, you might use these methods to position the cursor at the top or bottom of the data set before you
start looping through it.

The ResultSet object’s first() and last() methods move the cursor to the first and last rows of the result set,
respectively. Calling these methods with a result set of one row produces the same result. You may also cal
these methods from the BFR and ALR areas to move the cursor to the respective locations.

You can use the ResultSet.absolute(int n) and ResultSet.relative(int n) methods to move the cursor to a
specific row in the result set. The absolute() method moves the cursor n number of rows from the first row.
Calls to ResultSet.first() and ResultSet.absolute(1) are equivalent. The relative() method moves the cursor
forward or back n rows. (Positive values move the cursor forward while negative values move the cursor
back.) Figure 6-2 illustrates how these methods work.

Result Set
Cursor Studentid l Furst_Name [Last Name l GPA
BEFORE FIRST RO/
.....
Origina 2 1D, Poe 229
position
)) Angela Kincand
ResultSetabsolute(6) 4 Aaron Shoopman 14
Donna Browr
N [Michael Harmby 122
Chns
AFTER LAST ROW
Result Set
Cursor Studentld l First_Name l Last_Name] GPA
Fin BEFORE FIRST ROW
y
¢ \
7~ v
(Origina 2 1D Poe 22
\ position -
- =g Ang K 4
ResultSetrelative(-2) K Axon Shoopman 34
) rwr
3 Michael Hamnby 12
h
AFTER LAST ROW

99

Chapter 6: Working with Result Sets

Figure 6-2: Result set cursor movement example

Listing 6—2 demonstrates the various topics covered in this section. In this example, | create a scrollable
ResultSet object and illustrate the different cursor—position and cursor-movement methods.

Listing 6-2: ScrollableRs.java

package Chapter6;
import java.sql.*;
public class ScrollableRs {
public static void main(String[] args) {

/IDeclare Connection, Statement, and ResultSet variables
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

//Begin standard error handling
try{

/IRegister driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/lcreateStatement() method that specifies | want a

/Iscrollable result set that is insensitive to changes on

/lthe database. The result set is also READ_ONLY so the |

/lcannot use it to make changes.

stmt=conn.createStatement(ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_READ_ONLY);

String sql = "SELECT ssn, name, salary FROM EMPLOYEES";
rs = stmt.executeQuery(sql);

System.out.printin("List result set for reference....");
while(rs.next()){
printRow(rs);
}
System.out.printin();

/IDemonstrate afterLast() and beforeFirst()
System.out.printin("Move to \"After-last—row\" " +
"position with afterLast()");

rs.afterLast();

System.out.printin("\"After-last-row\" = " +
rs.isAfterLast());

System.out.println();

System.out.printin("Move to \"Before—first—row\" " +
"position with beforeFirst()");

rs.beforeFirst();

System.out.printin("\"Before—first-row\" = "

100

Chapter 6: Working with Result Sets

+ rs.isBeforeFirst());
System.out.println();

/IDemonstrate first() and last() methods.
System.out.printin("Move to first row with first().");
System.out.printin("The row is:");

rs.first();

printRow(rs);

System.out.println();

System.out.printin("Move last row with last().");
System.out.printin("The row is:");

rs.last();

printRow(rs);

System.out.println();

/IDemonstrate previous() and next() methods.
System.out.printin("Move to previous row with previous().");
System.out.printin("The row is:");

rs.previous();

printRow(rs);

System.out.println();

System.out.printin("Moving to next row with next().");
System.out.printin("The row is:");

rs.next();

printRow(rs);

System.out.println();

/IDemonstrate absolute() and relative()
System.out.printin("Move to the 3rd row with absolute(3).");
System.out.printin("The row is:");

rs.absolute(3);

printRow(rs);

System.out.printin();

System.out.printin("Move back 2 rows with relative(-2).");
System.out.printin("The row is:");

rs.relative(-2);

printRow(rs);

System.out.printin();

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
/[Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
} /lend finally try
}/lend try

System.out.printin("Goodbye!");

101

Chapter 6: Working with Result Sets

}lend main

public static void printRow(ResultSet rs) throws SQLException{

/IField variables
int ssn;

String name;
double salary;

/IRetrieve by column name
ssn=rs.getint("ssn");

name = rs.getString("name");
salary = rs.getDouble("salary");

/[Display values

System.out.print("Row Number=" + rs.getRow());
System.out.print(", SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.printin(", Salary: $" + salary);

}lend printRow()

}lend ScrollableRs class

The output for Listing 6-2 is as follows:

Connecting to database...
List result set for reference....

Row Number=1, SSN: 111111111, Name: Todd, Salary: $5000.0
Row Number=2, SSN: 419876541, Name: Larry, Salary: $1500.0
Row Number=3, SSN: 312654987, Name: Lori, Salary: $2000.95
Row Number=4, SSN: 123456789, Name: Jimmy, Salary: $3080.0
Row Number=5, SSN: 987654321, Name: John, Salary: $4351.0

Move to "After—last-row" position with afterLast()
"After—last-row" = true

Move to "Before—first—-row" position with beforeFirst()
"Before—first-row" = true

Move to first row with first().
The row is:

Row Number=1, SSN: 111111111, Name: Todd, Salary: $5000.0

Move last row with last().
The row is:

Row Number=5, SSN: 987654321, Name: John, Salary: $4351.0

Move to previous row with previous().
The row is:

Row Number=4, SSN: 123456789, Name: Jimmy, Salary: $3080.0

Moving to next row with next().
The row is:

Row Number=5, SSN: 987654321, Name: John, Salary: $4351.0

Move to the 3rd row with absolute(3).
The row is:

Row Number=3, SSN: 312654987, Name: Lori, Salary: $2000.95

102

Chapter 6: Working with Result Sets

Move back 2 rows with relative(-2).
The row is:
Row Number=1, SSN: 111111111, Name: Todd, Salary: $5000.0

Goodbye!

Determining Row Counts in a Result Set

JDBC does not provide you with a direct way to retrieve the number of rows returned from the SQL query.
Nor does the ResultSet interface define a public property or method that provides this value. However, you
may find a need for this information. If so, you may find the following two techniques useful: using a counter
variable and using the ResultSet.getRow() method.

The counter variable technique uses a counter to determine the number of rows in a table. As you loop
through the result set you increment the counter. After the loop, the variable’s value will equal the number o
rows in the result set.

/IAssume a valid ResultSet object rs
int count;
while(rs.next()){

count++;

}

If you have a scrollable result set you may prefer the second technique. It does not use a loop, but uses the
ResultSet.last() method instead. Moving the full length of the result set populates the internal row count of tf
ResultSet object, as shown in the following code sample:

/[Assume a valid ResultSet object rs
rs.last();
int count = rs.getRow();

Using Updateable Result Sets

Updateable ResultSet objects give you the freedom to manipulate result set data directly. You do not need t
execute additional SQL statements to effect changes in the database. You can perform changes such as
updating column data and inserting and deleting rows using an updateable result set.

Updating columns in a result set does not immediately change the values on the database server. The
ResultSet.updateXXX() method changes the data in the result set, not the data in the database. The change
propagated to the database and to the result set once you commit them with the ResultSet.updateRow()
method.

Be forewarned that like scrollable result sets these types create additional overhead within the ResultSet
object. You should use updateable result sets only when necessary. That said, you will find that the benefits
being able to directly change data through the ResultSet object often outweigh the negatives.

However, sometimes a result set cannot be updated even if you specify the correct parameters when creatit

it. Some drivers will throw an SQLWarning indicating that the desired result set type could not be created.
Regardless, the driver will still create a result set without the requested functionality.

103

Chapter 6: Working with Result Sets

Xref Appendix C, “JDBC Error Handling,” provides more details on the SQLWarning exception.

For your result set to be updateable, the SQL query must meet certain criteria. In general, to create a
updateable ResultSet object the query should adhere to the following rules:

« If you intend to insert rows into a table, then the SQL query must return the primary key(s) of the
table. An error occurs if you try to insert a row without specifying values for the primary key(s).
However, some DBMS can auto—generate primary keys: such systems may allow this behavior. Be
sure to check your driver or DBMS documentation for details.

» The SQL statement cannot use aggregation or sorting clauses such as GROUP BY or ORDER BY.

* You cannot update result sets created from SQL query statements that request data from multiple
tables. Changes to these result sets would need to effect multiple tables, and this is not possible in
current versions of JDBC.

The remainder of this section focuses on how to create and use updateable ResultSet objects.

Creating updateable result sets

You create updateable ResultSet objects with the same Connection object methods you use to create scroll
result sets. The following are the Connection object methods you use to create updateable ResultSet object

createStatement(int resultSetType, int resultSetConcurrency);
prepareStatement(String sql, int resultSetType, int resultSetConcurrency);

prepareCall(String sql, int resultSetType, int resultSetConcurrency);

You use the resultSetType parameter to specify scrollable result sets. Notice that you can create a
forward-only result set that is also updateable. Also notice

that you must supply a parameter even if you want a default result set object. The last section covered the
resultSetType parameter and how to use it.

The second parameter, resultSetConcurrency, defines the concurrency level you want the result set to have
This parameter has the following two options:

« CONCUR_UPDATABLE, which creates an updateable result set.
« CONCUR_READ_ONLY, which creates a read—only result set. This is the default.

The following code snippet demonstrates how to initialize a Statement object to create a forward-only,
updateable ResultSet object:

/[Assume a valid connection object.

Statement stmt = conn.createStatement(
ResultSet. TYPE_FORWARD_ONLY,
ResultSet. CONCUR_UPDATABLE);

CautionLike scrollable result sets, updateable result sets may decrease performance. The object must
maintain additional information and make extra network calls, which can decrease responsiveness.
However, the advantages of programmatically updating the result set may outweigh the
disadvantages.

What Is Concurrency?

104

Chapter 6: Working with Result Sets

Concurrency is the ability to share and update information in the database with other users at the same time
You will face concurrency issues when you start allowing users to update database values. When a user wa
to update data, the database locks it to prevent others from updating the same information. Other users can
update the data until the lock is removed. The level of locking varies from database to database. Some syst
only lock rows while others lock entire tables.

Concurrency can cause big problems for large systems with many users. Because of this, two types of
concurrency levels exist: pessimistic and optimistic. Pessimistic concurrency assumes a lot of activity and
locks the data being updated, which prevents others from updating the same data at the same time. Optimis
concurrency assumes little update activity and does not lock the data; inconsistencies between two
simultaneous transactions are reconciled after any modifications are made. Generally, the last transaction tc
complete is the one that is applied.

Updating data with updateable result set

The ResultSet.updateXXX() methods enable you to change database information programmatically. You ca
avoid executing additional SQL statements by using updateable result sets.

Calling an updateXXX() method applies the changes to a column in the current row of the result set. The
method requires two parameters. The first indicates the ordinal number of the column you want to update.
(The method is overloaded so you may supply a String value for the column name as well.) The second
indicates the new value for the column.

JDBC 3.0 JDBC 3.0 has new methods that enable you to update BLOB, CLOB, ARRAY, and REF data
types.

To use the updateXXX() method successfully you must follow three steps. First, you must position the cursc
on the row you wish to update. Not doing so may cause you to update the wrong data. (This may sound
obvious, but it can easily happen.)

Next, call the appropriate updateXXX() method for the Java data type you are using. As with the setXXX()
methods, the XXX refers to the Java programming-language data type. For example, if you are working witt
String object types you use the updateString() method. The JDBC driver converts the data to the appropriats
JDBC type before sending it to the database.

XRef See Chapter 7, “Understanding JDBC Data Types,” for details on converting from Java data types to
JDBC data types and vice versa.

Finally you must call the updateRow() method to commit the changes to the database. Failure to do this will
result in your changes being lost. If you call the updateXXX() method and then move the cursor, you will los
your changes.

Note The updateXXX() methods do not make changes immediately. To commit all the changes you must
explicitly call the ResultSet.updateRow() method.

You can undo the changes made to an updateable ResultSet object by calling the

ResultSet.cancelRowUpdate() method. Using this method will undo all updateXXX() method calls. However
you must call it before the updateRow() method to ensure that the changes are undone.

105

Chapter 6: Working with Result Sets

Listing 6—3 provides an example of how to use an updateable result set. The code loops through a result se
employee information and applies a cost—of-living adjustment to the employees’ salaries. The changes are
applied as | loop through the data. Notice the call to ResultSet.updateRow() to commit the changes to the
database when | am finished with my updates. If | were to move to another record before calling this methoc
| would lose my changes.

Listing 6—3: UpdatableRs.java

package Chapter6;
import java.sql.*;
public class UpdateableRs {
public static void main(String[] args) {

/IDeclare Connection, Statement, and ResultSet variables
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

//Begin standard error handling
try{

/IRegister driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create a Statement object and execute SQL query
stmt = conn.createStatement();

/lcreateStatement() method that specifies | want a

/Iscrollable and updateable result set that is insensitive

/l to data changes on the database server.

stmt=conn.createStatement(ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_UPDATABLE);

String sql = "SELECT ssn, name, salary FROM EMPLOYEES";

rs = stmt.executeQuery(sql);

System.out.printin("List result set for reference....");
printRs(rs);

//Loop through result set and give a 5.3%

/lcost of living adjustment

/IMove to BFR postion so while—-loop works properly
rs.beforeFirst();

while(rs.next()){
double newSalary = rs.getDouble("salary")*1.053;
rs.updateDouble("salary",newSalary);
rs.updateRow();

}

System.out.printin("List result set showing new salaries");

106

Chapter 6: Working with Result Sets

printRs(rs);

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
//Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

Y/end main

public static void printRs(ResultSet rs) throws SQLException{
/IField variables
int ssn;
String name;
double salary;

/[Ensure we start with first row
rs.beforeFirst();

while(rs.next()){
/IRetrieve by column name
ssn=rs.getint("ssn");
name = rs.getString("name");
salary = rs.getDouble("salary");

/[Display values
System.out.print("Row Number=" + rs.getRow());
System.out.print(", SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.printin(", Salary: $" + salary);

}

System.out.printin();

Ylend printRs()

}lend UpdateableRs class

The output from Listing 6—-3 is as follows:

Connecting to database...

List result set for reference....

Row Number=1, SSN: 111111111, Name: Todd, Salary: $5544.05
Row Number=2, SSN: 419876541, Name: Larry, Salary: $1663.21
Row Number=3, SSN: 312654987, Name: Lori, Salary: $2218.67
Row Number=4, SSN: 123456789, Name: Jimmy, Salary: $3415.13
Row Number=5, SSN: 987654321, Name: John, Salary: $4824.42

107

Chapter 6: Working with Result Sets

List result set showing new salaries

Row Number=1, SSN: 111111111, Name: Todd, Salary: $5837.88
Row Number=2, SSN: 419876541, Name: Larry, Salary: $1751.36
Row Number=3, SSN: 312654987, Name: Lori, Salary: $2336.26
Row Number=4, SSN: 123456789, Name: Jimmy, Salary: $3596.13
Row Number=5, SSN: 987654321, Name: John, Salary: $5080.11

Goodbye!

Inserting and deleting data with updateable result sets

You can also use an updateable ResultSet object to insert and delete rows programmatically using the mett
insertRow() and deleteRow().

When inserting a row into the result set you must place the cursor in a staging area known as the insert row
This area acts as a buffer until you commit the data to the database with the insertRow() method. To move t
cursor the insert row requires using the ResultSet.moveTolnsertRow() method call.

Once you position the cursor in the insert row you use the updateXXX() method to update the column data.
this case, however, you are not updating the information but creating it. Using the getXXX() methods after
calling the updateXXX() method will reveal the change because the result set data has changed in the inser
row. However, you must call the insertRow() method to commit the changes to the database. The code snip
below demonstrates how to insert a new row into a database using an updateable ResultSet object:

/[Assume a valid Connection object conn
stmt = conn.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

//build SQL string
String SQL="SELECT ssn, name, salary FROM employees";
ResultSet rs = stmt.executeQuery(SQL);

//Move to insert row and add column data with updateXXX()
rs.moveTolnsertRow();

rs.updatelnt("SSN",5697529854);
rs.updateString("Name","Rebecca");
rs.updateDouble("Salary",45555.77);

/ICommit row
rs.insertRow();

Deleting a row from a result set only requires a call to the deleteRow() method. Unlike the other
data—manipulation methods I've mentioned thus far, this method affects both the data in the result set and tl
data in the database simultaneously. Where the cursor moves to after the deleteRow() method depends upc
the driver implementation. Some drivers move the cursor forward while others move it backward. You may
need to experiment with this method to determine your driver's behavior.

Result Set Hints

Scrollable and updateable result sets are somewhat slower than the standard result set. However, you can
supply hints to your ResultSet object to possibly increase speed. Driver vendors do not have to implement
these hints. In fact, you may find that the driver is already tuned and these hints hinder, rather than help,
performance.

108

Chapter 6: Working with Result Sets

There are two categories of hints. The first deals with fetch size and the other with fetch direction. Here is a
summary of each:

« Fetch size — This hint sets the number of rows returned from a query. You may want to specify
values for this hint if you have network bandwidth issues, such as in a wireless application, or your
guery retrieves a large number of results and you only need, or are able to work with, a few rows at ¢
time. You set this hint with the Statement.setFetchSize() or ResultSet.setFetchSize() method.

* Fetch direction — You can set the default direction for cursor travel within the result set with this
hint. You can set the fetch direction to FETCH_FORWARD, FETCH_REVERSE, or
FETCH_UNKNOWN. The first is the default setting and moves the cursor forward. The second
informs the result set cursor to travel backwards through its data. The third indicates that the directio
is unknown. You set this hint with the Statement.setFetchDirection() or ResultSet.setFetchDirection(
method.

Summary

In this chapter | covered using ResultSet objects. | explained how the result set cursor moves through the di
and how to retrieve values using the ResultSet. getXXX() methods. | also covered the three different types c
result sets — standard, scrollable, and updateable. | provided examples for each type as well.

The following are some of the more important concepts introduced in this chapter:

» The default result set type is forward—only and non—-updateable.

« Scrollable result sets enable you to move forward, backward, and to a specific row in the result set.

« Updateable result sets enable you to update column values for individual rows in a result set, and to
insert and delete rows.

* Trying to access data in the “before—first—-row” or “after—last-row” areas of a result set throws an
SQLEXxception.

» Use the appropriate ResultSet.getXXX() and ResultSet.updateXXX() method for the underlying Java
data type or an SQLEXxception occurs.

109

Chapter 7: Understanding JDBC Data Types
In This Chapter

» Mapping Java data types to JDBC data types

» Mapping JDBC data types to Java data types

» Using the getXXX(), setXXX(), and updateXXX() methods
» Using SQL3 data types such as CLOB and BLOB

» Mapping SQL3 data types to Java classes

In the last three chapters, | discussed how to interact with databases using the Connection, Statement, and
ResultSet objects. In this chapter, I'll explain the difference between Java data types and SQL data types, a
provide examples illustrating how to work with both.

I'll begin by discussing how Java data types map to JDBC data types. You will need this information when
binding values to parameters using the PreparedStatement or CallableStatement object’s setXXX() or
updateXXX() methods. Next I'll cover how JDBC data types map to Java data types when retrieving
information from ResultSet objects using the getXXX() method. Finally, I'll cover how to use User—Defined
Types (UDTs) and present an example containing a custom Java class that maps to a UDT in the database

Java, Databases, and Data Types

With its ability to create user—defined classes that reference other classes, Java has rich data type support.
Databases, on the other hand, support only a limited number of data types. For instance, SQL2 compliant
databases, only support basic character, binary, date, and numeric data types. You cannot define your own
data types in SQL2 compliant databases as you can in Java.

The SQL3 standard introduces support for custom data types and increases the size of the data you can stc
in a column. When using SQL3 compliant databases you can also create your own UDTSs. In addition, these
databases support large binary or character data (more than 1GB) in a database. Database developers now
have significantly more flexibility when choosing data types for their applications.

A Brief History of SQL

SQL, or Structured Query Language, is the standard database—access language. It defines how to manipule
and build database tables as well as how to interact with database data. The first standard was produced in
1986 and provided basic language constructs for defining and manipulating tables with data. In 1989, the
language was extended to support data integrity with referential and general constraints. SQL2, or SQL92,
was adopted in 1992 and provided new data—definition and manipulation enhancements as well as new dat:
types. Improved schema and database administration were also added. Now the new standard, SQL3, exte
SQL to support complex objects defined in business modeling and multimedia applications. New extensions
include object identifiers, abstract data types and inheritance mechanisms.

Not all databases support SQL3 standards. Implementing the storage of these new data types is challenging
However, as technology progresses, you will soon see more support for SQL3.

110

Chapter 7: Understanding JDBC Data Types

Nonetheless, a large disconnect between Java and database data types still exists. The data types among ¢
environment do not coincide. To get your application data into a database you must convert the Java data
types to SQL data types. The reverse is true when you retrieve data. In this case, you must convert from SC
data types to Java data types.

JDBC makes these conversions somewhat easier. You convert the data from one type to the other with the
getXXX(), setXXX(), and updateXXX() methods. The JDBC driver, which is database—specific, knows how t
perform these conversions.

Nonetheless, working with two different data types is challenging. With characters you have to deal with fixe
and variable-length formats, while with numbers you run the risk of losing precision or scale. Although the
JDBC solution is not perfect, it certainly makes interacting with database data types less cumbersome.

Java—-to—JDBC Data—-Type Mappings

As | mentioned earlier, Java classes are custom data types you define. In addition, the Java language is
composed of class and interface definitions. Most of your interaction with Java will take place through object
instantiated from these classes. These classes and interfaces, or data types, form a library known as the Ja
API.

However, Java has other data types called primitives that do not need defining. Primitives hold data that Ja\
understands directly. These data type definitions remain constant from one Java application to another and
from one JVM to another. This feature aids in making Java portable across multiple platforms.

You cannot instantiate primitives into objects. However, Java does define classes, known as wrappers, that
treat primitives as objects. Table 7-1 lists the Java primitive data types, their range of values, and wrapper
classes. Most often in your JDBC applications you will be trying to insert Java primitives into a database.
Understanding these data types and their corresponding wrapper classes will prove useful.

Table 7-1: Java Primitive Data Types and Wrapper Classes

Primitive Size/Format Range Wrapper Class

byte 8-hit signed -128 to 127 java.lang.Byte
integer

short 16-bit signed -2°10 2°-1 java.lang.Short
integer

int 32-hit signed -2 t0 21 java.lang.Integer
integer

long 64-bit signed 210 %1 java.lang.Long
integer

float IEEE 754 standard java.lang.Float

111

Chapter 7: Understanding JDBC Data Types

32-hit

single—precision

floating point
double 64-bit IEEE 754 standard java.lang.Double

double—precision

floating point
char Single—charactern/a java.lang.Character

16-bit Unicode

2.1 character
boolean 1 bit true or false java.lang.Boolean
When you want to place data into the database you must convert it to the DBMS’s correct SQL data type. Y
convert the data types with the setXXX() method used by Statement, PreparedStatement, and
CallableStatement objects as well as the ResultSet.updateXXX() method. The XXX represents the Java dat
type.

Behind the scenes the JDBC driver converts the Java data type to the appropriate JDBC type before sendin
to the database. It uses a default mapping for most data types. For example, a Java int is converted to an S
INTEGER. Default mappings were created to provide consistency between drivers. Table 7-2 summarizes t
default JDBC data type that the Java data type is converted to when you call the setXXX() method of the
PreparedStatement or CallableStatement object or the ResultSet.update XXX() method.

Table 7-2: JDBC 2.x setXXX() and updateXXX() Data Type Mappings

Method SQL Data Type
setString VARCHAR, CHAR,
updateString LONGVARCHAR'
setBoolean BIT
updateBoolean

setBigDecimal NUMERIC
updateBigDecimal

setByte TINYINT
updateByte

setShort SMALLINT
updateShort

setint INTEGER
updatelnt

setLong BIGINT
updateLong

setFloat REAL
updateFloat

setDouble DOUBLE
updateDouble

112

Chapter 7: Understanding JDBC Data Types

2

setBytes VARBINARY, BINARY, LONGVARBINARY
updateBytes

setDate DATE
updateDate

setTime TIME
updateTime

setTimestamp TIMESTAMP
updateTimestamp

setClob CLOB’
updateClob

setBlob BLOB®
SEtARRAY ARRAY®
SetRef REF

! Driver will use VARCHAR unless the string’s length exceeds its size.
? Driver will use VARBINARY unless the byte[] length exceeds its size.
3SQL3 advanced data type.

JDBC 3.0 JDBC 3.0 has enhanced support for BLOB, CLOB, ARRAY, and REF data types. The ResultSet
object now has updateBLOB(), updateCLOB(), updateArray(), and updateRef() methods that
enable you to directly manipulate the respective data on the server.

The setXXX() and updateXXX() methods enable you to convert specific Java types to specific JDBC data

types. The methods, setObject() and updateObject(), enable you to map almost any Java type to a JDBC de

type. You cannot coerce data types into types that do not make sense, however. For example, it makes little
sense to try to convert an Integer to a JDBC CLOB. The two are distinctly different. In addition, the methods
only work with object types — not with primitives.

For example, suppose you have a data—entry form in which a human-resources manager updates salary
information. On the form the user enters the employee’s SSN and new salary. The data entered into the forr
is accepted as a String, but the database requires DOUBLE values. The user can use a Java primitive wrap
and the setObject() method to supply the data to the database, as shown in the following code snippet:

/IAssume valid Connection object conn.
String SQL="UPDATE employees SET salary=? WHERE ssn = ?";
PreparedStatement pstmt = conn.prepareStatement(SQL);

//String value strSalary holds the salary submitted on a form
Double salary = new Double(strSalary);
pstmt.setObject(1,strSalary);

//String value strSsn holds the SSN submitted on a form
Integer Ssn = new Integer(strSsn);
pstmt.setObject(2,strSsn);

Handling Nulls

An SQL NULL represents unknown or undefined data. For example, if an Employee database holds
information about an employee’s dependents in a table using an SQL INTEGER column, the value could be
greater—than or equal to 0, or be empty (NULL). In the case of a NULL, you do not know if the value means
that the person has no children or that the value is not known. This is okay for a database, but it poses a

113

Chapter 7: Understanding JDBC Data Types

problem for Java, especially for the numeric primitive data types. The Java int type, for example, can't
represent a NULL. When you use the ResultSet.getint() method, JDBC will translate the NULL to 0. Of
course this interpretation may be erroneous. Objects, however, can represent a NULL, which poses less of
problem to Java provided you handle NullPointerExecption errors as necessary.

You can call the ResultSet.wasNull() method to determine if the last column retrieved contained a NULL
value. The method returns true if the value was an SQL NULL, and enables you to make the correct
determination.

This is yet another example of why you need to understand your underlying data source. You should be
familiar with the data and data types stored in it. It is practically impossible to call the ResultSet.wasNull()
method for every getXXX() method that returns a Java humeric type.

JDBC-to—-Java Data—-Type Mappings

Data returned from SQL queries are formatted as JDBC data types. You must convert them to Java types
before assigning them to variables. To do so, you use the ResultSet.getXXX() method, which returns a valu
type XXX.

Two categories of SQL data types exist: the standard data types (that is, SQL92) and the advanced data tyy
(SQL3). The JDBC API defines support for both. The following sections provide information about the data
types and how to access them using Java.

Standard SQL data types

Unlike with the setXXX() and updateXXX() methods, you can specify which Java type you want to cast the
JDBC type to with the getXXX() method. The following code snippet demonstrates converting an SQL
INTEGER to a Java double:

/ICreate a ResultSet that retrieve the SQL INTEGER ssn
String SQL ="SELECT Ssn FROM Employees WHERE Name="ToddT";
ResultSet rs = stmt.executeQuery(SQL);

//Retrieve as a double
double ssn = rs.getDouble(1);

Most JDBC-SQL data types can map to numerous Java data types. However, JDBC provides
recommendations with regard to JDBC-to—Java data type conversions. Tables 7-3, 7-4, 7-5, and 7-6 list t
JDBC types and shows the ResultSet.getXXX() method to use for converting each to the corresponding Jav
data type. These recommendations help ensure the greatest compatibility when working with unknown
database systems. However, if you understand your target database and the data stored within it, feel free t
cast the data to another type.

Table 7-3: JDBC-to—Java Mappings for Character Data Types

114

Chapter 7: Understanding JDBC Data Types

SQLData Type Recommended Comments
getXXX() Method
(JDBC 2.1 Specification)

CHAR getString Holds fixed-length character data. CHAR(5)
represents a five—character string: If your string is
three characters long its size is still five.

VARCHAR getString Holds variable-length character data. VARCHAR(5)
will house a character string of up to five characters.
Unlike with CHAR, if your string is three characters
long, its size is three.

LONGCHAR getAsciiStream Used for large variable-length strings. DBMS
vendors implement this data type in many different
ways making getting data in and out of the database
with JDBC difficult. A CLOB may be a better choice.

Table 7-4: JDBC-to—Java Mappings for Binary Data Types

SQL Data Type Recommended Comments
getXXX() Method
(JDBC 2.1 Specification)

BINARY getBytes Represents fixed—-length binary data.

VARBINARY getBytes Represents variable—length binary data.

LONGVARBINARY getBinaryStream Represents multiple—-megabyte, variable—length
binary data.

Table 7-5: JDBC-to—-Java Mappings for Numeric Data Types

SQL Data Type Recommended Comments
getXXX() Method
(JDBC 2.1 Specification)

BIT getBoolean One bit of data.

TINYINT getByte 8-bit integer with values ranging between 0-255. Use
Java short for larger TINYINT values.

SMALLINT getShort 16-bit signed integer. Widely adopted.

INTEGER getint 32-Dit signed integer. Precision may vary.

BIGINT getLong 64-bit integer. Not widely implemented.

REAL getFloat Represents a single—precision floating—point number.
Moderate adoption among database vendors.

DOUBLE getDouble Represents a double—precision floating point number.
Wide adoption among database vendors.

FLOAT getDouble Like JDBC DOUBLE, represents a double—precision

floating—point number. Do not confuse with a Java
float, which is only single—precision. Widely adopted.

DECIMAL getBigDecimal Represents fixed—precision decimal values.
NUMERIC getBigDecimal Represents fixed—precision decimal values.

115

Chapter 7: Understanding JDBC Data Types

Table 7-6: JDBC-to—Java Mappings for Date and Time Data Types

SQL Data Type Recommended Comments
getXXX() Method
(JDBC 2.1 Specification)

DATE getDate Represents a day, month, and year. Not widely
adopted.

TIME getTime Represents an hour, minutes, and seconds. Not widely
adopted.

TIMESTAMP getTimestamp Represents a day, month, year, hour, minutes,

seconds, and nanoseconds. Not widely adopted.
The following sections provide additional details about the information presented in Tables 7-3 through 7-6

Character

You will find working with character data relatively straightforward. However, two situations may cause
unexpected results. First, if you use the ResultSet.getString() method to retrieve a CHAR(n) data type, the
driver will likely place padding inside into the String because the underlying data type is a fixed—width
CHAR. This is normal and you can use the String.trim() method to remove the padding.

Second, avoid using the ResultSet.getString() method to retrieve large LONGVARCHAR data. The resulting
String object may be very large and exhaust memory resources on the client’s computer. The combination ¢
large data size and network latency may also result in slow downloads that may make using the data on the
client impractical.

Always use the ResultSet.getAsciiStream() method when retrieving very large LONGVARCHAR data. The
method returns an InputStream object that enables you to control data flow to your client.

In addition, you may find the SQL CLOB data type easier to work with because you have the choice whethe
to materialize the data on the client.

JDBC 3.0 JDBC 3.0 introduces two new data types, DATALINK and BOOLEAN. The
DATALINK type will enable you to reference an SQL DATALINK type. This type
provides access to data source outside the database. The JDBC BOOLEAN type will ma
to an SQL BOOLEAN. A Java boolean is equivalent to the JDBC BOOLEAN, which
logically represents a bit.

Numeric

You can divide the numeric category into two parts, integers and floating—point numbers. Integers present fe
problems. Just use the appropriate getXXX() method for the length of the data type you are using. For
example, do not try to stuff a 32-bit integer into a 16—bit short or you will lose precision.

However, floating—point numbers may introduce some confusion. A JDBC FLOAT and a Java float do not
share the same decimal point precision. A JDBC FLOAT supports a 15—digit, or double—precision. The Jave
float only supports a single—precision, or up 7 digits. To avoidconfusion, Sun recommends you use JDBC
DOUBLE when working with floating point numbers.

116

Chapter 7: Understanding JDBC Data Types

Binary

The BINARY data type is similar to CHARACTER data in that you need to worry only about the SQL
LONGVARBINARY data type. You can use the ResultSet.getBytes() method to retrieve the data into a byte|
but you risk creating a very large array.

A better idea is to use the ResultSet.getBinaryStream() method, which returns an InputStream object with
which you may control the data flow to your client.

Preferably, you will implement an SQL BLOB data type on the server. Accessing it with a JDBC BLOB does
not materialize the data on the client, thereby eliminating memory problems associated with creating large
arrays.

Date

It's ironic that one of the most common elements to humans, date and time, is also the most inconsistently
implemented data type in programming languages, operating systems, and databases. Despite SQL standa
for DATE, TIME, and TIMESTAMP data types, all database vendors implement them differently.

So it should not astound you that the java.util.Date class does not match any SQL date and time—related da
types. To compensate for this, JDBC has a set of classes map directly to these data types. All of the JDBC
date and time—-related data types extend the java.util.Date class. Figure 7-1 shows the UML class diagram 1
these relationships. In addition, all dates are computed as the total milliseconds from the Java epoch, Janug
1, 1970.

javautil.Date

fastTime: long

Javasql.Timestamp

nanos: int

serialVersionliD: long = 2745179027874754 .

<<treate»» + Timestampl)

Ay
«+205tring): String
+getYear(): int

+gethMonth(): int

+valueOf): Timestamp
+t0String); String
+getNanos(): int

+setNancs(): int

«getDayl):int

sequalsl): boclean

+setMinutes(): vold
+setSecondsl): void

+equalsl): boclean
+before(); boolean
+after]): beolean

Figure 7-1: UML class diagram for JDBC Date and Time classes

The java.sgl.Date class maps to the SQL DATE type, and the java.sqgl.Time and java.sql.Timestamp classes
map to the SQL TIME and SQL TIMESTAMP data types, respectively. Listing 7-1 shows how the Date and
Time classes format standard Java date and time values to match the SQL data type requirements.

Listing 7-1: SglDateTime.java

package Chapter7;

117

Chapter 7: Understanding JDBC Data Types

import java.sgl.Date;
import java.sgl.Time;
import java.sql.Timestamp;
import java.util.*;

public class SqglDateTime {

public static void main(String[] args) {
/IGet standard date and time
java.util.Date javaDate = new java.util.Date();
long javaTime = javaDate.getTime();
System.out.printin("The Java Date is:
" + javaDate.toString());

/IGet and display SQL DATE
java.sgl.Date sglDate = new java.sql.Date(javaTime);
System.out.printin("The SQL DATE is:

" + sqglDate.toString());

/IGet and display SQL TIME
java.sgl.Time sqglTime = new java.sgl.Time(javaTime);
System.out.printin("The SQL TIME is:

" + sqlTime.toString());

/IGet and display SQL TIMESTAMP
java.sgl.Timestamp sqlTimestamp =
new java.sgl.Timestamp(javaTime);
System.out.printin("The SQL TIMESTAMP is:
" + sqlTimestamp.toString());
}lend main

}lend SqlDateTime

The output from Listing 7-1 is as follows:

The Java Date is: Sun Mar 11 22:38:55 EST 2001
The SQL DATE is: 2001-03-11

The SQL TIME is: 22:38:55

The SQL TIMESTAMP is: 2001-03-11 22:38:55.163

Advanced SQL data types

As computer technology progressed through the 1990s, a need for richer, more advanced data type suppor

databases arose for two reasons.

First, developers were becoming skilled at modeling complex engineering and business processes using

object-oriented programming techniques. However, they had trouble storing data from these object models
relational databases. Only the attributes of the objects could be stored in the database. The developers nee
databases to support the user-defined data types so they could mimic the classes in their applications in the

database.

Second, multimedia developers began to need databases when their data, sounds, graphics, and videos ste
appearing on users’ computers. By now, thanks to the Internet, most people are accustomed to having rich
content provided to them. Suppliers of this content needed somewhere to store these data. File systems doi
provide the tools necessary for dynamic distribution of content across the Internet. Databases work better

118

Chapter 7: Understanding JDBC Data Types

because they provide advanced searching capabilities and additional data integrity.

SQL3 data types were created to handle the demands of these two groups. The standard defines support fc
large character and binary data storage as well as for custom UDTs.

JDBC 2.0 introduced support for SQL3 data types. Now it is possible to instantiate Java classes that represe
the SQL3 data types then work with the data directly. The java.sqgl package provides the support for the SQI
data types BLOB, CLOB, ARRAY, STRUCT, and REF.

The SQL3 data types fall into two categories: predefined and user—defined. The following sections provide ¢
overview of each category along with examples illustrating their use.

Predefined SQL3 data types

Several SQL3 data types are considered predefined. That is, the SQL3 standard defines what the data type
represent, much as the Java language predefines primitive data types. The predefined data types include
BLOB, CLOB, REF, and ARRAY. This section provides details on these data types.

One interesting feature of the predefined types is that you do not work with the data at the client. You acces
original data on the server through a logical pointer on the client, called a LOCATOR. As a result, clients do
not have to materialize the data on their workstations when using the predefined data types.

Given that some SQL3 data, such as a BLOB, may be quite large, this feature saves you significant downlo:
time in addition to minimizing an application’s memory footprint. However, you may use the
ResultSet.getXXX() method to materialize the data on the client when necessary. In all cases, the data rem:
on the DBMS unless you explicitly materialize it.

Having the ability to materialize the data when you need to gives you a lot of freedom when you're using
large SQL3 data types. For example, if a BLOB column stores a file in the database you can look at the hea
section through a JDBC BLOB to determine if you want the whole file. If you do, you can open an
InputStream and place the data into a byte[].

The remainder of this section provides more details on the specific predefined SQL data types.

ARRAY This data type makes it possible to use arrays as data in a column, which enables you to store a
group of data within an entity’s attribute. For example, you can collect all the grades of type INTEGER for
each student in an SQL3 ARRAY. Figure 7-2 illustrates a Student entity table using anSQL3 ARRAY to
store grades of SQL type INTEGER.

Integer Array

Student Table J—

Studentid First_Name Last_Name Grades
1 mmy Smnith

Mary Jones

Angela Kintaid

Aaron Stevens

Dorna Brown

Terry Hamby

n Ve throok

Figure 7-2: Example of SQL ARRAY data type

119

Chapter 7: Understanding JDBC Data Types

You can interact with an ARRAY in two different ways. The first is to access the SQL3 ARRAY data on the
server by instantiating a java.sql.Array object. This method uses an SQL LOCATOR on the client as a point
to the data on the server. You may want to use this technique if the dataset is large or if you have no need t
materialize the data on the client. Or, if your application is constrained by network bandwidth, as in a wireles
application, materializing the data may not be practical.

The second technique is to materialize the data on the client. This is useful if you need to serialize the data
local storage. Be aware that materializing the data means that you retrieve all the data in the SQL ARRAY f«
the client. Retrieving a dataset that is too large may exhaust the client’'s memory.

In either instance, you must begin by instantiating an Array object. To do so you use the ResultSet.getArray
method. The method will create an Array object with a logical pointer to the data on the server, as shown in
the following code snippet:

/[Assume a valid Statement object stmt
String SQL = "SELECT Scores FROM Bowlers WHERE Bowler="Benji’";
ResultSet rs = stmt.executeQuery(SQL);

/Imove to the first record
rs.next();

/lInstantiate the Array object
Array bowlingScores = rs.getArray("Scores");

Once you have instantiated an Array object, you have eight methods at your disposal for materializing the d
on the client — four variations that create a Java array and four that instantiate a JDBC ResultSet object. Tt
variations enable you to specify how much of the data you want. For example, you may only need array
elements 10 through 100.

The first Array.getArray() method returns an Object type that holds an array of primitives or an array of
objects such as String types or UDTs. As you retrieve each element you must cast it into the underlying Jav
data type that you want to use. Continuing the bowling example, the following snippet demonstrates how to
create an array from anSQL ARRAY:

/ICreate an array to hold the SQL INTEGER values
BigDecimal [] scores = (BigDecimal[])bowlingScores.getArray();

//Loop through the array and print the elements.
for(int i = O;i<scores.length;i++)
System.out.printin(scores]i].toString());

To create a result set, use the Array.getResultSet() method. The ResultSet object you instantiate is
forward-only; you cannot create scrollable or updateable result sets with this method. The following is a coc
shippet that shows you how to use the Array.getResultSet() method to create and use a ResultSet object
containing Beniji's bowling scores:

ResultSet scoreRs = bowlingScores.getResultSet();
while (arrayRs.next())
System.out.printin(arrayRs.getint(2));

XRef Chapter 6, “Working with Result Sets” provides more information on the ResultSet
object.

120

Chapter 7: Understanding JDBC Data Types

You may have noticed that with both methods, getArray() and getResultSet(), you must know about the
underlying data type to properly access the data. To help you with this, the getBaseType() and
getBaseTypeName() methods of the JDBC Array object provide you with the underlying JDBC data type for
the array elements.

With this information you can build logic into your code to call the correct methods, based on data type, to
retrieve the data.

Tip Do not confuse the ResultSet.getArray() method with the java. sql.Array.getArray() method. The first
returns a java.sql.Array object, which is a logical pointer to anSQL3 ARRAY data type on the server. It
does not contain any data. The former method materializes the data into an array. You must cast the arr
to the proper data type before using.

CLOB and BLOB data types The JDBC CLOB and BLOB interfaces map to the SQL3 CLOB and BLOB
data types, respectively. As with the other predefined types, an SQL LOCATOR is used to point to the data
they are not materialized on the client until you explicitly materialize them.

Since the data may be rather large, both interfaces implement methods that return an InputStream for efficie
transfer of data. The CLOB interface provides the getAsciiStream() method, and the BLOB interface the
getBinaryStream() method.

Listing 7-2 illustrates how to read and write CLOB and BLOB data. | begin by creating the Connection and
Statement objects so | can interact with the database; then | call the createBlobClobTables() method to crez
the table that holds the BLOB and CLOB data. Next | use an InputStream to read a file from disk and popule
the BLOB and CLOB columns. In this example | am using text to represent the binary data so you can verify
the output. Once | write the data to the database, | retrieve the same data and materialize it by using an
InputStream to populate byte[] and char[] for the BLOB and CLOB data, respectively. Finally, | print the
information to the screen, though | could just as easily serialize it to disk.

Listing 7-2: BlobClobEx.java

package Chapter7;

import java.sql.*;
import java.io.*;
import java.util.*;

public class BlobClobEx{
public static void main(String[] args) {
/ICreate Connection, Statement, PreparedStatement,
/I and ResultSet objects

Connection conn = null;
Statement stmt = null;

PreparedStatement pstmt = null;
ResultSet rs = null;

try{
/IRegister driver

String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

121

Chapter 7: Understanding JDBC Data Types

//Open database connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:ORCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create Statement object to build BLOB and CLOB tables
stmt = conn.createStatement();

//Build the tables
createBlobClobTables(stmt);

/[Create a prepared statement to supply data.
String SQL = "INSERT INTO BlobClob VALUES(40,?,?)";
pstmt= conn.prepareStatement(SQL);

/lLoad BLOB column

File file = new File("blob.txt");

FileInputStream fis = new FilelnputStream(file);
pstmt.setBinaryStream(1,fis, (int)file.length());

/lLoad CLOB column

file = new File("clob.txt");

fis = new FileInputStream(file);
pstmt.setAsciiStream(2,fis, (int)file.length());
fis.close();

/[Execute statement
pstmt.execute();

/IRetrieve the data

SQL ="SELECT * FROM BlobClob WHERE id = 40",
rs = stmt.executeQuery(SQL);

/IMove to the first row

rs.next();

/lInstantiate blobs and clobs
java.sgl.Blob blob = rs.getBlob(2);
java.sgl.Clob clob = rs.getClob(3);

/IMaterialize the BLOB data and print it out.

byte blobVal [] = new byte[(int)blob.length()];

InputStream blobls = blob.getBinaryStream();
blobls.read(blobVal);

ByteArrayOutputStream bos = new ByteArrayOutputStream();
bos.write(blobVal);

System.out.printin(bos.toString());

blobls.close();

/IMaterialize the CLOB data and print it out.
char clobVal[] = new char[(int)clob.length()];
Reader r = clob.getCharacterStream();
r.read(clobVal);

StringWriter sw = new StringWriter();
sw.write(clobVal);
System.out.printin(sw.toString());

r.close();

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

122

Chapter 7: Understanding JDBC Data Types

} catch(Exception e) {
/IHandle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

Y/end main

public static void createBlobClobTables(Statement stmt)
throws SQLException{
/[Create SQL Statments
String SqlI="CREATE TABLE BlobClob(ld NUMBER(3),
b BLOB, c CLOB)";

try{
stmt.executeUpdate("DROP TABLE BlobClob");

}catch(SQLEXxception se){
/[Handle DROP table error. | could just give status message.
if(se.getErrorCode()==942)
System.out.printin("Error dropping BlobClob table:
" + se.getMessage());

}

//Build the Blob_EXx table

if(stmt.executeUpdate(Sql)==0)
System.out.printin("BlobClob table created...");

}I end of createTables method

}lend BlobClobEx

The output from Listing 7-2 is as follows:

Connecting to database...

BlobClob table created...

BLOB Data:

From Poor Richard’s Almanac:
Necessity never made a good bargain.

CLOB Data:
From Poor Richard’s Almanac:
The worst wheel of the cart makes the most noise.

REF An SQL REF is a logical "pointer" to a UDT, usually to a STRUCT (see next section), in a database
table. Like a LOCATOR the SQL REF provides indirect access to the object. However, the SQL REF type
resides on the server, unlike the LOCATOR, which resides on the client.

JDBC REF data types enable you to interact with the SQL REF type on the database. Like CLOB and BLOE
data, the underlying data on the server are not materialized on the client. If necessary you can de-reference

123

Chapter 7: Understanding JDBC Data Types

the SQL REF object and materialize it within your application using the ResultSet.getRef() method.

Note You need to fully understand how SQL REF data types work within your DBMS before implementing
them. Complete implementation details, however, are beyond the scope of this book.

JAVA OBJECT The JDBC JAVA_ OBJECT type enables you to store Java classes directly in a database.
Sun has a vision for Java — relational database systems that can store Java objects natively. Database ver
are not required to provide support for this data type.

The Java database is part of a new breed of database called Object Database Management Systems (ODB
These databases are intended to work directly with object—oriented programming languages by combining t
elements of object orientation and object-oriented programming within a database system.

The advantage of object-relational databases is that they conceptually eliminate the need to translate betwe
Java data types and SQL data types. You simply store and retrieve your objects from the ODBMS as you ne
them.

SQL3 user—defined types

SQL3 UDTs enable database developers to create their own type definitions within the database. The types
are defined with SQL statements and have nothing to do with Java. However, JDBC provides data types thz
enable you to access database UDTs from your Java application.

Unlike the predefined data types, these types are materialized on the client as your application accesses the
You work with these values directly and do not use anSQL LOCATOR that references the values in the
databases. Be aware that some UDTs may store large amounts of data. This section provides an overview
the different UDTs and how to use them in your programs.

DISTINCT A DISTINCT data type enables you to assign a custom name to a new data type based on
another data type. This is analogous to extending a Java class in that the new class, or type, is based on an
existing type.

These data types enable you to give data type a name that makes sense to you and other developers. It als
ensures that the data type will always have certain attributes, such as character length for character data or
precision for numeric data types.

Here are two examples of the SQL syntax used to create DISTINCT data types:

CREATE TYPE Salary NUMERIC(9,2)
CREATE TYPE EmployeeName CHAR(20)

In the first example, a data type Salary is defined as a NUMERIC type with a precision (total number of
digits) of nine and a scale of (number to the right of the decimal point) of two.

In the second example, a data type called EmployeeName is defined as a CHAR type that is always 20
characters long. If you store the name Paige in the type EmployeeName, letters occupy five of the 20
characters and the remaining characters are empty.

As with the other data types, you can use the setXXX() and getXXX() methods from the ResultSet object to

retrieve the data stored in these variables. Refer to Table 7-3, which provides the default data type mapping
to use.

124

Chapter 7: Understanding JDBC Data Types

Tip String values retrieved from CHAR(n) data types will have padding for non—character data.
You can use the String.trim() method to remove the padded space after calling the
ResultSet.getString() to load the data into the String variable.

STRUCT A structure is a custom data type that has one or more members, called attributes, each of which
may have different data types. These data types are used to group associated data together. A Java class
without methods is analogous to a STRUCT data type.

Within databases that support SQL3 types you can define STRUCT data types, that have attributes of any
SQL data type including other STRUCT types. Once you define the data type, use it just as you would any
other. Figure 7-3 illustrates a table that uses the STRUCT data type defined in the following SQL code
shippet:

CREATE TYPE EMP_DATA(
SSN Number(9),

FirstName VARCHAR(20),
LastName VARCHAR(20),
Salary NUMBER(9,2)

)

STRUCT data types provide a very powerful tool for the database developer, because they enable you to
model basic object systems with custom data types. As a Java developer you are probably most concerned
with accessing the data stored in SQL STRUCT data types, not creating the data model within the database
However, you should fully understand the model before implementing your solution.

Listing 7-3 shows you how to interact with STRUCT data types. The sample application accesses the
EMP_DATA structure defined in the previous SQL code shippet and prints the data contained within it.

The following two lines in Listing 7—3 warrant special attention:

emp_struct = (Struct) rs.getObject("Emp_Info");
emp_attributes = emp_struct.getAttributes();

EMP_DATA

SN mmm

FustName Todd

niame Thom s

/." Salary 100050 EMP DATA
/ - SN [JJJJJJJJ
e FirstName I <
Emp_Records g o Lasthame [Yesert
Empld p_lrfo ~ EMP_DATA Sy | 150007
- —l
4 333333333
A FestName Sants
] -
- O
o =y ~——— Salary 77000 50 EMP DATA
K SSN Hastasie
\ e
\ e FirstName Ardy
— ;
LastName Griffith
EMP_DATA Salary 75000.00
SN [ssssssss
N Fusthame [

LastName Harvey

Salary 45000

Figure 7-3: Example of an SQL STRUCT data type

125

Chapter 7: Understanding JDBC Data Types

The first line casts the Object returned from the ResultSet.getObject() method to JDBC STRUCT. The next
line populates an Object[] with the STRUCT attributes. Each element maps to the STRUCT type attributes.
After this all | do is retrieve the values from the object array and display them to the screen.

Listing 7—3: StructEx.java

package Chapter7;

import java.sql.*;

import java.io.*;

import java.util.*;

import java.math.BigDecimal;

public class StructExample {

public static void main(String][] args) {
/ICreate Connection,Statement, and ResultSet objects
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

try{
//Load a driver with Class.forName.newlInstance()

Class.forName("oracle.jdbc.driver.OracleDriver").newlnstance();

/lUse the getConnection method to obtain a Connection object
System.out.printin("Connecting to database...");

String jdbcUrl ="jdbc:oracle:thin:@localhost:1521:O0RCL";
String user = "toddt";

String pwd = "mypwd";

conn = DriverManager.getConnection(jdbcUrl,user,pwd);

/lInitialize the Statement object
stmt = conn.createStatement();

//Build the tables and Types
createTables(stmt);

System.out.printin("Retrieving data from database....");
/IRetrieve the data
rs = stmt.executeQuery("Select * from Emp_Records");

//Declare variables to hold data
int empld,;

Struct emp_struct;

Object [emp_attributes;

//Loop through ResultSet
while(rs.next()){
/IRetrieve data from RecordSet
empld = rs.getint("Empld");
emp_struct = (Struct) rs.getObject("Emp_Info");
emp_attributes = emp_struct.getAttributes();

/IPopulate Java variables with STRUCT data
BigDecimal empSsn = (BigDecimal)emp_attributes[0];
String empFirstName = (String)emp_attributes[1];

String empLastName = (String)emp_attributes[2];
BigDecimal empSalary = (BigDecimal)emp_attributes[3];

126

Chapter 7: Understanding JDBC Data Types

/IDisplay results

System.out.print("Employee Id: " + empld
+", SSN: " + empSsn.toString());

System.out.print(", Name: " + empFirstName
+"" + empLastName);

System.out.printin(", Salary: $" + empSalary);

}

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
//Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

Y/end main
public static void createTables(Statement stmt) throws SQLException{

System.out.printin("Starting to create UDT and build table....");
/IDrop the table. Ignore the exception if TYPE does not exist
try{

stmt.executeUpdate("DROP TABLE Emp_Records");
}catch(SQLException se){

/lignore the exception

}

/IDrop the type. Ignore the exception if TYPE does not exist
try{

stmt.executeUpdate("DROP TYPE Emp_Data");
}catch(SQLException se){

/lignore the exception

}

//Build the String to create the TABLE.

String createType = "CREATE TYPE EMP_DATA AS OBJECT " +
"(SSN Number(9), " +
"FirstName VARCHAR(20), lastName VARCHAR(20), " +
"Salary NUMBER(9,2))";

//Submit the update statement

stmt.executeUpdate(createType);

//Build the String to create the TABLE.
String createTable="CREATE TABLE Emp_Records(Empld number(3),"
+ "Emp_Info EMP_DATA)";

//Submit the update statement
stmt.executeUpdate(createTable);

127

Chapter 7: Understanding JDBC Data Types

llInsert some data
stmt.executeUpdate("INSERT INTO Emp_Records VALUES"
+"(1,Emp_Data(111111111,'Todd’, Thomas’,1000.50))");
stmt.executeUpdate("INSERT INTO Emp_Records VALUES"
+ "(2,Emp_Data(222222222,’Steve’,"Yesbert’,15000.75))");
stmt.executeUpdate("INSERT INTO Emp_Records VALUES"
+ "(3,Emp_Data(333333333,’Andy’,’Griffith’,75000.00))");
stmt.executeUpdate("INSERT INTO Emp_Records VALUES"
+"(4,Emp_Data(444444444,Santa’,’Claus’,77000.50))");
stmt.executeUpdate("INSERT INTO Emp_Records VALUES"
+ "(5,Emp_Data(555555555,' Kim’,’"Harvey’,45000.50))");

System.out.printin("Finished creating database structures...");
} /I end of createTable method

}I end StructExample

The output from Listing 7-3 is as follows:

Connecting to database...

Starting to create UDT and build table....

Finished creating database structures...

Retrieving data from database....

Employee Id: 1, SSN: 111111111, Name: Todd Thomas, Salary: $1000.50
Employee Id: 2, SSN: 222222222, Name: Steve Yesbert, Salary: $15000.75
Employee Id: 3, SSN: 333333333, Name: Andy Griffith, Salary: $75000
Employee Id: 4, SSN: 444444444, Name: Santa Claus, Salary: $77000.50
Employee Id: 5, SSN: 555555555, Name: Kim Harvey, Salary: $45000.50
Goodbye!

Custom Data Type Mapping

JDBC enables you to create Java classes to mirror UDTs on the database server. This enables you to call tl
ResultSet.getObject() method to instantiate a Java class that represents the UDT on the server. The new cl;
contains the attribute values of the UDT on the database and you can use it just as you would any other Jav
class.

The process of creating and using a Java class for the database UDT is known as type mapping. You may f
that creating your own classes to represent a UDT has many advantages. For example, you can control acc
to the data within the class. If you want to protect data, such as salary information, you can make the data
private in the class definition. Another advantage of type mapping is that it enables you to add additional
methods or attributes to the class to provide more functionality. You can even define separate classes, whic
provide different functionality based on the situation, that map to the same UDT.

Note Some companies provide tools to help you create custom mappings and Java classes for database UL
For example, Oracle has JPublisher to map UDTs to Java classes.

Building custom data type maps

Building a custom type mapping is a two—step process. The first step is to define a class to represent the UL

128

Chapter 7: Understanding JDBC Data Types

The class must implement the SQLData interface, which defines methods that allow the driver to retrieve an
update the class or UDT attributes. As you will see shortly, implementing these methods is trivial.

The second step is to map the UDT to the Java class by placing an entry into the Connection object’s type
map. The map is a java.util. Map object that relates a key (the UDT’s name) to a value (your custom Java
class).

When you call the ResultSet.getObject() method the JDBC driver references the Connection object's map. |
an entry is found for the UDT being requested, the class definition is used to instantiate an object to represe
the UDT. Otherwise the driver uses a default class definition to handle the UDT.

The rest of this section provides more information about the two steps required to map a custom Java class
an SQL STRUCT. The next section uses the class and map | create in a complete example.

Step 1: Define a custom class

Before creating your Java class to represent the UDT, you must know the exact specification for the databa:
type. For this step | will work with the following STRUCT type:

create type EMP_DATA AS OBJECT
(SSN Number(9),
FirstName VARCHAR(20),
LastName VARCHAR(20),
Salary NUMBER(9,2)

)i
The definition for the UDT is Oracle—specific. Each DBMS has its own constructs for creating custom types.
This STRUCT defines a data type, EMP_DATA, to hold an employee’s Social Security number, first name,
last name, and salary.

Based on the EMP_DATA type, | create my Employee class that implements the SQLData interface. Listing
7-4 provides the class definition.

Listing 7-4: Employee.java

package Chapter7;

import java.sql.*;
import java.math.BigDecimal;
import java.text. NumberFormat;

public class Employee implements SQLData{

//UDT’s attributes

public BigDecimal SSN;
public String FirstName;
public String LastName;
public BigDecimal Salary;

/INeeded to identify UDT on database
private String sqlUdt;

/IRequired per SQLData interface

public void writeSQL (SQLOutput stream) throws SQLException{
stream.writeBigDecimal(SSN);

129

Chapter 7: Understanding JDBC Data Types

stream.writeString(FirstName);
stream.writeString(LastName);
stream.writeBigDecimal(Salary);

}

/IRequired per SQLData interface
public String getSQLTypeName() throws SQLException{
return sqlUdt;

}

//Required per SQLData interface
public void readSQL (SQLInput stream, String typeName) throws SQLException{
sqlUdt = typeName;
SSN = stream.readBigDecimal();
FirstName = stream.readString();
LastName= stream.readString();
Salary = stream.readBigDecimal();

}

/ICustom method to calculate monthly salary rate
public String calcMonthlySalary(){
double monthlySalary = Salary.doubleValue()/12;

/[Format as currency to display

NumberFormat nf = NumberFormat.getCurrencylnstance();
String str = nf.format(monthlySalary);

return str;

}

}lend Employee class

Notice the private field sglUdt in the class definition. This String value holds the SQL type name. In the
example the variable equals the name of the UDT, EMP_DATA.

| implemented the getSQLTypeName(), readSQL(), and writeSQL() methods to meet the SQLData interface
definition. The first returns the SQL type defined by sqlUdt. The JDBC driver uses this method to determine
the Java class to map the UDT to.

The next method, readSQL(), performs two functions. First, it sets the value of the sqlUDT variable for the
type being retrieved. Second, it populates the class instance variables using an SQLInput object with
corresponding data from the UDT in the database. The SQLInput object is an InputStream that retrieves the
values from the database. The readXXX() methods act just like the ResultSet.getXXX() methods with respe
data type conversions.

The writeSQL() method populates the UDT on the database with information from your class. This method i
implemented much like the readSQL() method except that the SQLOutput object, an OutputStream, supplie:
the UDT on the database with values from your class variables.

| also implemented the getMonthlySalary() method. This is a "value—add" method that illustrates how you ce

add functionality to your custom class. This method calculates an employee’s monthly pay rate and returns |
value as a currency—formatted String.

130

Chapter 7: Understanding JDBC Data Types

Step 2: Create the map entry

Once you define your class, you need to inform the JDBC driver to use it whenever the getObject() method
retrieves the EMP_DATA UDT from the server. Making the map entry is simple, as the following code
shippet demonstrates:

//Assume a valid Connection object conn

Map map = conn.getTypeMap();
map.put("EMP_DATA",Class.forName("Employee"));
conn.setTypeMap(map);

These operations create a Map object, called map, and inserts an entry into it that links the EMP_DATA typ
in the database to the custom class Employee on the client. It also sets the default type map for the Connec
object to the map object you create. Whenever you use the ResultSet.getObject() method the driver referen
the map to determine if a custom class exists for the UDT. If it does, the driver instantiates an object,
otherwise it creates its own.

Using custom mapping

Now I'll use the custom class and map | created in the previous section to retrieve data from a UDT on the
server. The database structures are designed to work with an Oracle 8.1.7 database, but the JDBC concept
remain the same regardless of your database.

Listing 7-5 is the complete application. The first thing | do is create the EMP_DATA type and a table and
populate the table with sample data. Next | map the EMP_DATA type to my custom class Employee using tl
map.put() method. The previous subsection, "Step 2. Make the map entry," provides more details about this
operation.

Listing 7-5: SqglDataEx.java

package Chapter7;

import java.sql.*;
import java.io.*;
import java.util.*;
import java.math.*;

public class SqlDataEx{

public static void main(String[] args) {
/IDeclare Connection, Statement, and ResultSet objects
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

try{
/ILoad a driver with Class.forName.newlnstance()

String driver ="oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

/lUse the getConnection method to obtain a Connection object
System.out.printin("Connecting to database...");

String jdbcUrl ="jdbc:oracle:thin:@myserver:1521:0RCL";
String user = "toddt";

String pwd = "mypwd";

conn = DriverManager.getConnection(jdbcUrl,user,pwd);

131

Chapter 7: Understanding JDBC Data Types

/[Create Statement object
stmt = conn.createStatement();

/Map the EMP_DATA UDT to the Employee class

Map map = conn.getTypeMap();
map.put("EMP_DATA",Class.forName("Chapter7.Employee"));
conn.setTypeMap(map);

/IRebuild tables with the StructExample.createTables() method
StructExample.createTables(stmt);

/IRetrieve the data
System.out.printin("Retrieving data from database....");
rs = stmt.executeQuery("SELECT * from Emp_Records");

/ICustom class to hold EMP_DATA UDT on database
Employee employee;

//Loop through ResulSet to and display data
System.out.printin("Displaying data:");
while(rs.next()){

int empld = rs.getint("Empld");

/INotice the cast to Employee
employee = (Employee)rs.getObject("Emp_Info");

System.out.print("Employee Id: " + empld
+", SSN: " + employee.SSN);
System.out.print(", Name: "
+ employee.FirstName +"" + employee.LastName);
System.out.printin(", Yearly Salary: $" + employee.Salary
+ " Monthly Salary: " + employee.calcMonthlySalary());
}

//Standard error handling

} catch(SQLEXxception se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
/[Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
Ylend finally try
Ylend try

System.out.printin("Goodbye!");
}lend main

Mlend SqlDataEx

The output from Listing 7-5 is as follows:

132

Chapter 7: Understanding JDBC Data Types

Connecting to database...

Starting to create UDT and build table....

Finished creating database structures...

Retrieving data from database....

Displaying data:

Employee Id: 1, SSN: 111111111, Name: Todd Thomas,
Yearly Salary: $1000.50 Monthly Salary: $83.38
Employee Id: 2, SSN: 222222222, Name: Steve Yesbert,
Yearly Salary: $15000.75 Monthly Salary: $1,250.06
Employee Id: 3, SSN: 333333333, Name: Andy Giriffith,
Yearly Salary: $75000 Monthly Salary: $6,250.00
Employee Id: 4, SSN: 444444444, Name: Santa Claus,
Yearly Salary: $77000.50 Monthly Salary: $6,416.71
Employee Id: 5, SSN: 555555555, Name: Kim Harvey,
Yearly Salary: $45000.50 Monthly Salary: $3,750.04
Goodbye!

Once the mapping is complete, | query the database to retrieve all the information from the Employee table.
Next | retrieve the Empld and UDT from the result set. | use the ResultSet.getObject() method to get the UD

and cast the object to type Employee, my custom class.

I can now use the Employee class as another Java class. In this example | list all the relevant information
stored in the UDT, and the monthly salary rate returned from my Employee.getMonthySalary() method. In th
preceding example, the method returns a String that is formatted as $xxx.xx.

Summary

This chapter covered handling data type issues in Java database programming. The data types used by Jav
fundamentally different from those used in any DBMS. However, JDBC provides the getXXX(), setXXX(), an
updateXXX() methods with which you can convert between Java types and SQL types. | also presented the
recommended mappings between Java data types and JDBC types, as well as how to map a class to a UD’

the database server.

133

Chapter 8: Mining Database Metadata with JDBC

In This Chapter

» Understanding what metadata is and how it applies to database programming

» Knowing when to use metadata in your applications

» Using Java’'s DatabaseMetaData interface to collect information about a database

» Using the ResultSetMetaData interface to examine the column properties within a result set

In the simplest terms, metadata is data about data. Applied to databases, metadata is information about
managed data, or about the structures and applications that hold managed data. Examples of metadata are
descriptions of the tables and column attributes, descriptions of data structures, or descriptions of the actual
data (such as its data types).

The JDBC API enables you to uncover metadata about a database and a query’s result set using the

DatabaseMetaData and ResultSetMetaData interfaces, respectively. The first interface enables you to obtai
information about your database’s attributes and make runtime decisions based around that information. Th
interface even provides enough information to enable you to write an entire database—management progran

The second interface enables you to determine the attributes — such as number of columns, names, and d:
types — for a result set. You can use this information to populate column headers in a report or to determine
the correct getXXX() method to call.

This chapter details how to obtain metadata for your database and result sets using the two interfaces. | sta
by introducing the two interfaces and give examples on how you may use them in an application. Next, |
describe the ResultSetMetaData interface then move to the DatabaseMetaData interface. Each section alsc
contains examples on how to use the respective interface.

The JDBC Metadata Interfaces

As mentioned, JDBC has two interfaces, ResultSetMetaData and DatabaseMetaData, that supply you with
metadata. The first provides information about the columns in a result set, such as the name, data type, and
maximum length. The second provides data about a database’s structure, such as the table names, primary
foreign keys, and data types.

A ResultSetMetaData object is useful when you want to create a generic method with which to process resu
sets. By using metadata you can determine the data types of the result set columns and call the correct
getXXX() method to retrieve the data. A reporting application is a perfect example of an instance in which yc
might consider a generic result set processing routine. These applications generally require you to submit a
query, retrieve a result set, and print the data. Your generic method would enable you to pull the data from
any result set for printing. You can extract the column name from a ResultSetMetaData object to create
column headings for the report.

You can use DatabaseMetaData when you know a lot about the structure of a database or when you know

nothing at all. For example, you may want to create a tool that enables database administrators to inspect o
manage databases. Developers may even use the tool to investigate data types or table structures, list user

134

Chapter 8: Mining Database Metadata with JDBC

schemas, or look at a database’s supported features. As a result, your administration tool must be able to q
the database and determine this information dynamically.

In addition, you can use a DatabaseMetaData object to probe the database to determine its attributes. You'l
want to do this when you do not have the luxury of knowing anything about the databases your application
will access. Here’s an example. Suppose you are writing an installation routine that creates support tables ir
database for use by an application. To do this you will need to know about the supported data types within t
target database. A DatabaseMetaData object enables you to gather that information so you can build your
tables with the correct data types.

| have just scratched the surface with regard to type of applications with which you can use the metadata
interfaces. As you become more familiar with the interfaces, I'm sure more ideas will surface. The remainde
of the chapter presents the details of the two interfaces and example applications for both.

JDBC 3.0 JDBC 3.0 defines a new metadata interface, ParameterMetaData. This interface describes the
number, type, and properties of parameters used in prepared statements.

The ResultSetMetaData Interface

The ResultSetMetaData interface provides descriptive information about the columns in a result set such as
the number of columns it contains or each column’s data type. The interface does not provide information
regarding the database or the number of rows in the result set, only about the result set with which it is
associated.

Creating ResultSetMetaData objects

The ResultSetMetaData object is instantiated from a valid ResultSet object. The following code snippet
creates a ResultSetMeta object, rsmd, that contains the column metadata for the entire Employees table:

/[Assume a valid connection conn
Statement stmt = conn.createStatement();

/[Create a result set
ResultSet rs = stmt.executeQuery("SELECT * FROM Employees");

//Obtain the result set metadata
ResultSetMetaData rsmd = rs.getMetaData();

Using ResultSetMetaData objects

The ResultSetMetaData interface provides you with numerous methods for retrieving information about the
result set. You call the various setter and getter methods to retrieve data from the ResultSetMetaData objec
Table 8-1 lists the methods | find the most useful.

Table 8-1: Useful ResultSetMetaData Methods

135

Chapter 8: Mining Database Metadata with JDBC

Method Name Description

getTableName() Returns the name of the table you queried. Returns a String.

getColumnCount() Returns the number of columns in the result set. Returns an int.

getColumnName(int n) Returns the name of a column at position n in the result set.
Returns a String.

getColumnType(int n) Returns the JDBC data type for a column at position n of the
result set. Returns an int.

getColumnTypeName(int n) Provides the name of the column’s data type as defined by the

database. The parameter n is the column position within the
result set. Returns a String.

The getColumnCount() method returns the number of columns returned by the result set. The returned valu
will equal the number of columns that you requested in your SELECT statement. If you selected all the
columns with the following SQL query:

SELECT * FROM tableX

then the getColumnCount() method will return the number of columns in the table. You will find this method
handy when you want to determine the upper—bounds of a counter variable when you loop through all the
columns in a result set and look at their metadata. As you might expect, the getColumnName() method retur
the column name at a specific position. The order of the columns will be either the order in which you
requested them or, if you requested all the columns, the order of the table definition.

Two other useful ResultSetMetaData methods are the getColumnType() and getColumnTypeName() names
The first returns an int that represents the JDBC data type defined in java.sql.Types. The next method
provides the SQL data type name as defined in the database. Do not confuse the database data type name
the JDBC or Java data—type name, as they may be different. These methods enable you to write a generic
routine to extract result set data by first checking the type or type name of the column and then using a swit
block to call the correct getXXX() method.

XRef See Chapter 7, “Understanding JDBC Data Types,” for more information on data types and how they
relate to JDBC programming.

The methods that require the column position as a parameter use the columns ordinal position in the result :
The positions start with the number 1, not 0 like Java arrays. Using a 0 as a parameter throws an
SQLEXxception.

Note ResultSetMetaData.getColumnTypeName() method returns the data—type name used by the database
server. You may find that this value differs from JDBC’s data—type name for the equivalent database

type.
ResultSetMetaData example

| can best illustrate the ResultSetMetaData object with an example. In Listing 8-1, | retrieve and list both the
JDBC and SQL data types for the columns in the

Employees and Location tables. In addition, | create a method that enables you to retrieve data from the res
set based on the data type of a result set column. The method illustrates how you can create a generic routi
to process a result set using metadata. In fact, | use the method to list the contents of the Employees and
Location tables.

136

Chapter 8: Mining Database Metadata with JDBC

Listing 8—1: RSMetadata.java

package Chapters;

/ISpecific imports

import java.sgl.Connection;

import java.sql.DriverManager;
import java.sql.Statement;

import java.sgl.ResultSet;

import java.sgl.SQLException;
import java.sgl.ResultSetMetaData;
import java.math.BigDecimal;

public class RSMetaData {

/IGlobal string buffer to buffer Strings before printing
public static StringBuffer strbuf = new StringBuffer();

public static void main(String[] args) {

/IDeclare Connection, Statement, and ResultSet variables
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

//Begin standard error handling
try{

/IReqister driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Open database connection

System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:0RCL";
conn = DriverManager.getConnection(jdbcUrl,"toddt","mypwd");

/[Create a Statement object

stmt = conn.createStatement();

rs = stmt.executeQuery("SELECT * FROM Employees");
System.out.printin("Meta data for Employees table:");

/IList column details
System.out.printin("Column Information:");
printColumninfo(rs);
System.out.printIn();

/IList result set data with generic method
System.out.printin("List table data:");
printColumnNames(rs);

processRs(rs);

System.out.println();

/ICreate a result set of data from the Location table

rs = stmt.executeQuery("SELECT * FROM Location");
System.out.printin("Meta data for Location table:");
System.out.printin("Column Information:");
printColumninfo(rs);

System.out.println();

/IList table data with generic method

137

Chapter 8: Mining Database Metadata with JDBC

System.out.printin("List table data:");
printColumnNames(rs);
processRs(rs);

System.out.println();

//Standard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
//Handle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLEXxception se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

}lend main
/IGeneric method to retrieve data from a result set
public static void processRs(ResultSet rs)

throws SQLException{

/ICreate ResultSetMetaData object
ResultSetMetaData rmd = rs.getMetaData();

/[Loop through result set and retrieve column information.
while(rs.next()){

for (int col=1;col<=rmd.getColumnCount();col++)
getData(rs,rmd.getColumnType(col),col);

System.out.printin(strbuf.toString());
strbuf = new StringBuffer();

Ylend while
Ylend processRs()

//Prints column names as headings
public static void printColumnNames(ResultSet rs)
throws SQLException{

ResultSetMetaData rmd = rs.getMetaData();
StringBuffer sb = new StringBuffer();

for (int col=1;col<=rmd.getColumnCount();col++)
sb.append(rmd.getColumnName(col) + " ");

System.out.printin(sb.toString());
Ylend printColumnNames()

/IMethod to determine the data type of a result set column
/Ithen call the correct getXXX() method. For brevity, not all

138

Chapter 8: Mining Database Metadata with JDBC

//JDBC data types are supported
public static void getData(ResultSet rs, int type, int colldx)
throws SQLException{

/[Temporary variable to hold value from result set as a string.
String s;

switch (type){

//Handle character related data types
case java.sql.Types.CHAR:
case java.sql.Types.VARCHAR:
s = rs.getString(colldx);
strbuf.append(s + " ");
break;

//Handle the INTEGER data type
case java.sql.Types.INTEGER:
int i = rs.getint(colldx);
strbuf.append(i+"");
break;

//Handle the NUMERIC data type

case java.sql.Types.NUMERIC:
BigDecimal bd = rs.getBigDecimal(colldx);
s = bd.toString();
strbuf.append(s + " ");
break;

/[Handle date related data types. | just want the date
/Iportion so | combine the two data types.
case java.sql.Types. TIMESTAMP:
case java.sql.Types.DATE:
java.sgl.Date d = rs.getDate(colldx);
s = d.toString();
strbuf.append(s +" ");
break;

Ylend select
Y/lend getData()

/IMethod to print column metadata.
public static void printColumninfo(ResultSet rs)
throws SQLException{

ResultSetMetaData rsmd = rs.getMetaData();

System.out.printin("Column, " + "JDBC_Type,
"+ "Database_Type_Name ");

int cols = rsmd.getColumnCount();

for (int colldx=1;colldx<=cols;colldx++){

String name = rsmd.getColumnName(colldx);

int type = rsmd.getColumnType(colldx);

String typeName = rsmd.getColumnTypeName(colldx);
System.out.printin(name + ", " + type + ", " + typeName);

Ylend for
}I end printColumninfo

139

Chapter 8: Mining Database Metadata with JDBC

}lend RSMetaData class

The following is the output from Listing 8-1:

Connecting to database...

Metadata for Employees table:

Column Information:

Column, JDBC_Type, Database_Type_Name
SSN, 2, NUMBER

NAME, 12, VARCHAR2

SALARY, 2, NUMBER

HIREDATE, 93, DATE

LOC_ID, 2, NUMBER

List table data:

SSN NAME SALARY HIREDATE LOC_ID
111111111 Todd 100000.75 1989-09-16 100
419876541 Larry 1500.75 2001-03-05 200
312654987 Lori 2000.95 1999-01-11 300
123456789 Jimmy 3080.05 1997-09-07 400
987654321 John 4351.27 1996-12-31 500
537642256 Andy 1400.51 2001-04-23 400

Metadata for Location table:

Column Information:

Column, JDBC_Type, Database_Type_Name
LOC_ID, 2, NUMBER

LOCATION, 12, VARCHAR2

List table data:
LOC_ID LOCATION
100 Knoxville

200 Atlanta

300 New York

400 L.A.

500 Tulsa

Goodbye!

The DatabaseMetaData Interface

With the DatabaseMetaData interface you can inspect a database’s structure. The interface has more than
hundred methods that return information about a database.

At some point in your career as a Java database programmer you will need to use the DatabaseMetaData

interface. If you are writing a database tool, such as a schema documenter, DBA tool, or installation routine,
you will spend a lot of time with this interface.

140

Chapter 8: Mining Database Metadata with JDBC

Creating DatabaseMetaData objects

A Connection object represents a database connection and also instantiates a DatabaseMetaData object wi
the getMetaData() method. The DatabaseMetaData object holds information for the database to which the
Connection object is connected. The following code snippet illustrates how to create a DatabaseMetaData
object:

//Assume a valid Connection conn
DatabaseMetaData dmd = conn.getMetaData();

Before creating the object you must log onto the database and have a valid connection.

Using DatabaseMetaData objects

The DatabaseMetaData object has many methods and properties that provide a lot of information about a
database. In fact, when getting started with the DatabaseMetaData interface you may find the number of
methods overwhelming. However, you can arrange them into two categories to help put them into perspecti
The first category deals with database characteristics and the second with database structures.

The remaining sub—sections provide information about each category and examples of how to use the
methods to obtain database information.

Database characteristic methods

As mentioned, with a DatabaseMetaData object you can obtain a lot of information about your database
characteristics. For example, you can answer questions like:

» Does the database support batch updates?

* What are the SQL keywords?

* What user am | connected as?

* What SQL data types does this database support?

The methods that provide database characteristics can be further broken down into those that provide gene
database information, those that provide information about database limits, and those that provide informati
about supported features.

The methods that provide general information about a database return String values. Examples of informatic
you can obtain are schema names, database names, SQL keywords, and database functions. These metho
return either single or multiple values. Methods such as getDatabaseName() returns a single String value.
Multiple String values are returned in a comma-—delimited list. The getSQLFunction() is an example of a
method that returns a comma-delimited list of values.

Methods that provide information about a database’s limits return an int. For instance, the methods that
retrieve the maximum number of connections, maximum column—name length, and maximum row size retur
the results as an int.

When you need to determine whether or not certain database features are supported, you use methods that

return boolean values. For example, you can determine whether your database supports batch updates and
transactions with the supportsBatchUpdates() and supportTransactions() methods, respectively.

141

Chapter 8: Mining Database Metadata with JDBC

Structural information

You can also use a DatabaseMetaData object to retrieve information on tables, stored procedures, referenti
integrity, and data types. These methods return ResultSet objects. Of course, the result sets differ dependin
upon the methods used to query the database. The number of columns ranges from 1 to 18, all of which ma
be of different data types.

Most of the method calls are straightforward. However some, such as those that provide column informatior
enable you to supply string patterns as parameters to limit the number of rows returned. String patterns are
essentially wildcard characters that enable you to narrow your search. You can use the underscore ()
character to match any single character or the percent symbol (%) to match zero or more characters.

In general, you should use string patterns to limit the number of rows returned by certain DatabaseMetaDat:
methods. For example, if you call the getColumns() method to retrieve a result set of information on a certail
table’s columns, you may accidentally retrieve the column names for every column in all the database’s

tables. In this instance the result set will contain not only the column information for the target table, but the
system'’s and user’s tables as well. The result sets in this case will be quite large and probably meaningless

String Patterns

String patterns enable you to “filter” the number of rows a result set returns. You can only use string pattern:
in the DatabaseMetaData methods that support them.

Two special characters, % and _, enable you to build string patterns. You use the % to match zero or more
characters. For example, EM% will only allow the method to retrieve data that starts with the characters EM
The string pattern EM%S will retrieve data that starts with EM and ends with S. The data can contain any
characters in between, and can be any number of characters in length.

You can use the underscore to match a single character. EM_ will only retrieve data that starts with EM and
ends with any character. In this case the name of the field you are matching will only be three characters lor

The remainder of this section focuses on how to use the DatabaseMetaData object to retrieve information
about tables, columns, data types, and referential integrity constraints. Although you can retrieve other
information with the DatabaseMetaData object, | find this information most useful when | need to probe a
database.

Table and column metadata You can obtain details on all the tables and table columns for which you have
access rights. This may include system and other user schemas as well as your own. As | mentioned before
you do not use string patterns you may create a very large result set.

The DatabaseMetaData methods getTables() and getColumns() retrieve information about the tables and ta
columns in a database, respectively. The method signatures are somewhat different from the usual Java
methods because they can take string patterns as parameters. The following is the getTable() method
definition:

public ResultSet getTables(String catalog,
String schemaPattern,
String tableNamePattern,
String[] types);

Think of these parameters as result set filters as each one can limit the number of rows returned. In the
preceding getTables() method, the first parameter is the database catalog you wish to search for tables. A

142

Chapter 8: Mining Database Metadata with JDBC

catalog is analogous to a namespace and is used to separate data structures.

The next two parameters further filter the result set by enabling you to specify the schema and tables that yc
want to include in the result set. Notice that you can use string patterns for these parameters in order to con
the data the result set returns.

The final parameter is a String array that represents the "types of tables" on which you want information. Th
is not the data type of the table, but the category. The table types are database—-dependent and the
getTableTypes() method will provide a result set containing the types available. Examples of different table
types are TABLE, VIEW, and SYSTEM.

The following code snippet illustrates the getTables() method:

//Assume a valid Connection object conn
DatabaseMetaData dmd = conn.getMetaData();

//IDefine parameters.

String catalog = null;

String schema = "TODDT";
String tableName = "E%";
String [] types = {"TABLE"};

/ICreate a ResultSet object to hold the table information
ResultSet rs = dmd.getTables(catalog, schema, tableName, types);

Before calling the getTables() method, | first initialize all the parameters. | set the catalog parameter to null,
which tells the method to ignore this parameter. In fact, you may inform the method to ignore any parameter
by setting it to null. The null is equivalent to the asterisk (*) token in an SQL SELECT statement.

The next parameter is the schema name. In this example, | only want to retrieve the tables from my schema
TODDT. The third parameter is a string pattern that represents the tables to include in the result set. In the
previous snippet | want to retrieve all tables that begin with the letter E. Therefore | include the % character
represent any characters after E. The fourth parameter uses a String array to define which category of table
include in the result set.

The result set that the getTable() method returns has the following five columns: catalogname, schema nam
table name, table type, and remarks. In my example, all the columns are Strings, so | can use the
ResultSet.getString() method to retrieve the information.

You also use the getColumn() method in a similar manner. The following code demonstrates its use:

/[Assume a valid Connection object conn
DatabaseMetaData dmd = conn.getMetaData();

/[Create a ResultSet object that holds the database table
/linformation.

String catalog = null;

String schema = "TODDT";

String tableName = "E%";

String columnName = null;

ResultSet rsCols=dmd.getColumns(null, schema, tableName, null);

Of the four parameters, the last three accept string patterns. The first parameter is the same as the getTable

143

Chapter 8: Mining Database Metadata with JDBC

method as it specifies the catalog you wish to work with. The next parameter identifies the schema, which |
specify as myself because | only want columns for tables in my schema. With the next parameter | use a str
pattern to select only the tables in my schema that start with the letter E. The last parameter enables me to
specify a column name. | can also use a string pattern here to limit the number of columns returned, but in tl
case | want all the columns and so | use a null value.

The getColumns() method returns a result set that has 18 columns, and that unlike the result set returned by
the getTables() method has mixed data types. Nonetheless, examples of the information the result set provi
are the column name, data type, numeric precision if applicable, and whether the column can store null valu
You should refer to the Javadocs for more information on the result set returned by the getColumns() metho

Data type metadata You can determine what data types your target database supports by using the
getTypelnfo() method. The result set returned by this method is complex. Like the getColumnMethod() it has
18 columns and provides information such as the data type name, case sensitivity, JDBC data type, and
whether the column can contain null values.

You may find this method useful if you want to write a utility program to determine the data types in a
database. The following code snippet demonstrates a routine you can use to list all data types in a database
provides the database’s name for the data type and the corresponding short value that represents the JDBC
data type.

/[Assume a valid Connection object conn
DatabaseMetaData dmd = conn.getMetaData();

/ICreate result set
ResultSet rs = dmd.getTypelnfo();

//Loop through result set
while(rs.next()){

System.out.printin(rs.getString("TYPE_NAME") + " "
+ rs.getShort("DATA_TYPE");
}

In addition, you can use the getUDT() method to obtain a result set containing the information about the
UDTs on your database server.

Primary— and foreign—key metadata A DatabaseMetaData object can also provide you with information on
the referential integrity constraints for a database or group of tables. The getPrimaryKeys() and
getimportedKeys() methods provide the primary— and foreign—key information. You may find these methods
useful if you are writing an application to document your database.

Stored procedure metadata If you need to obtain information about the stored procedures in a database, us
the getProcedures() and getProcedureColumns() methods of the DatabaseMetaData object.

DatabaseMetaData example

As with most JDBC topics an example is worth a thousand words. Listing 8-2 provides an example of sever
of the DatabaseMetaData methods described in the previous section. The program starts by listing the nam
and version of the database to which | am connected. Next it lists all the tables in my schema, TODDT, alon
with the column data types, and primary and foreign keys. The next items it lists are the supported data type
in the database. Notice that the getTypelnfo() method creates a result set that provides both the data type n
as defined on the server and the JDBC data type. You can look up the numeric value returned to get a

144

Chapter 8: Mining Database Metadata with JDBC

meaningful type name. Lastly, the program calls getSQLKeywords(), getNumericFunctions(),
getStringFunctions(), and getTimeDateFunctions() methods to retrieve a list of the database keywords and
helper functions.

Listing 8—-2: DBMetaData.java

package Chapters;

/ISpecific imports

import java.sgl.Connection;

import java.sql.ResultSet;

import java.sgl.Statement;

import java.sgl.DriverManager;
import java.sgl.SQLException;
import java.sgl.DatabaseMetaData;

public class DBMetaData {
public static void main(String[] args) {

/[Create Connection, Statement, and ResultSet objects
Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

//Begin standard error handling
try{

//Load a driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Obtain a Connection object
System.out.printin("Connecting to database...");
System.out.printin();

String jdbcUrl = "jdbc:oracle:thin:@myserver:1521:ORCL";
String user = "TODDT";

String pwd = "mypwd";

conn = DriverManager.getConnection(jdbcUrl,user,pwd);

/lInitialize a DatabaseMetaData object
DatabaseMetaData dmd = conn.getMetaData();

/IRetrieve database name and version

String dbname = dmd.getDatabaseProductName();

dbname = dbname +" " + dmd.getDatabaseProductVersion();
System.out.printin("Database information:");
System.out.printin(dbname);

System.out.println();

/IRetrieve a result set with table information
String [] types = {"TABLE"};
rs = dmd.getTables(null,user,null,types);

while(rs.next()){
String tableName = rs.getString(3);
System.out.printin("Table Name: " + tableName);

System.out.printin(" Column, Data Type");
ResultSet rsCols=dmd.getColumns(null,user,tableName,null);

145

Chapter 8: Mining Database Metadata with JDBC

while(rsCols.next()){

System.out.printin(" " + rsCols.getString("COLUMN_NAME")
+", " + rsCols.getString("TYPE_NAME"));

}lend while rsCols
System.out.printin();

/IGet primary keys for tables
ResultSet rsPkey=dmd.getPrimaryKeys(null,user,tableName);

if(rsPkey.next()){
System.out.printin(" PK Name, Column Name");
do{

System.out.printin(" " + rsPkey.getString("PK_NAME") + ", "
+ rsPkey.getString("COLUMN_NAME"));

twhile(rsPkey.next());
System.out.printIn();
Ylend primary key

/IGet foreign keys for tables
ResultSet rsFkey=dmd.getimportedKeys(null,user,tableName);

if(rsFkey.next()){
System.out.printin(" FK Name, FK Table, Column Name");
do{
System.out.printin(" " + rsFkey.getString("FK_NAME") + ", "
+ rsFkey.getString("PKTABLE_NAME") + ", "
+ rsFkey.getString("FKCOLUMN_NAME"));
twhile(rsFkey.next());
System.out.printin();
Ylend foreign key
Y/end while for table information
//Get supported data types
rs = dmd.getTypelnfo();
System.out.printin("Supported data types:");
while(rs.next()){
System.out.printin("Database Type Name:
"+ rs.getString("TYPE_NAME")
+" JDBC Type: "
+ rs.getShort("DATA_TYPE"));

Ylend while

146

Chapter 8: Mining Database Metadata with JDBC

System.out.println();

/IRetrieve SQL Keywords, numeric functions, string, and
/ltime and date functions.

System.out.printin("SQL Keywords:");
String sql = dmd.getSQLKeywords();
System.out.printin(sql);
System.out.println();

System.out.printin("Numeric Functions:");
String numeric = dmd.getNumericFunctions();
System.out.printin(numeric);
System.out.println();

System.out.println("String Functions:");
String string = dmd.getStringFunctions();
System.out.printin(string);
System.out.printIn();

System.out.printin("Time and Date Functions:");
String time = dmd.getTimeDateFunctions();
System.out.printin(time);

System.out.printIn();

/IStandard error handling

} catch(SQLException se) {
/[Handle errors for JDBC
se.printStackTrace();

} catch(Exception e) {
/IHandle errors for Class.forName
e.printStackTrace();

} finally {
try {
if(conn!=null)
conn.close();
} catch(SQLException se) {
se.printStackTrace();
Ylend finally try
Ylend try
System.out.printin("Goodbye!");

Y/end main

}/end DBMetaData.java

The output from Listing 8-2 is as follows:

Connecting to database...

Database information:

Oracle Oracle8i Enterprise Edition Release 8.1.7.0.0 — Production
With the Partitioning option

JServer Release 8.1.7.0.0 — Production

Table Name: EMPLOYEES

147

Column, Data Type
SSN, NUMBER
NAME, VARCHAR?2
SALARY, NUMBER
HIREDATE, DATE
LOC_ID, NUMBER

Chapter 8: Mining Database Metadata with JDBC

PK Name, Column Name

PK_EMP, SSN

FK Name, FK Table, Column Name
FK_LOC, LOCATION, LOC_ID

Table Name: LOCATION

Column, Data Type
LOC_ID, NUMBER

LOCATION, VARCHAR2

PK Name, Column Name

PK_LOC, LOC_ID

Supported data types:

Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:
Database Type Name:

SQL Keywords:

NUMBER JDBC Type: -7
NUMBER JDBC Type: -6
NUMBER JDBC Type: -5
LONG RAW JDBC Type: -4
RAW JDBC Type: -3
LONG JDBC Type: -1
CHAR JDBC Type: 1
NUMBER JDBC Type: 2
NUMBER JDBC Type: 4
NUMBER JDBC Type: 5
FLOAT JDBC Type: 6
REAL JDBC Type: 7
VARCHAR2 JDBC Type: 12
DATE JDBC Type: 93
STRUCT JDBC Type: 2002
ARRAY JDBC Type: 2003
BLOB JDBC Type: 2004
CLOB JDBC Type: 2005
REF JDBC Type: 2006

ACCESS, ADD, ALTER, AUDIT, CLUSTER, COLUMN, COMMENT,
COMPRESS, CONNECT, DATE, DROP, EXCLUSIVE, FILE, IDENTIFIED,
IMMEDIATE, INCREMENT, INDEX, INITIAL, INTERSECT, LEVEL, LOCK,
LONG, MAXEXTENTS, MINUS, MODE, NOAUDIT, NOCOMPRESS,
NOWAIT, NUMBER, OFFLINE, ONLINE, PCTFREE, PRIOR,

all._ PL_SQL reserved_ words

Numeric Functions:

ABS, CEIL, COS, COSH, EXP, FLOOR, LN, LOG, MOD, POWER, ROUND,
SIGN, SIN, SINH, SQORT, TAN, TANH, TRUNC, AVG, COUNT,
GLB, LUB, MAX, MIN, STDDEV, SUM, VARIANCE

String Functions:

CHR, INITCAP, LOWER, LPAD, LTRIM, NLS,_INITCAP, NLS,_LOWER,
NLS,_UPPER, REPLACE, RPAD, RTRIM, SOUNDEX, SUBSTR,

SUBSTRB, TRANSLATE, UPPER, ASCII, INSTR, INSTRB,

LENGTH, LENGTHB, NLSSORT, CHARTOROWID, CONVERT, HEXTORAW,

148

Chapter 8: Mining Database Metadata with JDBC

RAWTOHEX, ROWIDTOCHAR,
TO_CHAR, TO_DATE, TO_LABEL, TO_MULTI_BYTE, TO_NUMBER, TO_SINGLE_BYTE

Time and Date Functions:
ADD_MONTHS, LAST_DAY, MONTHS_BETWEEN, NEW_TIME, NEXT_DAY,
ROUND, SYSDATE, TRUNC

Goodbye!

Summary

This chapter provided an overview of the two metadata interfaces, ResultSetMetaData and
DatabaseMetaData. These interfaces enable you to interrogate result sets and databases. Examples of
information the ResultSetMetaData interface provides are:

» The number of columns in a result set.
» The data types of the columns in a result set.

Examples of information the DatabaseMetaData interface provides are:

» The supported data types in a database.

* The SQL keywords.

» The names of helper functions for mathematical, character, and date and time calculations.
» The tables, indices, and stored procedures in a database.

« Whether or not the database supports batch—-updates.

In addition, this chapter provided two examples showing how to use the interfaces. The ResultSetMetaData
interface example includes a generic method that prints the data contained in a result set. The
DatabaseMetaData interface example provided the routines used to list the table structure for any schema,
supported data type in the database, and also provided a list of SQL keywords and helper methods.

149

Part Ill: Using Java Data Access Design Patterns

Chapter List

Chapter 9: Understanding Design Patterns

Chapter 10: Building the Singleton Pattern

Chapter 11: Producing Objects with the Factory Method Pattern
Chapter 12: Creating a Fagade Pattern

150

Chapter 9: Understanding Design Patterns
In This Chapter

» Understanding design patterns

» Using Java with design patterns

» Relating design patterns to object—oriented programming
» Applying design patterns to JDBC programming

The previous chapters of this book focused specifically on JDBC programming. The chapters in this part
deviate slightly to introduce the subject of design patterns.

Design patterns are software architectures used mainly with Object Oriented Programming (OOP) technique
and languages. Building software solutions using design patterns can produce software that has a high leve
code reuse and is easy to maintain. The patterns are time—tested and even implemented within the Java AF

Although used long before, design patterns were formally described and cataloged in the book Design
Patterns (Addison-Wesley, 1995) by Gamma, Helm, Johnson, and Vlissides. After its publication, the subje
became popular in the developer community. Programmers formed user groups to study and develop desig
patterns. Today, a search for “design patterns” on the Internet will provide you more information on the
subject than you can absorb.

Design Patterns introduced 23 patterns used in OO software design. The authors drew from their own
experience and the experiences of others when they cataloged the patterns. The concepts they present cer!
help me design software. Thinking in terms of patterns encourages me to consider objects as components &
to take advantage of OO techniques such as encapsulation, inheritance, and polymorphism.

| begin this chapter by introducing the subject of design patterns, and follow this with a short overview of the
core patterns. Next, | cover implementation issues you will be faced with when using design patterns with
Java. Throughout the chapter, I'll also point out circumstances in which you can apply design patterns to
JDBC programming. However, | save the details for Chapters 10, 11, and 12.

What Are Design Patterns?

Java is an object-oriented language that enables you to rapidly develop applications. It provides a class
library, known as the Java API, which gives you reusable components so you do not have to develop them
yourself. This enables you to focus on programming, because a lot of the low-level implementation work is
handled for you. JDBC is a perfect example of a Java class library as it hides the complexities associated w
interacting with a database, and lets you focus on the task at hand.

However, despite Java’s class libraries, designing effective and efficient object—oriented software is hard. It
takes experience to familiarize yourself with the best way to assemble objects to perform a particular task.
You want a design that takes advantage of object—oriented traits such as code reusability, extensibility, and
maintainability. In some cases you may need to sacrifice one trait in favor of another; overall, however, a
good object-oriented design will have these attributes.

151

Chapter 9: Understanding Design Patterns

Developers migrating from procedural languages like FORTRAN and COBOL often have a tough time
thinking in objects. They usually apply procedural techniques using object—oriented languages. For example
procedural programmers may overuse the static keyword when declaring methods, thus creating a method
library using a class structure.

The difficulty in learning object—oriented programming is that it's hard to visualize an “object.” Some
textbooks teach that an object represents a component of a physical system or business process. But what
about low-level objects like a Java Array or InputStream? These objects are hard to visualize and do not m:
to real-world systems or processes. They provide functionality that is hard to "see."

Standard software design patterns exist to simplify the conceptual problems of designing software using
object-oriented programming languages. A design pattern provides you a way to visualize the whole,
complete solution before starting to code. It helps you “begin with the end in mind,” as Stephen Covey woul
say.

With respect to JDBC programming, not all of the 23 patterns apply. The patterns that | find useful have to d
with creating objects and abstracting complex functionality. As a result | will only cover in depth those
patterns in the following chapters that | feel directly apply to JDBC programming. If you want to gain a
deeper understanding | suggest reading Design Patterns. It will certainly help you gain a better grasp on
object-oriented designs and implementations.

Categories of Design Patterns

The authors of Design Patterns grouped the 23 patterns into three categories according to functionality. The
categories are creational, structural, and behavioral.

Each category defines the intent of the pattern. Creational patterns concentrate on creating objects, structur
patterns concentrate on combining objects and classes, and behavioral patterns concentrate on object and
interactions.

Creational patterns

This category contains design patterns that create objects. The general procedure is to create objects, loose
termed factories, that instantiate other objects. Creational patterns abstract the instantiation process from th
client. The client retrieves an object from a factory without knowing how the factory instantiated it. Table 9-1
provides an overview of the five creational patterns.

Table 9-1: Creational Design Patterns

Pattern Description
Singleton Guarantees only one instance of a class, and defines one point of access to it.
Builder Separates the creation process of a complicated object from its representation. This

pattern enables you to change the creation process to create an alternate

152

Chapter 9: Understanding Design Patterns

representation.

Factory Method Defines the “factory” method in an interface or abstract class. Subclasses usually
provide the implementation and therefore decide which object type to create.
Clients generally reference the subclass.

Abstract Factory Defines an interface or abstract class for creating groups, or families, of related
objects. The client generally references the interface, the Abstract Factory, not the
concrete factory.

Prototype Creates an object based on “prototype” objects. Generally requires cloning, or
copying, the prototype object to create a new object.

Creational patterns provide you with many benefits. For example, you can dynamically create objects by

defining methods to create different objects based on runtime parameters. This provides you with the

flexibility to create objects using input from the command line, a properties file, or user input.

In addition, the creational patterns also enable you to create objects based on an object’s state. For exampl
a connection—pooling flag is set in a database—connection factory, users could retrieve a Connection object
from an object pool versus opening a new connection every time a user makes a request for a Connection
object.

Combining creational patterns and polymorphism enables you to remove factory implementations from the
application. You can use abstract classes to define the factory and then provide implementations in the
subclasses. Declaring a variable of the abstract factory type in the client allows the client to use any factory
subclass to create objects.

Pattern Scope

Another way to categorize design patterns is by scope or focus. Some patterns deal with classes while othe
deal with objects. Class patterns describe a class’s relationships with other classes and with their subclasse
Object patterns focus on object-to—object interactions and relationships. Object patterns are more dynamic
than class patterns and that enables you to change them at runtime.

To illustrate the differences between the two, consider the following. Object creational patterns let other
objects create objects, while the class creation pattern relies on subclasses. Object patterns in the structura
category use composition to gain new functionality. The class patterns in this category use inheritance to
create new functionality. Within the behavioral category, object patterns use groups of objects to perform
tasks as a unit. The class patterns again rely on inheritance to distribute responsibility.

Most of the 23 design patterns have object scope. Only the Factory Method, Adapter, Interpreter, and
Template Method patterns are considered to have class scope.

Earlier | mentioned that the patterns in this category focused on creating other objects. This is true for four o
of the five patterns. One pattern, the Singleton, is different from the rest. It does not directly create objects, |
ensures that only a single instance of a class is created. This pattern, as you will see, has many uses in JDE
programming.

Generally, when working with JDBC | use the creational patterns by building a factory to supply Connection
objects. This approach saves me from having to define JDBC URLS, usernames, and passwords or loading
drivers for every connection | need. | prefer to define the connection settings once in a factory object and the

153

Chapter 9: Understanding Design Patterns

supply Connection objects to clients as needed. In addition, | usually build my factory object as Singleton fol
more control.

XRef Chapter 10, “Building the Singleton Pattern,” provides more detail on that pattern. | also build a
connection manager implemented as a Singleton as an example in Chapter 10.

Structural patterns

The structural category contains patterns that focus on combining objects to create new functionality. These
patterns help you to create object hierarchies, share objects, and dynamically add responsibilities to objects
Structural class patterns use inheritance to create new classes, while object patterns use composition. Tabls
9-2 summarizes the seven structural patterns.

Table 9-2: Structural Design Patterns

Pattern Description

Proxy Represents, or is a surrogate for, a complex object. The Proxy interface often provides
a simpler interface than the object it represents.

Adapter Makes one class interface match a different class interface. You generally create the
desired interface and use it to wrap another class or interface.

Flyweight Shares a large number of similar objects. State data about the object is passed to the
shared object when needed.

Composite Defines objects that can hold a collection of other objects. A composite pattern will
often arrange the objects in a tree structure.

Decorator Modifies behavior or adds responsibilities to an object dynamically without you
having to create a new object.

Bridge Separates the implementation of a class from its definition.

Facade Provides a simplified interface to a complex subsystem of objects.

Of the structural patterns, | find the Facade pattern one of the most useful in JDBC programming. With it yol
can build an object composed of Connection and Statement objects, which in turn enables you to abstract fr
the client most of the details of JIDBC programming. Clients can submit SQL statements to the Facade objec
and retrieve either an update count or a result set, without worrying about the connection logic or the
semantics of creating the different Statement objects.

XRef | provide more detail about the Facade pattern in Chapter 12, “Creating a Facade Pattern.” Thi

chapter also shows you how to abstract the details of working with Connection and Statement
objects from the client.

Behavioral patterns
This category focuses on algorithms, object responsibilities, and object-to—object communications. You can

think of these patterns as communication models that control how messages, object behavior, and state dat
are communicated between objects.

154

Chapter 9: Understanding Design Patterns

Because of its vast focus, this category is understandably the largest. Table 9-3 provides a list of the 11
behavioral patterns and their descriptions.

Table 9-3: Behavioral Design Patterns

Pattern Description

Visitor Creates a class that acts on data within other classes. This pattern enables
you to change the implementation of a class without modifying the class
itself.

Chain of Responsibility Handles a request by passing it through a series of objects until one can
process it. The pattern reduces object coupling so the objects can act
independently.

Template Method Uses a parent class to define methods and lets the derived classes provide
the implementation. Analogous to abstract methods in Java.

Command Allows an object to encapsulate a command as an object and send it to the

Command object. The Command object is responsible for dispatching the
command to the appropriate object for execution.

Strategy Encapsulates a group of related algorithms in an interface or abstract class.
The client that references a subclass automatically uses the appropriate
algorithm.

Interpreter Interprets a custom grammar. You generally use this pattern when you
define a command language for a client and must interpret and process
requests.

State Changes an object’'s behavior when that object’s internal state changes. You
usually control the state by manipulating a class’s private properties.

Mediator Defines a central object that mediates, or controls, the way in which objects
in a group communicate. The objects in a group typically do not
communicate directly. Although the Model-View-Controller pattern is not
covered here, those familiar with it will recognize the Mediator as being the
controller in Model-View—Controller.

Observer Uses objects called observers, which change their state or behavior when
another object, known as a subject, changes its state. This is also known as
publish—subscribe.

Memento Collects and saves data about an object so you can restore the object later.

Iterator Uses an object with a standard interface to provide access to the elements of
a list or collection of data, either primitives or objects.

You will find behavioral patterns in the JDBC API as well. For example, the ResultSet interface implements
the Iterator, or "cursor," pattern. The interface defines numerous methods for moving around and
manipulating data in a ResultSet object. An instantiated ResultSet object hides the implementation details
from you. When you call any of the cursor-movement methods, the ResultSet object moves the cursor
without letting you know how. If you open an updateable ResultSet and delete a row, the ResultSet object
handles the deletion of the data from its internal storage without your intervention or knowledge.

155

Chapter 9: Understanding Design Patterns

Java and Design Patterns

As an object-oriented programming language, Java supports the implementation of the 23 design patterns
presented in the previous section. In fact, the Java API uses many of the patterns | just defined.

For example, the Enumeration interface implements an Iterator pattern. It defines methods for retrieving dat
from an object that implements its interface without letting you know how it stores or retrieves information.
The API even defines an Observer interface that implements the Observer pattern.

With respect to JDBC, I've mentioned several design patterns in the last section that the APl implements.
Nonetheless, the most prevalent pattern is the Factory. For example, the DriverManager class is a factory.
request a Connection object with certain attributes — such as user, password, or database — and retrieve &
object with those properties.

Design patterns focus on object interactions and relationships. As a result, they rely heavily on OOP
technigues and concepts. In particular, the patterns use class inheritance and object composition extensivel
In the remaining sections of this chapter | provide an overview of inheritance and composition, as well as ho
to implement the concepts in Java and how to apply them to design patterns.

Inheritance

Inheritance is a technique for creating new classes based on other classes. With Java, inheritance is achiev
when one class extends another. The class inherited from is called the super class or base class. The
inheriting, or extending, class is called the subtype or subclass. The subclass has access to the public and
protected methods and attributes of the base class. However, the base class may hide its members by decl:
them private. The inheritance relationship between classes is called a class hierarchy.

Figure 9-1 illustrates a class hierarchy showing inheritance. Class B, the subclass, extends Class A and ha
access to the public or protected methods and data in class A. In this example, Class B can access attribute
and method1() because they are public. It does not have access to private members attribute2 and method:
You are not restricted to using the base class’s methods and attributes; you can also add additional method
and properties to give Class B extra functionality. In addition, you can override or overload the methods in tt
base class.

ClassA
-attribute1 : String
+attribute2 : int

-method1()
+method2()

ClassB

Figure 9—1: Example inheritance class hierarchy

Note Polymorphism, a cornerstone of OOP, is likely the most confusing OO term and concept. The word is
derived from the Greek for “many types” or “many forms.” Personally, | think of polymorphism in terms
of interchangeable objects, because you can assign any subclass to a variable of the base class type.

156

Chapter 9: Understanding Design Patterns

Inheritance and polymorphism go hand in hand. Inheritance provides a family of objects with identical
interfaces because the base class defines the interface for the family. As a result, you can store references
subclasses in variables declared as a base class type. You can pass these variables to methods expecting |
types as parameters. Although the class type is different, the interface is the same.

Polymorphism allows a client object to call a method in an object and expect a certain result. The client is nc
interested in whether the object is instantiated from the base class or subclass, only in whether it can perfori
the task. The interface definition defines what tasks it can accomplish.

Before continuing, let me provide a concrete example of inheritance and polymorphism. Figure 9-2 shows
class hierarchy for the example. The base class is a Fruit and the two subclasses are Apple and Orange. Tt
is, Apple and Orange are of type Fruit because they extend the Fruit class and thereby share the same
interface. The base class has two members, a private String name and a public method, printName(). Each
subclass overrides the printName() method to print the value assigned to the name field.

Java OOP Terminology

When working with Java you will often hear many OOP terms. Like most other technologies, unless you use
the terms daily you may not be that familiar with them. The following list should help remind you of the most
common OOP definitions.

« Class: An abstract data type, a collection of attributes and the methods that operate on those attribu

* Member: A method or attribute defined in a class.

« Object: An instance of a class created with the new keyword or returned from a method.

« Object instantiation: The act of creating a new object.

« Class variable: A variable defined with the static keyword. Only one copy exists for the class.
Multiple objects instantiated from the class share the variable.

« Class method: A method defined with the static keyword. A static method does not operate on a
particular class but acts as a utility function. It can also manipulate static (that is, class) variables.

« Inheritance: The derivation of hew classes from existing classes. The new class (the subclass) may,
may not, have access to the methods and attributes in the base class.

 Overriding: Keeping the same method signature in the subclass that is defined in the base class, but
changing the implementation.

» Overloading: Changing the signature of the method in either the base class or the same class and
changing the implementation.

« Polymorphism: The ability of one class to represent another. It enables you to use a variable of a ba:
class type to hold a reference to an object of the same base class type or a subclass type. It also allc
you to use a variable of an abstract interface type to hold a reference to any of a number of objects
implementing that interface.

« Encapsulation: The ability to provide users with a well-defined interface to a set of functions in a way
that hides the internal workings of those functions. In OOP, encapsulation is the technique of keepin
together data structures and the methods (procedures) that act on them.

157

Chapter 9: Understanding Design Patterns

Fruit
-name : String

+printName() : void

— S
|

Apple | [Ora.nge
-name : String -name : String
+printName() : void +printName() : void

Figure 9-2: FruitBasket inheritance diagram

Listing 9—-1 demonstrates the polymorphic behavior with the Fruit class hierarchy. Notice that | create two
Fruit objects, Orange and Apple, and assign the variables references to instances of Orange and Apple obije
Although | declare the variables to be of type Fruit, the compiler does not complain about these declarations
because Apple and Orange are Fruit by inheritance and share the same interface.

Listing 9-1: FruitBasket.java

package Chapter9.Inheritance;

/IBase class
class Fruit{

private String name = "1 am a Fruit";
public void printName()}{

System.out.printin(name);

}
}

//Subclass
class Orange extends Fruit{

private String name ="l am an Orange";

/IOverridden method
public void printName()}{

System.out.printin(name);

}
}

class Apple extends Fruit{
private String name ="l am an Apple";

//Overridden method
public void printName()}{

158

Chapter 9: Understanding Design Patterns

System.out.printin(name);

}
}

public class FruitBasket{
public static void main(String[] args) {
/IDeclare two variables of type Fruit
Fruit Apple = new Apple();
Fruit Orange = new Orange();
//Call methods.
Apple.printName();

Orange.printName();

System.out.printin("Goodbye!");

The output from Listing 9-1 is as follows:

| am an Apple
| am an Orange
Goodbye!

From the output of Listing 9-1, you can see that polymorphic behavior is demonstrated when | call the
method printName(). The objects Apple and Orange automatically call the correct printName() method from
the correct class. You may have expected the Fruit object’s printName() method to be called because the tw
objects were defined as Fruit types.

Java handles polymorphism for you automatically. The object type is checked at runtime (this is known as
late—binding). Fortunately you get the behavior for free. You need not do anything special to implement
polymorphism, except create the correct class hierarchy.

Composition

Composition is a means of creating new functionality in an object by combining other objects within it. This
technique is simple and you use it more often than you think. To employ composition all you do is use
instance variables, which you can declare the variables as either public or private.

Let me demonstrate by implementing the FruitBasket example in Listing 9—-1, using composition instead of
inheritance. Notice from the class diagram in Figure 9-3 that no inheritance relationship exists between Apg
and Fruit or between Orange and Fruit. However, in the class definition for Apple and Orange | define a
variable fruit and assign a reference to a Fruit. This is composition.

159

Chapter 9: Understanding Design Patterns

Fruit
= -name : String <

+printName() : void

¢ ¢

Apple Orange
-name : String -name : String
-fruit : Fruit ~fruit : Fruit
+printName() : void +printName() : void

Figure 9-3: FruitBasket composition—class diagram

Listing 9-2 provides the composition example. | must also create an implementation of the printName()
method in each class. This method calls the printName() method of the Fruit class, which prints the fruit's
name. This is the opposite of polymorphism. To access the methods in the composed class you must define
accessor methods in the composing class. A client does not know that you hold references to these objects
(this is encapsulation), and so you must provide a way for the client to use the functionality of the composed
class.

Listing 9-2: FruitBasket.java

package Chapter9.Composition;

/IClass the gets "composed"
class Fruit{

private String name ="l am a Fruit.";
public void printName(String name){

System.out.printin(name);

}
}

/IComposing class
class Apple{

private String name ="l am an Apple.";
private Fruit fruit = new Fruit();

public void printName(){

fruit.printName(name);

}
}

//Composing class
class Orange{

private String name ="l am an Orange.";

160

Chapter 9: Understanding Design Patterns

private Fruit fruit = new Fruit();
public void printName()}{

fruit.printName(name);

}
}

/[Test bed class
public class FruitBasket{

public static void main(String[] args) {
/IVariable for the composing classes
Apple apple = new Apple();
Orange orange = new Orange();
//Print the names of the fruit
apple.printName();

orange.printName();

System.out.printin("Goodbye!");

The output from Listing 9-2 is as follows:

I am an Apple.
| am an Orange.
Goodbye!

Design—pattern implementation guidelines

Design patterns promote code reuse and object independence, two of the goals of OOP software design. Ju
because you create an application using the three characteristics of OOP — inheritance, encapsulation, anc
polymorphism — does not guarantee easy code maintenance or a high degree of code reusability.

As a result, the authors of Design Patterns provide the following guidelines for implementing patterns:

1. Do not program to implementations, only to interfaces. This guideline suggests that your classes onl
rely on well-defined interfaces, not class implementations. Relying on implementations creates
tightly coupled objects. In Java, this guideline suggests that you define interfaces or abstract classes
and then derive your classes from them and provide method implementations in the subclasses. The
client will declare variables of the interface type or the base class, and use references to the classes
that implement the methods.

2. When practical, use composition over inheritance. Inheritance has its place. It is a very useful
technique for promoting code reuse. After all, when a subclass can use methods in the base class, it
saves you from having to re-implement those methods. In addition, inheritance enables you to take
advantage of polymorphism.

However, when you use inheritance you must ensure that the interface of the base class remains
stable. Changing it can break the inheritance chain. For example, suppose you define a method in tf

161

Chapter 9: Understanding Design Patterns

base class that returns an int. Later, you change the method to return a long. This change will break
the base class’s interface, which the clients rely upon.

Because of the difficulty of changing the interface of the base class, the Design Pattern authors
suggest that you use composition. This concept requires you to combine existing objects into an
object to create new functionality, instead of using inheritance. The ripple effect produced by
changing a class interface used in composition is far smaller than the ripple effect produced by
changes in the inheritance model.

Composition also encourages encapsulation. When you assemble objects to create new functionality
each one will have a definite purpose. You only care about the interface and the results the objects
provide, not the implementation.

A good question to ask when choosing between inheritance and composition is: Do the classes define an
“is—a” relationship? If you answer yes, then you should use inheritance. To illustrate, in previous examples i
is obvious that an Apple “is—a” Fruit and therefore warrants using inheritance.

However, you may encounter a questionable “is—a” relationship. For example, at a track meet you may think
sprinter “is—a” Runner. However, what if the sprinter is in a decathlon? Now he or she can become a shot
putter, pole-vaulter, and/or javelin thrower, for example. The sprinter has changed roles. In this case you
should use composition to create a type, Athlete, that is composed of the different types that match the ever

Deciding whether to use composition or inheritance is hard. Fortunately, following a prescribed design patte
will lead you in the right direction.

Summary

Creating robust and scalable OO applications can be difficult. Design patterns can make it easier, because 1
describe time—proven standard architectures for implementing software. In addition, the patterns can help y
see how a solution fits together and provide a “big picture” view of your application.

In this chapter, | presented the three categories of design patterns: creational, structural, and behavioral. Ne
| presented an overview of the patterns in each category. In the last section | covered inheritance and
composition, the two OOP principles that greatly influence how you implement a design pattern. | also
presented the implementation guidelines recommended by the authors of Design Patterns.

162

Chapter 10: Building the Singleton Pattern
In This Chapter

» Understanding the purpose of the Singleton pattern
» Understanding the structure of the Singleton pattern
 Implementing the Singleton pattern

» Making a Singleton thread-safe

In Chapter 9, | introduced the subject of design patterns and presented the 23 patterns in the book Design
Patterns by Gamma, Helm, Johnson, and Vlissides. In this chapter, | go into more detail about one of the
more useful and frequently used patterns, the Singleton.

The Singleton pattern is a creational pattern that you use to ensure that only one instance of an object exist:
This means that other objects share the same instance. Why would you want only one instance of an object
Think of the Singleton as a dispatcher. All communications must go through the same “person.” The
dispatcher has complete control over what gets communicated. The Singleton pattern is advantageous whe
you need to emulate a single point of contact as with the dispatcher just described.

| begin the chapter with a discussion of the details of the Singleton pattern. Next, | present its structure and
present two implementation examples. The first example shows the basic implementation of the Singleton
pattern, and the second shows how to apply it to JDBC programming to create a connection manager.

What Is a Singleton Pattern?

The purpose of most creational patterns is to create other objects. The purpose of the Singleton pattern,
however, is to ensure that only one instance of an object exists at any one time. Other client objects, insteac
instantiating another Singleton, retrieve a reference to the active object.

A Singleton object also maintains responsibility for controlling its only instance. It hides its constructor to
prevent other objects from instantiating it. A Singleton object provides an access method with which clients
may retrieve a reference to the instance as opposed to calling the constructor directly.

Using a Singleton pattern is not the only technique you can use to create a single—object instance. For
example, you can declare a global variable in a class and instantiate it once within your application. Howeve
if you are creating a toolkit or application framework you may not want other objects, over which you have n
control, to create another instance. Singletons provide the solution to this problem.

So when would you want to implement an object as a Singleton? One example is when you need to implem
a “manager” object of some sort. Manager objects can do many things — such as controlling other objects,
providing objects to clients, or overseeing services such as printing. By making a manager a Singleton you
ensure that all requests funnel through the same object.

With respect to JDBC programming, a connection manager is an ideal candidate to implement as a Singletc
The connection manager can provide a single protected point of access into the database. You can

pre—configure connection attributes such as username, password, and JDBC URL so they are consistent ar
also eliminate duplicate connection code throughout your application. You can also use a connection manag

163

Chapter 10: Building the Singleton Pattern

to create a connection pool of n number of Connection objects and provide clients with objects from that poc
You can add many features and capabilities to a connection manager to suit your needs. These are only a f
examples.

Note You will find the Singleton pattern very useful and you may want to use it to implement other
patterns as well. The Abstract Factory, Builder, and Prototype patterns are prime candidates.

Structure of the Singleton Pattern

The structure of the Singleton pattern is straightforward. It consists of one class that provides the functionali
to ensure only a single instance is ever instantiated. The class also defines a method, or global access poin
with which other objects can retrieve a reference to the instance.

Figure 10-1 provides a UML class diagram of a Singleton class called MySingleton. Notice that the
constructor is private to prevent other objects from instantiating it. The class also uses the private class
variable, mySingleton, to store a reference to the single instance. The getinstance() method provides the
global access point by returning a reference to the single instance of the object stored in mySingleton. You
can also define other methods to give the object additional functionality. In this example | define method1(),
method2(), and method3().

The programming flow of the Singleton pattern is depicted in Figure 10-2. When you need a reference to th
Singleton object you call the getinstance() method. The getinstance() method checks to see if the private cl
variable mySingleton equals null. If it does not, the private constructor MySingleton() is called to instantiate
the object before returning the reference. Otherwise, the method returns the reference to the instance held i
the mySingleton variable.

MySingleton

-mySingleton : MySingleton
-MySingleton()
+getinstance() : MySingleton
+method1()

+method2()
+method3()

Figure 10-1: UML diagram of the Singleton pattern

164

Chapter 10: Building the Singleton Pattern

call
getinstance()

yes

Y

call
MySingleton()

Y

> return mySingleton |
. S

Figure 10-2: Flowchart of the Singleton pattern

Using the Singleton Pattern
To fully implement the Singleton pattern, you must make sure that the following two criteria are met:

1. Only one instance of the object can exist. This is the key feature of the Singleton pattern. To meet th
goal you typically define a class, with a private, static class variable of that class’s type, to hold a
reference to the only instance. In addition you protect the class’s constructor by making it private.
Clients trying to call the constructor will receive a compilation error.

2.You must define a global access method with which clients can obtain references to the instance. Y
do this by providing a static method that returns a reference to the only instance of the object.

In the remainder of this section I'll develop two example applications to illustrate the Singleton pattern. In the
first example, | show the basic architecture of the pattern. In the second example, | apply the pattern to JDB
programming by creating a connection manager that controls access to the database and divvies out
Connection objects.

Basic Singleton example

A simple Singleton pattern is easy to implement. You create a single instance of an object and provide an
accessor method that returns its reference to clients as needed.

Figure 10-3 shows the UML class diagram for my example. Notice that the SimpleSingleton class has two
variables, s1 and s2, that are references to the Singleton class. When the application executes, these varial
hold the same object reference. | created the two variables to show that the same reference is used in both

165

Chapter 10: Building the Singleton Pattern

cases.

Also, notice that | define a private constructor to prevent client objects from trying to instantiate the class
directly. Any call to the constructor made from outside the class generates compilation errors. To obtain a
reference to the instance a client must call the getinstance() method, which returns a reference to the Single
object. This method is the global access point, defined by the Singleton pattern, which allows other objects t
retrieve a reference.

Listing 10-1 is the source code for my example, which demonstrates how to construct and use a basic
Singleton, plus how the Singleton pattern limits the number of instances an object can have.

Singleton

-mySingleton : MySingleton

-MySingleton()
+getlnstance() : MySingleton

SimpleSingleton

null
null

-s1 : Singleton
-s2 : Singleton

+main() : void
Figure 10-3: UML diagram of basic Singleton example

Listing 10-1: BasicSingleton.java

package Chapter10;

/[This is the test harness class
public class BasicSingleton {

/IVariables to hold references to the Singleton object
static Singleton s1 = null, s2 = null;

public static void main(String][] args) {

/IRequest a reference to the Singleton object

String msg="Beginning to get an instance of a Singleton.";
System.out.printin(msg);

sl = Singleton.getinstance();

/[Try to assign a new reference to the second

/ISingleton variable s2.

msg="Assign a reference to the Singleton object to another "
+ "Singleton variable. The Object Id should be the same.";

System.out.printin(msg);

166

Chapter 10: Building the Singleton Pattern

s2 = Singleton.getinstance();

Ylend main()
}lend BasicSingleton class
/limplementation of the Singleton Class
class Singleton{

/IPrivate reference to the only instance of the Singleton object.
private static Singleton mySingleton = null;

/IPrivate constructor to prohibit direct object instantiation.
private Singleton(){}

/IMethod to retrieve a reference to the only instance.
public static synchronized Singleton getinstance(){

/Nf null create the instance
if(null == mySingleton){

System.out.println("Singleton object not instantiated yet.");
mySingleton = new Singleton();
System.out.print("Singleton object instantiated. Object id:");
System.out.printin(mySingleton.toString());
System.out.println();

/If not null return the only instance
telse{

System.out.print("Singleton object already instantiated. " +
"Object id:");
System.out.println(mySingleton.toString());
System.out.println();
Ylend if
return mySingleton;

}lend getinstance()

}lend Singleton class

The output from Listing 10-1 is as follows:

Beginning to get an instance of a Singleton.
Singleton object not instantiated yet.
Singleton object instantiated. Object
id:Chapter10.Singleton@2a340e

Assign a reference to the Singleton object to another
Singleton variable. The Object Id should be the same.
Singleton object already instantiated.

Object id:Chapter10.Singleton@2a340e

The output from Listing 10—1 shows the flow of the program. In the example, | always print the Object Id in
the getinstance() method so you can verify that the same object is always returned from the getinstance()

167

Chapter 10: Building the Singleton Pattern

method. The first thing | do is obtain a reference to the Singleton object and store it in variable s1. Notice
from the output that the first call to the getinstance() method indicates that the Singleton object does not exi
Therefore, the method calls the private constructor of the Singleton class to create the instance and assign |
the private class variable, mySingleton. After the instance is created, the method returns the reference and 1
Object Id is printed.

Tip You should synchronize the Singleton method that returns the object reference. If you implement a
multi-threaded application you may have several threads calling the method simultaneously. You need
synchronize this method to ensure that the constructor is not called multiple times.

Next, | declare another variable, s2, to store another reference to the Singleton object. This time when | call
the Singleton.getinstance() method, it returns a reference to the same Singleton object. You can see from tt
output that the object already exists, and so the identical reference is returned.

This example illustrates the concepts and components necessary to implement the Singleton pattern. The n
points to remember are:

« Make the constructor private so clients cannot instantiate the class
» Maintain a private reference to the Singleton object
 Provide a global access method to return a reference to the Singleton object

Connection manager Singleton example

In this section, | apply the Singleton pattern to JDBC programming to create a connection manager. As |
mentioned earlier, a connection manager is a perfect object to implement as a Singleton because having on
point of access into a database can have many benefits.

For example, you can place another layer of security into your application by allowing certain classes or use
to access the object and obtain a database connection. Or you may want to abstract the connection details,
such as loading drivers and building JDBC URLSs, from the client. In addition, you can build an application
with static usernames and passwords to ensure that the same database user connects every time. This can
if you roll your own application security and need everyone to connect as the same user.

Implementing the connection manager as a Singleton is a process much like the one in the previous examp
You might expect this because design patterns provide standard robust implementations with consistent
implementations.

Figure 10-4 shows the UML class diagram for the example. The ConnectionMgr class is a standard
implementation of the Singleton pattern. | declare a private class variable, connMgr, to hold an instance of tt
object, make the constructor private, and create a method, getinstance(), that provides the global access po
| also synchronize the getinstance() method to make it thread safe.

As in the previous example, | declare two class variables, cm1 and cm2, to hold references to the
ConnectionMgr instance. | do this to demonstrate that all calls to the getinstance() method of ConnectionMg
return the same object reference. | do the same with the variables connl and conn2, which reference the sa
Connection object.

Remember that | only want one connection to the database. Therefore | declare within ConnectionMgr a

private variable, conn, to hold the database connection. In essence, | am treating this object as a Singleton |
well. In the connect() method, | check to see if conn equals null. If it does, | create a database connection ar
return the object reference. Otherwise | return the existing reference, thus preventing another connection frc

168

Chapter 10: Building the Singleton Pattern

occurring.

Listing 10-2 provides the code for the connection manager application.

ConnectionMgr
-connMgr : ConnectionMgr
-conn : Connection
-jdbeUrl : String
-user : String
-pwd : String

-openConnection() : void
+connect() : Connection
+getinstance() : ConnectionMgr

-ConnectionMgr()

Client

-cm1 : ConnectionMagr
-cm2 : ConnectionMar
-conn1 : Connection
-conn?2 : Connection

-main() : void

Figure 10—4: UML class diagram for Connection Manager Singleton

Listing 10-2: Client.java

package Chapter10;

/ISpecific imports
import java.sql.*;

public class Client{

/IReferences to the Singleton object
public static ConnectionMgr cm1 = null;

public static ConnectionMgr cm2 = null;
/IDatabase Connection objects

public static Connection connl = null;
public static Connection conn2 = null;
public static void main(String[] args){

try{

/IGet two instances of Connection Manager
cml = ConnectionMgr.getinstance();

169

Chapter 10: Building the Singleton Pattern

cm2 = ConnectionMgr.getinstance();

/[Print out object ids, they should be the same
System.out.printin("Verify ConnectionMgr object ids are equal:");
System.out.printin("cm1 object id: " + cm1.toString());
System.out.printin(“cm2 object id: " + cm2.toString());
System.out.println();

//Obtain two references to the Connection object
System.out.printin("Obtain database connections:");
connl = cml.connect();

conn2 = cm2.connect();

/[Print object ids for the connection object. They should be the same.
System.out.printin("Verify object ids are the same:");
System.out.printin("connl object id: " + connl.toString());
System.out.println("conn2 object id: " + conn2.toString());
System.out.println();

/[Demonstrate the connection works
Statement stmt = connl.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM Employees");

System.out.printin("Listing result set contents:");
while(rs.next()){

int ssn= rs.getint("ssn");
String name = rs.getString("name");
double salary = rs.getDouble("salary");

System.out.print("Row Number=" + rs.getRow());
System.out.print(", SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.printin(", Salary: $" + salary);

}

connl.close();
conn2.close();

/IStandard error handling.
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
/[Handle all other errors
e.printStackTrace();
Hinally{
/[Ensure all database resources are close
try{
if(conn1!=null)
connl.close();
if(conn2!=null)
conn2.close();
Jcatch(SQLException se){
se.printStackTrace();

}

Ylend try

System.out.printin("Goodbye!");

170

Chapter 10: Building the Singleton Pattern

}

}lend Client class
class ConnectionMgr{

/ICreate the Singleton variables
private static ConnectionMgr connMgr= null;
private static Connection conn = null;

/IPrivate attributes used to make connection

private String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:0RCL";
private String user = "toddt";

private String pwd = "mypwd";

/[Ensure no one can instantiate the object except this class

private ConnectionMgr() {}

/IPrivate method to create connection. The ConnectionMgr does

/Inot let the client do this.

private void openConnection() throws Exception{
String msg = "Connection has not been opened. Begin connection phase...";
System.out.printin(msg);

//Load a driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Obtain a Connection object
System.out.printin("Connecting to database...");
System.out.printin();

conn = DriverManager.getConnection(jdbcUrl,user,pwd);
System.out.printin("Connection successful..");

}

//Access method to return a reference to a Connection object
public Connection connect() throws Exception{

/If it doesn’t exist open a connection which

/linstantiates a Connection object.

if(conn==null||conn.isClosed())
openConnection();

return conn;

}

//Public method to get the only instance of Connection Manager.
public static ConnectionMgr getinstance()}{

/lIf it has not been initialized, do it here.
/[Otherwise just return existing object.
if(connMgr==null)

connMgr = new ConnectionMgr();

return connMgr;

171

Chapter 10: Building the Singleton Pattern

}lend ConnectionMgr class

The output from Listing 10-2 is as follows:

Verify ConnectionMgr object ids are equal:
cml object id: Chapter10.ConnectionMgr@3e86d0
cm2 object id: Chapter10.ConnectionMgr@3e86d0

Obtain database connections:
Connection has not been opened. Begin connection phase...
Connecting to database...

Connection successful..

Verify object ids are the same:

connl object id: oracle.jdbc.driver.OracleConnection@4741d6
conn2 object id: oracle.jdbc.driver.OracleConnection@4741d6

Listing result set contents:

Row Number=1, SSN: 111111111, Name: Todd, Salary: $5000.0
Row Number=2, SSN: 419876541, Name: Larry, Salary: $1500.0
Row Number=3, SSN: 312654987, Name: Lori, Salary: $2000.95
Row Number=4, SSN: 123456789, Name: Jimmy, Salary: $3080.0
Row Number=5, SSN: 987654321, Name: John, Salary: $4351.0
Goodbye!

Notice from the output that the object references for the ConnectionMgr variables are identical. The same
holds true for the Connection object variables. This is the marquee feature of the Singleton pattern.

| can easily extend Listing 10-2 to provide a lot more functionality. For example, | can provide a reference
counter to allow a maximum number of Connection objects to be created. Going one step further, if | store
each Connection object in a container such as a Vector, and provide access methods to the container, | can
create a connection pool. Now when clients request a connection, the ConnectionMgr object can provide on
that has already been created from the pool. This approach saves the time it would take to create new
connections on demand.

XRef In Chapter 14, “Using Data Sources and Connection Pooling,” | show you how to create a connection
pool and use the JDBC Optional Package connection—pooling features.

| can also define a boolean flag in the ConnectionMgr class to indicate when to open a database connectior
Currently, | open the connection only when the getConnection() method is called. This technique is called la
initialization — that is, the connection is opened only when requested. The other option is to open the
connection from the getinstance() method. If you are creating a connection pool it may prove beneficial to
initialize the Connection objects in the beginning. This can save time because the client does not have to we
for the connection to be opened; it retrieves the reference immediately. However, you incur the overhead of
having numerous open database connections that may never be used.

Summary

The Singleton pattern proves useful when you need to ensure that only one instance of an object exists. An
object that acts as a manager is typically implemented as a Singleton because you usually want only one

172

Chapter 10: Building the Singleton Pattern

instance to exist so that all activity will funnel through it.

With respect to JDBC programming, a connection manager object is an ideal candidate for a Singleton obje
Ensuring that all requests for database connections go through one point can help you implement security
schemes and abstract connection details from client object.

As a brief overview, to create a Singleton object you do the following:
» Make the class constructor private so clients cannot instantiate the class.

« Define a private reference to the Singleton object in the class.
« Provide a global access method to return a reference to the Singleton object to the client

173

Chapter 11: Producing Objects with the Factory
Method Pattern

In This Chapter

« Details of the Factory Method pattern
e Components of the Factory Method
* Applying the Factory Method to JDBC programming

This chapter provides details on the creational pattern called the Factory Method. You will find this pattern
used frequently in object—oriented programming to create other objects. The general approach of this patter
is to define a factory method in a base class and rely on the subclasses to provide implementations that cre:
specific objects.

Notel use the term Factory Method to refer to the pattern definition. | use the term factory method to refer to
the method within a factory that creates a product object. The term factory refers to an object that
implements a factory method.

| begin this chapter with a discussion of the details of the Factory Method pattern. Next, | present the structu
of this pattern and provide two implementation examples that create JDBC Connection objects. The first is &
simple factory that produces connection objects upon request. The second is an enhanced version of the fir
It can support multiple databases, accept connection parameters, and has a connection manager to control
access.

What Is the Factory Method Pattern?

The purpose of the Factory Method pattern, like that of other creational patterns, is to create other objects.
Patterns in this category tend to abstract the object—creation process from the client. In other words, the clie
knows nothing about how the factory produces the objects, only that it (the client) receives the correct objec
when it makes a request to the factory method.

The Java and JDBC APIs use factory methods extensively. For example, DriverManager is a factory that
creates Connection objects with the getConnection() method. The Connection object is also a factory that
instantiates Statement objects with the Connection.createStatement() method. These are just two examples
I'm sure you will discover more if you look in greater detail at the APl documentation.

It may help to think of the Factory Method pattern as a brick-and—mortar factory. Instead of producing
tangible items like washers and dryers, it produces objects. Just as some manufacturing facilities use a
machine to create a product, the Factory Method pattern uses a method. As you might expect, this method i
called the factory method.

Producing objects via factories has many benefits. First, you abstract object creation from the client. This
enables you to change the way you create the objects in the factory without affecting the client. In addition,
using factories provides you with a single consistent method for creating objects. For example, suppose you
need to create Connection objects with certain timeout limits. Defining a timeout parameter in a factory
enables you to produce Connection objects with the desired timeout value time after time.

174

Chapter 11: Producing Objects with the Factory Method Pattern

Introducing the Factory Method Structure

In general, the Factory Method pattern relies on subclasses to create instances of objects. The base class
defines the interface and the factory method to create the product object. Subclasses provide the
implementation of the factory method. This architecture yields a lot of flexibility and extensibility. As you
need to support different objects, you can create new subclasses and implement a factory method to create
different objects.

To go one step further, you may define interfaces for the factory products and reference them in the client
instead of concrete product classes. You may find this method beneficial when your client cannot anticipate
which factory product it will use. By referencing the base class in the client, it can use any subclass product.
By defining factory interfaces you allow the client to work with any factory, and by defining the product
interfaces you allow the client to use any product. By letting the client rely on interfaces you completely
remove application—specific code.

You must define four classes to implement the Factory Method in its purest form. However, you can combin
the functionality of some classes into one depending upon your needs. For example, if you only have one
product you can implement the factory method in a base class and only override it in a subclass when you
need to create different products. Defining an abstract class and extending it to build a single product is
needlessly complex.

Like most design patterns, this one relies heavily on abstract classes and interfaces. Figure 11-1 shows the
relationships among the classes used in this pattern. The following list provides an explanation of the
components shown in the figure:

1. Factorylnterface: The base class or interface that defines the factory method but does not implemen
it. You can create the Factorylnterface as an interface, abstract class, or standard class.

2. Factory: The class that implements the Factoryinterface. When the Factorylnterface is a class or
abstract class, the Factory class extends it. When the FactoryInterface is a pure interface, this class
implements it.

3. Productinterface: The base class or interface that defines the Product objects that the Factory object
creates.

4. Product: The class that implements the Productinterface. When the Productinterface is an abstract
class, the Product class extends it. When the Productinterface is a pure interface, this class
implements it.

Abstract Factory Pattern

The book Design Patterns by Gamma, Helm, Johnson, and Vlissides (Addison—-Wesley, 1995) also describe
the Abstract Factory, a pattern very similar to the Factory Method. Like the Factory Method pattern, this
pattern abstracts the object—creation process from the user. The main difference between the two is that the
Abstract Factory pattern creates families, or groups, of related products. The Factory Method, like other
creational patterns, only creates one product per subclass.

Implementing this pattern requires you to define an abstract class or interface that defines multiple factory

methods to create related objects. The subclasses then provide the implementation to create the objects
belonging to that family.

175

Chapter 11: Producing Objects with the Factory Method Pattern

With regard to JDBC programming, you can use the Abstract Factory pattern to create factories that produc
families of database-specific objects. You may have an Oracle family, an SQL Server family, and an
Informix family of objects. Each factory will be dedicated to a specific database and create objects for that
family. For example, an Oracle Abstract Factory object could produce objects, such as Connection and
Statement, specifically tailored to Oracle. This approach is particularly helpful when a vendor extends the
JDBC API to take advantage of a particular database’s functionality. Using the Abstract Factory pattern you
can build frameworks that support different database systems and take advantage of the extra functionality.

<<interface>>
Productinterface

<<interface>>
Factorylnterface

“ +FactoryMeth0d()J
; JAN | o
Faciory | . Product
[o
+FactoryMethod() | ﬁfggfft ~ ‘

Figure 11-1: UML class diagram for the Factory Method pattern

Using the Factory Method

The defining feature of the factory pattern is that the subclasses decide which Product object to create. As |
mentioned earlier, you define the factory method in an interface or abstract class and provide the
implementation in the subclasses. This will enable you to use the different subclasses to create the objects
need.

Although the pattern often focuses on factories that create different products of the same type, you can also
use it to create only one product. In this case, you can opt to implement the factory method in an abstract
class. This will enable you to create subclasses that override the method and create different products if
needed.

An advantage of using the Factory Method pattern is that it uses polymorphism. Because the client relies or
the base class interface, you can create additional factories without affecting the client object. The client
object only cares that the factory is of the base class type.

A disadvantage of using the Factory Method pattern is that you must define a new factory for each additione
product you want to support. If you have a lot of product classes, you may find this pattern difficult to manag
because the number of subclasses increases to match the number of products. You may want to consider tf
Prototype pattern (described in Design Patterns), which focuses on “cloning” objects versus creating new
subclasses.

So far | have provided a lot of theory; now for an example. Listing 11-1 shows you an implementation of the

Factory Method pattern applied to JDBC programming. | create a simple connection factory that produces
Connection objects for an Oracle database. Figure 11-2 shows the class diagram for the example and Tabl

176

Chapter 11: Producing Objects with the Factory Method Pattern

11-1 maps the standard Factory Method’s components to the classes in the example.

Table 11-1: Mapping of Factory Method Components to BasicFactory Example Components

Factory Method Component BasicFactory Components
FactoryInterface ConnectionFactory
Factory ConnectionFactory
Productinterface Connection (interface defined in java.sql package)
Product Connection
Client BasicFactory
BasicFactory 1.0 ConnectionFactorryw‘
-cf : ConnectionFactory | &)
-conn : Connection | d| +ConnectionFactory()
+main() : void +connect() : Connection
creates
Connection
A
Connection |

r

\'A'/ -
<<interface>>
Connection

Figure 11-2: UML class diagram of BasicFactory method example

Listing 11-1: BasicFactory.java

package Chapterll;
import java.sql.*;

/[Factory class
class ConnectionFactory{

public ConnectionFactory() {}

//[Factory method to return a Connection object
public Connection connect()throws Exception{

/lLoad a driver

String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

177

Chapter 11: Producing Objects with the Factory Method Pattern

//Set connection parameters
System.out.printin("Connecting to database...");

String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:0RCL";
String user = "toddt";

String pwd = "mypwd";

/ICreate a Connection object
Connection conn = DriverManager.getConnection(jdbcUrl,user,pwd);
System.out.printin("Connection successful...");

/[Return Connection object
return conn;

}

}lend ConnectionFactory

/IClass to demonstrate use of Factory Method
public class BasicFactory{

public static ConnectionFactory cf = null;
public static Connection conn = null;

public static void main(String[] args) {

try{

/lInstantiate a ConnectionFactory object
cf = new ConnectionFactory();

//Obtain a connection to the database
conn = cf.connect();

/IPopulate a result set and show the results
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM Employees");

/llterate through the result set
while(rs.next()){

/IRetrieve column values and display values

int ssn= rs.getint("ssn");

String name = rs.getString("name");

double salary = rs.getDouble("salary");
System.out.print("Row Number=" + rs.getRow());
System.out.print(", SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.printin(", Salary: $" + salary);

}

//Standard error handling.
}catch(SQLException se){

se.printStackTrace();
}catch (Exception e){

e.printStackTrace();

178

Chapter 11: Producing Objects with the Factory Method Pattern

/IEnsure all database resources are closed.

Hinally{
try{
if (conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();

}
Hlend try

System.out.printin("Goodbye!");
}

}lend BasicFactory class

The output from Listing 11-1 is as follows:

Connecting to database...

Connection successful...

Row Number=1, SSN: 111111111, Name: Todd, Salary: $5000.55
Row Number=2, SSN: 419876541, Name: Larry, Salary: $1500.75
Row Number=3, SSN: 312654987, Name: Lori, Salary: $2000.95
Row Number=4, SSN: 123456789, Name: Jimmy, Salary: $3080.05
Row Number=5, SSN: 987654321, Name: John, Salary: $4351.27
Goodbye!

In Listing 11-1, | combine the functionality of the Factorylnterface and Factory into one class,
ConnectionFactory, because | have only one product, a Connection object for an Oracle database. If | want
support other databases | can create a class that extends ConnectionFactory, and override the factory meth
to create the appropriate Connection object. In this example, the connect() method is the factory method. It |
responsible for creating the product, a Connection object.

The ConnectionFactory abstracts the database connection process from the client. The client knows nothing
about how the ConnectionFactory implements this process; it only cares whether or not the method returns
valid Connection object. In the preceding example | hard—code the connection parameters such as usernarr
password, JDBC URL, and driver. Ideally you want to dynamically capture these values, most likely by using
XML or .properties file.

The BasicFactory class demonstrates the Factory Method pattern in action. Using this class is straightforwa
In the Listing 11-1 | instantiate a ConnectionFactory object and retrieve a Connection object using its
connect() method. Next, | create a Statement object and populate a result set by executing a simple SELEC
guery. Once populated, | loop through the result set to list its contents.

Listing 11-1 represented a very simple implementation of the factory method. Although it hides the details o
connecting to a database from a client, it is very limiting. For example, the client directly instantiates the
factory, which tightly couples the two objects. Including the concrete factory class name binds the code to
using that class, which is akin to hard—coding usernames and passwords. To use a different factory you hav
to change the class name and recompile the code.

Fortunately, you have several options when implementing the Factory Method pattern to help solve this
problem. You can apply any of the following variations:

1. Implement the factory object as the Singleton pattern to guarantee that you receive your objects fron

179

Chapter 11: Producing Objects with the Factory Method Pattern

a single source.

2. Parameterize the Factory class to create different product objects. Clients can supply different
parameters to the factory to retrieve different products. This option enables you to change the factor
method dynamically based on your application’s current need.

3. Define an interface for the Factory and let the client reference it in order to change factories as
needed.

In my next example, | build a connection manager that uses a factory that incorporates the enhancement lis
above. The following list identifies some of the features:

» The ConnectionManager and Factory objects are implemented as a Singleton.

 You can supply usernames, passwords and database IDs as parameters to control what database y
connect to and which database user account you connect with.

« | define an abstract factory class and build specific factory classes that provide connections to either
an Oracle or an Access database.

| also remove the client’s reliance on concrete classes in the following example. The product and factory cla
names appear only in the connection manager, not in the client’'s code base. This architecture creates a
framework in which you can add your own database connection factory for your system. Remember, the
authors of Design Patterns suggest that you program to interfaces rather than to implementations. Listing
11-2 provides the code for an enhanced version of the Factory Method pattern in which | show you how to ¢
this.

Listing 11-2: EnhancedFactory.java

package Chapterll;
import java.sql.*;

/IAbstract class that defines interface for factory objects
abstract class AbstractConnFactory {

/IProtected variables that hold database specific information
protected static Connection conn;

protected String dbType = null;

protected String user = null;

protected String password = null;

protected String driver = null;

protected String jdbcUrl = null;

protected String database = null;

/IClose the database connection
public void close() throws SQLException {

/ICheck if conn is null, if not close it and set to null
if (conn!=null){

System.out.printin("Closing connection");
System.out.println();

conn.close();

conn = null;

180

Chapter 11: Producing Objects with the Factory Method Pattern
//Access method to return a reference to a Connection object
public Connection connect() throws Exception{

if(conn!=null){
System.out.println("Connection exists. Returning instance...");

telse{

System.out.printin("Connection not created.
Opening connection phase...");
openConnection();
Ylend if

return conn;

}

/IPrivate method to create connection.
private void openConnection() throws Exception{

/IRegister a driver
Class.forName(driver).newlnstance();

//Obtain a Connection object

System.out.printin("Connecting to " + dbType + " database...");
conn = DriverManager.getConnection(jdbcUrl, user, password);
System.out.printin("Connection successful..");

}

Mlend AbstractConnFactory

/ISubclass of the AbstractConnFactory for connecting
to an ODBC database.
class OdbcConnFactory extends AbstractConnFactory{

/[Private variables
private static OdbcConnFactory ocf= null;

/[Private constructor
private OdbcConnFactory() {

jdbcUrl ="jdbc:odbc:";
driver = "sun.jdbc.odbc.JdbcOdbcDriver";

}

/IPublic method used to get the only instance of OdbcConnFactory.
public static synchronized AbstractConnFactory getinstance(){

/[If not initialized, do it here. Otherwise return existing object.
if(ocf==null)

ocf = new OdbcConnFactory();

return ocf;

}

//Overridden method to open a database connection
public Connection connect() throws Exception{

181

Chapter 11: Producing Objects with the Factory Method Pattern

/IConfigure the JDBC URL
jdbcUrl = jdbcUrl + database;

/ICall the base class method to provide the connection
return super.connect();

}

}lend OdbcConnFactory

/I Subclass of the AbstractConnFactory for connecting
to an Oracle database.
class OracleConnFactory extends AbstractConnFactory{

/[Private variables
private static OracleConnFactory ocf= null;

/IPrivate constructor
private OracleConnFactory() {

jdbcUrl = "jdbc:oracle:thin:@localhost:1521:";
driver = "oracle.jdbc.driver.OracleDriver";

}

//IPublic method used to get the only instance of OracleConnFactory.
public static synchronized AbstractConnFactory getinstance(){

/I not initialized, do it here. Otherwise just return
existing object.
if(ocf==null)
ocf = new OracleConnFactory();

return ocf;

}

//Overridden method to open a database connection
public Connection connect() throws Exception{

/IConfigure the JDBC URL
jdbcUrl = jdbcUrl + database;

/ICall the base class method to provide the connection
return super.connect();

}
}lend OracleFactory

/IClass to demonstrate the enhanced Factory Method
public class EnhancedFactory {

/IOnly reference to ConnectionManager
static public ConnectionManager cm = null;

//Main method
public static void main(String[] args)¥{

try{

182

Chapter 11: Producing Objects with the Factory Method Pattern

/IRetrieve the only instance of ConnectionManager
cm = cm.getinstance();

/ICreate and close a connection to the Oracle database to

/l[demonstrate that it works.

Connection conn = cm.connect(cm.ORACLE, "toddt", "mypwd", "ORCL");
cm.close();

//Open a connection to an Access database using ODBC
conn = cm.connect(cm.ODBC, null, null, "employees");
cm.close();

/[Catch all the relevant errors
}catch(ConnectionManagerException cme){
cme.printStackTrace();
}catch(SQLException se){
se.printStackTrace();
}catch(Exception e){
e.printStackTrace();
/lUse finally block to ensure database resources are closed
Hinally{
if(cm!=null)
try{
cm.close();
}catch(SQLEXxception se){
se.printStackTrace();
}
}

}lend main()

}lend EnhancedFactory

/[Class that manages database connections
class ConnectionManager {

/IConstants to represent database types
public static final int ORACLE = 100;
public static final int ODBC = 200;

/IVariables to hold only instance of ConnectionManager class
private static ConnectionManager connMgr = null;

/Holds reference to the specific connection factory
private static AbstractConnFactory acf =null;;

/[Private constructor
private ConnectionManager() {}

//Method that provides connection logic
public Connection connect (int dbType, String user,
String password, String db) throws Exception{

/[Examine the dbType parameter and assign the appropriate
/[factory to the

/lacf, which is the base class type.

switch(dbType){

/ISpecific factories are Singletons so get the only

183

Chapter 11: Producing Objects with the Factory Method Pattern

/linstance and set the appropriate connection values.
case ORACLE:

acf = OracleConnFactory.getinstance();

acf.dbType ="Oracle";

break;

case ODBC:
acf = OdbcConnFactory.getinstance();
acf.dbType="ODBC";
break;
/[Error handling for unsupported database types.
default:
throw new SQLException("Type not supported");
Ylend switch
acf.database=db:;
acf.user=user;

acf.password=password;

/IConnect to the database and return reference.
Connection conn = acf.connect();

return conn;

}

/[Close the database connection.
public void close() throws SQLException{

acf.close();

}

//Public method used to get the only instance of ConnectionManager.
public static synchronized ConnectionManager getinstance(){

if(connMgr==null)
connMgr = new ConnectionManager();

return connMgr;

}

}/lend ConnectionManager
//Used to handle ConnectionManager specific errors
class ConnectionManagerException extends SQLException {

/ldefault constructor
public ConnectionManagerException(){

super();
}

/IConstructor that allows you to specify your own error messages.
public ConnectionManagerException(String msg){

184

Chapter 11: Producing Objects with the Factory Method Pattern

super(msg);

}

}! end ConnectionManagerException

The output from Listing 11-2 is as follows:

Connection not created. Beginning connection phase...
Connecting to Oracle database...

Connection successful..

Closing connection

Connection not created. Beginning connection phase...
Connecting to ODBC database...

Connection successful..

Closing connection

Listing 11-2 uses numerous objects. Figure 11-3 provides a UML class diagram showing the relationships
the classes used in the example. To further help understand the classes, Table 11-2 maps the Factory Metl
components to the classes in the example.

In the code listing, | create the AbstractConnFactory to represent the Factorylnterface. | make the class
abstract for two reasons. First, | do not want the class to be directly instantiated. Rather, | want clients to us
one of the connection factories, either Oracle or ODBC. Secondly, the two factories share implementations «
the openConnection() and the close() methods. If the methods need to be different, | can always override th
in a subclass.

Figure 11-3: UML class diagram of the enhanced Factory Method example

Table 11-2: EnhancedFactory Example Classes

Factory Method Components EnhancedFactory Components
FactoryInterface AbstractConnFactory class
Factory OracleConnFactory class
OdbcConnFactory class
Productinterface java.sgl.Connection interface
Product java.sgl.Connection interface

185

Chapter 11: Producing Objects with the Factory Method Pattern

Client ConnectionManager

Interfaces versus Abstract Classes

Sometimes it is not obvious when you should use an interface or abstract class. Both provide similar
functionality in that neither can be instantiated and each defines a common interface for subclasses.

An interface is an abstract class without any method implementations. As a result, no storage is associated
with an interface. In Java, combining interfaces in a class definition enables you to mimic multiple
inheritance. This in turn enables you to upcast the class to any interface type included in the definition.

The advantage of an abstract class is that you can provide common implementation code without requiring
subclasses to rewrite the same code.

When deciding which one to use, you should consider if you need multiple inheritance, or if you have
numerous methods with identical implementations, that you can share among subclasses.

In Listing 11-2 the two factories, OracleConnFactory and OdbcConnFactory, extend the
AbstractConnFactory class. This allows the subclass access to the protected properties and methods of the
base class, and ensures that they share the same interface. | override the connect() method of the base cla:
order to configure the jdbcUrl property. However, | still call the base class’s implementation to take advantag
of how it manages the Connection object. You can easily add additional functionality in these factory
subclasses. For example, Oracle has numerous extensions to the JDBC API that enables you to take advar
of specific Oracle characteristics. You can use those extensions in this class.

You may notice the getinstance() method implemented in each subclass. Instantiated subclass objects beh:
as Singletons to divvy out a Connection object specific to each database.

The AbstractConnFactory class is the workhorse of the example. As | mentioned earlier, it implements all th
database’s connection-related methods: connect(), openConnection(), and close(). | let the subclasses han
the chores relevant to the specific database. In this example, they set specific driver information and configt
the jdbcUrl variable. This class is also a Singleton, so it can control access to the connection logic.

XRef Chapter 10, “Building the Singleton Pattern,” provides details on implementing the Singleton pattern.

The ConnectionManager object, also a Singleton, controls access to the factories. The connect() method
returns a Connection object. It also accepts parameters in order to allow a client to specify which type of
database to connect to, and the username and password to connect with. The heart of the method is the
following code:

switch(dbType){

/ISpecific factories are Singletons so get the only
/linstance and set the appropriate connection values.
case ORACLE:

acf = OracleConnFactory.getinstance();

acf.dbType ="Oracle";

break;

case ODBC:
acf = OdbcConnFactory.getinstance();

186

Chapter 11: Producing Objects with the Factory Method Pattern

acf.dbType="ODBC";
break;

/[Error handling for unsupported database types.
default:
throw new ConnectionManagerException("Type not supported");

}lend switch

The switch block contains the logic used to create the correct factory based on the input parameter dbType,
which maps to two int constants, ORACLE and ODBC, defined in the class. The variable acf is of type
AbstractConnFactory. Depending on the value of the parameter dbType, it is assigned a reference to either
OracleConnFactory or the OdbcConnFactory class. Depending upon the database type, information is
propagated up to the base class to populate the variables that hold the connection parameters. In this exam
the variable dbType in the base class is only used to identify the factory type.

The example also has some supporting classes. The java.sgl.Connection interface provides the
Productinterface component for my example, and the two factories create Connection objects as the Produc

You may have noticed that | create my own SQLException class called ConnectionManagerException to

handle ConnectionManager-related issues. In the preceding example | trap the error that occurs if you supy
an unsupported database type to the connect() method.

Summary

The Factory Method pattern is likely one that you will often implement. It enables you to create consistent
objects while abstracting the details of their creation from the client.

You can also enhance the basic Factory Method pattern to separate specific implementations from your
application. Clients can refer to the base class interface for the factory and products to allow them to use the
objects they need when they need them.
To summarize, you will find the Factory Method useful if:

* You need to abstract object creation from the client.

* You want subclasses to decide how to create objects and what objects to create.
* You cannot anticipate the type of object you must create at runtime.

187

Chapter 12: Creating a Facade Pattern
In This Chapter

» Understanding the purpose of the Facade pattern

* Introducing the structure of the Facade pattern

» Applying the Fagade pattern to JDBC programming
» Implementing the Fagade pattern

The previous chapters focused on creational patterns. In this chapter, | switch gears and cover a structural
pattern, the Facade. This category of design patterns focuses on combining objects and classes to create la
more feature-rich, structures. Class patterns in this category, such as the Adapter, use inheritance, while
object patterns, like the Facade, use composition to create the new structures.

The Facade pattern provides a front—end to a complex object subsystem. Clients use the Facade object to
interact with the subsystem. This minimizes the number of methods and objects a client needs to know abol
It also allows the subsystem to change without affecting the client.

| begin the chapter with a discussion on the details on the Facade pattern. Next | present its structure, and
finally provide an implementation example that hides the details of making JDBC database connections and
SQL queries. Unlike the previous chapters, this one places more emphasis on the example.

What Is the Facade Pattern?

The word fagade means “an artificial or deceptive front” and that is exactly what this pattern is. The Facade
pattern puts an “artificial” front, or interface, onto an object subsystem to simplify a client’s use of it. Instead
of having to know about methods from all the objects in the subsystem, the client only needs to understand
methods defined by the Facade object.

The only object in the pattern, the Facade object, provides the common interface with an object subsystem.
Many different objects can exist in the subsystem, and the interactions among them can be highly complex.
However, the Facade pattern wraps the complexity into one object. From the client’s point of view, the Faca
object is the subsystem.

Facades occur everywhere in the physical world. Consider your microwave, for example. The control panel,
or the Facgade for the microwave, has numerous buttons, and each of which controls some complex
functionality that in turn requires that many components or subsystems work together. Setting the microwav
to run on HIGH power for one minute requires only a few control-panel steps, but it sets off a flurry of
activity among subsystems inside the microwave. You know nothing about how the microwave completes it:
task, only that it runs on HIGH for one minute.

The same scenario occurs in JDBC programming. For example, a lot of background activity occurs to return
Connection object when you call the Connection.getConnection() method. What happens behind the scenes
doesn’t matter, because all you need is a database connection, not the details of what the driver does to ma
the connection.

188

Chapter 12: Creating a Facade Pattern

Nonetheless, the JDBC API is an example of an object subsystem that you can wrap with the Facade patter
Although using the API is not complex, a lot of redundant method calls occur. For instance, opening a
database connection requires the same method calls every time. Executing queries is equally repetitive.

You can create a Facade object to hide these details so a client only needs to know one or two methods to
access and interact with a database. In fact, this is what | do in this chapter’s example.

Introducing the Structure of the Facade Pattern

The Facade pattern has the simplest pattern structure | have covered yet. It has only one object, which
provides the gateway into a subsystem of objects. Figure 12-1 shows the general structure.

The Facade object needs intimate knowledge of the classes in the subsystem. When a client sends a reque
the object, the Facade object must know exactly which subsystem object to send the request for execution.
The client only needs to know the correct Facade method to call and nothing about the subsystem.

However, the subsystem objects have no knowledge of the Fagade object. As indicated in Figure 12-1, thel
is an unidirectional relationship between the Facade object and the subsystem components. That is, they
operate independently of the Facade and treat it as their client.

Figure 12-1: Facade pattern structure

Implementing the Facade Pattern

Although you may find the Facade pattern conceptually simple, you will probably find it the most difficult to
implement. Reducing a complex subsystem to an interface with a few methods for a client to use is
challenging. You need to spend a significant portion of your design time identifying the interface that will
best meet the client’s needs.

Apart from designing the interface, you have a couple of options available when implementing the pattern.
First, you can make the Facade object a Singleton to ensure that only one access point into the subsystem

189

Chapter 12: Creating a Facade Pattern

exists. Why? Because you may want to control the number of clients using the subsystem, and having one
controlling object enables you to do this. Or, with respect to JDBC programming, you may want the clients tc
share one database connection or retrieve a Connection object from a pool.

Another implementation option is to define the Facade in an abstract class or interface and provide the
implementation in concrete classes. Referencing the Facade interface in the client can allow it to use any of
the concrete Facade classes. This option allows a client to access different subsystems that share the same
interface. In this way, you can remove the implementation details of specific Facades from the client’s
application and allow them to choose one at runtime.

Now for an example of how the Facade pattern can abstract from a client all the JDBC tasks associated witl
opening database connections, statement preparation, error handling, and database-resource cleanup. Fig
12-2 provides a UML class diagram of the classes used in my DbFacade example.

facade
WF acadt

Figure 12-2: UML class diagram for DbFacade example

My Facade object, DbFacade, allows a client to execute either static or parameterized SQL statements with
one of two method calls, executeQuery() and execute(). The first method enables you to execute SQL
SELECT statements, and the second enables you to execute either INSERT, UPDATE, DELETE, or DDL
statements. As you probably expected, the executeQuery() returns a ResultSet and the execute() returns ar
representing an update count.

The architecture of the DbFacade wraps two objects, SqglStatement and ConnectionMgr. The SqlStatement
object abstracts the functionality of a PreparedStatement object to make the SQL calls, and returns the resu

190

Chapter 12: Creating a Facade Pattern

In order to do so it requires a reference to a Connection object to instantiate the private PreparedStatement
object, which executes all the SQL statements, either static or parameterized. Both the executeQuery() or tt
execute() methods work by either presetting the SQL statement with setSql() or supplying an SQL statemen
as String as a parameter.

If you want to use a parameterized SQL statement you must use the DbFacade setSql() method to initialize
PreparedStatement object reference within SglStatement. The method requires a String parameter used wh
creating the internal reference to a PreparedStatement object. Next, you must bind the parameters to value:
using my custom setXXX methods in the DbFacade object. These methods provide the same functionality a
do the standard PreparedStatement and setXXX() methods. In fact, the DbFacade object passes these calls
through to the SglStatement object, which uses the native PreparedStatement methods. Remember, if you
an SQL statement with parameters you must bind the values to the parameters or a runtime error occurs.

DbFacade also uses a ConnectionMgr object, which is implemented as a Singleton, to manage connections
The DBFacade object never holds a direct reference to a Connection object. Instead it retrieves the
Connection object reference and passes it to the SqlStatement object in the init() method. It also closes the
connection when requested via the close() method.

| implement DbFacade as a Singleton to allow only one access point into the subsystem. | use this pattern
because | want the DBFacade object to manage the SqlStatement and ConnectionMgr objects. As with the
other Singleton examples listed in chapter 10, the client calls the getinstance() method to retrieve a referenc
to the DBFacade object and work with it.

XRef Chapter 10, “Building the Singleton Pattern,” describes the ins and outs of creating Singleton
objects.

The Facade class provides the test bed for the example by acting as the client. In it, | show various example
of how to use the DbFacade object.

The example contains a lot of code and Table 12-1 provides an overview of the objects involved in the
application. To help you further understand the DbFacade object, Table 12-2 provides a list of the methods
along with their descriptions. Finally, Listing 12-1 shows the complete code listing for this example.

Table 12-1: Classes in DbFacade Example

Class Description

Facade Test bed that illustrates the use of the DbFacade object.

DbFacade Implements the Fagade design pattern.

SqlStatement Executes the SQL statements. Supports basic and
parameterized queries using the PreparedStatement object.

ConnectionMgr Manages database connections. Only shares one connection
to the database.

DbFacadeException Handles DbFacade-specific errors.

SqlStatementException Handles SqlStatement-specific errors.

191

Chapter 12: Creating a Fagade Pattern

Table 12-2: DbFacade Method Summary

Method Description Return Type
getinstance() Global-access method that returns a DbFacade
reference to instance of the DbFacade
object.
connect() Explicitly connects to the database. void
executeQuery(String sql) Executes a static SQL SELECT statemeiesultSet
executeQuery() Executes an SQL SELECT statement aftResultSet
the setSql() method has been called.
execute(String sql) Executes a static INSERT, UPDATE, ResultSet
DELETE, or DDL statement.
execute() Executes an INSERT, UPDATE, DELETResultSet

or DDL statement after the setSql() method
has been called.

setSql(String sql) Preloads an SQL statement for executionzoid

reset() Flushes entire DbFacade object, causingvaid
re—initialization.

close() Closes all database resources, including void

Connection and PreparedStatement objects.
setString(int index, String value)ldentical to PreparedStatement. setString(id

setint(int index, int value) Identical to PreparedStatement.setint(). void
setDouble(int index, double Identical to PreparedStatement setDouble@id
value)

setDate(int index, Date value) Identical to PreparedStatement. setDate(Yoid
DbFacade() Private constructor.

init() Retrieves a reference to the ConnectionMgid

object and creates the SqglStatement object.
Also causes a database connection to be
created.

Listing 12-1: Facade.java

package Chapter12;

import java.io.*;

import java.util.*;

import java.sql.*;

import java.sql.Date;

import Chapter5.MakeEmpDb;//REMOVE

public class Facade {
//Set a ResultSet object to hold results.
public static ResultSet rs = null;

public static DbFacade dbf = null;

public static void main(String[] args) {

try{

192

Chapter 12: Creating a Facade Pattern

String[] s = new String[0];//REMOVE
MakeEmpDb.main(s); //REMOVE

//IGet an instance reference to the DbFacade object
dbf = DbFacade.getInstance();

//IRetrieve an employee as a baseline.

System.out.printin("Static SELECT with executeQuery()");

String sql = "SELECT * FROM employees WHERE name="Todd"";
rs=dbf.executeQuery(sql);

listRs();

/IGive myself a BIG raise. Demonstrates setSq|l.
System.out.printin("Parameterized UPDATE with execute() " +
"to update my salary and hire date");
dbf.setSql("UPDATE employees SET salary = ?" +

"WHERE name = ?");
dbf.setDouble(1,100000.75);
dbf.setString(2,"Todd");
dbf.execute();

//IChange my hire date. Demonstrates static SQL execution.
dbf.execute("UPDATE employees SET hiredate =" +
"{d ‘1989-09-16'} WHERE name = ‘Todd™);

//List results of changes.
System.out.printin("Verify updates.");
rs=dbf.executeQuery(sql);

listRs();

/IDemonstrate INSERT

System.out.printin("Add new employee with INSERT " +
"and execute() then verify results.");

sql = "INSERT INTO Employees VALUES (?,?,?,?2,?2)";

dbf.setSql(sql);

//Bind values into the parameters.

int ssn = makeSsn();

dbf.setInt(1,ssn);

dbf.setString(2,"Andy");
dbf.setDouble(3,1400.51);

Date d = new Date(System.currentTimeMillis());
dbf.setDate(4,d);

dbf.setint(5,400);

dbf.execute();

[V erify results.

sql = "SELECT * FROM employees WHERE name = ‘Andy™;
rs = dbf.executeQuery(sql);

listRs();

//[Demonstrate how to close and open a connection
System.out.printin("Close and open database connection,
then verify");

dbf.close();

dbf.connect();

rs = dbf.executeQuery(sql);

listRs();

System.out.printin("Exiting program...");
dbf.close();

193

Chapter 12: Creating a Facade Pattern

/[Handle errors
}catch(DbFacadeException dbfe){

dbfe.printStackTrace();
Jcatch(SQLEXxception se){

se.printStackTrace();
Jcatch(Exception ex){

ex.printStackTrace();

Hinally{

if(dbfl=null)
try{
dbf.close();
}catch(SQLEXxception se){
se.printStackTrace();

}
Ylend finally

System.out.printin("Goodbye!");
Y/end main()

private static void listRs() throws SQLException{

while(rs.next()){

/IRetrieve column values and display values

int ssn= rs.getint("ssn");

String name = rs.getString("name");

double salary = rs.getDouble("salary");

Date hiredate = rs.getDate("hiredate");
System.out.print("Row Number=" + rs.getRow());
System.out.print(", SSN: " + ssn);
System.out.print(", Name: " + name);
System.out.print(", Hiredate: " + hiredate);
System.out.printin(", Salary: $" + salary);

Y/end while

System.out.println();
}

/[Helper utility to generate a random SSN to prevent primary
key violations
private static int makeSsn(){

double r = Math.random();

double d = (r * 899999999);
return (int) Math.floor(d +100000000) ;

}

}lend Facade

194

Chapter 12: Creating a Facade Pattern

class ConnectionMgr{

/ICreate Connection, Statement, and ResultSet objects
private static ConnectionMgr connMgr= null;
private static Connection conn = null;

/[Private attributes used to make connection

private String jdbcUrl = "jdbc:oracle:thin:@localhost:1521:0RCL";
private String user = "toddt";

private String pwd = "mypwd";

/[Ensure no can instantiate
private ConnectionMgr() {}

/IPrivate method to create connection.
private synchronized void openConnection() throws Exception{

//Load a driver
String driver = "oracle.jdbc.driver.OracleDriver";
Class.forName(driver).newlnstance();

//Use the getConnection method to obtain a Connection object
System.out.printin("Connecting to database...");

conn = DriverManager.getConnection(jdbcUrl,user,pwd);
System.out.printin("Connection successful..");

}

//Global access method to return a Connection object reference
public Connection connect() throws Exception{

//If it doesn't exist open a connection
if(conn==null){
System.out.printin("Connection has not been opened. " +
"Begin connection phase...");
loadProperties();
openConnection();

}

return conn;

}

//Public method used to get the only instance of Connection Manager.
public static synchronized ConnectionMgr getinstance(){

/I not initialized, do it here. Otherwise just return
existing object.
if(connMgr==null)

connMgr = new ConnectionMgr();

return connMgr;

}

/ILoad username and password from properties file to override
default values
private void loadProperties() throws Exception{

Properties prop = new Properties();

195

Chapter 12: Creating a Facade Pattern

File f = new File("database.properties");

IIf property file exists load data

if (f.exists()) {

InputStream is = new FilelnputStream(f);
prop.load(is);

is.close();

user = prop.getProperty("user");

pwd = prop.getProperty("password");
jdbcUrl = prop.getProperty("JDBC_URL");
}

}

/IClose database connection
public void close() throws SQLException{

if (conn !=null){
System.out.printin("Closing Database Connection!");

conn.close();
conn=null;

}
}
}lend ConnectionMgr
class DbFacade {

/IPrivate singleton object
private static DbFacade dbf = null;

/IPrivate variables to hold objects.
private SqglStatement ss= null;
private ConnectionMgr cm = null;

/IProvides a single point of access to DbFacade instance
public static synchronized DbFacade getinstance() throws Exception{

/NIf it doesn’t exist create it.
if(dbf==null)

dbf = new DbFacade();
return dbf;

}

/IPrivate constructor to keep clients from instantiating
private DbFacade() throws Exception {

cm = ConnectionMgr.getinstance();
init();

}

/lInitialization to open a connection and pass it to the
SqlStatement object.
private void init() throws Exception{

Connection conn = cm.connect();

196

Chapter 12: Creating a Facade Pattern

ss = new SqlStatement();
ss.setConnection(conn);

}

//IConnect to database
public void connect() throws Exception{

Connection conn = cm.connect();

if(ss == null)
ss = new SqlStatement();

ss.setConnection(conn);

}

/IMethod to execute SELECT SQL statements supplied as a parameter
public ResultSet executeQuery(String sql) throws SQLException{

return ss.executeQuery(sql);

}

/IMethod to execute SELECT SQL statements
public ResultSet executeQuery() throws SQLException{

return ss.executeQuery();

}

/IMethod to execute all SQL statements except SELECT
public int execute() throws SQLException{

return ss.execute();

}

/IMethod to execute all SQL statements except SELECT
public int execute(String sql) throws SQLException{

return ss.execute(sql);

}

//Sets the SQL string in the SqlStatement object
public void setSql(String sql) throws SQLEXxception{

ss.setSql(sql);
}

/[Clears the SqlStatement object
public void reset() throws Exception{

/ISet the reference to the ss to null;
ss = null;

//Reinitialize object
init();

197

Chapter 12: Creating a Facade Pattern

/IClose database connection
public void close() throws SQLException{

if(ss!=null)
ss.close();

if(cm!=null)
cm.close();

}

//Set a String value in a PreparedStatement
public void setString(int index, String value) throws SQLException{

ss.setString(index,value);

}

//Set an int value in a PreparedStatement
public void setiInt(int index, int value) throws SQLException{

ss.setInt(index,value);

}

//Set a double value in a PreparedStatement
public void setDouble(int index, double value) throws SQLException{

ss.setDouble(index,value);

}

//Set a Date value in a PreparedStatement
public void setDate(int index, Date value) throws SQLException{

ss.setDate(index,value);
}
}/end DbFacade()
class DbFacadeException extends SQLException {
public DbFacadeException() {
super();
}
public DbFacadeException(String msg) {
super(msg);
}
}lend DbFacadeExecption class

class SqlStatement {

198

Chapter 12: Creating a Facade Pattern

/linternal JDBC objects
private Connection conn = null;

private PreparedStatement pstmt = null;

/[Holds the SQL statement for execution
private String sq;

/IDefault constructor
public SqlStatement(){}

/lInitialize the Statement object
private void initStatement() throws SQLException{

/[Only initialize PrepareStatement if member sql is not null.
if(sql==null)
throw new SqlStatementException("SQL string is null");

pstmt = conn.prepareStatement(sql);

}

/[Close PreparedStatement object
public void close() throws SQLException{

if(pstmt!=null){
System.out.printin("Closing SqlStatement!");
pstmt.close();
pstmt=null;

}
}

//Used to set SQL statement and reinitialize PreparedStatement object
public void setSql(String sql) throws SQLEXxception{

this.sql=sql;

pstmt=null;
initStatement();

}

/IReturns the current SQL statement
public String getSql(){

return sql;

}

/IExecutes static SQL statement supplied as a parameter
public ResultSet executeQuery(String sql) throws SQLException{

setSql(sql);
return executeQuery();

}

/[Executes an SELECT statement
public ResultSet executeQuery() throws SQLException{

199

Chapter 12: Creating a Facade Pattern

/ICheck to see if pstmt statement is null.
if(pstmt ==null)
throw new SqlStatementException("PreparedStatement
not initialized");
return pstmt.executeQuery();

}

//[Executes static UPDATE, INSERT, or DELETE statement
/Isupplied as a parameter
public int execute(String sql) throws SQLEXxception{
setSql(sql);
return execute();

}

/[Executes a SQL UPDATE, INSERT, or DELETE statement
public int execute() throws SQLException{

if(pstmt ==null)
throw new SqlStatementException("PreparedStatement
not initialized");

int count = pstmt.executeUpdate();
return count;

}

//Sets the Connection object to valid database connection

public void setConnection(Connection conn){

this.conn = conn;

/IThe following set methods set the appropriate value

in a PreparedStatement.

public void setString(int index, String value) throws SQLException{
pstmt.setString(index,value);

}

public void setint(int index, int value) throws SQLException{
pstmt.setint(index,value);

}

public void setDouble(int index, double value) throws SQLException{

pstmt.setDouble(index,value);

200

Chapter 12: Creating a Fagade Pattern

public void setDate(int index, Date value) throws SQLException{
pstmt.setDate(index,value);
}
/[End set methods
}lend SqlStatement

//[Exception class to handle SqlStatement errors
class SqlStatementException extends SQLException {

public SglStatementException() {
super();

}

public SglStatementException(String msg) {
super(msg);

}

YIEnd SqlStatementException}

The output from Listing 12-1 is as follows:

Connection has not been opened. Begin connection phase...
Connecting to database...

Connection successful..

Static SELECT with executeQuery()

Row Number=1, SSN: 111111111, Name: Todd, Hiredate: 1995-09-16,
Salary: $5000.55

Parameterized UPDATE with execute() to update my salary and

hire date Verify updates.

Row Number=1, SSN: 111111111, Name: Todd, Hiredate: 1989-09-16,
Salary: $100000.75

Add new employee with INSERT and execute() then verify results.
Row Number=1, SSN: 586669377, Name: Andy, Hiredate: 2001-04-23,
Salary: $1400.51

Close and open database connection then verify open connection.
Closing SqlStatement!

Closing Database Connection!

Connection has not been opened. Begin connection phase...
Connecting to database...

Connection successful..

Row Number=1, SSN: 586669377, Name: Andy, Hiredate: 2001-04-23,
Salary: $1400.51

Exiting program...

Closing SqlStatement!
Closing Database Connection!
Goodbye!

201

Chapter 12: Creating a Facade Pattern

In Listing 12-1, | first retrieve a reference to the DbFacade object and use this reference throughout the
session. Next | demonstrate how to execute a static SQL statement with the executeQuery() method. After |
print the result set to verify that the query executed correctly, | show how to process a parameterized query
with the execute() method. Before calling the execute() method | must initialize the DbFacade object with th
SQL statement using the setSql() method, and then bind the variables with the appropriate setXXX() methoc
In the rest of the example, | demonstrate how to execute additional SQL statements as well as how to
explicitly close and connect to the database.

Despite the amount of code necessary to implement the Facade pattern, using the DbFacade object is fairly
straightforward because only two rules apply. The first is that you must call the DbFacade.getinstance()
method to retrieve a reference to the object. This is the reference you use to work with the database.

The second rule is that you must call the setSql() method when using a parameterized query before calling 1
execute() or executeQuery() methods. If you want to execute static SQL statements you have two options.
first is to call the setSql() method to preload the SQL statement before you call execute(). Your second optic
is to call the executeQuery() method and supply a String as a parameter representing the SQL statement. T
second option saves you a step.

One additional comment about the DbFacade pattern design is that the two objects, SqlStatement and
ConnectionMgr, are facades themselves. The objects hide the behind-the-scenes process of sending SQL
statements and creating database connections. In this case their client is the DbFacade object.

As you can see from the example, it is possible to use the Facade pattern to hide a lot of the complexity anc
mundane programming tasks associated with JDBC programming. The example in Listing 12-1 allows a
client to retrieve results from a database with two method calls, which is certainly easier than opening
connections and creating Statement objects every time you need to access a database.

Summary

In this chapter | demonstrated the uses of the Facade pattern. The pattern proves useful when you need to
abstract the complexities of one or more object subsystems from the client. Using this pattern has many
benefits. One is that you can create a loose coupling between the client and the subsystem: Because the cli
relies on the Facade for the system’s interface, changes to the underlying subsystem do not directly affect tt
client. Another benefit is that the Facade pattern reduces the number of objects your client must know abous
To the client, the subsystem is the Facade object.

You can easily wrap the common functions and programming tasks of JDBC using the Facade pattern. Cliel
can use the object to minimize the amount of code they need to interact with the database.

202

Part IV: Taking It to the Enterprise
Chapter List

Chapter 13: Accessing Enterprise Data with JINDI
Chapter 14: Using Data Sources and Connection Pooling
Chapter 15: Understanding Distributed Transactions
Chapter 16: Working with JDBC Rowsets

Chapter 17: Building Data—centric Web Applications
Chapter 18: Using XML with JAXP

Chapter 19: Accessing Data with Enterprise JavaBeans

203

Chapter 13: Accessing Enterprise Data with JNDI
In This Chapter

« Introducing naming and directory services

» Understanding the Java Naming and Directory Interface (JNDI)
» Using JNDI to access data in naming and directory services

» Working with LDAP

» Using the JNDI LDAP service—provider interface

» Searching an LDAP-enabled directory service

As enterprise applications grow larger and more complex, finding application services and objects becomes
more difficult. Creating distributed applications only makes the problem worse, because you must accurately
track each software component’s location and functionality. This task can quickly become a documentation
nightmare.

In addition, this problem is not limited to software components. Finding employee or customer information ir
an enterprise proves equally challenging. Very rarely will you find it in a centralized location. Most often
individual people store this information in spreadsheets or simple workgroup databases on file servers, and
very often only these individuals know the location of this information and how to interpret it.

In general, an enterprise, or a single user, may use many different methods to store resources. Some store
in well defined directory hierarchies within file systems or Java objects in a RMI registry. Some companies
use LDAP-enabled directory services to store employee information, such as phone numbers and e-mail
addresses, or personalization data for Web—site users. Each of these storage techniques represents a diffel
type of naming or directory service. Consequently, the more types of storage technigues that exist, the more
difficult the task of locating objects or resources.

The numerous storage methods make your job as a developer tougher because you must use a different
programming technique to retrieve data from the sources. Each has its own semantics as well as its own AF
For example, you retrieve information differently from a file system, an RMI registry, and an LDAP—enabled
directory.

However, JNDI provides a solution for unifying access to the many different technologies used to store data
It defines a common, flexible, interface for accessing common naming and directory services. You can use t
JNDI API to access an LDAP-enabled directory, RMI registry, or file system with the same methods.

JNDI is also a cornerstone of the J2EE platform. Clients, and business components like Enterprise Java Be:
(EJBs), use it to find and retrieve resources such as JDBC DataSource objects from well-known data stores
within an organization.

| begin this chapter by introducing the concepts associated with naming and directory services. Next | provic
the details of JNDI's architecture and show you how to use it to access LDAP-enabled directory services.

Naming and Directory Services

204

Chapter 13: Accessing Enterprise Data with JNDI

Simply put, naming and directory services store information in a centralized location and enable you to entel
manipulate, and retrieve this information. You can use the services for a variety of applications, such as
employee directories or object repositories.

This section provides an overview of the concepts associated with naming and directory services. | begin wi
naming services though the concepts involved apply to directory services as well.

Naming services

Naming services are very popular storage mechanisms and provide a simple, centralized, storage facility fol
resources. They are often compared to phone books because they store only name-value pairs. The followi
is a partial list of common naming services you may use on a regular basis:

« Domain Name System (DNS): The Internet relies heavily upon DNS, a simple naming service that
maps IP addresses to user—friendly names.

« File systems: These bind a user—friendly name, such as resume.doc, to a file handle used by the
operating system. You use the name to access the file.

* RMI Registry: Java’'s RMI Registry maps names to Java objects.

Figure 13-1 shows a conceptual view of a naming service. As the diagram illustrates, it only maps a name t
an object. Nonetheless, it does provide a single location where clients can use common names to look up tt
locations of resources.

Names and bindings

A name is a label that an object in a naming service is known by. You can create user—friendly names for
objects, such as “Finance Printer” for a printer object, or use a cryptic 32—bit Object Identifier (OID). You
access objects in a naming service by their names, therefore you should try to create user—friendly, descript
names to make it easy for a client to find the desired object.

Naming Service

Interface -
Layer Bindings
g . N
Objects
—~ —_~ -~
Client .'/ . Object \'.‘
Application | Nome bject)
-) L el P
a2 I —-\‘
: Name Object)
I > « N\ ol » .
"SI ¢ ¥\
Name Object)
P i
h P o,

Figure 13-1: Conceptual view of a naming service

However, do not confuse objects in naming services with Java objects. An object in a naming service is an
entry. You can store strings or binary data as objects in a naming service.

205

Chapter 13: Accessing Enterprise Data with JNDI

Assigning a name to an object is called binding. For example, you can associate the name Employee DB w
a JDBC DataSource object. In this instance the name Employee DB is bound to the DataSource object. A
DNS entry binds a name, http://www.javasoft.com/, with an object, in this case the IP address
204.160.241.83. Without a DNS, you would have to memorize or otherwise store the IP address of the host:
you interact with. DNS enables you to associate a friendly hame with an IP address.

Contexts, subcontexts, and initial contexts

A context represents a set of objects with names bound to them. On a FAT file system the root drive, c:\, is :
context because it is an object that holds bindings. For example, the file autoexec.bat is a name bound to a
handle. The same holds true for config.sys. Directories under c:\, like c:\windows, are called subcontexts
because they are contexts (that is, objects that hold bindings) that exist within a context.

When you access a directory service with INDI you must identify a starting context, or initial context.
Consider the UNIX directory structure /usr/bin and the file readme.txt. The context is /usr because it contain:
a group of name—object bindings. The directory /usr/bin is a subcontext, and the file readme.txt is directory
object. When you first initialize your JNDI program you can use either /usr or /usr/bin as the initial context.
However, you cannot start with the file /Jusr/readme.txt, because it is a directory object and not a context.

Directory services

In Java terminology, directory services extend naming services. That is, they have the features of a naming
service, but provide additional functionality. The added benefit of a directory service is that you can attach
descriptive attributes to stored objects. Besides the ability to better describe objects, a directory service
enables you to group the entries according to functionality, or search them according to their attributes.

Note Objects within a directory service are known as directory objects. You may also see them referred to a
directory entries in some literature.

Using attributes to describe objects makes directory services very flexible. For example, you may see a
directory service used for:

» Access control to provide a single login to a service such as a network or an application.
» Object repositories in which to store Java components, such as EJB’s or JDBC’s DataSource object:
 Lookup directories to store information on people, assets, or software components.

Figure 13-2 provides a conceptual view of a directory service. As you can see, it stores objects bound to
user—friendly names, just as a naming service does. However, with each object you can attach attributes. Tl
number and type of attributes vary among directory services. Some directory services may enable you to stc
only numerical or textual information, while others may accept data such as Java objects.

An attribute consists of two components, an identifier and a value. The identifier is the name of the attribute
and the value is the content. Values are independent of attributes. In other words, the value does not repres
an attribute “type,” such as an object type. You can store any type of value in an attribute as long as the
directory service supports it.

206

Chapter 13: Accessing Enterprise Data with JNDI

Directory Service
[Interface Bindings
: _———_ Objects
/’/Objcd 77N \\.

et A 3,

Y,

Figure 13—2:» Conceptual view of a directory service

Attaching attributes to objects provides several benefits. First, it enables you to describe an object. You can
specify information, such as the object’s function or location. In addition, you can search for an object within
a directory tree based on its attributes. For example, if you want my contact information, you can search the
directory for the attribute uid with the value of toddt, and retrieve my entire record. And finally, you can use
attributes to group directory objects. If you have an object repository, you can combine all the components
associated with processing payroll into a group called "Payroll."

Numerous directory services exist, and you likely use one every day. Some examples are:

» Microsoft's Active Directory Services (ADS)
» Novell's Directory Services (NDS)
» Sun’s Network Information Services (NIS/NIS+)

Note Some people consider LDAP a directory service. It is not. LDAP defines a protocol for communication
with a directory service. Directory services that use LDAP for the communication layer are known as
“LDAP-enabled.”

Helpful JNDI Definitions

« Attribute: Descriptive information attached to directory objects.

« Binding: A name associated with an object in a naming or directory service.

» Context: An object that contains name—object bindings that may include other contexts (see
Subcontext).

« Directory entry: See Directory object.

« Directory object: Any object or elements stored in a directory service. Directory objects can represen
printers, computers, or software objects. For example, when stored in a directory service, a JDBC
DataSource object is a directory object.

« Directory service: Enables you to attach attributes as well as names to an object. A directory service
extends a naming setrvice.

« Name: A user-friendly label given to an object for easy retrieval and recognition.

« Naming service: A mechanism for assigning “people—friendly” names to objects. For example, a file
system maps file names to operating—system file handles, or an e-mail address book maps e—-mail
addresses to people.

« Service provider: A “driver” that gives you access to different naming and directory services.

» Subcontext: A context within a context.

207

Chapter 13: Accessing Enterprise Data with JNDI

Every directory service has a unique API that you use to interact with it. The interface gives you access to tf
service’s methods for creating, modifying, deleting, and adding attributes, as well as to its methods for addir
or removing directory objects.

Directory services play a major role in software architecture that use EJBs, either for storing resources
natively or for specifying their location. A typical use of a directory service is to store JDBC DataSource
objects in a directory service. JDBC clients retrieve the object from the service whenever needing database
connectivity. You can also use a directory service to store the location of an RMI Registry. In this scenario, ¢
client retrieves the location from the directory whenever it needs to locate and use an RMI object.

Data Access with JNDI

As | mentioned earlier, storing data in a naming or directory service helps create a central location in which
you can find and retrieve resources. During the previous section you probably realized that directory service
provide the real power because of its ability to attach descriptive attributes to its entries.

Naming services are useful when you need to store objects based on name only. Directory services, becaus
they support attributes, give you much more flexibility. For this reason, the remainder of this chapter focuses
on using JNDI to access directory services.

Traditionally, you use a vendor-specific API to create applications that access directory services. Generally,
the API is written as a C/C++ DLL; you are unlikely to find a Java API for accessing most directory services.

Using a vendor-specific API creates several problems. First, when you use Java, a non—-Java API forces yo
to use JNI, which makes your program platform—dependent: Your code will only execute on platforms the
vendor supports. Next, you must learn the API's method calls. This may sound trivial, but to speed up
development and save your sanity, the fewer programming interfaces you must learn the better. Finally, you
generally must use a different API for every directory service your enterprise implements. For example, if
your organization uses iPlanet’s Directory Server, Novell’'s NDS, and Microsoft's ADS, you must use three
different APIs to access information in the directory service.

JNDI helps because it defines a standard set of methods and properties for interacting in a consistent way v
either a naming or directory service. JNDI also provides several other benefits. For example:

* It makes adding support for an additional directory service easy: All you have to do is add the
appropriate service provider.

« It abstracts the programmatic interface of the naming and directory services from the client.

* It enables you to store and retrieve Java objects, such as JDBC DataSource objects, within naming
and directory services.

| should mention that JNDI does not completely abstract the implementation of a particular directory service
from you; you must still know the naming convention used in the target service. For example, DNS uses a d
(.) to separate components, while LDAP-style directory services use a comma (,). You will not find a
standard like SQL that defines a common grammar for accessing the directory services.

The bright side is that INDI provides a single API, which you must learn to use in order to access directory
services. Although you still must know the naming convention, you do not need to understand each vendor’

208

Chapter 13: Accessing Enterprise Data with JNDI

specific API.
JNDI architecture
JNDI's architecture resembles JDBC's. This should not surprise you, because they both abstract the

communication protocol and interface details of a data store. Like JDBC, JNDI consists of two components:
the client API and a driver. However, the JDBC architecture does not separate the two as cleanly.

Obtaining the JNDI API

If you are using JDK version 1.3 or greater, you have everything you need for JNDI development. However,
you are using JDK version 1.1.x or 1.2.x, you need to download the JNDI API from Sun at
java.sun.com/products/jndi. The distribution contains the API and the LDAP, COS, RMI, and NIS service
providers.

Sun also provides, as separate downloads, a File System, Domain Name System (DNS), and Directory Sen
Markup Language (DMSL) service provider. The JNDI Web site provides more information on obtaining the
software.

JNDI clients use the API to access naming and directory services. The API calls are standard, regardless of
data store you are trying to access. Database clients use the JDBC API in a similar fashion.

The other JNDI component is the Service Provider Interface (SPI), which is equivalent to a driver. Service
providers are third—party components that you can plug into the JNDI framework when you need to support
specific data source. The service—provider vendor embeds the communication logic within the “driver” to
access specific directory services such a LDAP or ADS. The SPI is where the JNDI architecture differs from
JDBC. JDBC does not provide a separate package definition for driver writers to use; it keeps the driver
interfaces and client API in the same package.

Figure 13-3 illustrates JNDI's architecture. As you can see, the components are layered. JNDI handles the
communication between the client and the service provider.

The following two sections provide more details on both the JNDI API and the SPI.
JNDI API

The JNDI API consists of five core packages, listed in Table 13-1. As a developer you will primarily use the
javax.naming and javax.naming.directory packages. The following list describes the packages:

* javax.naming: This package provides the methods that enable you to access naming services and
defines the Context interface, the primary interface for interacting with a naming service. It also
defines the methods for you to look up, retrieve, bind, and unbind objects.

* javax.naming.directory: Just as a directory service extends a naming service, this package extends t
javax.naming package. As a result, you can still look up and retrieve objects from the directory
service, just as you would with a naming service. This package works specifically with directory
services to provide access to create, delete, modify, and search attributes.

* javax.naming.ldap: This package works with features associated with LDAP v3 directory services.

209

Chapter 13: Accessing Enterprise Data with JNDI

(For more information on LDAP v3, try the Internet Engineering Task Force’s (ITEF) Web site at
http://lwww.itef.org/.) Specifically, this package provides support for extended operations and control:
provided by RFC 2251. Unless you specifically need LDAP v3 functionality, you will use the
javax.naming.directory package for most of your work.

* javax.naming.event: This package monitors a directory service for certain activities, such as the
addition of an object or the rebinding of a new name to an existing object. Modeled after the
JavaBean architecture, it uses event listeners. The following event listeners are available for your us

¢+ NamespaceChangelListener: Handles events generated when a namespace changes.
¢ ObjectChangeListener: Handles events generated within a naming or directory service when
an object changes.
* javax.naming.spi: Used by service provider vendors to build support for additional directory services.

Java Application

\/
JNDI API

™\

i

ML ol 4l
[oae |]RM{ | U ﬁ

o

[nis |
Figure 13-3: JNDI architecture

Table 13-1: JNDI API Packages

Package Description

javax.naming Defines classes and interfaces that enable you to interact
with naming services.

javax.naming.directory Defines classes and interfaces that enable you to interact
with directory services.

javax.naming.event Defines classes and interfaces that handle event notifications
when you're working with naming and directory services.

javax.naming.ldap Defines classes and interfaces for working with LDAP v3.0.

javax.naming.spi Defines the service—provider interface that vendors of

naming and directory service providers must implement.

210

Chapter 13: Accessing Enterprise Data with JNDI

JNDI Service Provider Interface (SPI)

The SPI provides a plug-in architecture with which third parties can use to develop support for additional
naming and directory services and integrate that support seamlessly into the JNDI framework. The SPI defir
the methods they use to hook into the JNDI API. As a developer, all you need to do in order to use the servi
provider is load the library during runtime or at startup.

As | mentioned earlier, a service provider is analogous to a JDBC driver in that it encapsulates the
“know—how” for communicating with a specific directory service. However, unlike a JDBC driver, the client
API and service—provider implementations are separate and are usually supplied as a separate jar file.

Sun provides several service—provider implementations with the JNDI API, and also makes additional ones
available as separate downloads. Table 13-2 lists them for you.

Table 13-2: Available JNDI Service Providers

Service Provider Description

LDAP Enables you to access directory services that use LDAP as their directory protocol.

COoSs Provides access to CORBA’s COS (Common Object Services).

NIS Enables clients to access the Network Information Services (NIS) used in Sun’s
Solaris operating systems.

RMI Registry Enables a client to use JNDI to search for objects and retrieve them from an RMI
Registry.

File Systerrll Provides standardized access to different file systems regardless of the platform.
The File System service provider treats a file system as a naming and directory
service.

DNS' Provides access to a Domain Name Service using JNDI.

DSML" Provides support for Directory Service Markup Language (DSML). With this

service provider you can read and manipulate DSML documents as well as export
the directory data in the DSML format. (See http://www.dsml.org/ for more
information on the DSML specification.)

Novell NDS' Provides access to Novell Directory Services (NDS). (Check out
http://www.novell.com/ for more information.)

'Available as a separate download from Sun.
JNDI programming

Getting started with JNDI programming is relatively straightforward. Not only does the JNDI architecture
resemble JDBC, but the programming concepts are very similar as well. For instance, with either API you
must load a driver and open a connection to the data source before you can access a data store.
Working with the Context and DirContext interfaces

The Context and DirContext interfaces play a central role in JNDI programming. The first defines methods fc
interacting with naming services. It defines the bind(), rebind(), and unbind() methods that you use to bind a

211

Chapter 13: Accessing Enterprise Data with JNDI

unbind names to objects. It also has a lookup() method that enables you to retrieve an object based on its
name. Remember that naming services only enable you to store objects using only a name attribute.

The DirContext interface provides the functionality for using directory services. The interface extends the
Context interface, enabling you to manipulate objects as you do in a naming service. Most of the extra
functionality associated with the DirContext interface pertains to managing and searching object attributes.

For example, the bind() and rebind() methods are overloaded so you can associate attributes with the objec
as you insert them into a directory service. The interface also defines new methods, such as getAttributes()
and setAttributes(), that enable you to retrieve and assign attributes independently regardless of when you
bind objects. The search() method enables you to look up objects based on their attributes.

Most of what | discuss during the remainder of this chapter applies to both Context and DirContext objects.
Because | am focusing only on directory services, | will refer only to DirContext objects, and specifically
mention when anything different applies to the Context object.

Connecting to JNDI data sources

Just as with JDBC, with JNDI you must connect to a data source before you can work with the data.
Instantiating an InitialDirContext object opens a connection to a directory service and defines the starting
point within the directory structure, called the initial context.

All operations in the directory service occur relative to the initial context. For example, you may wish to start
at the root context if you need to search for an object whose location within the directory you do not know. C
you may start in a specific subcontext that contains a certain set of objects, such as employee-related EJB:

Figure 13-4 shows a flow chart of the steps required to instantiate an InitialDirContext object. Before calling
its constructor you must prepare its "environment," which consists of adding entries into a Hashtable, and th
supplying it as a constructor parameter. The environment consists of entries such as the service—provider
information, directory—service location, and security information.

At a minimum, you must set two environment properties, the service provider and the directory—service
location. To set the service provider, you assign a String value representing the fully qualified name for the
driver to the property Context.INITIAL_CONTEXT_FACTORY. (Doing this is analogous to using the
Class.forName() method to initialize a JDBC driver.) The following code snippet demonstrates how to set the
service—provider property to connect to an LDAP-enabled data store:

/ICreate a Hashtable object to place environment settings
Hashtable env = new Hashtable();

/ISpecify service provider class
String sp = "com.sun.jndi.ldap.LdapCtxFactory";
env.put(Context.INITIAL_CONTEXT_FACTORY, sp);

The other property, Context. PROVIDER _URL, identifies the location of the data store. The format of the
JNDI URL varies according to the service provider. The following snippet demonstrates how to set the
property for the LDAP-enabled directory service using the Hashtable declared in the preceding code sampl

/ISpecify location of LDAP directory service
String jndiUrl = "ldap://localhost:389/0=MyLdapData";
env.put(Context. PROVIDER_URL,jndiUrl);

212

Chapter 13: Accessing Enterprise Data with JNDI

Specify service provider by setting
Context INITIAL_CONTEXT_FACTORY
property

W

1 1
Specify LDAP URL by setting

Context.PROVIDER_URL

property |

!
P
NO 4// Is secur rv\

uired?
\»r\cu re //
YES

Specify security level by setting
Context SECURITY_AUTHENTICATION
property

A
Specify user by setting
Context SECURITY_PRINCIPAL
property

Specify password by setting
Context SECURITY_CREDENTIALS
property

Create InitaiContext with
= Context ctx = new hnitialContext
(Hashtable env)

Figure 13-4: Basic JNDI connection steps

Note LDAP-enabled directory services listen on a default port of 389.

You may also need to set security properties, such as username and password, depending upon the securit
level implemented by the directory service. LDAP, for example, requires three parameters. The first identifie
the type of security to use — simple, SSL/TLS, or SASL. (I discuss LDAP in greater detail in the next
section.) The next two parameters are username and password. The following code snippet demonstrates h
to set the three parameters:

/ISpecify an user and password
String user = "uid=toddt, ou=People, o=toddt.com";
String pwd = "mypwd";

//Set the authentication type
env.put(Context. SECURITY_AUTHENTICATION, "simple");

//Set username and password
env.put(Context. SECURITY_PRINCIPAL, user);
env.put(Context. SECURITY_CREDENTIALS, pwd);

Once you have configured the environment, you call the constructor to instantiate an InitialDirContext object
For example:

DirContext dctx = new InitialDirContext(env);

213

Chapter 13: Accessing Enterprise Data with JNDI

Because the InitialDirContext object represents a physical connection to the data source, you should close i
when you finish working with it — just as you would when working with JDBC. To close the DirContext
object, just call the close() method:

dctx.close();

Now you know the step involved in opening a JNDI connection to a data store. What you actually do once
you have instantiated an InitialDirContext object depends upon your haming or directory service. JNDI lacks
an SQL-type language that allows a standard grammar to interact with any naming or directory service. As
result, you must tailor your program according to the directory service you need to work with.

JNDI NamingExceptions

Before moving on to the examples, | should mention JNDI exceptions. Just as most JDBC methods throw ai
SQLException, most JNDI methods throw a NamingException. For this reason you should place a try—catch
block dedicated to that exception in your code, to handle any errors that might occur.

Working with the JNDI LDAP SPI

LDAP-enabled directory services are becoming increasingly popular storage vehicles for corporate
information. At some point in your Java development career you may find yourself working with them.
Enterprises typically use these directory services for:

« User authentication and access control.

« Storage of objects, or object locations, in a distributed computing architecture.

» Corporate address books for e-mail addresses, phone numbers, and other information about
employees.

 Personalization data for Web-site users.

LDAP is a book-length subject unto itself. However, in this section I will show you how to work with it using
JNDI. For more in—depth coverage, such as information about creating schemas and implementing
authentication mechanisms, please consult additional references. The World Wide Web Consortium’s (W3C
Web site (http://www.w3c.org/), is a great place to start your research.

| use iPlanet’s Directory Server 5.0 for the examples in this section. (This product was formerly known as
Netscape Directory Server.) You may obtain a 90—-day evaluation copy from
http://www.iplanet.com/downloads. iPlanet has versions for the Microsoft NT/2000, HP-UX, Solaris, and
AIX platforms.

LDAP overview

A lot of misconception surrounds LDAP and what it actually does. Before continuing | will attempt to explain
its purpose. To begin, here’s what LDAP is not:

« LDAP is not a directory service.
* LDAP is not a specification for a directory service.
« LDAP is not a schema for a directory service.

LDAP defines a protocol for communicating with a directory service. It provides a “lighter—-weight” protocol
than the Directory Access Protocol DAP used to access X.500 data stores. Although its creators originally
designed LDAP as an alternative for DAP to access X.500 directories, you can use the protocol to access o

214

Chapter 13: Accessing Enterprise Data with JNDI

directory services as long as they implement the LDAP interface.

Figure 13-5 illustrates the typical architecture of an LDAP application. The client uses the LDAP protocol to
communicate with an LDAP server, which may or may not hold the directory service. Figure 13-5 shows the
directory service located on the LDAP server. Directory services that are not X.500, which is most of them,
and that use LDAP are said to be LDAP-enabled. iPlanet’s Directory Server and Novell’'s NDS are example
of LDAP-enabled directory services.

LDAP Server

LDAP
Interface Directory
‘ Service

Client Computer

LDAP

Application ‘< l> LDAP < :\ 1
TCP/P

API

\/

Figure 13-5: LDAP application architecture

LDAP is well tested. RFC 1777, approved in 1995, defines LDAP v2 and provides most of the functionality
you will use to interact with a directory service. This version, however, is not ideal for use in an enterprise
environment. For example, LDAP v2 only supports three types of authentication: anonymous, clear—text
(simple), and Kerberos v4. Given today’s emphasis on security, enterprises need more robust authenticatior
mechanisms.

LDAP v3, defined by RFC 2251, fills in the gaps of LDAP v2. In general, it improves security and
extensibility. With regard to authentication, it uses the Simple Authentication and Security Layer (SASL)
framework defined in RFC 2222. This architectural change enables you to use other authentication
mechanisms. In addition, LDAP v3 adds extensions and controls, both of which enable you to add new
functionality to a directory service. The javax.naming.ldap package defines the methods you need in order t
use the LDAP v3 features.

LDAP naming model

An LDAP-enabled directory service generally uses a hierarchical directory structure. Figure 13-6 shows a
representation of a typical LDAP-enabled directory service, which uses a family—tree—-like structure of
entries, also called directory objects, called a Directory Information Tree (DIT). As with a family tree, the

first entry is called the root.

You identify an entry by its Distinguished Name (DN), which shows its position in the DIT. You read a DN
from right to left. For example, my DN is uid=toddt, ou=people, o=toddt.com, as shown in Figure 13-6.

215

Chapter 13: Accessing Enterprise Data with JNDI

Ve N\
{ototecom | Root
N o
770N P
Elements | cusPeagle) (ou=Gesnps | Nodes
\ / N 4
7 2 AN AN \ /N
(vie oy | HR) n |
N o N SN A \ PN AN

Figure 13_—6 Example LDAP directory information tree

SBT Directory Services versus Relational Databases

A directory service provides some of the same functionality of a relational database. As a result, you may
wonder why you wouldn’t use a database instead. As with most competing technologies, each has its strenc
and weaknesses.

The following list identifies situations in which you should consider using a directory service over a relational
database:

« Where there is a high read/write ratio. Directory services are optimized for searching and retrieving
data, not for writing or updating data.

« Where data remain static, as in a corporate phone book or an object repository.

« Where you do not need transactional control. Directory services do not support transactions, so you
should not use them for applications that require that functionality.

Storing Java Objects with LDAP

Not only can you store text and numerical information in an LDAP—-enabled directory service, but you can
also store and manipulate Java objects. Doing so enables you to build an object repository without having tt
client worry about other interfaces, such as RMI or CORBA.

JNDI provides three alternatives for storing data in a directory service:

« Serialized objects: If an object implements the java.io.Serializable interface, you can store it directly
in the directory service. Using this method enables you to save object state or configuration. The
disadvantage of storing Java objects natively comes into play when the objects become too large, as
storing them natively can negatively affect the performance of the directory service.

» Referenceable objects: When you cannot store an object directly, you can store a reference to it. Yo
may want to consider this approach when working with large objects. To store an object reference, tt

216

Chapter 13: Accessing Enterprise Data with JNDI

object must implement the javax.naming.Referenceable interface. The requires that you implement
the getReference() method, which returns a Reference object. The service provider uses this methoc
behind the scenes when storing the object.

» Objects with attributes: You can store objects in a directory service so that other (non-Java)
applications can use them. Although this approach provides the most flexibility, it is also the most
difficult to implement. Objects eligible for storage with attributes must implement the DirContext
interface. Not all service providers support this method of object storage.

However, a DIT differs from a true tree structure because it can employ aliases. An alias is analogous to a
pointer: You can use it in situations where you would use a symbolic link in UNIX. For example, if you move
a DIT entry you can create an alias that points to its new location. The client will access the alias without
knowing the entry was moved.

Working with LDAP data

You use JNDI's javax.naming.directory package and its DirContext interface to work with an LDAP-enabled
directory service. The DirContext interface extends the Context interface and defines additional methods the
apply to directory services.

As you might expect, the LDAP specification is extensive and defines several core operations that you can
perform on objects in a directory service. The following list describes the four actions you will use most ofter

* Add: Creates a new entry with an optional set of attributes.

* Delete: Removes an entry from the directory.

* Modify: Changes the attribute value(s) associated with an entry.
» Search: Looks up entries based on their attributes.

Most of your work with LDAP-enabled directory services will involve looking up entries. A systems
administrator usually has the responsibility of adding and maintaining the entries. Because directory service
are built and optimized for searching and finding entries, you probably should minimize the number of objec
you add programmatically anyhow.

LDAP-enabled directory services can store various types of data. Besides text and numerical information,
you can also store Java objects. This enables you to create an object repository and retrieve them directly fi
the directory service for use in your application. You may store the object natively or use a reference, which
analogous to a pointer, to the object if the object is too large to store in a directory service.

In the rest of this section | cover how to interact with an LDAP—enabled directory service. | begin by covering
attributes, and then explain how to search for elements based on them.

Directory—object attributes As | mentioned previously, directory elements can have descriptive attributes.
This enables you to search the DIT for objects whose attributes meet certain criteria. For example, a directo
object for an employee can have attributes that specify an employee’s e-mail address, phone number, and
Social Security number. To find an employee, you can perform a search on any attribute defined in the
LDAP-enabled directory service.

Most directory services enable you to define your own attributes. However, there exist standard attributes fo

describing objects, and these standard attributes are used in most directory services. Table 13-3 lists them
provides a short description of each.

217

Chapter 13: Accessing Enterprise Data with JNDI

Table 13-3: Common Attributes Used in Directory Services

Symbol Name Definition ~ Example
dn Distinguished Unique nameJid=tthomas,
Name of an entry inou=people,
a DIT. o=toddt.com
uid userid Unique ID Uid=tthomas
for a user.
cn common name First and lastcn=Todd Thomas
name of a
user.
givenname first name First name ofgivenname=Todd
a user.
sn surname Last name ofsn=Thomas
a user.
I location City user I=Knoxville
lives.
o] organization Typically the o=toddt.com
directory
root.
ou organizational Major ou=People
unit directory
branches.
st state State user TN
lives.
C country Country useruS
lives.
mail e—mail address SMTP tthomas@toddt.com
e—mail
address.

When working with directory—object attributes you have two interfaces at your disposal: Attribute and
Attributes. The first represents a single attribute of an element and the second all the attributes of an elemet

In general, you use methods that return Attributes objects containing all the attributes of an object. You then
use additional methods to retrieve an Attribute object that holds the value of an object’s attribute. The
following code snippet demonstrates how to retrieve the mail attribute of a directory object:

/IAssume ctx is a valid InitialDirContext object
/IRetrieve attributes associated with the named directory object.
Attributes attrs =ctx.getAttributes("uid=awhite, ou=People");

//Retrieve a single attribute.
Attribute attr = (Attribute)attrs.get("mail");

218

Chapter 13: Accessing Enterprise Data with JNDI

The BasicAttribute and BasicAttributes classes implement the Attribute and Attributes interfaces. You use
objects of this type when you work with methods — typically methods associated with the DirContext
interface — that require them as parameters. For example, the modifyAttributes() and search() methods car
accept a parameter of type Attributes. The following section provides more details on working with attributes

Searching a directory service Searching is one of the most useful and powerful features of a directory
service. In fact, you will likely do more searching than updating or adding of new objects. Because
LDAP-enabled directories are built for searching, you have a lot of control over how you search. For
example, you can search the entire DIT, a specific named context, or a named object.

To conduct an LDAP search, you use the IntialDirContext.search() method. The JNDI API has eight
overloaded versions of the method that enable you to customize your search. For instance, you can define t
following:

 The starting point of the search.
« A search filter (to narrow the results).
» The scope of the search (to limit the contexts evaluated).

You must always specify the starting point of the search. You can specify any context or named object you
wish. The search filter helps you focus the query to return only objects whose attributes match certain criteri
You may find this helpful if you have a large employee directory and you need to limit the number of records
returned. The last component enables you to define the area of the DIT you want to search. Table 13-4 lists
the three options you have when setting the search scope.

Table 13-4: JNDI Search Scopes

Scope Description

OBJECT_SCOPE Searches a specific named object; you can use it for simple
equality tests.

ONELEVEL_SCOPE Searches only one level below the specified named context.

SUBTREE_SCOPE Searches the sub-tree below the specified named context.

Don't confuse the scope of a search with the starting context. In fact, the two components work together. Th
starting context influences the scope. Table 13-5 provides several examples of search scopes based on the
directory hierarchy in Figure 13-6.

Table 13-5: Example Search Scopes

Starting Context Search Scope Result

uid=awhite OBJECT_SCOPE Tests equality, or that an object
has certain attributes specified by
a search filter.

219

Chapter 13: Accessing Enterprise Data with JNDI

dc=siroe, dc=com ONELEVEL_SCOPE Searches the next level down in a
tree, in this case ou=People and
ou=Groups.

dc=siroe, dc=com SUBTREE_SCOPE Searches the entire DIT,

including the ou and uid levels.

You can narrow a search using either attribute constraints or a search filter. Searching with attribute
constraints is the simplest way to locate an object. With this method you specify the attributes you want an
object to have. The results will contain every object whose attributes match your search criteria. The
following code demonstrates a search that returns an object whose uid attribute equals awhite:

/[Create Attributes object
Attributes attrs = new BasicAttributes(true);

//Put search criteria in Attributes collection
attrs.put(new BasicAttribute("uid=awhite, ou=People"));

/I Search for objects that match the attributes
NamingEnumeration answer = ctx.search("ou=People", attrs);

To use a search filter you need to use the class javax.naming.directory. SearchControls and a String object
representing the filter. The SearchControls class enables you to specify the scope, or what contexts to seart
The filter enables you to search for elements using logical expressions and wildcard characters. (RFC 2241
defines the String representations of the LDAP search symbols.) The following code snippet illustrates how
perform a search using a filter and the SearchControls class:

//Define a starting context to search from.
String base = "ou=People";

/ICreate a SearchControls object and define a search scope
SearchControls sc = new SearchControls();
sc.setSearchScope(SearchControls. SUBTREE_SCOPE);

/[Create a filter. Here I look for anyone with the last name=White
/lwho works in Sunnyvale. | also ignore the first name.
String filter = "(&(givenname=*)(sn=White)(I=Sunn*))";

/I Search subtree for objects using filter
NamingEnumeration ne = ctx.search(base, filter, sc);

Table 13-6 lists the most common search symbols and their meanings.

Table 13-6: Common Search Symbols from RFC-2254

Search Symbol Description

! Logical not.

| Logical or.

& Logical and.

* Wildcard (any value).

220

Chapter 13: Accessing Enterprise Data with JNDI

= Equality.
>= Greater than.
<= Less than.

You may notice that the preceding code snippet returns a NamingEnumeration object from the search()
method. This object contains results from JNDI methods, which return multiple values. In this case the searc
may return any number of records. The NamingEnumeration object lets you traverse the results and retrieve
the elements. You will see this object in action in the next section.

Searching an LDAP-enabled directory example

As | mentioned earlier, you can do a lot different things with LDAP. However, the most common task is
searching for and retrieving objects. Therefore, the most practical data—access example | can provide is an
example that shows you how to search and retrieve objects using LDAP.

Listing 13-1 demonstrates how to search for objects in an LDAP—-enabled directory service whose attributes
meet certain criteria. In the example | want to find all the employees who work in Cupertino and have last
names starting with the letter w. This is an example of the kind of application you might need to use when
accessing data in a corporate directory.

Listing 13-1: LdapSearch.java

package Chapterl3;

import javax.naming.*;

import javax.naming.directory.*;
import java.util.Hashtable;
import java.io.Serializable;

public class LdapSearch {
public static void main(String[] args) {

/ICreate Hashtable and load environment variables
Hashtable env = new Hashtable();

String sp="com.sun.jndi.ldap.LdapCtxFactory";
env.put(Context.INITIAL_CONTEXT_FACTORY, sp);

String IdapUrl="ldap://localhost:389/dc=siroe, dc=com";
env.put(Context. PROVIDER_URL,IdapUrl);

try{
/I Create initial context
DirContext dctx = new InitialDirContext(env);

//Set search base
String base = "ou=People";

//Set attribute filter and search scope
SearchControls sc = new SearchControls();
String[] attributeFilter = {"cn", "mail"};
sc.setReturningAttributes(attributeFilter);

sc.setSearchScope(SearchControls. SUBTREE_SCOPE);

/IDefine filter
String filter = "(&(sn=W*)(I=Cup*))";

221

Chapter 13: Accessing Enterprise Data with JNDI

/[Perform search
NamingEnumeration results = dctx.search(base, filter, sc);
System.out.printin("Employees in Cupertino:");

/[Print results

while (results.hasMore()) {
SearchResult sr = (SearchResult)results.next();
Attributes attrs = sr.getAttributes();

Attribute attr = attrs.get("cn");
System.out.print(attr.get() + ": ");
attr = attrs.get("mail");
System.out.printin(attr.get());

}

/IClose resources an say goodbye
dctx.close();
System.out.printin("Goodbye!");

}catch(NamingException ne){
ne.printStackTrace();
}catch(Exception e){
e.printStackTrace();
}
}
}

The output from Listing 13-1 is as follows:

Employees in Cupertino:

John Walker: jwalker@siroe.com
Cecil Wallace: cwallace@siroe.com
Morgan White: mwhite@siroe.com
Alan Worrell: aworrell@siroe.com
Andy Walker: awalker@siroe.com
Eric Walker: ewalker@siroe.com
Goodbye!

To begin the application, | create a Hashtable in which to store the environment settings | need in order to
instantiate an InitialDirContext object. To do so, | specify the service provider | need to use. In this example
am using Sun’s LDAP service provider. The String entry name of the service provider’s driver,
com.sun.jndi.ldap.LdapCtxFactory is the class name.

Next, | put the location of the LDAP server into env. In this example, | am connecting the root node
(dc=siroe, dc=com) on a local LDAP server listening on port 389, the default port for LDAP servers. Now the
| have the environment setting prepared | can instantiate a DirContext object with a call to the constructor
InitialDirContext and use the Hashtable, env, as a parameter.

The next major step is to set the search criteria and controls. To do this | first define a String variable, base,
that specifies the context in which to begin the search. Because I'm searching for people, | specify the conte
ou=People. Next | instantiate a SearchControls object and make the following settings:

« Return only the values for the cn and email attributes with each object that matches the search criter
 Perform the search on the entire sub—tree of the context defined in the variable base.

222

Chapter 13: Accessing Enterprise Data with JNDI

Now | am ready to define my search filter. As | mentioned earlier, | want to find all the employees who work
in Cupertino and have last names starting with the letter w. The String variable filter defines this filter.

To execute the search | call the dctx.search() method and supply the search base, filter, and scope as
parameters. The method returns a NamingEnumeration object, which contains all the objects that match the
search criteria. After retrieving the results | print them out using a SearchResult object and a simple
while-loop.

Although this is a straightforward example, it contains all the components you need in order to perform a
search of an LDAP-enabled directory service.

Summary

As enterprises gather data and resources into a central location they often use a naming or directory service
JNDI provides a uniform API that enables you to access these data stores.

You can use JNDI to access corporate directories as well as object repositories. In fact, INDI plays a major
role in J2EE technologies. It enables clients to retrieve objects from repositories or look up their locations in
other enterprise data stores

Besides presenting the JNDI architecture, the chapter also showed you how to use JNDI with LDAP. Most
corporations and directory vendors use LDAP, although JNDI supports other naming and directory services.
To that end, Sun provides service providers for RMI, File System, and NIS, to name a few.

The biggest benefit of INDI is that it provides a single API that can access different data stores. You only
need to learn one API, not one for each naming or directory service.

223

Chapter 14: Using Data Sources and Connection
Pooling

In This Chapter

 Defining a Java DataSource object

« Using Java DataSource objects locally and with JNDI

« Understanding connection pooling

« Using the PooledConnection and ConnectionPoolDataSource interfaces

Enterprise database development provides you with many challenges. Not only must you create scalable ar
robust applications, but you must also make them easy to deploy and maintain. In addition, you need to ens
that your applications are sensitive to client, server, and network resources.

For example, most enterprise applications have many users, which may reside in different locations. As a
result, deployment strategies should not only consider the initial client installation, but how to maintain the
code base once it is installed. For example, if you add or change a database location you want to avoid havi
to re—deploy your application. You can do this by making the client’s code base independent of any
database-specific information such as server location or database driver names.

In addition, as a database developer, you want to ensure that your applications respect server resources su
CPU and memory. Minimizing the number of connections the clients open and close helps. You especially
need to consider the impact of connection cycling on the application and database servers when you use er
EJBs in J2EE programming.

To help you address this challenge, Java 1.4 provides an improved javax.sql interface. It defines interfaces
connection pooling and abstracting database-specific information from the client. Specifically, the
DataSource and ConnectionPoolDataSource interfaces solve many of the problems associated with enterpr
development.

In this chapter, | cover how to work with JDBC 3.0 DataSource objects. | begin with an overview and then
demonstrate how to use the objects in a distributed environment using JNDI. Finally, | demonstrate how to
use ConnectionPoolDataSource objects to implement connection pooling. At the end of this chapter you
should have a good understanding of how to take advantage of both interfaces.

Working with Java DataSource Objects

One theme of object—oriented and Java programming is abstraction. You should always try to hide
implementations behind interfaces. This helps create reusable and easily maintainable code. In addition,
abstraction promotes code independence. By relying on interfaces instead of on concrete classes, you redu
an object’s dependency on specific implementations. JDBC DataSource objects continue this theme by
abstracting the database server’s location and connection details from a client.

XRef See Chapter 9, “Understanding Design Patterns,” and Chapter 10, “Building the Singleton Pattern,”
for more information on design patterns that help you architect applications that take advantage of

224

Chapter 14: Using Data Sources and Connection Pooling

abstraction and polymorphism.

You can use a DataSource object either locally or with INDI. When you use it locally you do not need to
register and load database—driver information. When you use it with INDI you get all the benefits of local us
and in addition you can abstract the database location and connection information from a client. If you do thi
the client won't have to supply usernames, passwords, or a JDBC URL to open a database connection.

Note The DataSource interface and ConnectionPoolDataSource interface are often used interchangeably.
Some vendors may implement connection pooling in their DataSource implementations. However, mos
provide this functionality with the ConnectionPoolDataSource interface.

Using DataSource objects

JDBC DataSource objects offer an alternative to DriverManager for opening database connections_— in
some ways a superior alternative. The main advantage of using a DataSource object is that you avoid havin
to register the JDBC driver. DataSource objects handle this detail so you never need to hard—code the drive
name or set the value in a property file.

However, to take full advantage of a DataSource object you should use it with INDI. Using a JNDI naming
service provides the following benefits:

 You do not need to specify a JDBC URL, username, or password to make a connection. The system
administrator configures these parameters when binding a DataSource object into a haming or
directory service.

 You avoid having to reference the JDBC driver name, which helps mitigate your dependence on
vendor—specific code.

» The client does not need to know the database server’s location. If the database changes physical
hosts, the change is made to the DataSource object and is transparent to the client.

Figure 14-1 shows a typical configuration using JNDI and DataSource objects. The client uses JNDI to
retrieve a DataSource object from a directory service that is pre—configured with the connection information.
To open a database connection, the client just calls the DataSource.getConnection(). Once a Connection
object is instantiated, the client can communicate with the database as normal.

Client

h JNDI Naming or
Directory Service
IN[)ln 1. Retrieve DataSource —
ﬁ’LJr object with JNDI

Java Application

DataSource

2. Create
Connection

object :
& Database Server

IC”"”"“""”H ’(ML” 3. Interact with >[_—_‘___T___)—}

database

I':igure 14-1: DataSource and JNDI configugt}on

After reading about the advantages the DataSource object provides, you may wonder why you wouldn't use
exclusively. The primary reason is vendor implementations.

Because the DataSource interface is part of the javax.sql package, driver vendors must implement the
functionality. Unless you have a driver that provides an implementation, you cannot take advantage of the

225

Chapter 14: Using Data Sources and Connection Pooling

DataSource object’s functionality. The following section provides further details on typical vendor
implementations.

Looking at DataSource implementations

The javax.sql package that Sun distributes consists mainly of interfaces. As a result, the driver vendor must
implement the methods defined in the API’s interfaces.

Note Prior to JDK1.4 the DataSource interface was part of the JDBC 2.0 Optional package. Sun has include
it with the standard distribution. If you are using a prior JDK, go to www.javasoft.com/products/jdbc to
obtain the optional package.

Figure 14-2 shows the UML class diagram for the DataSource interface. As you can see, the interface defir
the getConnection() method. As | mentioned earlier, the method returns a standard physical connection,
represented as a Connection object, to the database, just as DriverManager does.

javax.sql.javax.sql.DataSource

+getConnection(): Connection
+getConnection(:String,.String): Connection
+getlogWriter(): PrintWriter
+getloginTimeout(): int
+setLogWriter(:PrintWriter): void
+setloginTimeout(iint): void

Figure 14-2: UML class diagram of the DataSource interface

A second inspection of the UML class diagram shows that the interface lacks methods for specifying
connection parameters. For example, how do you set the username and password, or JDBC URL? The
answer: Vendors must provide these setter and getter methods.

The interface does not define these methods because different databases may require different connection
parameters. For example, some drivers may have a parameter that specifies a certain network protocol, whi
others may not. However, for the sake of consistency, Sun has developed standard property names. They a
listed in Table 14-1.

Table 14-1 : Recommended DataSource Property Names

Property Name Java Data Type Comment

databaseName String The name of the database you want
to connect to.

serverName String The name of the database server you
want to connect to.

user String The user ID with which you want to
connect to the database.

password String The password for the user ID

specified in the user property.
portNumber Int

226

Chapter 14: Using Data Sources and Connection Pooling

The number of the port to which the
database server is listening.

When using a DataSource object locally you must use the vendor's methods to set the necessary connectio
information. This approach ties your code to the specific vendor’s class name that implements the DataSour
interface. The constraint only applies when you are using the DataSource interface locally.

For example, with Oracle’s implementation the OracleDataSource class implements the DataSource interfa
To access the setter and getter methods you must declare a variable of type OracleDataSource. However,
having this class name in your code makes your code less portable.

If you use a DataSource object retrieved from a JNDI naming service, the connection properties are usually
preset. The JNDI system administrator, or whoever deploys the DataSource object, sets these parameters.
is one advantage of using JNDI and DataSource objects together: You do not need to worry about the
connection details.

A DataSource example

Now | want to provide an example of using a local DataSource object to open an Oracle database connectic
Listing 14-1 provides the code for the example. Because I'm using the object locally, | must set the
connection properties of the DataSource object. As a result, | need to declare a variable, ods, of type
OracleDataSource, so | can access the setter methods as part of Oracle’s implementation. Every vendor wil
have different methods. However, notice that | never reference Oracle’s JDBC driver class hame in the
example. The OracleDataSource object knows how to communicate with it.

Listing 14-1: DataSource.java

package Chapterl4;

import javax.sql.*;

import java.sql.*;

import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;

public class DataSource {

public static void main(String[] args){
try{
/lInstantiate a DataSource object
/land set connection properties.
OracleDataSource ods = new OracleDataSource();

ods.setUser("toddt");
ods.setPassword("mypwd");
ods.setDriverType("thin");
ods.setDatabaseName("ORCL");
ods.setServerName("localhost");
ods.setPortNumber(1521);

//Open connection
Connection conn = ods.getConnection();
System.out.printin("Connection successful!");

}catch(SQLException se){

/[Handle errors for JDBC
se.printStackTrace();

227

Chapter 14: Using Data Sources and Connection Pooling

Ylend try
System.out.printin("Goodbye!");
}
}

The output from Listing 14-1 is as follows:

Connection successful!
Goodbye!

Using DataSource objects with JNDI

The Java JNDI API provides access to naming and directory services so that you may locate and retrieve a
variety of resources. For example, you can use JNDI to retrieve an employee’s phone number and e-mail
address from an LDAP-enabled directory service. Or you can retrieve a DataSource object from a directory
service and use it to interact with a database.

Combined, the DataSource interface and JNDI play a key role in the database—component layer of a J2EE
program. With the combination you can remove the need for vendor—specific code in the client. In addition,
you can place a DataSource object, pre—configured with the correct information for connecting to a databas
into a directory service. When a client retrieves the object, all it needs to do is call
DataSource.getConnection() to open a database connection.

XRef Chapter 13, “Accessing Enterprise Data with JNDI,” provides more information on how to use
JNDI.

Using DataSource objects and JNDI together requires two steps:

1. You must load the DataSource object into a directory service and bind a logical name to it. This
requires that you use the Context.bind() method found in the javax.naming package.

2. The client has to retrieve the DataSource object from the JNDI naming system using the
Context.lookup() method. After the client retrieves the object, it uses the DataSource.getConnection(
method to open a database connection.

Listing 14-2 provides an example of using JNDI and the OracleDataSource object provided with the Oracle
8.1.7 JDBC driver. Remember that the DataSource interface does not define any methods for setting
connection information; the vendor must provide this implementation. In this case, the OracleDataSource
object implements the JDBC DataSource interface and has methods for setting the connection properties.

Listing 14-2: JndiDataSource.java

package Chapterl4;

import java.sql.*;

import javax.sqgl.DataSource;

import oracle.jdbc.pool.OracleDataSource;
import javax.naming.Context;

import javax.naming.NamingException;
import javax.naming.InitialContext;

import java.util.Hashtable;

public class JndiDataSource{

228

Chapter 14

static Connection conn = null;
static Statement stmt = null;
static ResultSet rs = null;
static Context ctx = null;
static DataSource ds = null;

public static void main (String args []}{

/I Initialize the Context

: Using Data Sources and Connection Pooling

String sp = "com.sun.jndi.fscontext.RefFSContextFactory";

String file = "file:/e:/INDI";

String dataSourceName = "jdbc/myDatabase";

try {

/ICreate Hashtable to hold environment properties

/lthen open InitialContext
Hashtable env = new Hashtable();

env.put (Context.INITIAL_CONTEXT_FACTORY, sp);

env.put (Context. PROVIDER_URL,
ctx = new InitialContext(env);

//Bind the DataSource object

file);

bindDataSource(ctx, dataSourceName);

/IRetrieve the DataSource object
DataSource ds = null;

ds = (DataSource) ctx.lookup(dataSourceName);

//Open a connection, submit query,

and print results

Connection conn = ds.getConnection();

Statement stmt = conn.createStatement();

String sql = "SELECT Name FROM

Employees";

ResultSet rs = stmt.executeQuery(sql);

System.out.printin("Listing employee’s name:");

while(rs.next())

System.out.printin(rs.getString("name"));

/I Close the connections to the data
ctx.close();

rs.close();

stmt.close();

conn.close();

}catch (NamingException ne){
ne.printStackTrace();

}catch (SQLException se){
se.printStackTrace();

/lensure all resources are closed

Hinally{
try{
if(ctx!=null)
ctx.close();
Jcatch (NamingException ne){
ne.printStackTrace();
Hinally{
try{

store resources

229

Chapter 14: Using Data Sources and Connection Pooling

if(conn!=null)
conn.close();
}catch (SQLException se){
se.printStackTrace();
}
}
}
System.out.printin("Goodbye!");

}

//Method to bind DataSource object
public static void bindDataSource(Context ctx, String dsn)
throws SQLException, NamingException{

/[Create an OracleDataSource instance
OracleDataSource ods = new OracleDataSource();

//Set the connection parameters
ods.setUser("toddt");
ods.setPassword("mypwd");
ods.setDriverType("thin");
ods.setDatabaseName("ORCL");
ods.setServerName("localhost");
ods.setPortNumber(1521);

//Bind the DataSource
ctx.rebind (dsn,ods);

The output from Listing 14-2 is as follows:

Listing employee’s name
Todd

Larry

Lori

Jimmy

John

Andy

Goodbye!

In Listing 14-2 | use Sun’s File System service provider because it is easy to use and you do not need acce
to an external directory service in order to use it. However, before running the application you need to ensur
that the initial context (here e:\JNDI) exists. You can change this context to reference another directory to st
your needs. In addition, you must ensure you have the File System service provider from Sun.

Note To use the JNDI File System service provider you must download it from Sun. You can find the driver,
along with those for other service providers, at http://www.javasoft.com/products/jndi.

| start the application by instantiating an InitialContext object, which opens a connection to the data store an
specifies my initial context. | will use this object to load and retrieve the DataSource object. Next, | use the
bindDataSource() method to bind the DataSource object into the naming service.

This example actually combines two functions into one. In a real application you will probably not have to
bind your own DataSource object into a naming service. A systems administrator usually performs this task.

230

Chapter 14: Using Data Sources and Connection Pooling

After binding the DataSource object, | simulate a client retrieving the object from the naming service. To do
so, | define a variable, ds, of type DataSource. Polymorphism enables me to assign any class that implemer
the DataSource interface to a variable of that type. Notice that | must cast the object retrieved from the
directory service to a DataSource type, because the lookup() method returns an Object data type.

Once I retrieve the aobject, | use the getConnection() method to open a database connection. To illustrate th:
the connection is valid, | perform a simple query and list the results in the main() method.

Listing 14-2 illustrates the real benefit of using JNDI and DataSource objects together. You completely
remove the vendor-specific code from your application. You can switch databases or drivers without
affecting the client’s code, because they rely only on the DataSource interface.

Implementing Connection Pooling

Establishing a database connection is an expensive operation. A lot of activity occurs, and that requires
network bandwidth as well as both client and server resources. Significant handshaking, such as user
authentication, must occur before you actually open a connection. You can see the impact of handshaking c
your application as it will run sluggishly or appear to hang while establishing the connection.

Ideally you want to open only one physical connection and use it throughout the application. Using a global
Connection object works fine for simple applications when you need to make only a limited number of
requests.

However, suppose you have a multithreaded application in which every thread needs its own physical
connection, that is, its own Connection object? Whenever you spawn a new thread you open another datab:
connection, thereby slowing your application and consuming resources on the server.

On the enterprise level, consider a J2EE solution that uses an entity EJB that requires database access.
Because clients share this component, every request opens and closes a database connection. However, w
you have a lot of traffic or usage, you run the risk of slowing down both the application and the database
server.

Connection pooling helps combat this problem. This programming technigue allows a client to retrieve
pre—connected Connection objects from a cache. In this scenario, you open the database connection once :
provide it to clients when they need connections. This enables y