
The XML Revolution
Technologies for the future Web

Anders Møller & Michael I. Schwartzbach

BRICS, University of Aarhus

http://www.brics.dk/~amoeller/XML/

Revised: December 2001

This slide collection provides an introduction and overview of
XML, Namespaces, XInclude, XML Base, XLink, XPointer, XPath,
DTD, XML Schema, DSD, XSLT, XQuery, DOM, SAX, and JDOM

including selected links to more information about each topic.

http://www.brics.dk/~amoeller/
http://www.brics.dk/~mis/

About this tutorial...
This slide collection about XML and related technologies is created by

Anders Møller
http://www.brics.dk/~amoeller

and

Michael I. Schwartzbach
http://www.brics.dk/~mis

at the BRICS research center at University of Aarhus, Denmark.

Copyright © 2000-2001 Anders Møller & Michael I. Schwartzbach

Reproduction of this slide collection is permitted on condition that it is
distributed in whole, unmodified, and for free, and that the authors are
notified.

The slide collection is aimed at computer scientists, software engineers, and
others who want to know what this XML thing is all about. It covers both the basic
XML concepts and the related technologies for document linking, describing
classes of documents, stylesheet transformation, and database-like querying,
from a technical but high-level point of view. Based on the essential XML-related
specifications, the slides are designed with concrete motivation and technical
contents in focus, for the reader who wishes to understand and actually use these
technologies.

A PDF version suitable for printing and off-line browsing is available upon request.

Feedback is appreciated! Please send comments and suggestions to
amoeller@brics.dk.

2

mailto:amoeller@brics.dk
http://www.brics.dk/~amoeller
mailto:mis@brics.dk
http://www.brics.dk/~mis
mailto:amoeller@brics.dk?Subject=XML%20tutorial%20/%20PDF
mailto:amoeller@brics.dk

Contents
1. HTML and XML - structuring information for the future (21 pp.) 4

2. Namespaces, XInclude, and XML Base - common extension
to the XML specification (8 pp.) 32

3. DTD, XML Schema, and DSD - defining language syntax with
schemas (27 pp.) 42

4. XLink, XPointer, and XPath - linking and addressing (24 pp.) 87

5. XSL and XSLT - stylesheets and document transformation (19 pp.) 115

6. XQuery - document querying (15 pp.) 142

7. DOM, SAX, and JDOM - programming for XML (15 pp.) 160

8. W3C - some background on the World Wide Web Consortium (5 pp.) 181

3

Markup Languages: HTML
and XML

HTML - original motivation, development, and inherent limitations:

● Hyper-Text Markup Language - the Web today
● Original motivation for HTML - some history
● Compact and human readable - alternative document formats
● From logical to physical structure - requirements from users
● Stylesheets - separating logical structure and layout
● Different versions of HTML - a decade of development
● Syntax and validation - HTML as a formal language
● Browsers are forgiving - the real world
● Structuring general information - not everything is hypertext
● Problems with HTML - why HTML is not the solution

XML as the universal format for structuring information:

● What is XML? - the universal data format
● HTML vs. XML - the key differences
● A conceptual view of XML - XML documents as labeled trees
● A concrete view of XML - XML documents as text with markup
● Applications of XML - an XML language for every domain
● The recipe example - designing a small XML language
● From SGML to SML - a word on doc-heads and development
● SGML relics - things to avoid
● XML technologies - generic languages and tools for free

Selected links:

● Basic XML tools
● Links to more information

4

Hyper-Text Markup Language
HTML: Hyper-Text Markup Language

What is hyper-text?

● a document that contains links to other documents (and text, sound, images...)
● links may be actuated automatically or on request
● linked documents may replace, be inlined, or create a new window
● most combinations are supported by HTML

What is a markup language?

● a notation for writing text with markup tags
● the tags indicate the structure of the text
● tags have names and attributes
● tags may enclose a part of the text

The start of the HTML for this page, with text, tags, and attributes:

<table width="99%">
 <tr>
 <td align=left>

 <td align=right>

 </td>
 </tr>
</table>

5

<p>
<h1>Hyper-Text Markup Language</h1>
What is hyper-text?

 a document that contains links to other documents
 (and text, sound, images...)
 links may be actuated automatically or on request
 linked documents may replace, be inlined,
 or create a new window
 most combinations are supported by HTML

6

Original motivation for HTML
Exchange data on the Internet:

● documents are published by servers
● documents are presented by clients (browsers)

HTML was created by Tim Berners-Lee and Robert Caillau at CERN in 1991:

● the motivation was to keep track of experimental data

HTML describes only the logical structure of documents:

● browsers are free to interpret markup tags as they please
● the document even makes sense if the tags are ignored

HTML combined well-known ideas:

● hyper-text was known since 1945
● markup languages date back to 1970

7

http://www.w3.org/History/1989/proposal.html
http://www.isg.sfu.ca/~duchier/misc/vbush/vbush-all.shtml
http://www.sgmlsource.com/history/jasis.htm

Compact and human
readable

Many document formats are very bulky:

● the author controls the precise layout
● all details, including many font tables, must be stored with the contents

In comparison, HTML is slim:

● the author sacrifices control for compactness
● only the actual contents and its logical structure is represented

Sizes of documents containing just the text "Hello World!":

PostScript hello.ps 11,274 bytes

PDF hello.pdf 4,915 bytes

MS Word hello.doc 19,456 bytes

HTML hello.html 44 bytes

Compactness is good for:

● saving space on your server
● lowering network traffic

(Don't worry about voluminous markup - specialized compression techniques are
emerging.)

Furthermore, HTML documents can be written and modified with any raw-text
editor.

8

http://www.research.att.com/sw/tools/xmill/

From logical to physical
structure

Originally, HTML tags described logical structure:

● h2: "this is a header at level 2"
● em: "this text should be emphasized"
● ul: "this is a list of items"

Quickly, (non-physicist) users wanted more control:

● "this header is centered and written in Times-Roman in size 28pt"
● "this text is italicized"
● "these list items are indented 7mm and use pink elephants for bullets"

The early hack for commercial pages was to make everything a huge image:

HTML hello.html 44 bytes

GIF hello.gif 32,700 bytes

The HTML developers responded with more and more physical layout tags.

9

http://www.brics.dk/~amoeller/XML/print/xml/elephants.html

Stylesheets
Cascading Style Sheets (CSS):

● specify physical properties (layout) of HTML tags
● are (usually) written in separate files
● can be shared for many HTML documents

There are many advantages:

● logical and physical properties may be separated
● document groups can have consistent looks
● the look can easily be changed

A CSS stylesheet works by:

● allowing more than 50 properties to be defined for each kind of tag;
● the definitions for a tag may depend on its context
● undefined properties are inherited from enclosing tags
● normal HTML corresponds to default values of properties

Using stylesheets, all tags become logical - however, CSS stylesheets only
address superficial properties of documents.

A CSS stylesheet is a collection of selectors and properties:

B {color:red;}
B B {color:blue;}
B.foo {color:green;}
B B.foo {color:yellow;}
B.bar {color:maroon;}

In the HTML document, the most specific properties are chosen, so:

10

http://www.w3.org/Style/CSS/
http://www.zvon.org/xxl/css1Reference/Output/index.html

<b class=foo>Hey!
Wow!!
 Amazing!!!
 <b class=foo>Impressive!!!!
 <b class=bar>k00l!!!!!
 <i>Fantastic!!!!!!</i>

gives the result:

Hey! Wow!! Amazing!!! Impressive!!!! k00l!!!!! Fantastic!!!!!!

When properly used, the physical layout (a CSS file) is separated from logical
structure and the actual contents (a HTML file).

With CSS stylesheets, any tag can be made to look like any other tag.

The default layout in a browser corresponds to a default stylesheet.

11

Different versions of HTML
HTML has been developed extensively over the years:

1992
HTML is first defined

1993
HTML+ (some physical layout, fill-out forms, tables, math)

1994
HTML 2.0 (standard for core features)
HTML 3.0 (an extension of HTML+ submitted as a draft standard)

1995
Netscape-specific non-standard HTML appears

1996
Competing Netscape and Explorer versions of HTML
HTML 3.2 (standard based on current practices)

1997
HTML 4.0 (separates structure and presentation with stylesheets)

1999
HTML 4.01 (slight modifications only)

2000
XHTML 1.0 (XML version of HTML 4.01)

12

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html
http://www.w3.org/MarkUp/htmlplus_paper/htmlplus.html
http://www.w3.org/MarkUp/html-spec/
http://www.w3.org/MarkUp/html3/CoverPage.html
http://www.w3.org/TR/REC-html32.html
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/html4
http://www.w3.org/TR/xhtml1/

Syntax and validation
HTML 4.01 has a precise and formal syntax definition.

● every HTML document should satisfy this definition

● this can be automatically validated

● valid documents get an official seal of approval:

● invalid documents get a list of error messages

13

http://www.w3.org/TR/html4/sgml/dtd.html
http://validator.w3.org/
http://www.brics.dk/~amoeller/XML/print/xml/errors.html

Browsers are forgiving
Most HTML documents are in fact not valid:

● authors are careless
● documents are "validated" by showing them with a browser
● autogenerated HTML is often invalid

Even so, most HTML pages look fine:

● the browsers do their best
● no syntax errors are ever reported

<h2>Lousy HTML</h1>
<a>This is not very good.
<i>In fact, it is quite <g>bad</g>

But the browser does something.

Lousy
HTML

● This is not very
good.
● In fact, it is quite
bad But the browser
does something.

A different approach is HTML Tidy, which corrects (some) errors in HTML
documents.

This is problematic:

● it promotes bad HTML
● different browsers do different "clever" things
● it is very hard to use invalid documents for other things than

browsing, e.g. for automatic processing by other tools!

14

http://www.w3.org/People/Raggett/tidy/

Structuring general information
Consider the following recipe collection published in HTML:

<h1>Rhubarb Cobbler</h1>
<h2>Maggie.Herrick@bbs.mhv.net</h2>
<h3>Wed, 14 Jun 95</h3>

Rhubarb Cobbler made with bananas as the main sweetener.
It was delicious. Basicly it was

 <table>
 <tr><td> 2 1/2 cups <td> diced rhubarb (blanched with boiling water, drain)
 <tr><td> 2 tablespoons <td> sugar
 <tr><td> 2 <td> fairly ripe bananas sliced 1/4" round
 <tr><td> 1/4 teaspoon <td> cinnamon
 <tr><td> dash of <td> nutmeg
 </table>

Combine all and use as cobbler, pie, or crisp.

Related recipes: Garden Quiche

There are many problems with this approach of using HTML:

● the semantics is encoded into text formatting tags
● there is no means of checking that a recipe is encoded correctly
● it is difficult to change the layout of recipes (CSS is not enough)

It would be much better to invent a special "recipe markup language"...

15

Problems with HTML
● The language is by design hardwired to describe hypertext:

❍ there is a fixed collection of tags with a fixed semantics
❍ but much information just is not hypertext!

● Syntax and semantics is mixed together:
❍ the structuring of data dictates its presentation in browsers
❍ stylesheets only provide a weak solution
❍ different views are not supported

● The standards have been undermined:
❍ most HTML documents are invalid
❍ the browsers define sloppy ad-hoc standards

16

What is XML?
XML: eXtensible Markup Language

XML is a framework for defining markup languages:

● there is no fixed collection of markup tags - we may define our own tags,
tailored for our kind of information

● each XML language is targeted at its own application domain, but the
languages will share many features

● there is a common set of generic tools for processing documents

XML is not a replacement for HTML:

● HTML should ideally be just another XML language
● in fact, XHTML is just that
● XHTML is a (very popular) XML language for hypertext markup

XML is designed to:

● separate syntax from semantics to provide a common framework for
structuring information (browser rendering semantics is completely defined
by stylesheets);

● allow tailor-made markup for any imaginable application domain
● support internationalization (Unicode) and platform independence
● be the future of structured information, including databases

17

http://www.w3.org/TR/xhtml1/
http://www.unicode.org/

HTML vs. XML
Consider the HTML recipe collection again:

<h1>Rhubarb Cobbler</h1>
<h2>Maggie.Herrick@bbs.mhv.net</h2>
<h3>Wed, 14 Jun 95</h3>

Rhubarb Cobbler made with bananas as the main sweetener.
It was delicious. Basicly it was

 <table>
 <tr><td> 2 1/2 cups <td> diced rhubarb
 <tr><td> 2 tablespoons <td> sugar
 <tr><td> 2 <td> fairly ripe bananas
 <tr><td> 1/4 teaspoon <td> cinnamon
 <tr><td> dash of <td> nutmeg
 </table>

Combine all and use as cobbler, pie, or crisp.

Related recipes: Garden Quiche

With XML, we can instead define our own "recipe markup language" where the markup tags
directly correspond to concepts in the world of recipes:

<recipe id="117" category="dessert">
 <title>Rhubarb Cobbler</title>
 <author><email>Maggie.Herrick@bbs.mhv.net</email></author>
 <date>Wed, 14 Jun 95</date>

 <description>
 Rhubarb Cobbler made with bananas as the main sweetener.
 It was delicious.
 </description>

 <ingredients>
 <item><amount>2 1/2 cups</amount><type>diced rhubarb</type></item>
 <item><amount>2 tablespoons</amount><type>sugar</type></item>
 <item><amount>2</amount><type>fairly ripe bananas</type></item>
 <item><amount>1/4 teaspoon</amount><type>cinnamon</type></item>
 <item><amount>dash of</amount><type>nutmeg</type></item>
 </ingredients>

 <preparation>
 Combine all and use as cobbler, pie, or crisp.
 </preparation>

 <related url="#GardenQuiche">Garden Quiche</related>

18

</recipe>

This example illustrates:

● the markup tags are chosen purely for logical structure
● this is just one choice of markup detail level
● we need to define which XML documents we regard as "recipe collections"
● we need a stylesheet to define browser presentation semantics
● we need to express queries in a general way

Later:

● XML Schema will later be used to define our class of recipe documents
● XSLT will be used to transform the XML document into XHTML (or HTML), including

automatic construction of index, references, etc.
● XLink, XPointer, and XPath could be used to create cross-references
● XQuery will be used to express queries

19

A conceptual view of XML
An XML document is an ordered, labeled tree:

● character data leaf nodes contain the actual data (text strings)
❍ usually, character data nodes must be non-empty and non-adjacent

to other character data nodes

● elements nodes, are each labeled with
❍ a name (often called the element type), and
❍ a set of attributes, each consisting of a name and a value,

and these nodes can have child nodes

A tree view of the XML recipe collection:

The tree structure of a document can be examined in the Explorer browser.

In addition, XML trees may contain other kinds of leaf nodes:

● processing instructions - annotations for various processors
● comments - as in programming languages
● document type declaration - described later...

Unfortunately, XML is not as simple as it could be, and there is still no agreement on
XML tree terminology :-(

20

http://www.brics.dk/~amoeller/XML/print/xml/rhubarb.xml
http://www.xmlhack.com/read.php?item=241

A concrete view of XML
An XML document is a (Unicode) text with markup tags and other meta-
information.

Markup tags denote elements:

 ...<foo attr="val" ...>...</foo>...
 | | | |
 | | | a matching element end tag
 | | the contents of the element
 | an attribute with name attr and value val, values enclosed by '
or "
 an element start tag with name foo

There is a short-hand notation for empty elements:
...<foo attr="val".../>...

An XML document must be well-formed:

● start and end tags must match
● element tags must be properly nested
● + some more subtle syntactical requirements

Note: XML is case sensitive!

Special characters can be escaped using Unicode character references:

● < and < both yield <
● &and & both yield &

CDATA Sections are an alternative to escaping many characters:

● <![CDATA[<greeting>Hello, world!</greeting>]]>

The strange syntax is a legacy from SGML...

White-space (blanks, newlines, etc.) is used both for indentation and actual
contents. (xml:space attribute provides some control.)

21

Other meta-information:

<?target data...?>
an instruction for a processor, target identifies the processor for which it
is directed, data is a string containing the instruction

<!-- comment -->
a comment, will be ignored by all processors

<!DOCTYPE ...>
document type declaration (described later...)

22

Applications of XML
There are already hundreds of serious applications of XML.

XHTML

W3C's XMLization of HTML 4.0. Example XHTML document:

 <?xml version="1.0" encoding="UTF-8"?>
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head><title>Hello world!</title></head>
 <body><p>foobar</p></body>
 </html>

CML

Chemical Markup Language. Example CML document snippet:

 <molecule id="METHANOL">
 <atomArray>
 <stringArray builtin="elementType">C O H H H H</stringArray>
 <floatArray builtin="x3" units="pm">
 -0.748 0.558 -1.293 -1.263 -0.699 0.716
 </floatArray>
 </atomArray>
 </molecule>

WML

Wireless Markup Language for WAP services:

 <?xml version="1.0"?>
 <wml>
 <card id="Card1" title="Wap-UK.com">
 <p>
 Hello World
 </p>
 </card>
 </wml>

ThML

Theological Markup Language:

23

http://www.w3.org/TR/xhtml1/
http://www.xml-cml.org/
http://www.wapforum.org/
http://www.ccel.org/ThML/

 <h3 class="s05" id="One.2.p0.2">Having a Humble Opinion of Self</h3>
 <p class="First" id="One.2.p0.3">EVERY man naturally desires knowledge
 <note place="foot" id="One.2.p0.4">
 <p class="Footnote" id="One.2.p0.5"><added id="One.2.p0.6">
 <name id="One.2.p0.7">Aristotle</name>, Metaphysics, i. 1.
 </added></p>
 </note>;
 but what good is knowledge without fear of God? Indeed a humble
 rustic who serves God is better than a proud intellectual who
 neglects his soul to study the course of the stars.
 <added id="One.2.p0.8"><note place="foot" id="One.2.p0.9">
 <p class="Footnote" id="One.2.p0.10">
 Augustine, Confessions V. 4.
 </p>
 </note></added>
 </p>

There is a long list of many other XML applications.

24

http://www.oasis-open.org/cover/xml.html#applications

The recipe example
Consider again recipes, such as in this example (raw text file).

We design an XML version of a recipe collection:

● recipes consist of ingredients, steps for preparation, possibly some comments, and a specification
of its nutrition

● an ingredient can be simple or composite
● a simple ingredient has a name, an amount (possibly unspecified), an a unit (unless amount is

dimensionless)
● a composite ingredient is recursively a recipe

This example (formatted XML file) contains five recipes. Abbreviated version:

<?xml version="1.0" encoding="UTF-8"?>
<collection>
 <description>
 Some recipes used for the XML tutorial.
 </description>
 <recipe>
 <title>Beef Parmesan with Garlic Angel Hair Pasta</title>
 <ingredient name="beef cube steak" amount="1.5" unit="pound"/>
 ...
 <preparation>
 <step>
 Preheat oven to 350 degrees F (175 degrees C).
 </step>
 ...
 </preparation>
 <comment>
 Make the meat ahead of time, and refrigerate over night, the acid in the
 tomato sauce will tenderize the meat even more. If you do this, save the
 mozzarella till the last minute.
 </comment>
 <nutrition calories="1167" fat="23" carbohydrates="45" protein="32"/>
 </recipe>
 ...
</collection>

XML documents (usually) begin with an XML declaration (<?xml ...?>).

25

http://www.brics.dk/~amoeller/XML/print/xml/beefparmesan.txt
http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

From SGML to SML
- DocHeads vs. Simpletons, a process of simplification

SGML (Standard Generalized Markup Language)
❍ ISO standard, 1985
❍ huge amount of "document archive" applications in government,

military, industry, academia, ...
❍ a successfull well-known application: HTML is designed as a simple

application of SGML.

 |
 V

XML
❍ W3C Recommendation 1998
❍ a simple subset of SGML, targeted for Web applications
❍ now de facto standard

 |
 V

MinML (Minimal XML, previously known as SML - Simple Markup Language)
❍ Web community discussions and collaborations, started 1999
❍ simplifies the XML spec: no DTDs, processing instructions, or

comments, UTF-8 and UTF-16 only, considerations on element
attributes, white-space,...

Canonical XML
❍ W3C Recommendation, March 2001
❍ intended as simplification of general XML documents, not as a

simplified XML spec
❍ "canonical" representation
❍ removes document type declarations, imposes ordering on attributes,

etc.

Occam's razor: "one should not increase, beyond what is necessary, the number of entities

required to explain anything"

26

http://www.docuverse.com/smldev/minxmlspec.html
http://www.xmlhack.com/list.php?cat=31
http://www.xmlhack.com/read.php?item=205
http://www.xml.com/pub/a/2001/08/01/simpler.html
http://www.w3.org/TR/xml-c14n
http://pespmc1.vub.ac.be/OCCAMRAZ.html

SGML relics
- only a fool does not fear "external general parsed entities"

As an unfortunate heritage from SGML, the header of an XML document may
contain a document type declaration:

<?xml version="1.0"?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
 <!ATTLIST greeting style (big|small) "small">
 <!ENTITY hi "Hello">
]>
<greeting> &hi; world! </greeting>

This part can contain:

● DTD (Document Type Definition) information:
❍ element type declarations (ELEMENT)
❍ attribute-list declarations (ATTLIST)

(described later...)
● entity declarations (ENTITY) - a simple macro mechanism
● notation declarations (NOTATION) - data format specifications

Avoid all these features whenever possible!

Unfortunately, they cannot always be ignored - all XML processors (even non-
validating ones) are required to:

● normalize attribute values (prune white-space etc.)
● handle internal entity references (e.g. expand &hi; in greeting)
● insert default attribute values (e.g. insert style="small" in greeting)

according to the document type declaration, if a such is present.

27

XML technologies
XML is:

● hot ($$$)
● the standard for representation of Web information
● by itself, just a notation for hierarchically structured text

But a notation for tree structures is not enough:

● the real force of XML is generic languages and tools!
● by building on XML, you get a massive infrastructure for free

The XML vision offers:

● common extensions to the core XML specification
a namespace mechanism, document inclusion, etc.

● schemas
grammars to define classes of documents

● linking between documents
a generalization of HTML anchors and links

● addressing parts of read-only documents
flexible and robust pointers into documents

● transformation
conversion from one document class to another

● querying
extraction of information, generalizing relational databases

To "use XML":

1. define your XML language (use e.g. XML Schema to define its syntax)
2. exploit the generic XML tools (e.g. XSLT and XQuery processors), the

generic protocols, and the generic programming frameworks (e.g. DOM or
SAX) to build application tools

These technologies are described in the following sections.

Other related technologies (not covered here):

28

● XML Information Set
attempt to define common terminology for XML document concepts
("information set"=tree, "information item"=node, ...)

● XML-Signature
digital signatures of Web resources

● XML Encryption
encryption of Web resources

● XML Fragment Interchange
for dealing with fragments of XML documents

● XML Protocol and SOAP (Simple Object Access Protocol)
information exchange protocol

● XForms
a common sublanguage for input forms (with XHTML forms as a special
case)

● RDF (Resource Description Framework)
a framework for metadata (statements about properties and relationships)

29

http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xml-fragment
http://www.w3.org/TR/xmlp-am/
http://www.w3.org/TR/soap12/
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/RDF/

Basic XML tools
Parsers

● XML4J / Xerces (www.alphaworks.ibm.com/tech/xml4j)
From alphaWorks, in Java, supports DOM and SAX

● Expat (expat.sourceforge.net)
Written in C (ported to other languages), used by LIBWWW, Apache,
Netscape, ...

● + 1000 others...

Editors

● Xeena (www.alphaWorks.ibm.com/tech/xeena)
From alphaWorks, in Java, with tree-view syntax directed editing

● XMLSpy (www.xmlspy.com)
Popular, but not free :-(

● + 1000 others...

Servers and Browsers

● Apache XML (xml.apache.org)
built in Xerces XML parser, Xalan XSLT processor, ...

● Netscape Navigator 6 and Internet Explorer 5
XML parsing and validation, rendering with XSL and CSS, script access via
DOM, ...

● Amaya (www.w3.org/Amaya)
W3C's editor/browser

More info: www.garshol.priv.no/download/xmltools and
www.xmlsoftware.com have comprehensive lists of XML tools.

30

http://www.alphaworks.ibm.com/tech/xml4j
http://expat.sourceforge.net/
http://www.alphaworks.ibm.com/tech/xeena
http://www.xmlspy.com/
http://xml.apache.org/
http://www.w3.org/Amaya/
http://www.garshol.priv.no/download/xmltools/
http://www.xmlsoftware.com/

Links to more information
www.w3.org/TR/REC-xml.html

the XML 1.0 specification
www.w3.org/XML

W3C's XML homepage
www.xml.com

XML information by O'Reilly: articles, software, tutorials
www.oasis-open.org/cover

The XML Cover Pages: comprehensive online reference
www.xmlhack.com

<?xmlhack?>: concise XML news
news:comp.text.xml

XML newsgroup
www.ucc.ie/xml

XML FAQ
www.xml.com/axml/testaxml.htm

the Annotated XML Specification, by Tim Bray
metalab.unc.edu/xml

Cafe con Leche XML News and Resources
inf2.pira.co.uk/top011a.htm

El.pub's markup language section
wdvl.internet.com/Authoring/Languages/XML

links to XML information
www.w3schools.com/xml

XML School: an XML tutorial
www.garshol.priv.no/download/xmltools

a list of free XML tools

31

http://www.w3.org/TR/REC-xml.html
http://www.w3.org/XML
http://www.xml.com/
http://www.oasis-open.org/cover/
http://www.xmlhack.com/
news:comp.text.xml
http://www.ucc.ie/xml/
http://www.xml.com/axml/testaxml.htm
http://metalab.unc.edu/xml/
http://inf2.pira.co.uk/top011a.htm
http://wdvl.internet.com/Authoring/Languages/XML/
http://www.w3schools.com/xml/
http://www.garshol.priv.no/download/xmltools/

Namespaces, XInclude, and
XML Base

- common extensions to the core XML specification

Namespaces - mixing XML languages

● Mixing XML languages - name clashes
● Qualifying names - solving the problem with URIs
● Namespace declarations - declarations and prefixes

XInclude - combining XML documents

● Combining XML documents - reuse and modularity
● An XInclude example - an example
● XInclude details - more details

XML Base - resolving relative URIs

● XML Base - another common XML extension

Selected links:

● Links to more information

32

Mixing XML languages
Consider an XML language WidgetML which uses XHTML as a sublanguage for
help messages:

<widget type="gadget">
 <head size="medium"/>
 <big><subwidget ref="gizmo"/></big>
 <info>
 <head>
 <title>Description of gadget</title>
 </head>
 <body>
 <h1>Gadget</h1>
 A gadget contains a big gizmo
 </body>
 </info>
</widget>

A problem: the meaning of head and big depends on the context!

This complicates things for processors and might even cause ambiguities.

The root of the problem is: one common name space.

33

Qualifying names
Simple solution: qualify names with URIs (Universal Resource Identifiers)

<{http://www.w3.org/TR/xhtml1}head>
 \ / \ /
 ------------------------- --
 qualifying URI local name

Do not be confused by the use of URIs for namespaces:

● they are not supposed to point to anything
● it is simply the cheapest way of getting unique names
● we rely on existing organizations that control domain names

(just like Java package names!)

This is the idea - the actual solution is less verbose but slightly more
complicated...

34

http://www.w3.org/Addressing/

Namespace declarations
Namespaces are declared by special attributes and associated prefixes:

<... xmlns:foo="http://www.w3.org/TR/xhtml1">
 ...
 <foo:head>...</foo:head>
 ...
</...>

xmlns:prefix="URI" declares a namespace with a prefix and a URI:

● the scope of declaration is lexical, the element containing the declaration
and all descendants can be overridden by nested declaration

● both element and attribute names can be qualified with namespaces
● the name of the prefix is irrelevant - applications should use only the URI

For backward compatibility and simplicity, unprefixed element names are
assigned a default namespace:

● declaration: xmlns="URI"
● default value: "" (means: treat as unqualified name)
● does not affect unprefixed attribute names (they belong to the containing

elements)

WidgetML with namespaces:

<widget xmlns="http://www.widget.org"
 xmlns:xhtml="http://www.w3.org/TR/xhtml1"
 type="gadget">
 <head size="medium"/>
 <big><subwidget ref="gizmo"/></big>
 <info>
 <xhtml:head>
 <xhtml:title>Description of gadget</xhtml:title>
 </xhtml:head>
 <xhtml:body>
 <xhtml:h1>Gadget</xhtml:h1>
 A gadget contains a big gizmo
 </xhtml:body>
 </info>

35

</widget>

How should a relative URI be interpreted?

● relative to the base URI?
● relative to the document URI?
● just as a string?

This innocent question spawned a controversy that resulted in leaving the matter
undefined (by deprecating such namespaces).

Other controversies:

● does the choice of prefix matter, or is
<a:widget xmlns:a="www.widget.org"/> the same as
<b:widget xmlns:b="www.widget.org"/>?

● is <a:widget size="big"/> the same as
<a:widget a:size="big"/>?

36

http://www.w3.org/2000/09/xppa

Combining XML documents
To enhance reuse and modularity, a technique for constructing new XML
documents from existing ones is desirable.

XInclude provides a simple inclusion mechanism.

Why yet another specification?

● many XML documents and languages can benefit from modularity
● as for the namespace solution, a generic approach can be implemented in

generic tools

Application conformance: Think of XML as if Namespaces, XInclude, and XML
Base were parts of the basic XML specification. (Caveat: these extensions are
quite new and not widely implemented yet.)

37

An XInclude example
A document containing:

<foo xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="somewhere.xml"/>
</foo>

where somewhere.xml contains:

<bar>...</bar>

is equivalent to:

<foo xmlns:xi="http://www.w3.org/2001/XInclude">
 <bar>...</bar>
</foo>

● http://www.w3.org/2001/XInclude is the official XInclude
namespace

● the include element name in that namespace is an inclusion directive
● right after parsing and before other processing, an XInclude processor

performs the inclusion (tree substitution)
● the original and the resulting document should be considered equivalent
● it is an error to have cyclic includes

38

XInclude details
How is the included resource denoted?

● with XPointer (described later...) - an extension of URLs that can address
document nodes, node sets, or character data ranges

Other issues:

● with parse="text" and encoding="..." attributes, a resource can be
transformed into a character data node before inclusion

● XInclude processors may need to create namespace declaration attributes
to ensure equivalence

Many XInclude processors support only whole-document URIs, not full XPointer.

39

XML Base
A URI identifies a resource:

● http://somewhere/somefile.xml is an absolute URI
● somefile.xml is a relative URI

Inspired by the <base href="..."> mechanism in HTML, XML Base provides
a uniform way of resolving relative URIs.

In the following example:

<... xml:base="http://www.daimi.au.dk/">
 <... href="~mis/mn/index.html" .../>
</...>

the value of href attribute can be interpreted as the absolute URI
http://www.daimi.au.dk/~mis/mn/index.html.

● the xml namespace prefix is hardwired by the Namespace specification
● xml:base has lexical scope (as namespace declarations)
● the URI used to access the document is used as default URI base

Examples of applications:

● XLink (requires XML Base support)
● XHTML (will use XML Base)
● Namespaces (does not conform to XML Base, but it ought to...)
● your future XML language

Future XML parsers will support Namespaces, XInclude, and XML Base.

40

http://www.w3.org/Addressing/

Links to more information
Namespaces:

www.w3.org/TR/REC-xml-names
the W3C XML Namespace Recommendation

www.jclark.com/xml/xmlns.htm
an explanation of the recommendation by James Clark

www.xml.com/xml/pub/1999/01/namespaces.html
an XML.com article on Namespaces

XInclude:

www.w3.org/TR/xinclude
XInclude, W3C Working Draft

www.ibiblio.org/xml/XInclude
a Java XInclude processor

XML Base:

www.w3.org/TR/xmlbase
the W3C XML Base Recommendation

41

http://www.w3.org/TR/REC-xml-names
http://www.jclark.com/xml/xmlns.htm
http://www.xml.com/xml/pub/1999/01/namespaces.html
http://www.w3.org/TR/xinclude/
http://www.ibiblio.org/xml/XInclude/
http://www.w3.org/TR/xmlbase/

DTD, XML Schema, and DSD
- defining language syntax with schemas

Overview:

● Schemas and schema languages - defining the syntax of your own XML
language

● Choosing a schema language - lots of alternatives

DTD - the insufficient schema language defined in the XML 1.0 spec:

● DTD - Document Type Definition - an overview
● Example DTD - the recipe example
● Problems with DTD - top 15 reasons for not using DTD

XML Schema - W3C's recent proposal:

● Design requirements - how to design a schema language in W3C
● XML Schema - the design
● A small example - the business-card example
● Overview - the central constructs and ideas
● Constructing complex types - requirements for attribute and content

presence
● Constructing simple types - requirements for attribute values and character

data
● Local definitions - inlined declarations, anonymous types, and overloading
● Inheritance and substitution groups - the type system
● Annotations - self-documentation
● Schema inclusion and redefinition - modularity and reuse
● Namespaces - constraining the use of namespaces
● Attribute and element defaults - side-effects of validation
● Identity constraints - uniqueness and keys
● A larger example - the recipe example
● Problems with XML Schema - 15 reasons why we haven't seen the last

schema language

42

http://www.brics.dk/~amoeller/XML/print/schemas/dtd-problems

DSD - the next generation of schema languages:

● Document Structure Description 2.0 - central aspects
● Example - the recipe example
● Constraints - describing elements
● Stringtypes - describing attribute values and chardata
● Expressions - expressing element properties
● Inclusion and extension - modular descriptions

Selected links:

● Links to more information

43

Schemas and schema
languages

A schema is a definition of the syntax of an XML-based language (i.e. a class of
XML documents).

A schema language is a formal language for expressing schemas.

Schema processing: Given an XML document and a schema, a schema
processor

● checks for validity, i.e. that the document conforms to the schema
requirements

● if the document is valid, a normalized version is output: default attributes
and elements are inserted, parsing information may be added, etc.

The document being validated is called an instance document or application
document.

44

Why bother formalizing the syntax with a schema?

● a formal definition provides a precise but human-readable reference
● schema processing can be done with existing implementations
● your own tools for your language can benefit: by piping input

documents through a schema processor, you can assume that the input is
valid and defaults have been inserted

Schemas are similar to grammars for programming languages, however, context-
free grammars are not expressive enough for XML.

The term "schema" comes from the database community.

45

Choosing a schema language
There have been many schema language proposals.

W3C proposals:

● DTD
● XML-Data, January 1998
● DCD (Document Content Description), July 1998
● DDML (Document Definition Markup Language), January 1999
● SOX (Schema for Object-oriented XML), July 1999
● XML Schema

Non-W3C proposals:

● Assertion Grammars by Dave Raggett
● Schematron by Rick Jellife
● TREX (Tree Regular Expressions for XML) by James Clark
● Examplotron by Eric van der Vlist
● RELAX by Makoto Murara / RELAX NG by Murata and Clark
● DSD (Document Structure Description)

Unlike for many other XML technologies, it has proved difficult to reach a
consensus - probably because:

● it is an inherently difficult problem
● people have different needs from a schema language
● the official (W3C) proposals are not very good

however, most schema languages have many similarities.

We shall look at W3C's DTD and XML Schema proposals and at the DSD
proposal developed by BRICS and AT&T.

46

http://www.w3.org/TR/1998/NOTE-XML-data/
http://www.w3.org/TR/NOTE-dcd
http://www.w3.org/TR/NOTE-ddml
http://www.w3.org/TR/NOTE-SOX
http://www.w3.org/People/Raggett/dtdgen/Docs/
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.thaiopensource.com/trex/
http://examplotron.org/
http://www.xml.gr.jp/relax/
http://www.oasis-open.org/committees/relax-ng/

DTD - Document Type
Definition

Recall from earlier that XML 1.0 contains a built-in schema language: Document
Type Definition

● <!DOCTYPE root-element [doctype-declaration...]>
determines the name of the root element and contains the document type
declarations

● <!ELEMENT element-name content-model>
associates a content model to all elements of the given name

content models:

❍ EMPTY: no content is allowed
❍ ANY: any content is allowed
❍ (#PCDATA|element-name|...): "mixed content", arbitrary

sequence of character data and listed elements
❍ deterministic regular expression over element names: sequence of

elements matching the expression
■ choice: (...|...|...)
■ sequence: (...,...,...)
■ optional: ...?
■ zero or more: ...*
■ one or more: ...+

● <!ATTLIST element-name attr-name attr-type attr-default
...>
declares which attributes are allowed or required in which elements

attribute types:

❍ CDATA: any value is allowed (the default)
❍ (value|...): enumeration of allowed values
❍ ID, IDREF, IDREFS: ID attribute values must be unique (contain

"element identity"), IDREF attribute values must match some ID
(reference to an element)

❍ ENTITY, ENTITIES, NMTOKEN, NMTOKENS, NOTATION: just forget

47

these... (consider them deprecated)

attribute defaults:

❍ #REQUIRED: the attribute must be explicitly provided
❍ #IMPLIED: attribute is optional, no default provided
❍ "value": if not explicitly provided, this value inserted by default
❍ #FIXED "value": as above, but only this value is allowed

This is a simple subset of SGML DTD.

Validity can be checked by a simple top-down traversal of the XML document
(followed by a check of IDREF requirements).

48

Example DTD
A DTD for our recipe collections, recipes.dtd:

<!ELEMENT collection (description,recipe*)>

<!ELEMENT description ANY>

<!ELEMENT recipe (title,ingredient*,preparation,comment?,nutrition)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT ingredient (ingredient*,preparation)?>
<!ATTLIST ingredient name CDATA #REQUIRED
 amount CDATA #IMPLIED
 unit CDATA #IMPLIED>

<!ELEMENT preparation (step*)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT nutrition EMPTY>
<!ATTLIST nutrition protein CDATA #REQUIRED
 carbohydrates CDATA #REQUIRED
 fat CDATA #REQUIRED
 calories CDATA #REQUIRED
 alcohol CDATA #IMPLIED>

By inserting:

<!DOCTYPE collection SYSTEM "recipes.dtd">

in the headers of recipe collection documents, we state that they are intended to conform to
recipes.dtd.

Alternatively, the DTD can be given locally with <!DOCTYPE collection [...]>.

This grammatical description has some obvious shortcomings:

● unit should only be allowed when amount is present
● the comment element should be allowed to appear anywhere
● nested ingredient elements should only be allowed when amount is absent

49

Problems with DTD
Top 15 reasons for avoiding DTD:

1. not itself using XML syntax (the SGML heritage can be very unintuitive +
if using XML, DTDs could potentially themselves be syntax checked with a
"meta DTD")

2. mixed into the XML 1.0 spec (would be much less confusing if specified
separately + even non-validating processors must look at the DTD)

3. no constraints on character data (if character data is allowed, any
character data is allowed)

4. too simple attribute value models (enumerations are clearly insufficient)

5. cannot mix character data and regexp content models (and the content
models are generally hard to use for complex requirements)

6. no support for Namespaces (of course, XML 1.0 was defined before
Namespaces)

7. very limited support for modularity and reuse (the entity mechanism is
too low-level)

8. no support for schema evolution, extension, or inheritance of
declarations (difficult to write, maintain, and read large DTDs, and to
define families of related schemas)

9. limited white-space control (xml:space is rarely used)

10. no embedded, structured self-documentation (<!-- comments -->
are not enough)

11. content and attribute declarations cannot depend on attributes or
element context (many XML languages use that, but their DTDs have to
"allow too much")

12. too simple ID attribute mechanism (no points-to requirements,
uniqueness scope, etc.)

50

13. only defaults for attributes, not for elements (but that would often be
convenient)

14. cannot specify "any element" or "any attribute" (useful for partial
specifications and during schema development)

15. defaults cannot be specified separate from the declarations (would be
convenient to have defaults in separate modules)

51

Design requirements
Quotes from the W3C Note "XML Schema Requirements" (Feb. 1999):

Design principles:

The XML schema language shall be

1. more expressive than XML DTDs
2. expressed in XML
3. self-describing
4. usable by a wide variety of applications that employ XML
5. straightforwardly usable on the Internet
6. optimized for interoperability
7. simple enough to be implemented with modest design and runtime

resources
8. coordinated with relevant W3C specs

The XML schema language specification shall

1. be prepared quickly
2. be precise, concise, human-readable, and illustrated with examples

Structural requirements:

The XML schema language must define

1. mechanisms for constraining document structure (namespaces,
elements, attributes) and content (datatypes, entities, notations)

2. mechanisms to enable inheritance for element, attribute, and datatype
definitions

3. mechanism for URI reference to standard semantic understanding of a
construct

4. mechanism for embedded documentation
5. mechanism for application-specific constraints and descriptions
6. mechanisms for addressing the evolution of schemata
7. mechanisms to enable integration of structural schemas with primitive

52

http://www.w3.org/TR/NOTE-xml-schema-req

data types

Unfortunately, their own XML Schema Recommendation does not fulfil all
requirements (self-describing, simple, concise, human-readable, ...)

53

XML Schema
W3C Recommendation, May 2001.

Consists of two parts:

1. Structures
2. Datatypes

Main features:

● XML syntax (there is a Schema for Schemas)
● uses and supports Namespaces
● object-oriented-like type system for declarations (with inheritance,

subsumption, abstract types, and finals)
● global (=top-level) and local (=inlined) type definitions
● modularization (schema inclusion and redefinitions)
● structured self-documentation
● cardinality constraints for sub-elements
● nil values (missing content)
● attribute and element defaults
● any-element, any-attribute
● uniqueness constraints and ID/IDREF attribute scope
● regular expressions for specifying valid chardata and attribute values
● lots of built-in data types for chardata and attribute values

Yes, it is big and complicated! (Part 1 of the spec alone is around 200 pages...)

54

A small example
Assume we want to create an XML-based language for business cards.

An example document john_doe.xml:

 <card xmlns="http://businesscard.org">
 <name>John Doe</name>
 <title>CEO, Widget Inc.</title>
 <email>john.doe@widget.com</email>
 <phone>(202) 456-1414</phone>
 <logo url="widget.gif"/>
 </card>

To describe the syntax of our new language, we write a schema
business_card.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:b="http://businesscard.org"
 targetNamespace="http://businesscard.org">

 <element name="card" type="b:card_type"/>
 <element name="name" type="string"/>
 <element name="title" type="string"/>
 <element name="email" type="string"/>
 <element name="phone" type="string"/>
 <element name="logo" type="b:logo_type"/>

 <complexType name="card_type">
 <sequence>
 <element ref="b:name"/>
 <element ref="b:title"/>
 <element ref="b:email"/>
 <element ref="b:phone" minOccurs="0"/>
 <element ref="b:logo" minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="logo_type">
 <attribute name="url" type="anyURI"/>
 </complexType>

55

</schema>

The XML Schema language is recognized by the namespace
http://www.w3.org/2001/XMLSchema.

A document may refer to a schema with the schemaLocation (or the
noNamespaceSchemaLocation) attribute:

 <card xmlns="http://businesscard.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://businesscard.org
 business_card.xsd">
 ...
 </card>

By inserting this, the author claims that the document is intended to be valid with
respect to the schema (not that it necessarily is valid).

56

Overview of XML Schema
The most central top-level constructs:

● a (global) element declaration associates an element name with a type

● a complex type definition defines requirements for attributes, sub-
elements, and character data in elements of that type

❍ attribute declarations: describe which attributes that may or must
appear

❍ element references: describe which sub-elements that may or must
appear, how many, and in which order

● a simple type definition defines a set of strings to be used as attribute
values or character data

An element in an XML document is valid according to a given schema if the
associated element type rules are satisfied.

If all elements are valid, the whole document is called valid. (Unlike DTD, there is
no way to require a specific root element.)

Naming conflicts: two types or two elements cannot be defined with the same
name, but an element declaration and a type definition may use the same name.

57

Constructing complex types
A complexType can contain:

● attribute declarations:

 <attribute name="..." type=".." use=".."/>

where type refers to a simple type definition and use is either required,
optional, or prohibited

● one of the following content model kinds:

❍ empty content (the default)

❍ simple content: <simpleContent> ... </simpleContent>
(only character data is allowed)

❍ regexp content: a (restricted) combination of
■ <sequence> ... </sequence>
■ <choice> ... </choice>
■ <all> ... </all>

containing element references of the form

 <element ref="..." minOccurs=".." maxOccurs=".."/>

where ref refers to an element definition, and minOccurs and
maxOccurs constrain the number of occurences

(if complexType has the attribute mixed="true", arbitrary
character data is also allowed)

Example:

58

<complexType name="order_type" mixed="true">

 <attribute name="id" type="unsignedInt" use="required"/>

 <choice>
 <element ref="n:address"/>
 <sequence>
 <element ref="n:email"/>
 <element ref="n:phone"/>
 </sequence>
 </choice>

</complexType>

Grouping of definitions:

Attribute groups: groups of attribute declarations can be defined with
<attributeGroup name="..."> ... </...> and used with
<attributeGroup use="..."/>.

Element groups: similarly, groups of regexp content model descriptions can be
defined and used with the group construct.

59

Constructing simple types
Simple types can be:

● primitive (hardwired meaning)

● derived from existing simple types:
❍ by a list: white-space separated sequence of other simple types
❍ by a union: union of other simple types
❍ by a restriction:

■ length, minLength, maxLength (list lengths)
■ enumeration (intersection with list of values)
■ pattern (intersection with Perl-like regexp)
■ whiteSpace (preserve/replace/collapse white-space)
■ minInclusive, maxInclusive (bounds on numbers)

A lot of often-used simple types (all the primitive and some derived) are
predefined:

● integer
● date
● anyURI
● unsignedLong
● language
● ...

Example definition of a derived simple type:

<simpleType name="may_date">
 <restriction base="date">
 <pattern value="\d{4}-05-\d{2}"/>
 </restriction>
</simpleType>

All this is specified in Part 2 of the spec.

60

Local definitions
Instead of writing all element declarations and type definitions at top-level
(globally), they may be inlined (locally):

Example:

<element name="card" type="b:card_type"/>
<element name="name" type="string"/>

<complexType name="card_type">
 <sequence>
 <element ref="b:name"/>
 <element ref="b:title"/>
 <element ref="b:email" maxOccurs="unbounded"/>
 <element ref="b:phone" minOccurs="0"/>
 <element ref="b:background" minOccurs="0"/>
 </sequence>
</complexType>

means the same as

<element name="card">
 <complexType>
 <sequence>
 <element name="name" type="string"/>
 <element ref="b:title"/>
 <element ref="b:email" maxOccurs="unbounded"/>
 <element ref="b:phone" minOccurs="0"/>
 <element ref="b:background" minOccurs="0"/>
 </sequence>
 </complexType>
</element>

(where the complex type card_type and the description of name have been
inlined)

except that:

61

● inlined type definitions are anonymous, so they cannot be referred to for
reuse

● inlined element declarations can be overloaded, i.e. they need not have
unique names

- otherwise, it is just a matter of authoring style.

62

Inheritance and substitution
groups

XML Schema contains an incredibly complicated type system.

As in many programming languages, XML Schema allows (complex) types to be declared as sub-
types of existing types.

● inheritance by extension:

<complexType name="car">
 <complexContent>
 <extension base="n:vehicle">
 <element name="wheel" minOccurs="3" maxOccurs="4"/>
 </extension>
 </complexContent>
</complexType>

creates a car type from a vehicle type by extending it with 3 or 4 wheel sub-elements

● inheritance by restriction:

<complexType name="small_car">
 <complexContent>
 <restriction base="n:car">
 <element name="wheel" maxOccurs="3"/>
 </extension>
 </complexContent>
</complexType>

creates a small_car type from the car type by restricting it to 3 wheel sub-elements

Subsumption:

Assume that we declare an element:

<element name="myVehicle" type="n:vehicle"/>

meaning that myVehicle elements are valid if they match the vehicle type.

Since car is a sub-type of vehicle, myVehicle elements are also valid if they match
car - provided that we add xsi:type="n:car" to the elements.

(xsi refers to http://www.w3.org/2001/XMLSchema-instance)

63

Substitution groups: - another (simpler and better) way of achieving basically the same

If we declare another element as follows:

<element name="myCar" type="n:car" substitutionGroup="n:vehicle"/>

then we may always use myCar elements whenever myVehicle elements are required
(without using xsi:type).

This is independent of the extension/restriction inheritance hierarchy! - car is not required
to be declared as a sub-type of vehicle.

Abstract and final:
In addition to all this,

❍ inheritance of types can be forbidden (by declaring them as final)
❍ use of elements and types can be forbidden (declared abstract)

64

Annotations
Schemas can be annotated with human or machine readable documentation and other
information:

<xsd:element name="author">
 <xsd:annotation>
 <xsd:documentation xmlns:xhtml="http://www.w3.org/1999/xhtml">
 the author of the recipe,
 see <xhtml:a href="authors.xml">this list</xhtml:a> of authors
 </xsd:documentation>
 <xsd:appinfo xmlns:fp="http://foodprocessor.org">
 <fp:process type="117"/>
 </xsd:appinfo>
 </xsd:annotation>
 ...
</xsd:element>

Note that annotations can be structured, as opposed to simple <!-- ... --> XML
comments.

65

Schema inclusion and redefinition
No less that 3 mechanisms are available:

● <include schemaLocation="..."/> - compose with schema having same target namespace

● <import namespace="..." schemaLocation="..."/> - compose with schema having
different target namespace

● <redefine schemaLocation="..."> ... </redefine> - compose with schema having same
target namespace, allowing redefinitions

It ought to also be possible to use XInclude, but that is not mentioned in the XML Schema spec.

Example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:b="http://businesscard.org"
 targetNamespace="http://businesscard.org">

 <import namespace="http://www.w3.org/1999/xhtml" schemaLocation="xhtml.xsd"/>

 <redefine schemaLocation="phone.xsd">
 <element name="phone"/>
 ...
 </element>
 </redefine>

 ...
</schema>

Here, a schema for XHTML is imported together with phone.xsd (which is assumed to contain a description
of phone numbers) and its description of phone is redefined.

66

Namespaces
When defining a new XML-based language, we usually want to assign it a unique
namespace.

XML Schema

● uses namespaces itself - to distinguish schema instructions from the
language we are describing

● supports namespace assigning - by associating a target namespace to the
language we are describing

Example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:b="http://businesscard.org"
 targetNamespace="http://businesscard.org">

 <element name="card" type="b:card_type"/>
 ...

 <complexType name="card_type">
 <sequence>
 <element ref="b:name"/>
 ...
 </sequence>
 </complexType>

 ...
</schema>

● the default namespace is that of XML Schema (such that e.g.
complexType is considered an XML Schema element)

● the target namespace is our business card namespace
● the b prefix also denotes our business card namespace (such that we can

refer to target language constructs from within the schema)

Unfortunately, XML Schema has a rather unconventional use of namespaces:

67

http://www.xml.com/pub/a/2001/08/08/oldwounds.html

● prefixes in attribute values (e.g. ref="b:name") - the namespace spec
does not tell how to resolve this

● a notion of "unqualified locals" (which is even a default) - allowing prefixes
to be omitted from locally declared elements in instance documents

This precludes the use of standard namespace-compliant XML parsers for
reading XML Schema documents :-(

68

Attribute and element defaults
Side-effect of validation: insertion of default values

Each attribute and element declarations can contain a default="..." attribute.

● attribute defaults: are inserted (before validation) if the attribute is absent (in
elements of the type containing the declaration)

● element defaults: are inserted as character data in empty elements (of the type
of the declaration)

For some strange design reason, element defaults cannot contain markup.

Example:

With a schema containing:

<element name="widget" default="no content explicitly provided">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="size" default="big"/>
 </extension>
 </simpleContent>
 </complexType>
</element>

a schema processor will validate and transform:

<widget/>

into:

<widget size="big">no content explicitly provided</widget>

69

Identity constraints
XPath can be used to specify uniqueness requirements.

Example:

<unique name="uniqueness-requirement-87">
 <selector xpath=".//personlist"/>
 <field xpath="person/@ssn"/>
</unique>

occuring in an element declaration, means that: within each personlist, every
ssn attribute of a person element must have a unique value.

Similarly, we can define keys (with key) and references (with keyref) which
generalizes the ID/IDREF mechanism from DTD in a straightforward way.

Only a simple subset of XPath is allowed:

● only the child axis and the attribute axis
● only node set expressions

70

A larger example
A XML Schema description of our recipe collections, recipes.xsd:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:r="http://recipes.org"
 targetNamespace="http://recipes.org"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <element name="collection">
 <complexType>
 <sequence>
 <element name="description" type="r:anycontent"/>
 <element ref="r:recipe" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <complexType name="anycontent" mixed="true">
 <sequence>
 <any minOccurs="0" maxOccurs="unbounded"
 processContents="skip" namespace="##other"/>
 </sequence>
 </complexType>

 <element name="recipe">
 <complexType>
 <sequence>
 <element name="title" type="string"/>
 <element ref="r:ingredient" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="r:preparation"/>
 <element name="comment" minOccurs="0" type="string"/>
 <element name="nutrition">
 <complexType>
 <attribute name="protein" type="r:nonNegativeDecimal" use="required"/>
 <attribute name="carbohydrates" type="r:nonNegativeDecimal"
use="required"/>
 <attribute name="fat" type="r:nonNegativeDecimal" use="required"/>
 <attribute name="calories" type="r:nonNegativeDecimal" use="required"/>
 <attribute name="alcohol" type="r:nonNegativeDecimal" use="optional"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

 <element name="preparation">
 <complexType>
 <sequence>
 <element name="step" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <element name="ingredient">
 <complexType>
 <sequence>

71

 <element ref="r:ingredient" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="r:preparation" minOccurs="0"/>
 </sequence>
 <attribute name="name" use="required"/>
 <attribute name="amount" use="optional">
 <simpleType>
 <union>
 <simpleType>
 <restriction base="string">
 <enumeration value="*"/>
 </restriction>
 </simpleType>
 <simpleType>
 <restriction base="r:nonNegativeDecimal"/>
 </simpleType>
 </union>
 </simpleType>
 </attribute>
 <attribute name="unit" use="optional"/>
 </complexType>
 </element>

 <simpleType name="nonNegativeDecimal">
 <restriction base="decimal">
 <minInclusive value="0"/>
 </restriction>
 </simpleType>

</schema>

Note that:

● we need to set elementFormDefault="qualified" to use the standard Namespace semantics
● the nonNegativeDecimal and anycontent definitions were not possible with DTD
● we choose to use a mix of global and local definitions
● as with the DTD version, we still cannot express that:

❍ unit should only be allowed when amount is present
❍ the comment element should be allowed to appear anywhere
❍ nested ingredient elements should only be allowed when amount is absent

By inserting the following:

<collection xmlns="http://recipes.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://recipes.org recipes.xsd">
 ...
</collection>

into our recipe collection recipes.xml, we state that the document is intended to be valid according to
recipes.xsd.

72

Problems with XML Schema
The general problem:

● it is generally too complicated (the spec is several hundred pages in a very
technical language), so it is hard to use by non-experts - but many non-
experts need schemas to describe intermediate data formats

also, the complicated design necessitates an incomprehensible
specification style (example from Part 1, Section 3.3.1: "{value constraint}
establishes a default or fixed value for an element. If default is specified,
and if the element being ·validated· is empty, then the canonical form of the
supplied constraint value becomes the [schema normalized value] of the
·validated· element in the post-schema-validation infoset. If fixed is
specified, then the element's content must either be empty, in which case
fixed behaves as default, or its value must match the supplied constraint
value.", or from Section 3.3.4: "If the item cannot be ·strictly assessed·,
because neither clause 1.1 nor clause 1.2 above are satisfied, [Definition:]
an element information item's schema validity may be laxly assessed if its
·context-determined declaration· is not skip by ·validating· with respect to
the ·ur-type definition· as per Element Locally Valid (Type) (§3.3.4).")

Practical limitations of expressibility:

● cannot require specific root element (so extra information is required to
validate even the simplest documents)

● when describing mixed content, the character data cannot be constrained
in any way (not even a set of valid characters can be specified)

● content and attribute declarations cannot depend on attributes or
element context (this was also listed as central a problem of DTD)

❍ a typical example that cannot be expressed (actually from the XML
Schema spec which is packed with examples): "'default' and 'fixed'
may not both be present, and [...] if 'ref' is present, then all of
<simpleType>, 'form' and 'type' must be absent"

❍ a solution to this would also eliminate the need for "nil values"

● it is not 100% self-describing (as a trivial example, see the previous point),
even though that was an initial design requirement

73

● defaults cannot be specified separate from the declarations (this makes it
hard to make families of schemas that only differ in the default values)

● element defaults can only be character data (not containing markup)

Technical problems:

● although it technically is namespace conformant, it does not seem to follow
the namespace spirit (because of prefixes in attribute values + "unqualified
locals")

The major source of complexity:

● the notion of "type" adds an extra layer of confusing complexity:
❍ in instance documents, we have "elements" which have "element

names"
❍ in schemas, elements are described by "element definitions" which

associate "element names" with "type names",
❍ type definitions associate "type names" with "element descriptions"

which describe the elements in the instance documents
(and to cause further confusion, the XML 1.0 spec uses the term "element
type" for the name of an element)

● xsi:type attributes are required in instance documents when derived
types are being used in place of base types (then one might as well have
defined a new element and used a substitution group)

● substitution groups and local declarations (with non-unique names) make it
difficult to look up the description of a given element

Non-minimalistic design:

● substitution groups and type derivation seem to be different attempts to
solve the same problems

● incorporation of XPath to express uniqueness and keys (neither uniqueness
or keys are fundamental concepts for schemas, so dragging in a big
language as XPath is overkill)

● the set of built-in data types is not minimalistic (a minimalistic set + some
data type libraries would lower the learning burden)

74

● the use of Perl-style regular expressions violates the principle of using
XML syntax to describe XML syntax

For other comments about the design of XML Schema, see for instance
www.xml.com/pub/a/2000/07/05/specs/lastword.html and
www.ibiblio.org/xql/tally.html.

75

http://www.xml.com/pub/a/2000/07/05/specs/lastword.html
http://www.ibiblio.org/xql/tally.html

Document Structure
Description 2.0

- a successor to DSD 1.0, a schema language developed in cooperation by
BRICS and AT&T Labs Research.

DSD is designed to:

● contain few and simple language constructs
● be easy to understand, also by non-XML-experts
● have more expressive power than other schema languages for most

practical purposes

The central ideas in DSD 2.0:

● a schema consists of a list of constraints
● for every element in the instance document, all constraints are processed
● constraints can conditionally depend on the name, attributes, and context of

the current element, and can contain sub-constraints
● constraints contain allow and require sections
● allow sections specify which content (sub-elements and character data)

and attributes that are allowed for the current element
● require sections specify restrictions on content and attributes, such as

order and number of occurences
● character data and attribute values are described by regular expressions

Main benefits, compared to XML Schema:

● no notion of type, constraints are directly tied to element names
● easy to figure out the description of a given element (no subtyping,

substitution groups, or local definitions)
● constraints can be hierarchical by depending on attribute values and

element context
● DSD is 100% self-describing (so there is a complete "DSD for DSDs")
● lots of non-essential features are removed or reduced to more basic and

general constructs

A draft spec for DSD 2.0 will be published within a few months. (DSD 1.0 was
announced in November 1999.)

76

http://www.brics.dk/DSD/
http://www.brics.dk/
http://www.research.att.com/

Example
A DSD 2.0 description of our recipe collections:

<dsd xmlns="http://www.brics.dk/DSD/2.0"
 root="collection" namespace="http://recipes.org">

 <if><element name="collection"/>
 <allow>
 <element name="description"/>
 <element name="recipe"/>
 </allow>
 <require>
 <count number="1"><element name="description"/></count>
 </require>
 </if>

 <if><element name="description"/>
 <constraint ref="anycontent"/>
 </if>

 <if><element name="recipe"/>
 <allow>
 <element name="title"/>
 <element name="ingredient"/>
 <element name="preparation"/>
 <element name="comment"/>
 <element name="nutrition"/>
 </allow>
 <require>
 <count number="1">
 <element name="title"/>
 <element name="preparation"/>
 <element name="nutrition"/>
 </count>
 <count max="1">
 <element name="comment"/>
 </count>
 <order>
 <element name="title"/>
 <element name="ingredients"/>
 <element name="preparation"/>

77

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

 <element name="nutrition"/>
 </order>
 </require>
 </if>

 <if><element name="ingredient"/>
 <allow>
 <attribute name="name"/>
 <attribute name="amount">
 <union>
 <string value="*"/>
 <stringtype ref="number"/>
 </union>
 </attribute>
 <attribute name="unit"/>
 </allow>
 <require>
 <attribute name="name"/>
 </require>
 <if><not><attribute name="amount"/></not>
 <require>
 <not><attribute name="unit"/></not>
 </require>
 <allow>
 <element name="ingredient"/>
 <element name="preparation"/>
 </allow>
 <require>
 <count min="1">
 <element name="ingredient"/>
 <element name="preparation"/>
 </count>
 </require>
 </if>
 </if>

 <if><element name="preparation"/>
 <allow>
 <element name="step"/>
 </allow>
 </if>

 <if>
 <or>
 <element name="step"/>

78

 <element name="comment"/>
 <element name="title"/>
 </or>
 <allow>
 <chardata/>
 </allow>
 </if>

 <if><element name="nutrition"/>
 <allow>
 <attribute name="protein">
 <stringtype ref="number"/>
 </attribute>
 <attribute name="carbohydrates">
 <stringtype ref="number"/>
 </attribute>
 <attribute name="fat">
 <stringtype ref="number"/>
 </attribute>
 <attribute name="calories">
 <stringtype ref="number"/>
 </attribute>
 <attribute name="alcohol">
 <stringtype ref="number"/>
 </attribute>
 </allow>
 <require>
 <attribute name="protein"/>
 <attribute name="carbohydrates"/>
 <attribute name="fat"/>
 <attribute name="calories"/>
 </require>
 </if>

 <stringtype id="digits">
 <repeat min="1">
 <char from="0" to="9"/>
 </repeat>
 </stringtype>

 <stringtype id="number">
 <sequence>
 <stringtype ref="digits"/>
 <optional>
 <sequence>

79

 <string value="."/>
 <stringtype ref="digits"/>
 </sequence>
 </optional>
 </sequence>
 </stringtype>

 <constraint id="anycontent">
 <allow>
 <anyelement/>
 <chardata/>
 </allow>
 </constraint>

</dsd>

Notice in particular:

● the hierarchical constraint in the description of ingredient
● it seems verbose, but the constraint model makes it easy to add new

constraints, e.g. to allow a new attribute and require restrictions on its use
● modular definitions of two stringtypes and a constraint
● a simple use of namespaces
● it is intuitive and human-readable (if you are used to looking at XML

documents :-)

This DSD is more precise than the DTD and the XML Schema descriptions.

One can check that this is indeed a DSD by validating it with the meta-DSD.

80

http://www.brics.dk/DSD/dsd2.dsd

Constraints
- a closer look at the central DSD 2.0 construct

Example:

<if><element name="collection"/>
 <allow>
 <element name="description"/>
 <element name="recipe"/>
 </allow>
 <require>
 <count number="1"><element name="description"/></count>
 </require>
</if>

Constraints can be:

● if constraints, constraints guarded by expressions over element properties
● allow sections, declaring which attributes and content an element may

have
● require sections, containing boolean expressions over element properties

that are required to hold
● option sections, containing optional allows and requires
● default attributes and content
● whitespace specifications

(option, default, and whitespace are not shown in the example.)

Constraints can be defined (given an ID for reference) to support modularity, as
e.g. anycontent in the full example.

81

Stringtypes
Attributes and character data is described by stringtypes which are regular
expressions over the Unicode alphabet.

Stringtypes can be built from:

● constant strings
● character sets
● sequencing
● union
● iteration
● ...

As with constraints, stringtypes can be defined for modularity.

Example:

...
 <union>
 <string value="*"/>
 <stringtype ref="number"/>
 </union>
...

<stringtype id="digits">
 <repeat min="1">
 <char from="0" to="9"/>
 </repeat>
</stringtype>

<stringtype id="number">
 <sequence>
 <stringtype ref="digits"/>
 <optional>
 <sequence>
 <string value="."/>
 <stringtype ref="digits"/>
 </sequence>
 </optional>
 </sequence>

82

</stringtype>

Libraries of common stringtypes can be made with the import feature described
later...

83

Expressions
Boolean logic for expressing properties of elements:

● attribute presence and values
● sub-element occurences and order
● chardata values

combined with and, or, not, impl, etc.

Example:

<or>
 <and>
 <attribute name="foo"/>
 <element name="bar"/>
 <not><chardata/></not>
 </and>
 <chardata>
 <stringtype ref="number"/>
 </chardata>
</or>

means: "either there is a foo attribute, a bar sub-element, and no chardata, or
there is chardata and it contains a number."

Expressions are used both as conditions in conditional constraints and as
requirements (in require).

As with the other syntactic categories, expressions can be defined for modularity.

84

Inclusion and extension
To enhances reusability, maintainability, and readability, DSD descriptions can
consist of several XML documents.

DSD 2.0 simply relies on XInclude for composing DSD fragments into complete
specifications. (However, full XPointer is not used - only simple URLs that denote
whole documents.)

This, combined with the constraint model, makes it easy to write modular
specifications, reuse and extend existing schemas, and create families of
related schemas.

85

Links to more information
www.w3.org/TR/xmlschema-0

XML Schema Part 0: Primer (a non-normative introduction)
www.w3.org/TR/xmlschema-1

XML Schema Part 1: Structures
www.w3.org/TR/xmlschema-2

XML Schema Part 2: Datatypes
www.brics.dk/DSD

the DSD 1.0 homepage
www.oasis-open.org/cover/schemas.html

Robin Cover's XML schema information
www.xml.com/pub/1999/12/dtd

XML.com article on schema languages
www.xml.com/pub/a/2000/11/29/schemas/part1.html

XML.com introduction to XML Schema
www.xfront.com/BestPracticesHomepage.html

"best practices" of XML Schema
www.ibiblio.org/xml/books/bible2/chapters/ch24.html

chapter from "XML Bible" on XML Schema
www.xmlhack.com/read.php?item=1097

"W3C XML Schema still has big problems", article on <?xmlhack?>
www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html

"Comparative Analysis of Six XML Schema Languages"
www.redrice.com/schemavalid/faq/xml-schema.html

XML Schema FAQ
xml.apache.org

Apache's Xerces parser and validator

86

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.brics.dk/DSD/
http://www.oasis-open.org/cover/schemas.html
http://www.xml.com/pub/1999/12/dtd/
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html
http://www.xfront.com/BestPracticesHomepage.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch24.html
http://www.xmlhack.com/read.php?item=1097
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html
http://www.redrice.com/schemavalid/faq/xml-schema.html
http://xml.apache.org/

XLink, XPointer, and XPath
- linking and addressing

Overview:

● XLink, XPointer, and XPath - three layers of languages

XLink:

● Problems with HTML links - why do we need something new?
● The XLink linking model - a generalization of HTML links
● An example - a link between two remote resources
● Linking elements - defining links
● Behavior - show and actuate
● Simple vs. Extended links - compatibility issues

XPointer, Part I - using XPointer in XLink:

● XPointer: Why, what, and how? - introduction
● XPointer vs. XPath - what is the difference
● XPointer fragment identifiers - the structure of an XPointer

XPath:

● Location paths - the central construct
● Location steps - expressing node-sets

❍ Axes - selecting candidates
❍ Node tests - initial filtration
❍ Predicates - fine-grained filtration

● Expressions - a little expression language
● Core function library - the built-in functions
● Abbreviations - convenient notation
● XPath visualization - a useful tool
● XPath examples - continuing the recipe example

XPointer, Part II - how XPointer uses XPath:

87

● Context initialization - filling out the gap between XPath and XLink
● Extra XPointer features - generalizing XPath

Selected links:

● Tools
● Links to more information

88

XLink, XPointer, and XPath
- imagine a Web without links...

Three layers:

● XLink
❍ a generalization of the HTML link concept
❍ higher abstraction level (intended for general XML - not just

hypertext)
❍ more expressive power (multiple destinations, special behaviors,

linkbases, ...)
❍ uses XPointer to locate resources

● XPointer
❍ an extension of XPath suited for linking
❍ specifies connection between XPath expressions and URIs

● XPath
❍ a declarative language for locating nodes and fragments in XML

trees
❍ used in both XPointer (for addressing), XSL (for pattern matching),

XML Schema (for uniqueness and scope descriptions), and
XQuery (for selection and iteration)

These technologies are standardized but not all widely implemented yet.

XQuery vs. XPointer/XPath? Reminiscent, but very different goals:

● XQuery: SQL-like database queries
● XPointer/XPath: robust addressing into known information

89

Problems with HTML links
The HTML link model:

Construction of a hyperlink:

● is placed at the destination
● is placed at the source

Problems when using the HTML model for general XML:

● Link recognition:

❍ in HTML, links are recognized by element names (a, img, ..)
- we want a generic XML solution

❍ the "semantics" of a link is defined in the HTML specification
- we want to identify abstract semantic features, e.g. link actuation

● Limitations:

❍ an anchor must be placed at every link destination (problem with
read-only documents)
- we want to express relative locations (XPointer!)

❍ the link definition must be at the same location as the link source
(outbound)
- we want inbound and third-party links

❍ only individual nodes can be linked to
- we want links to whole tree fragments

❍ a link always has one source and one destination
- we want links with multiple sources and destinations

The usual point: generic solutions allow generic tools!

90

The XLink linking model
Basic XLink terminology:

Link: explicit relationship between two or more resources.
Linking element: an XML element that asserts the existence and describes the
characteristics of a link.
Locator: an identification of a remote resource that is participating in the link.

One linking element defines a set of traversable arcs between some resources.

A local resource comes from the linking element's own content.

Outbound: the source is a local resource
Inbound: the destination is a local resource
Third-party: none of the resources are local

Third-party links can be used to construct shared link bases for browsers.

91

An example
A linking element defining a third-party "extended" link involving two remote resources:

 <mylink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended">
 <myresource xlink:type="locator"
 xlink:href="students.xml#Fred" xlink:label="student"/>
 <myresource xlink:type="locator"
 xlink:href="teachers.xml#Joe" xlink:label="teacher"/>
 <myarc xlink:type="arc"
 xlink:from="student" xlink:to="teacher"/>
 </mylink>

● the namespace http://www.w3.org/1999/xlink is used to recognize XLink information in
general XML documents

❍ the namespace often (but not necessarily) uses namespace prefix xlink
❍ host language: elements and attributes not belonging to this namespace are ignored by

XLink processors
❍ all XLink information is defined in attributes (in host language elements)

● xlink:type="extended" indicates a linking element
● xlink:type="locator" locates a remote resource
● xlink:type="arc" defines traversal rules

A powerful example application of general XLinks:
Using third-party links and a smart browser, a group of people can annotate Web pages with
"post-it notes" for discussion - without having write access to the pages. They simply need to
agree on a set of URIs to XLink link bases defining the annotations. The smart XLink-aware
browser lets them select parts of the Web pages (as XPointer ranges), comment the parts by
creating XLinks to a small XHTML documents, view each other's comments, place comments on
comments, and perhaps also aid in structuring the comments.

92

Linking elements
- defining links

All elements with XLink information contain an xlink:type attribute.

● a general linking element is defined using an xlink:type="extended"
attribute; this element can contain the following:

● a local resource is defined with xlink:type="resource"
● a remote resource is defined with xlink:type="locator" and with an
xlink:href attribute (an XPointer expression locating the resource)

● arcs (traversal rules) are defined with xlink:type="arc":
❍ both "resource" and "locator" elements can have
xlink:label attributes

❍ an arc element has an xlink:from and an xlink:to attribute
❍ the "arc" element defines a set of arcs: from each resource having

the from label to each resource having the to label

(Note the confusing terminology: a resource is defined either by a "resource"
element or by a "locator" element.)

XPointer is described later - just think of XPointer expression as URIs for now...

93

Behavior
- link semantics

Arcs can be annotated with abstract behavior information using the following
attributes:

xlink:show - what happens when the link is activated?
Possible values:
embed

insert the presentation of the target resource (the one at the end of
the arc) in place of the source resource (the one at the beginning of
the arc, where traversal was initiated) (example: as images in HTML)

new
display the target resource some other place without affecting the
presentation of the source resource (example: as
target="_blank" in an HTML link)

replace
replace the presentation of the resource containing the source with a
presentation of the destination (example: as normal HTML links)

other
behavior specified elsewhere

none
no behavior is specified

xlink:actuate - when is the link activated?
Possible values:
onLoad

traverse the link immediately when recognized (example: as HTML
images)

onRequest
traverse when explicitly requested (example: as normal HTML links)

other
behavior specified elsewhere

none
no behavior is specified

Note: these notions of link behavior are rather abstract and do not make sense for
all applications.

94

Semantic attributes: describe the meaning of link resources and arcs

xlink:title
provide human readable descriptions (also available as
xlink:type="title" to allow markup)

xlink:role and xlink:arcrole
URI references to descriptions

95

Simple vs. Extended links
- for compatibility and simplicity

Two kinds of links:

● extended - the general ones we have seen so far
● simple - a restricted version of extended links: only for two-ended outbound links

(enough for HTML-style links)

Convenient shorthand notation for simple links:

 <mylink xlink:type="simple" xlink:href="..." xlink:show="..." .../>

is equivalent to:

 <mylink xlink:type="extended">
 <myresource xlink:type="resource"
 xlink:role="local"/>
 <myresource xlink:type="locator"
 xlink:role="remote" xlink:href="..."/>
 <myarc xlink:type="arc"
 xlink:from="local" xlink:to="remote" xlink:show="..." .../>
 </mylink>

Many XLink properties (e.g. xlink:type and xlink:show) can conveniently be specified as
defaults in the schema definition!

96

XPointer: Why, what, and how?
● an extension of XPath which is used by XLink to locate remote link resources
● relative addressing: allows links to places with no anchors
● flexible and robust: XPointer/XPath expressions often survive changes in the target

document
● can point to substrings in character data and to whole tree fragments

Example of an XPointer:

 URI

 / \
 http://www.foo.org/bar.xml#xpointer(article/section[position()<=5])
 | \ /|
 | ---------------------------- |
 \ XPointer expression /
 \ /

 XPointer fragment identifier

(points to the first five section elements in the article root element.)

In HTML, fragment identifiers may denote anchor IDs - XPointer generalizes that.

97

XPointer vs. XPath
XPointer is based upon XPath:

● an XPointer expression is basically the same as an XPath expression
● XPath says nothing about URIs; XPointer specifies that connection
● an XPath expression is evaluated wrt. a context; XPointer specifies this

context
● XPointer adds some features not available in XPath

98

XPointer fragment identifiers
An XPointer fragment identifier (the substring to the right of # in the URI) is either

● the value of some ID attribute in the document (ID attributes are specified
by the schema),

● a sequence of element numbers denoting the path from the root to an
element (e.g. /1/27/3), or

● a sequence of the form

 xpointer(...) xpointer(...) ...

containing a list (typically of length 1) of XPointer expressions.

Each expression is evaluated in turn, and the first where evaluation
succeeds is used. (This allows alternative pointers to be specified thereby
increasing robustness.)

Next: We will now look into XPath and then later describe what additional
features XPointer adds to XPath...

99

XPath: Location paths
XPath is a declarative language for:

● addressing (used in XLink/XPointer and in XSLT)
● pattern matching (used in XSLT and in XQuery)

The central construct is the location path, which is a sequence of location steps separated
by /, e.g.:

 child::section[position()<6] / descendant::cite / attribute::href

selects all href attributes in cite elements in the first 5 sections of an article document.

● a location step is evaluated wrt. some context resulting in a set of nodes

● a location path is evaluated compositionally, left-to-right, starting with some initial
context

❍ location paths resemble operating system directory paths
❍ each node resulting from evaluation of one step is used as context for

evaluation of the next, and the results are unioned together

A context consists of:

● a context node
● a context position and size (two integers)
● variable bindings, a function library, and a set of namespace declarations

Initial context: defined externally (e.g. by XPointer, XSLT, or XQuery).
Location paths can be prefixed with / to use the document root as initial context node!

Note: in the XPath data model, the XML document tree has a special root node above the
root element.

There is a strong analogy to directory paths (in UNIX). As an example, the directory path
/*/d/*.txt selects a set of files, and the location path /*/d/*[@ext="txt"] select a
set of XML elements.

100

Location steps
A single location step has the form

 axis :: node-test [predicate]

● The axis selects a rough set of candidate nodes (e.g. the child nodes of the context
node).

● The node-test performs an initial filtration of the candidates based on their
❍ types (chardata node, processing instruction, etc.), or
❍ names (e.g. element name).

● The predicates (zero or more) cause a further, potentially more complex, filtration.
Only candidates for which the predicates evaluate to true are kept.

The candidates that survive the filtration constitute the result.

This structure of location steps makes implementation rather easy and efficient, since the
complex predicates are only evaluated on relatively few nodes.

The example from before:

 child::section[position()<6] / descendant::cite / attribute::href

selects all href attributes in cite elements in the first 5 sections of an article document.

101

Axes
Available axes:

child the children of the context node

descendant all descendants (children, childrens children, ...)

parent the parent (empty if at the root)

ancestor all ancestors from the parent to the root

following-sibling siblings to the right

preceding-sibling siblings to the left

following

all following nodes in the document, excluding
descendants

preceding

all preceding nodes in the document, excluding
ancestors

attribute the attributes of the context node

namespace namespace declarations in the context node

self the context node itself

descendant-or-self the union of descendant and self

ancestor-or-self the union of ancestor and self

Note that attributes and namespace declarations are considered a special kind
of nodes here.

102

Some of these axes assume a document ordering of the tree nodes. The
ordering is the left-to-right preorder traversal of the document tree - which is the
same as the order in the textual representation.

The resulting sets are ordered intuitively, either forward (in document order) or
reverse (reverse document order).
For instance, following is a forward axis, and ancestor is a reverse axis.

(Frustratingly, each technology uses a slightly different tree model...)

103

Node tests
Testing by node type:

text() chardata nodes

comment() comment nodes

processing-instruction() processing instruction nodes

node()

all nodes (not including attributes and
namespace declarations)

Testing by node name:

name nodes with that name

* any node

Warning: There is a bug in the XPath spec! Default namespaces are required to
be handled incorrectly, so, if using Namespaces together with XPath (or XSLT),
all elements must have an explicit prefix.

104

Predicates
- expressions coerced to type boolean

A predicate filters a node-set by evaluating the predicate expression on each node in the set with

● that node as the context node,
● the size of the node-set as the context size, and
● the position of the node in the node-set wrt. the axis ordering as the context position.

Example:

 child::section[position()<6] / descendant::cite[attribute::href="there"]

selects all cite elements with href="there" attributes in the first 5 sections of an article
document.

(Compare with the earlier example.)

105

Expressions
Available types:

● node-set (set of nodes)
● boolean (true or false)
● number (floating point)
● string (Unicode text)

An expression can be:

● a constant, e.g. "..."
● a variable: $variable
● a function call: function (arguments)
● a boolean expression: or, and, =, !=, <, >, <=, >= (standard precedence,

all left associative)
● a numerical expression: +, -, *, div, mod
● a node-set expression (using location paths!): | (set union)

Coercion may occur at function arguments and when expressions are used as
predicates.

Variables and functions are evaluated using the context.

106

Core function library
Node-set functions:
last() returns the context size

position() returns the context position

count(node-set) number of nodes in node-set

name(node-set) string representation of first node in node-set

... ...

String functions:

string(value) type cast to string

concat(string, string, ...) string concatenation

... ...

Boolean functions:

boolean(value) type cast to boolean

not(boolean) boolean negation

... ...

Number functions:

number(value) type cast to number

sum(node-set) sum of number value of each node in node-set

... ...

- see the XPath specification for the complete list.

107

Abbreviations
Syntactic sugar: convenient notation for common situations

Normal syntax Abbreviation
child:: nothing (so child is the default axis)

attribute:: @

/descendant-or-self::node()/ //

self::node()
. (useful because location paths
starting with / begin evaluation at the
root)

parent::node() ..

Example:

 .//@href

selects all href attributes in descendants of the context node.

Furthermore, the coercion rules often allow compact notation, e.g.

 foo[3]

refers to the third foo child element of the context node (because 3 is coerced to
position()=3).

108

XPath visualization
Using Explorer 6 or an updated version of Explorer 5 it is easy to experiment with
XPath expressions.

The XPath Visualizer provides an interactive XPath evaluator that additionally
visualizes the resulting node set (online installation).

This tool is implemented as an ordinary HTML page that makes heavy use of
XSLT and JavaScript.

109

http://www.netcrucible.com/xslt/msxml-faq.htm#Q3
http://www.vbxml.com/xpathvisualizer/
http://www.brics.dk/~mis/xpathvisualizer/

XPath examples
The following XPath expressions point to sets of nodes in the recipe collection:

"The amounts of flour being used":

//ingredient[@name="flour"]/@amount

4
0.5
3
0.25

"The ingredients of which half a cup are used":

//ingredient[@amount='0.5' and @unit='cup']/@name

grated Parmesan cheese
shredded mozzarella cheese
shortening
flour
orange juice

"The second step in preparing stock for Cailles en Sarcophages":

//ingredient[@name="stock"]/preparation/step[position()=3]/text()

When the liquid is relatively clear, add the carrots, celery, whole onion,
bay leaf, parsley, peppercorns and salt. Reduce the heat, cover and let
simmer at least 2 hours to make a hearty stock.

110

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

XPointer: Context
initialization

An XPointer is basically an XPath expression occuring in a URI.

When evaluated, the initial context is defined as follows:

● the context node is the root node of the document
● the context position and size are both 1 (because the root has no

siblings)
● the variable bindings are empty (variables are not used by XPointer)
● the function library consists of the core XPath functions + a few extra

functions
● the namespace declarations are set as follows:

xmlns(myprefix=http://mynamespace.org) xpointer(...)

Warning: several levels of character escaping occur when using XPointer in
XML documents

● in XPointer, unbalanced parentheses must be escaped, e.g. ^)
● in URIs, many characters must be escaped, e.g. %20
● in XML attribute values, quotes, ampersand, etc. must be escaped, e.g.
<

111

Extra XPointer features
XPointer provides a more fine-grained addressing than XPath.

● Instead of just nodes, XPointers address locations, which can be nodes,
points, or ranges.

● A point can represent the location preceding or following any individual
character in e.g. chardata nodes.
The special node test
 point()
selects the set of points of a node.

● A range consists of two points in the same document, and is specified
using a special range-to location step construct.

● XPointer provides some extra functions:
here()

get location of element containing
current XPointer

origin()

get location where user initiated link
traversal

start-point(location-set) get start point of location set

string-range(...) find matching substrings

...

Example:

 /descendant::text()/point()[position()=0]

selects the locations right before the first character of all character data nodes in
the document.

Example:

 /section[1] / range-to(/section[3])

selects everything from the beginning of the first section to the end of the third.

112

Tools
Kinds of tools supporting XLink/XPointer:

● browsers
● parsers
● link bases

but XLink is still not widely implemented yet.

www.labs.fujitsu.com/free/HyBrick/en
the HyBrick browser

www.stepuk.com/products/prod_X2X.asp
the X2X link base

pages.wooster.edu/ludwigj/xml
the Link browser

XPath is primarily implemented as part of XSLT processors.

www.246.ne.jp/~kamiya/pub/XPath4XT.html
XPath processor for Java

113

http://www.labs.fujitsu.com/free/HyBrick/en/
http://www.stepuk.com/products/prod_X2X.asp
http://pages.wooster.edu/ludwigj/xml/index.html
http://www.brics.dk/~amoeller/XML/print/transformation/
http://www.246.ne.jp/~kamiya/pub/XPath4XT.html

Links to more information
www.w3.org/TR/xlink

W3C's XLink Recommendation
www.w3.org/TR/xptr

W3C's XPointer Working Draft
www.w3.org/TR/xpath

W3C's XPath Recommendation
www.stg.brown.edu/~sjd/xlinkintro.html

a brief introduction to XML linking
www.ibiblio.org/xml/books/bible2/chapters/ch19.html

a chapter from "The XML Bible" on XLink
www.ibiblio.org/xml/books/bible2/chapters/ch20.html

a chapter from "The XML Bible" on XPointer (and XPath)

114

http://www.w3.org/TR/xlink
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xpath
http://www.stg.brown.edu/~sjd/xlinkintro.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch19.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch20.html

XSL and XSLT
- stylesheets and document transformation

● XSLT - XSL Transformations - an overview
● Processing model - the basic ideas
● Structure of a stylesheet - how does it look
● A tiny example - from business-card-markup-language to XHTML
● A CSS example - trying to make do with CSS
● Patterns - using XPath for pattern matching
● Templates - constructing result tree fragments

❍ Literal result fragments
❍ Recursive processing
❍ Computed result fragments
❍ Conditional processing
❍ Sorting
❍ Numbering
❍ Variables and parameters
❍ Keys

● Other issues - things not covered here
● XSL Formatting Objects - fine-grained layout control
● Examples - continuing the recipe example
● Different views - producing different views of the same data
● Links to more information

115

XSLT - XSL Transformations
XSL (eXtensible Stylesheet Language) consists of two parts:

1. XSL Transformations (XSLT), and
2. XSL Formatting Objects (XSL-FO).

● a stylesheet separates contents and logical structure from presentation (as with CSS)

● an XSLT stylesheet is an XML document defining a transformation from one class of XML documents
into another

● XSLT is not intended as a completely general-purpose XML transformation language - it is designed for
XSL Formatting Objects as transformation target language - nevertheless: XSLT is generally useful

● XSL-FO is an XML language for specifying formatting in a more low-level and detailed way than possible
with HTML+CSS

The basic idea of XSLT:

An XSLT stylesheet:

● is declarative and uses pattern matching and templates to specify the transformation
● is vastly more expressive than a CSS stylesheet
● may perform arbitrary computations (it is Turing complete!)

Tools:

● XSLT transformation can be done either on the client (e.g. Explorer 5), or on the server (e.g. Apache
Xalan) - either as pre-processing or on-the-fly

● in the future, Web browsers only need to understand XSLT and XSL-FO (rendering HTML/XHTML can
be done using a standard stylesheet)

● today, the target language is typically XHTML which is understood by current browsers
● XSLT is widely implemented - XSL-FO is not yet...

116

http://xml.apache.org/
http://xml.apache.org/

Processing model
An XSLT stylesheet consists of a number of template rules:

template rule = pattern + template

For a given input XML document, the output is obtained as follows:

● the source tree is processed by processing the root node

● a single node is processed by:
1. finding the template rule with the best matching pattern
2. instantiating its template (creates result fragment + continues

processing recursively)

● a node list is processed by processing each node in order and
concatenating the results

117

Structure of a stylesheet
An XSLT stylesheet is itself an XML document:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns="...">
 .
 .
 .
 <xsl:template match="pattern"> \
 template > a template rule
 </xsl:template> /
 .
 . <- other top-level elements
 .
</xsl:stylesheet>

The namespace http://www.w3.org/1999/XSL/Transform is used to recognize the XSLT elements;
elements from other namespaces constitute literal result fragments.

A document may refer to a stylesheet using the processing instruction:

<?xml-stylesheet type="text/xsl" href="foo.xsl"?>

Newer browsers contain an XSLT processor. (Older versions of Explorer 5 require an update.)

118

http://www.netcrucible.com/xslt/msxml-faq.htm#Q3

A tiny example
The following XSLT stylesheet transforms XML business cards into XHTML:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns="http://www.w3.org/1999/xhtml">
 <xsl:template match="card">
 <html>
 <head>
 <title><xsl:value-of select="name/text()"/></title>
 </head>
 <body bgcolor="#ffffff">
 <table border="3">
 <tr>
 <td>
 <xsl:apply-templates select="name"/>

 <xsl:apply-templates select="title"/><p/>
 <tt><xsl:apply-templates select="email"/></tt>

 <xsl:if test="phone">
 Phone: <xsl:apply-templates select="phone"/>

 </xsl:if>
 </td>
 <td>
 <xsl:if test="logo">

 </xsl:if>
 </td>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="name">
 <xsl:value-of select="text()"/>
 </xsl:template>

 <xsl:template match="title">
 <xsl:value-of select="text()"/>
 </xsl:template>

 <xsl:template match="email">
 <xsl:value-of select="text()"/>
 </xsl:template>

 <xsl:template match="phone">
 <xsl:value-of select="text()"/>
 </xsl:template>
</xsl:stylesheet>

The transformation applied to the business card:

119

<card>
 <name>John Doe</name>
 <title>CEO, Widget Inc.</title>
 <email>john.doe@widget.com</email>
 <phone>(202) 555-1414</phone>
 <logo url="widget.gif"/>
</card>

looks like:

John Doe
CEO, Widget Inc.

john.doe@widget.com
Phone: (202) 555-1414

120

A CSS example
The following CSS stylesheet also makes business cards visible in the browser:

card { background-color: #cccccc; border: none; width: 300;}
name { display: block; font-size: 20pt; margin-left: 0; }
title { display: block; margin-left: 20pt;}
email { display: block; font-family: monospace; margin-left: 20pt;}
phone { display: block; margin-left: 20pt;}

The transformation applied to the business card:

<card>
 <name>John Doe</name>
 <title>CEO, Widget Inc.</title>
 <email>john.doe@widget.com</email>
 <phone>(202) 555-1414</phone>
 <logo url="widget.gif"/>
</card>

looks like:

John Doe
CEO, Widget Inc.
john.doe@widget.com
(202) 555-1414

CSS is very limited compared to XSLT:

● attributes are invisible (like the URL attribute in logo)
● information cannot be rearranged
● no real computation is possible
● the target cannot be another XML language

The CSS2 language has some XML extensions, but is not supported by existing browsers.

121

http://www.w3.org/TR/REC-CSS2/

Patterns
Patterns are simple XPath expressions evaluating to node-sets.

A node matches a pattern if:

the node is member of the result of evaluating the pattern with respect to
some context.

Operationally, a pattern matching is probably best evaluated backwards (from
right to left).

Recall the structure of XPath node-set expressions:

pattern: location path | ... | location path

location path: /step/ ... // ... /step

step: axis nodetest predicate

● a pattern is a set of XPath location paths separated by | (union)
● restrictions: only the child (default) and attribute (@) axes are allowed

here
● extensions: the location paths may start with id(..) or key(..)

A simple example is:

match="section/subsection | appendix//subsection"

which matches subsection elements occuring either as child elements of
section elements or as descendants of appendix elements.

122

Templates
There are many different kinds of template constructs:

● literal result fragments
● recursive processing
● computed result fragments
● conditional processing
● sorting
● numbering
● variables and parameters
● keys

123

Literal result fragments
A literal result fragment is:

● a text constant (character data)

● an element not belonging to the XSL namespace

● <xsl:text ...> ... </...> (as raw text, but with white-space and
character escaping control)

● <xsl:comment> ... </...> (inserts a comment <!--...-->)

Since literal fragments are part of the stylesheet XML document, only well-formed
XML will be generated.

Example:

<xsl:template match="...">
 this text is written directly to output
</xsl:template>

124

Recursive processing
Recursive processing instructions:

● <xsl:apply-templates select="node-set expression" .../>
apply pattern matching and template instantiation on selected nodes
(default: all children)

● <xsl:call-template name="..."/>
invoke template by name (where xsl:template has name="..."
attribute)

● <xsl:for-each select="node-set expression"> template
</...>
instantiate inlined template for each node in node-set (document order by
default)

● <xsl:copy> template </...>
copy current node to output and apply template

● <xsl:copy-of select="..."/>
copy selected nodes to output

The value of a select attribute is an XPath expression evaluated in the current
context.

Example:

<xsl:template match="article">
 <h1><xsl:apply-templates select="title"/></h1>
</xsl:template>

Processing modes: mode="..." on xsl:template and xsl:apply-
templates allows an element to be processed multiple times in different ways.

125

Computed result fragments
Result fragments can be computed using XPath expressions:

● <xsl:element name="..." namespace="..."> ... </...>
construct an element with the given name, attributes, and contents

● <xsl:attribute name="..." namespace="..."> ... </...>
construct an attribute (inside xsl:element)

● <xsl:value-of select="..."/>
construct character data or attribute value (expression converted to string)

● <xsl:processing-instruction name="..."> ... </...>
construct a processing instruction

The attributes may contain {expression}: XPath expressions which are
evaluated (and coerced to string) on instantiation.

Example:

<xsl:template match="section">
 <xsl:element name="sec{@level}">
 <xsl:attribute name="kind">
 <xsl:value-of select="kind"/>
 </xsl:attribute>
 </xsl:element>
</xsl:template>

This template rule converts
<section level="3"><kind>intro</kind></section> into
<sec3 kind="intro"/>.

126

Conditional processing
Processing can be conditional:

● <xsl:if test="expression"> ... </...>
apply template if expression (coerced to boolean) evaluates to true

● <xsl:choose>
 <xsl:when test="expression"> ... </...>
 ...
 <xsl:otherwise> ... </...>
</...>
test conditions in turn, apply template for the first that is true

Example:

<xsl:template match="nutrition">
 <xsl:if test="@alcohol">
 <td align="right"><xsl:value-of select="@alcohol"/>%</td>
 </xsl:if>
</xsl:template>

127

Sorting
Sorting chooses an order for xsl:apply-templates and xsl:for-each
(default: document order):

● <xsl:sort select="expression" .../>;
a sequence of xsl:sort elements placed in xsl:apply-templates or
xsl:for-each defines a lexicographic order

Some extra attributes:

● order="ascending/descending"
● lang="..."
● data-type="text/number"
● case-order="upper-first/lower-first"

Example:

<xsl:template match="personlist">
 <xsl:apply-templates select="person">
 <xsl:sort select="name/family"/>
 <xsl:sort select="name/given"/>
 </xsl:apply-templates>
</xsl:template>

This template rule processes a list of persons, sorted with family name as primary
key and given name as secondary key.

128

Numbering
- for automatic numbering of sections, item lists, footnotes, etc.

<xsl:number value="expression" converted to number

format="..." default: 1.

level="..." any/single/multiple

count="..." select what to count

from="..." select where to start counting

lang="..."

letter-value="..."

grouping-separator="..."

grouping-size="..."/>

● If value is specified, that value is used.
● Otherwise, the action is determined by level:

❍ level="any": number of preceding count nodes occuring after from
(example use: numbering footnotes)

❍ level="single" (the default): as any but only considers ancestors and their
siblings
(example use: numbering ordered list items)

❍ level="multiple": generates whole list of numbers
(example use: numbering sections and subsections at the same time)

Example:

<xsl:template match="footnote">
 (<xsl:number level="any" count="footnote" from="chapter" format="1"/>)
</xsl:template>

129

Variables and parameters
- for reusing results of computations and parameterizing templates and whole
stylesheets

● static scope rules
● can hold any XPath value (string, number, boolean, node-set) + result-tree

fragment
● purely declarative: variables cannot be updated
● can be global or local to a template rule

Declaration:

● <xsl:variable name="..." select="expression"/>
variable declaration, value given by XPath expression

● <xsl:variable name="..."> template </..>
variable declaration, template is instantiated as result tree fragment to give
value

- similarly for xsl:param parameter default-value declarations.

Use:

● $name
returns XPath value in expressions, e.g. attribute value templates

● xsl:with-param
passes parameters in xsl:call-template and xsl:apply-
templates

Example:

130

<xsl:template match="foo">

 <xsl:variable name="X" select="42"/>
 <xsl:variable name="Y">
 <sometag><xsl:value-of select="@bar"/></sometag>
 </xsl:variable>

 <first>
 <xsl:value-of select="$X"/>
 <xsl:copy-of select="$Y"/>
 </first>
 <second>
 <xsl:value-of select="$X"/>
 <xsl:copy-of select="$Y"/>
 </second>

</xsl:template>

Note: unfortunately, result tree fragments in variables cannot be used as source
for pattern matching and template instantiation - so general composition of
transformations is not possible :-(

131

Keys
- advanced node IDs for automatic construction of links

A key is a triple (node, name, value) associating a name-value pair to a tree node.

<xsl:key match="pattern" name="..." use="node set expression"/>
declares set of keys - one for each node matching the pattern and for each node in the
node set

Comparison to DTD (or DSD) IDs:

● keys are declared in the stylesheet (not in the DTD)
● keys allow different "name spaces"
● key values can be placed anywhere (not just as attributes)
● one node may have several keys
● keys need not be unique

Extra XPath key function:

key(name expression, value expression)
returns nodes with given key name and value

This is often used together with:

generate-id(singleton node-set expression)
returns unique string identifying the given node

Example:

<xsl:key name="mykeys" match="section[@id]" use="@id"/>

<xsl:template match="section">
 <h1>

 <xsl:number format="1. "/>
 <xsl:apply-templates select="title"/>

 </h1>
 <xsl:apply-templates select="body"/>
</xsl:template>

<xsl:template match="ref[@section]">

 <xsl:for-each select="key('mykeys',@section)">
 Section <xsl:number level="single" count="section" format="1"/>
 </xsl:for-each>

132

</xsl:template>

● a key is declared for each section element with an id attribute
● at each section title, a link anchor with a unique name is inserted
● at each ref element with a section attribute, a link to the appropriate section is

inserted using the key to locate the destination node
● at the same time, both the section titles and the references are numbered

133

Other issues
Things not covered here:

● conflict resolution (priority) - choosing a template rule when multiple
patterns match

● output modes (xml, html, text) - constructing HTML or non-formatted
text instead of XML

● white-space handling (strip-space, preserve-space) and output
escaping (disable-output-escaping)

● attribute-set - grouping attribute declarations

● additional XPath functions (document, format-number, current, ...) -
allow multiple input documents, etc.

● stylesheet import/include - modularity

● built-in template rules - convenient, but confusing for beginners

134

XSL Formatting Objects
● XSL-FO provides exact and detailed layout control
● it resembles e.g. LaTeX, but is XML based
● recall that HTML/XHTML has different goals: the exact look is decided by the

browser - not by the author

A small example:

<?xml version="1.0"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>
 <fo:simple-page-master master-name="my-page">
 <fo:region-body margin="1in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-name="my-page">
 <fo:flow flow-name="xsl-region-body">
 <fo:block font-family="Times" font-size="14pt">
 <fo:inline font-weight="bold">Hello</fo:inline>, world!
 </fo:block>
 </fo:flow>
 </fo:page-sequence>

</fo:root>

● layout masters define the page layout
● pages are grouped into page sequences
● flow objects bind contents to page regions
● the actual contents is grouped in blocks
● inside blocks, content fragments can be assigned inline properties

- XSL-FO documents are almost always created using XSLT!

XSL-FO is not supported by existing browsers, but can be tried out using FOP that
translates into PDF.

135

http://xml.apache.org/fop/

Examples
The following XSLT stylesheet produces an XHTML version of the recipe XML example and illustrates
many XSLT features:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:template match="collection">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title><xsl:apply-templates select="description"/></title>
 <link href="../style.css" rel="stylesheet" type="text/css"/>
 </head>
 <body>
 <table border="1">
 <xsl:apply-templates select="recipe"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="description">
 <xsl:value-of select="text()"/>
 </xsl:template>

 <xsl:template match="recipe">
 <tr>
 <td>
 <h1>
 <xsl:apply-templates select="title"/>
 </h1>

 <xsl:apply-templates select="ingredient"/>

 <xsl:apply-templates select="preparation"/>
 <xsl:apply-templates select="comment"/>
 <xsl:apply-templates select="nutrition"/>
 </td>
 </tr>
 </xsl:template>

 <xsl:template match="ingredient">
 <xsl:choose>
 <xsl:when test="@amount">

 <xsl:if test="@amount!='*'">
 <xsl:value-of select="@amount"/>
 <xsl:text> </xsl:text>
 <xsl:if test="@unit">
 <xsl:value-of select="@unit"/>
 <xsl:if test="number(@amount)>number(1)">
 <xsl:text>s</xsl:text>
 </xsl:if>
 <xsl:text> of </xsl:text>

136

http://www.brics.dk/~amoeller/XML/print/transformation/recipes.html
http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

 </xsl:if>
 <xsl:text> </xsl:text>
 </xsl:if>
 <xsl:value-of select="@name"/>

 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="@name"/>

 <xsl:apply-templates select="ingredient"/>

 <xsl:apply-templates select="preparation"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template match="preparation">
 <xsl:apply-templates select="step"/>
 </xsl:template>

 <xsl:template match="step">
 <xsl:value-of select="text()|node()"/>
 </xsl:template>

 <xsl:template match="comment">

 <li type="square"><xsl:value-of select="text()|node()"/>

 </xsl:template>

 <xsl:template match="nutrition">
 <table border="2">
 <tr>
 <th>Calories</th><th>Fat</th><th>Carbohydrates</th><th>Protein</th>
 <xsl:if test="@alcohol">
 <th>Alcohol</th>
 </xsl:if>
 </tr>
 <tr>
 <td align="right"><xsl:value-of select="@calories"/></td>
 <td align="right"><xsl:value-of select="@fat"/>%</td>
 <td align="right"><xsl:value-of select="@carbohydrates"/>%</td>
 <td align="right"><xsl:value-of select="@protein"/>%</td>
 <xsl:if test="@alcohol">
 <td align="right"><xsl:value-of select="@alcohol"/>%</td>
 </xsl:if>
 </tr>
 </table>
 </xsl:template>

</xsl:stylesheet>

137

Different views
The following XSLT stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="collection">
 <nutrition>
 <xsl:apply-templates select="recipe"/>
 </nutrition>
 </xsl:template>

 <xsl:template match="recipe">
 <dish name="{title/text()}"
 calories="{nutrition/@calories}"
 fat="{nutrition/@fat}"
 carbohydrates="{nutrition/@carbohydrates}"
 protein="{nutrition/@protein}"
 alcohol="{number(concat(0,nutrition/@alcohol))}"/>
 </xsl:template>
</xsl:stylesheet>

produces a different view of the recipes:

<nutrition>
 <dish alcohol="0"
 protein="32"
 carbohydrates="45"
 fat="23" calories="1167"
 name="Beef Parmesan with Garlic Angel Hair Pasta"/>
 <dish alcohol="0"
 protein="18"
 carbohydrates="64"
 fat="18"
 calories="349"
 name="Ricotta Pie"/>
 <dish alcohol="0"
 protein="29"
 carbohydrates="59"
 fat="12"
 calories="532"
 name="Linguine Pescadoro"/>
 <dish alcohol="2"
 protein="4"
 carbohydrates="45"
 fat="49"
 calories="612"
 name="Zuppa Inglese"/>
 <dish alcohol="0"
 protein="39"
 carbohydrates="28"
 fat="33"
 calories="8892"
 name="Cailles en Sarcophages"/>
</nutrition>

138

which validates according to the DSD2 schema:

<dsd root="nutrition">

 <if><element name="nutrition"/>
 <allow><element name="dish"/></allow>
 </if>

 <if><element name="dish"/>
 <allow>
 <attribute name="name"/>
 <attribute name="calories"/>
 <attribute name="carbohydrates"/>
 <attribute name="protein"/>
 <attribute name="alcohol"/>
 </allow>
 <require><attribute name="name"/></require>
 </if>

</dsd>

and using the XSLT stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:template match="nutrition">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <link href="../style.css" rel="stylesheet" type="text/css"/>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Dish</th>
 <th>Calories</th>
 <th>Fat</th>
 <th>Carbohydrates</th>
 <th>Protein</th>
 </tr>
 <xsl:apply-templates select="dish"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="dish">
 <tr>
 <td><xsl:value-of select="@name"/></td>
 <td><xsl:value-of select="@calories"/></td>
 <td><xsl:value-of select="@fat"/>%</td>
 <td><xsl:value-of select="@carbohydrates"/>%</td>
 <td><xsl:value-of select="@protein"/>%</td>
 </tr>
 </xsl:template>

139

</xsl:stylesheet>

produces the following XHTML table:

Dish Calories Fat Carbohydrates Protein

Beef Parmesan with Garlic Angel Hair Pasta 1167 23% 45% 32%

Ricotta Pie 349 18% 64% 18%

Linguine Pescadoro 532 12% 59% 29%

Zuppa Inglese 612 49% 45% 4%

Cailles en Sarcophages 8892 33% 28% 39%

140

Links to more information
www.w3.org/Style/XSL/

W3C's XSL homepage, contains lots of links
www.w3.org/TR/xslt

the XSLT 1.0 specification
www.w3.org/TR/xslt11

working draft for XSLT 1.1 (support for XML Base, multiple output
documents, ...)

www.w3.org/TR/xsl
the XSL 1.0 (defines the Formatting Objects XML language)

www.mulberrytech.com/xsl/xsl-list/
XSL-List - mailing list

www.ibiblio.org/xml/books/bible2/chapters/ch17.html
a chapter from "The XML Bible" on XSL Transformations

www.ibiblio.org/xml/books/bible2/chapters/ch18.html
a chapter from "The XML Bible" on XSL Formatting Objects

nwalsh.com/docs/tutorials/xsl/
an XSL tutorial by Paul Grosso and Norman Walsh

www.dpawson.co.uk/xsl/sect2/nono.html
"Things XSLT can't do", collected by Dave Pawson

www.alphaworks.ibm.com/tech/LotusXSL
LotusXSL, a Java XSLT implementation from IBM alphaWorks

saxon.sourceforge.net
SAXON, another Java implementation

www.jclark.com/xml/xt.html
XT, an early Java implementation by the editor of the XSLT spec

xml.apache.org/fop
an XSL Formatting Objects to PDF converter

141

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt11
http://www.w3.org/TR/xsl
http://www.mulberrytech.com/xsl/xsl-list/
http://www.ibiblio.org/xml/books/bible2/chapters/ch17.html
http://www.ibiblio.org/xml/books/bible2/chapters/ch18.html
http://nwalsh.com/docs/tutorials/xsl/
http://www.dpawson.co.uk/xsl/sect2/nono.html
http://www.alphaworks.ibm.com/tech/LotusXSL
http://saxon.sourceforge.net/
http://www.jclark.com/xml/xt.html
http://xml.apache.org/fop/

XQuery
- information extraction and transformation

● Queries on XML documents - generalizing relational data
● Usage scenarios - why do we need it?
● Query languages requirements - the W3C specification
● The XQuery language
● XQuery concepts - writing queries

❍ Path expressions
❍ Element constructors
❍ FLWR expressions
❍ List expressions
❍ Conditional expressions
❍ Quantified expressions
❍ Datatype expressions

● Other issues - things not covered here
● Examples - continuing the recipe example
● Links to more information

142

Queries on XML documents
XML documents generalize relational data in a very straightforward manner:

Here, we see:

relations (tables)

tuples (records)

attributes (entries)

A relation is a tree of height two with:

● unbounded fanout at the first level
● fixed fanout at the second level

In contrast, an XML document is an arbitrary tree.

How should query languages like SQL be similarly generalized?

The database community has been looking for a richer data model than relations.
Hierarchical, object-oriented, or multi-dimensional databases have emerged, but neither
has reached consensus.

143

Usage scenarios
XML querying is relevant for:

● human-readable documents
to retrieve individual documents, to provide dynamic indexes, to perform
context-sensitive searching, and to generate new documents

● data-oriented documents
to query (virtual) XML representations of databases, to transform data into
new XML representations, and to integrate data from multiple
heterogeneous data sources

● mixed-model documents
to perform queries on documents with embedded data, such as catalogs,
patient health records, employment records, or business analysis
documents

- in short, information retrieval.

144

Query language
requirements

The W3C Query Working Group has identified many technical requirements:

● at least one XML syntax (at least one human-readable syntax)
● must be declarative
● must be protocol independent
● must respect XML data model
● must be namespace aware
● must coordinate with XML Schema
● must work even if schemas are unavailable
● must support simple and complex datatypes
● must support universal and existential quantifiers
● must support operations on hierarchy and sequence of document

structures
● must combine information from multiple documents
● must support aggregation
● must be able to transform and to create XML structures
● must be able to traverse ID references

In short, it must be SQL generalized to XML!

145

http://www.w3.org/TR/xmlquery-req

The XQuery language
The query language developed by W3C is called XQuery and is currently at the
level of a Working Draft.

It is derived from several previous proposals:

● XML-QL
● YATL
● Lorel
● Quilt

which all agree on the fundamental principles.

XQuery relies on XPath and XML Schema datatypes.

Only a prototype implementation is yet supported, and many details about the
language may still change.

XQuery is not an XML language - a version in XML syntax is called XQueryX.

146

http://www.w3.org/TR/xquery
http://www.research.att.com/~mff/files/final.html
http://www-rocq.inria.fr/~simeon/YAT/
ftp://db.stanford.edu/pub/papers/lorel96.ps
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html
http://www.softwareag.com/developer/quip/
http://www.w3.org/TR/xqueryx

XQuery concepts
A query in XQuery is an expression that:

● reads a number of XML documents or fragments
● returns a sequence of well-formed XML fragments

The principal forms of XQuery expressions are:

● path expressions
● element constructors
● FLWR ("flower") expressions
● list expressions
● conditional expressions
● quantified expressions
● datatype expressions

147

Path expressions
The simplest kind of query is just an XPath expression.

As usual, some specific extensions are allowed...

A simple path expression looks like:

document("zoo.xml")//chapter[2]//figure[caption = "Tree Frogs"]

● the result is all figures with caption Tree Frogs in the second chapter of the document
zoo.xml

● the result is given as a list of XML fragments, each rooted with a caption element
● the order of the fragments respects the document order (order matters! - as opposed to SQL)

The initial context for the path expression is given by document("zoo.xml") (similarly to
XPointer).

An XQuery specific extension of XPath allows location steps to follow a new IDREF axis:

document("zoo.xml")//chapter[title = "Frogs"]//figref/@refid=>fig/caption

● the result is all captions in figures referenced in the chapter with title Frogs
● the => operator follows an IDREF attribute to its unique destination

As a further generalization, XQuery allows an arbitrary XQuery expression to be used as a location
step!

148

Element constructors
An XQuery expression may construct new XML elements:

<employee empid="12345">
 <name>John Doe</name>
 <job>XML specialist</job>
</employee>

This expression just evaluates to itself.

In the XQuery syntax this is unambiguous - XQueryX must use namespaces!

More interestingly, an expression may use values bound to variables:

<employee empid={$id}>
 <name>{$name}</name>
 {$job}
</employee>

Here the variables $id, $name, and $job must be bound to appropriate
fragments.

In general, {...} may contain full XQuery expressions.

149

FLWR expressions
The main engine of XQuery is the FLWR expression:

● FOR-LET-WHERE-RETURN
● pronounced "flower"
● generalizes SELECT-FROM-HAVING-WHERE from SQL

A complete example is:

FOR $p IN document("bib.xml")//publisher
LET $b := document("bib.xml)//book[publisher = $p]
WHERE count($b) > 100
RETURN $p

● FOR generates an ordered list of bindings of publisher names to $p
● LET associates to each binding a further binding of the list of book

elements with that publisher to $b
● at this stage, we have an ordered list of tuples of bindings: ($p,$b)
● WHERE filters that list to retain only the desired tuples
● RETURN constructs for each tuple a resulting value

The combined result is in this case and ordered list of publishers that publish
more than 100 books.

We probably only want each publisher once, so the distinct operator
eliminates duplicates in a list:

FOR $p IN distinct(document("bib.xml")//publisher)
LET $b := document("bib.xml)//book[publisher = $p]
WHERE count($b) > 100
RETURN $p

Note the difference between FOR and LET:

FOR $x in /library/book

generates a list of bindings of $x to each book element in the library, but:

150

LET $x := /library/book

generates a single binding of $x to the list of book elements in the library.

This is also sufficient to compute joins of documents:

FOR $p IN document("www.irs.gov/taxpayers.xml")//person
FOR $n IN document("neighbors.xml")//neighbor[ssn = $p/ssn]
RETURN
 <person>
 <ssn> { $p/ssn } </ssn>
 { $n/name }
 <income> { $p/income } </income>
 </person>

151

List expressions
XQuery expressions manipulate lists of values, for which many operators are
supported.

For example, the avg(...) function computes the average of a list of integers.

The following query lists each publisher and the average price of their books:

FOR $p IN distinct(document("bib.xml")//publisher)
LET $a := avg(document("bib.xml")//book[publisher = $p]/price)
RETURN
 <publisher>
 <name>{ $p/text() }</name>
 <avgprice>{ $a }</avgprice>
 </publisher>

Compare this with the verbose XQueryX syntax.

Lists can be sorted, as in the following where books costing more than 100$ are listed
in sorted order:

● first by primary the author
● second by the title

document("bib.xml")//book[price > 100] SORTBY (author[1],title)

Other list operators compute unions, intersections, differences, and subranges of
lists.

152

http://www.brics.dk/~amoeller/XML/print/querying/average.xml

Conditional expressions
XQuery supports a general IF-THEN-ELSE construction.

The example query:

FOR $h IN document("library.xml")//holding
RETURN
 <holding>
 { $h/title,
 IF ($h/@type = "Journal")
 THEN $h/editor
 ELSE $h/author
 }
 </holding>

extracts from the holdings of a library the titles and either editors or authors.

Notice the , (comma) operator, which concatenates two (singleton) lists.

153

Quantified expressions
XQuery allows quantified expressions, which decide properties for all elements in
a list:

● SOME-IN-SATISFIES
● EVERY-IN-SATISFIES

The following example finds the titles of all books which mention both sailing and
windsurfing in the same paragraph:

FOR $b IN document("bib.xml")//book
WHERE SOME $p IN $b//paragraph SATISFIES
 (contains($p,"sailing") AND contains($p,"windsurfing"))
RETURN $b/title

The next example finds the titles of all books which mention sailing in every
paragraph:

FOR $b IN document("bib.xml")//book
WHERE EVERY $p IN $b//paragraph SATISFIES
 contains($p,"sailing")
RETURN $b/title

154

Datatype expressions
XQuery supports all datatypes from XML Schema, both primitive and complex
types.

Constant values can be written:

● as literals (like string, integer, float)
● as constructor functions (true(), date("2001-06-07"))
● as explicit casts (CAST AS xsd:positiveInteger(47))

Arbitrary XML Schema documents can be imported into a query.

An INSTANCEOF operator allows runtime validation of any value.

A TYPESWITCH operator allows branching based on types.

155

Other issues
Things not covered here:

● hundreds of built-in operators and functions - contains anything you might
think of

● computed element and attribute names - allow more flexible queries

● user-defined functions - allow general-purpose computations

● the XQuery language definition has 102 outstanding issues - stay tuned for
changes

156

http://www.w3.org/TR/2001/WD-xquery-20010607#section-XQuery-Issues

Examples
The following XQuery expressions extract information from the recipe collection:

"The titles of all recipes":

FOR $t IN document("recipes.xml")//title
RETURN $t

<?xml version="1.0"?>
<xql:result xmlns:xql="http://metalab.unc.edu/xql/">
 <title>Beef Parmesan with Garlic Angel Hair Pasta</title>
 <title>Ricotta Pie</title>
 <title>Linguine Pescadoro</title>
 <title>Zuppa Inglese</title>
 <title>Cailles en Sarcophages</title>
</xql:result>

"The dishes that contain flour":

<floury>
 { FOR $r IN document("recipes.xml")//recipe[.//ingredient[@name="flour"]]
 RETURN <dish>{$r/title/text()}</dish>
 }
</floury>

<?xml version="1.0"?>
<floury xmlns:xql="http://metalab.unc.edu/xql/">
 <dish>Ricotta Pie</dish>
 <dish>Zuppa Inglese</dish>
 <dish>Cailles en Sarcophages</dish>
</floury>

"For each ingredient, the recipes that it is used in":

FOR $i IN distinct(document("recipes.xml")//ingredient/@name)
RETURN <ingredient name={$i}>
 { FOR $r IN document("recipes.xml")//recipe
 WHERE $r//ingredient[@name=$i]
 RETURN $r/title
 }
 </ingredient>

157

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

<?xml version="1.0"?>
<xql:result xmlns:xql="http://metalab.unc.edu/xql/">
 <ingredient name="beef cube steak">
 <title>Beef Parmesan with Garlic Angel Hair Pasta</title>
 </ingredient>
 <ingredient name="onion, sliced into thin rings">
 <title>Beef Parmesan with Garlic Angel Hair Pasta</title>
 </ingredient>
 ...
</xql:result>

158

Links to more information
www.w3.org/TR/xquery

XQuery 1.0 Working Draft
www.w3.org/TR/xmlquery-req

W3C XML Query Requirements
www.w3.org/TR/xmlquery-use-cases

XML Query Use Cases
www.w3.org/TR/query-semantics

XQuery 1.0 Formal Semantics
www.softwareag.com/developer/quip

XQuery prototype implementation

159

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/query-semantics/
http://www.softwareag.com/developer/quip/

DOM, SAX, and JDOM
- XML support in programming languages

● XML and programming - beyond specialized tools
● The DOM API - official W3C proposal
● A simple DOM example - manipulating the recipe collection
● The SAX API - events and callbacks
● A simple SAX example - another go at the recipes
● SAX events - tracing parsing events
● The JDOM API - a simpler solution
● A simple JDOM example - recipes again
● The JDOM packages - the basic constituents
● The JDOM tree model - how XML trees are viewed
● JDOM input and output - reading an writing XML
● JAXP - the Sun solution
● A Business Card editor - a larger example
● Problems with JDOM - not yet perfect
● Links to more information

160

XML and programming
XSLT, XPath and XQuery provide tools for specialized tasks.

But many applications are not covered:

● domain-specific tools for concrete XML languages
● general tools that nobody has thought of yet

To work with XML in general-purpose programming languages we need to:

● parse XML documents into XML trees
● navigate through XML trees
● construct XML trees
● output XML trees as XML documents

DOM and SAX are corresponding APIs that are language independent and
supported by numerous languages.

JDOM is an API that is tailored to Java.

Typical examples: domain-specific editors and browsers.

161

http://www.w3.org/DOM/
http://sax.sourceforge.net/
http://www.jdom.org/

The DOM API
DOM is the official W3C proposal.

It views an XML tree as a data structure, similar to the DOM from Javascript.

It is quite large and complex...

● Level 1 Core: W3C Recommendation, October 1998
❍ primitive navigation and manipulation of XML trees
❍ other parts: HTML

● Level 2 Core: W3C Recommendation, November 2000
❍ adds Namespace support and minor new features
❍ other parts: Events, Views, Style, Traversal and Range

● Level 3 Core: W3C Working Draft, September 2001
❍ adds ordering and whitespace
❍ other parts: Schemas, XPath

The DOM API is specified in OMG IDL (Interface Definition Language).

162

http://www.w3.org/DOM/
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-3-Core/core.html

A simple DOM example
The following Java program uses DOM to read the recipe collection and cut it down
to the first recipe:

import java.io.*;
import org.apache.xerces.parsers.DOMParser;
import org.w3c.dom.*;

public class FirstRecipeDOM {

 public static void main(String[] args) {
 try {
 DOMParser p = new DOMParser();
 p.parse(args[0]);
 Document doc = p.getDocument();
 Node n = doc.getDocumentElement().getFirstChild();
 while (n!=null && !n.getNodeName().equals("recipe"))
 n = n.getNextSibling();
 PrintStream out = System.out;
 out.println("<?xml version=\"1.0\"?>");
 out.println("<collection>");
 if (n!=null)
 print(n, out);
 out.println("</collection>");
 } catch (Exception e) {e.printStackTrace();}
 }

 static void print(Node node, PrintStream out) {
 int type = node.getNodeType();
 switch (type) {
 case Node.ELEMENT_NODE:
 out.print("<" + node.getNodeName());
 NamedNodeMap attrs = node.getAttributes();
 int len = attrs.getLength();
 for (int i=0; i<len; i++) {
 Attr attr = (Attr)attrs.item(i);
 out.print(" " + attr.getNodeName() + "=\"" +
 escapeXML(attr.getNodeValue()) + "\"");
 }
 out.print('>');
 NodeList children = node.getChildNodes();

163

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

 len = children.getLength();
 for (int i=0; i<len; i++)
 print(children.item(i), out);
 out.print("</" + node.getNodeName() + ">");
 break;
 case Node.ENTITY_REFERENCE_NODE:
 out.print("&" + node.getNodeName() + ";");
 break;
 case Node.CDATA_SECTION_NODE:
 out.print("<![CDATA[" + node.getNodeValue() + "]]>");
 break;
 case Node.TEXT_NODE:
 out.print(escapeXML(node.getNodeValue()));
 break;
 case Node.PROCESSING_INSTRUCTION_NODE:
 out.print("<?" + node.getNodeName());
 String data = node.getNodeValue();
 if (data!=null && data.length()>0)
 out.print(" " + data);
 out.println("?>");
 break;
 }
 }

 static String escapeXML(String s) {
 StringBuffer str = new StringBuffer();
 int len = (s != null) ? s.length() : 0;
 for (int i=0; i<len; i++) {
 char ch = s.charAt(i);
 switch (ch) {
 case '<': str.append("<"); break;
 case '>': str.append(">"); break;
 case '&': str.append("&"); break;
 case '"': str.append("""); break;
 case '\'': str.append("'"); break;
 default: str.append(ch);
 }
 }
 return str.toString();
 }
}

Note that:

164

● we need to make our own print method
● when using DOM in Java, one actually uses the Java language binding

165

http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

The SAX API
SAX (Simple API for XML) started as a grassroots movement, but has gained an
official standing.

An XML tree is not viewed as a data structure, but as a stream of events
generated by the parser.

The kinds of events are:

● the start of the document is encountered
● the end of the document is encountered
● the start tag of an element is encountered
● the end tag of an element is encountered
● character data is encountered
● a processing instruction is encountered

Scanning the XML file from start to end, each event invokes a corresponding
callback method that the programmer writes.

An XML tree can be built in response, but it is not required to construct a data
structure.

This is sometimes much more efficient, if the document can be piped through the
application.

166

http://sax.sourceforge.net/

A simple SAX example
The following Java programs reads the recipe collection and outputs the total amount of flour being used (assuming
the unit is always cup):

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.apache.xerces.parsers.SAXParser;

public class Flour extends DefaultHandler {

 float amount = 0;

 public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts) {
 if (namespaceURI.equals("http://recipes.org") && localName.equals("ingredient"))
{
 String n = atts.getValue("","name");
 if (n.equals("flour")) {
 String a = atts.getValue("","amount"); // assume 'amount' exists
 amount = amount + Float.valueOf(a).floatValue();
 }
 }
 }

 public static void main(String[] args) {
 Flour f = new Flour();
 SAXParser p = new SAXParser();
 p.setContentHandler(f);
 try { p.parse(args[0]); }
 catch (Exception e) {e.printStackTrace();}
 System.out.println(f.amount);
 }
}

The output for our recipe collection is:

7.75

Only a tiny amount of the XML document is stored at any time.

167

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

SAX events
The following Java program traces all SAX events generated by parsing the recipe collection:

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.apache.xerces.parsers.SAXParser;

public class Trace extends DefaultHandler {

 int indent;

 void printIndent() {
 for (int i=0; i<indent; i++) System.out.print("-");
 }

 public void startDocument() {
 System.out.println("start document");
 }

 public void endDocument() {
 System.out.println("end document");
 }

 public void startElement(String uri, String localName,
 String qName, Attributes attributes) {
 printIndent();
 System.out.println("starting element: " + qName);
 indent++;
 }

 public void endElement(String uri, String localName,
 String qName) {
 indent--;
 printIndent();
 System.out.println("end element: " + qName);
 }

 public void ignorableWhitespace(char[] ch, int start, int length) {
 printIndent();
 System.out.println("whitespace, length " + length);
 }

 public void processingInstruction(String target, String data) {
 printIndent();
 System.out.println("processing instruction: " + target);
 }

168

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

 public void characters(char[] ch, int start, int length){
 printIndent();
 System.out.println("character data, length " + length);
 }

 public static void main(String[] args) {
 Trace t = new Trace();
 SAXParser p = new SAXParser();
 p.setContentHandler(t);
 try { p.parse(args[0]); }
 catch (Exception e) {e.printStackTrace();}
 }
}

The output is (abbreviated with ...):

start document
processing instruction: dsd
starting element: collection
-character data, length 3
-starting element: description
--character data, length 47
-end element: description
-character data, length 3
-starting element: recipe
--character data, length 5
...
-end element: recipe
-character data, length 1
end element: collection
end document

169

The JDOM API
DOM is too complicated to suit many programmers.

Since it is a general API, it does not use special Java features:

● text content is not just java.lang.String
● method overloading is not allowed
● existing collection classes are ignored
● ...

JDOM is designed to be simple and Java-specific.

JDOM is a small (100K) library, since it is used on top of either DOM or SAX.
- a full XML parser is complex, dealing with encodings, namespaces, and entities

It shares the simple view of XML trees presented in these slides.

170

http://www.jdom.org/

A simple JDOM example
The following Java program uses JDOM to read the recipe collection and cut it down to the first recipe:

import java.io.*;
import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;

public class FirstRecipeJDOM {
 public static void main(String[] args) {
 try {
 Document d = new SAXBuilder().build(new File(args[0]));
 Namespace ns = Namespace.getNamespace("http://recipes.org");
 Element r = d.getRootElement().getChild("recipe", ns).detach();
 Document n = new Document((new Element("collection")).addContent(r));
 new XMLOutputter().output(n, System.out);
 } catch (Exception e) {e.printStackTrace();}
 }
}

Compare this with the DOM version.

171

http://www.brics.dk/~amoeller/XML/print/xml/recipes.xml

The JDOM packages
JDOM contains five Java packages:

● org.jdom - defines the basic model of an XML tree
● org.jdom.adapters - defines wrappers for various DOM

implementations
● org.jdom.input - defines means for reading XML documents
● org.jdom.output - defines means for writing XML documents
● org.jdom.transform - defines an interface to JAXP XSLT

172

http://www.jdom.org/docs/apidocs/org/jdom/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/adapters/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/input/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/output/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/transform/package-summary.html

The JDOM tree model
JDOM has a class for every kind of XML tree node (in the general sense):

● Document
● Element
● Attribute
● CDATA
● Comment
● DocType
● EntityRef
● Namespace
● ProcessingInstruction
● + java.lang.String (for character data)

Each node has a parent pointer. There are no sibling pointers but several
methods for accessing the child nodes.

Content is given as a java.util.List - modifications are reflected in the tree.

Surprisingly, the common behavior of nodes is not modelled by interfaces or
abstract superclasses.

173

http://www.jdom.org/docs/apidocs/org/jdom/Document.html
http://www.jdom.org/docs/apidocs/org/jdom/Element.html
http://www.jdom.org/docs/apidocs/org/jdom/Attribute.html
http://www.jdom.org/docs/apidocs/org/jdom/CDATA.html
http://www.jdom.org/docs/apidocs/org/jdom/Comment.html
http://www.jdom.org/docs/apidocs/org/jdom/DocType.html
http://www.jdom.org/docs/apidocs/org/jdom/EntityRef.html
http://www.jdom.org/docs/apidocs/org/jdom/Namespace.html
http://www.jdom.org/docs/apidocs/org/jdom/ProcessingInstruction.html

JDOM input and output
Parsing XML documents into JDOM:

● this can be done with basically any DOM or SAX parser
● SAX is preferable, since it avoids the construction of a DOM tree
● parsing errors are reported as exceptions

Output from JDOM can be generated in different ways:

● as the corresponding sequence of SAX events
● as a standard DOM tree
● as an (indented) XML document represented as a stream of characters

(to a file or another application)

174

http://www.jdom.org/docs/apidocs/org/jdom/input/package-summary.html
http://www.jdom.org/docs/apidocs/org/jdom/output/package-summary.html

JAXP
JAXP is the official API for XML processing from Sun.

It supports DOM, SAX, and XSLT (which may be run inside Java applications).

JDOM is rumored to become integrated into a future version.

175

http://java.sun.com/xml/jaxp/index.html

A Business Card editor
A typical Java application is a domain-specific XML editor:

● nobody wants to write the markup by hand
● general-purpose XML editors are too clunky

We generalize the business card language to allow collections of business cards:

<cards>
 <card>
 <name>John Doe</name>
 <title>CEO, Widget Inc.</title>
 <email>john.doe@widget.com</email>
 <phone>(202) 456-1414</phone>
 <logo url="widget.gif" />
 </card>
 <card>
 <name>Michael Schwartzbach</name>
 <title>Associate Professor</title>
 <email>mis@brics.dk</email>
 <phone>+45 8610 8790</phone>
 <logo url="http://www.brics.dk/~mis/portrait.gif" />
 </card>
 <card>
 <name>Anders Møller</name>
 <title>Ph.D. Student</title>
 <email>amoeller@brics.dk</email>
 <phone>+45 8942 3475</phone>
 <logo url="http://www.brics.dk/~amoeller/am.jpg"/>
 </card>
</cards>

We then write a Java program to edit such collections.

First, we need a high-level representation of a business card:

class Card {
 public String name, title, email, phone, logo;

 public Card(String name, String title, String email, String phone, String logo) {
 this.name = name;
 this.title = title;
 this.email = email;
 this.phone = phone;
 this.logo = logo;
 }
}

An XML document must then be translated into a vector of such objects:

176

http://www.brics.dk/~amoeller/XML/print/programming/BCedit.java

Vector doc2vector(Document d) {
 Vector v = new Vector();
 Iterator i = d.getRootElement().getChildren().iterator();
 while (i.hasNext()) {
 Element e = (Element)i.next();
 String phone = e.getChildText("phone");
 if (phone==null) phone="";
 Element logo = e.getChild("logo");
 String url;
 if (logo==null) url = ""; else url = logo.getAttributeValue("url");
 Card c = new Card(e.getChildText("name"), // exploit schema,
 e.getChildText("title"), // assume validity
 e.getChildText("email"),
 phone,
 url);
 v.add(c);
 }
 return v;
}

And back into an XML document:

Document vector2doc() {
 Element cards = new Element("cards");
 for (int i=0; i<cardvector.size(); i++) {
 Card c = (Card)cardvector.elementAt(i);
 if (c!=null) {
 Element card = new Element("card");
 Element name = new Element("name");
 name.addContent(c.name);
 card.addContent(name);
 Element title = new Element("title");
 title.addContent(c.title);
 card.addContent(title);
 Element email = new Element("email");
 email.addContent(c.email);
 card.addContent(email);
 if (!c.phone.equals("")) {
 Element phone = new Element("phone");
 phone.addContent(c.phone);
 card.addContent(phone);
 }
 if (!c.logo.equals("")) {
 Element logo = new Element("logo");
 logo.setAttribute("url",c.logo);
 card.addContent(logo);
 }
 cards.addContent(card);
 }
 }
 return new Document(cards);
}

A little logic and some GUI then completes the editor:

177

Compile with: javac -classpath xerces.jar:jdom.jar BCedit.java

This example contains some general observations:

● XML documents are parsed via JDOM into domain-specific data structures
● if the input is known to validate according to some schema, then many runtime errors can be assumed

never to occur
● how do we ensure that the output of vector2doc is valid according to the schema? (well-formedness is for

free)

178

Problems with JDOM
JDOM is not (yet) perfect:

● it is still a beta version under development

● shared functionality is not collected in an interface or common superclass
(so many casts are necessary)

● the design contains many non-orthogonal features (for instance, there is a
removeContent(CDATA) method but not a removeContent(String))

● the documentation is insufficient (for instance, Element.getContent
returns a List, but it is not specified which of the optional methods that are
implemented, so none of them can be used)

179

Links to more information
www.w3.org/DOM/

DOM homepage
www.w3.org/TR/REC-DOM-Level-1

DOM level 1
www.w3.org/TR/DOM-Level-2-Core

DOM level 2
www.w3.org/TR/DOM-Level-3-Core

DOM level 3
sax.sourceforge.net

SAX project website
java.sun.com/xml/

SUN's Java/XML page
java.sun.com/xml/jaxp/

JAXP, Sun's Java APIs for XML Processing
xmlsoft.org

libxml, Gnome project's XML C library
xml.apache.org

Apache's XML page
xml.apache.org/xerces2-j/

Apache's XML parser

180

http://www.w3.org/DOM/
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://sax.sourceforge.net/
http://java.sun.com/xml/
http://java.sun.com/xml/jaxp/
http://xmlsoft.org/
http://xml.apache.org/
http://xml.apache.org/xerces2-j/

Background: W3C
- a look at the organization behind most of the XML-related specifications

1. W3C - The World Wide Web Consortium
2. Organization
3. Activities
4. Policies
5. Technical Reports

181

W3C - The World Wide Web
Consortium (www.w3.org)

- the de facto leader in defining Web standards

Consists of more than 500 companies and organizations, led by Tim Berners-Lee,
creator of the World Wide Web.

W3C's Mission Statement:

"To lead the World Wide Web to its full potential by developing common
protocols that promote its evolution and ensure its interoperability."

Competitors: ISO, OASIS, ECMA

Coming up: an overview of the W3C Process Document...

182

http://www.w3.org/
http://www.w3.org/Consortium/Process/

Organization
W3C's organizational structure:

● the Members (who pay $50,000 a year!) - companies and organizations
(carry out activities)

● the Team - Chairman, Director, Staff, Fellows (technical leadership,
coordinates activities, hosted by MIT, INRIA, and Keio)

● the Advisory Board (elected) - provides guidance of strategy

(Compare this with ISO!)

183

Activities
Activities carried out by groups:

● Working Groups - produce specifications and prototypes
● Interest Groups - explore and evaluate technologies
● Coordination Groups - ensure consistency and integrety between other

groups

Current XML groups:

● query
● schema
● linking
● core
● coordination

Other (current or former) W3C activities: HTML, HTTP, PNG, Amaya, ...

Organization of events:

● workshops - short expert meeting
● symposia - education
● conferences - the International World Wide Web Conference

184

http://www.www10.org/

Policies
● consensus - reach "substantial agreement"
● dissemination - limit intellectual property rights, ensure availability

+ the unofficial:

● better too soon than too late - otherwise someone else will take over
● greatest common denominator - every interested member is allowed one

favourite feature in each spec

185

Technical Reports
- the central activity of W3C

Member submissions and Working Group publications:

● Notes - acknowledged submissions by Members (members only!), Working
Group notes, etc.;

Recommendation track:

● Working Drafts - Working Group reports (work in progress)
● Candidate Recommendations - stable Working Drafts
● Proposed Recommendations - being reviewed by the Advisory Committee
● Recommendations - standards recommended by W3C (although they don't

call them "standards")

186

http://www.w3.org/TR/#Notes
http://www.w3.org/TR/#WD
http://www.w3.org/TR/#CR
http://www.w3.org/TR/#PR
http://www.w3.org/TR/#Recommendations

	www.brics.dk
	XML tutorial: The XML Revolution
	XML tutorial: About
	XML tutorial: Overview
	XML tutorial: HTML and XML
	XML tutorial: Hyper-Text Markup Language
	XML tutorial: Original motivation for HTML
	XML tutorial: Compact and human readable
	XML tutorial: From logical to physical structure
	XML tutorial: Stylesheets
	XML tutorial: Different versions of HTML
	XML tutorial: Syntax and validation
	XML tutorial: Browsers are forgiving
	XML tutorial: Structuring general information
	XML tutorial: Problems with HTML
	XML tutorial: What is XML
	XML tutorial: HTML vs. XML
	XML tutorial: A conceptual view of XML
	XML tutorial: A concrete view of XML
	XML tutorial: Applications of XML
	XML tutorial: The recipe example
	XML tutorial: From SGML to SML
	XML tutorial: SGML relics
	XML tutorial: XML technologies
	XML tutorial: Basic XML tools
	XML tutorial: Links to more information

	XML tutorial: Namespaces, XInclude, and XML Base
	XML tutorial: Mixing XML Languages
	XML tutorial: Qualifying names
	XML tutorial: Namespace declarations
	XML tutorial: Combining XML documents
	XML tutorial: An XInclude example
	XML tutorial: XInclude details
	XML tutorial: XBase
	XML tutorial: Links to more information

	XML tutorial: DTD, XML Schema, and DSD
	XML tutorial: Schemas and schema languages
	XML tutorial: Choosing a schema language
	XML tutorial: DTD - Document Type Definition
	XML tutorial: Example DTD
	XML tutorial: Problems with DTD
	XML tutorial: Design requirements
	XML tutorial: XML Schema
	XML tutorial: A small example
	XML tutorial: Overview of XML Schema
	XML tutorial: Constructing complex types
	XML tutorial: Constructing simple types
	XML tutorial: Local definitions
	XML tutorial: Inheritance and substitution groups
	XML tutorial: Annotations
	XML tutorial: Schema inclusion and redefinition
	XML tutorial: Namespaces
	XML tutorial: Attribute and element defaults
	XML tutorial: Identity constraints
	XML tutorial: A larger example
	XML tutorial: Problems with XML Schema
	XML tutorial: Document Structure Description 2.0
	XML tutorial: Example
	XML tutorial: Constraints
	XML tutorial: Stringtypes
	XML tutorial: Expressions
	XML tutorial: Inclusion and extension
	XML tutorial: Links to more information

	XML tutorial: XLink, XPointer, and XPath
	XML tutorial: XLink, XPointer, and XPath
	XML tutorial: Problems with HTML links
	XML tutorial: The XLink linking model
	XML tutorial: An example
	XML tutorial: Linking elements
	XML tutorial: Behavior
	XML tutorial: Simple vs. Extended links
	XML tutorial: XPointer: Why, what, and how
	XML tutorial: XPointer vs. XPath
	XML tutorial: XPointer fragment identifiers
	XML tutorial: Location paths
	XML tutorial: Location steps
	XML tutorial: Axes
	XML tutorial: Node tests
	XML tutorial: Predicates
	XML tutorial: Expressions
	XML tutorial: Core function library
	XML tutorial: Abbreviations
	XML tutorial: XPath visualization
	XML tutorial: XPath examples
	XML tutorial: Context initialization
	XML tutorial: Extra XPointer features
	XML tutorial: Tools
	XML tutorial: Links to more information

	XML tutorial: XSLT
	XML tutorial: XSLT - XSL Transformations
	XML tutorial: Processing model
	XML tutorial: Structure of a stylesheet
	XML tutorial: A tiny example
	XML tutorial: A CSS example
	XML tutorial: Patterns
	XML tutorial: Templates
	XML tutorial: Literal result fragments
	XML tutorial: Recursive processing
	XML tutorial: Computed result fragments
	XML tutorial: Conditional processing
	XML tutorial: Sorting
	XML tutorial: Numbering
	XML tutorial: Variables and parameters
	XML tutorial: Keys
	XML tutorial: Other issues
	XML tutorial: XSL Formatting Objects
	XML tutorial: Examples
	XML tutorial: Different views
	XML tutorial: Links to more information

	XML tutorial: XQuery
	XML tutorial: Queries on XML documents
	XML tutorial: Usage scenarios
	XML tutorial: Query language requirements
	XML tutorial: The XQuery language
	XML tutorial: XQuery concepts
	XML tutorial: Path expressions
	XML tutorial: Element constructors
	XML tutorial: FLWR expressions
	XML tutorial: List expressions
	XML tutorial: Conditional expressions
	XML tutorial: Quantified expressions
	XML tutorial: Datatype expressions
	XML tutorial: Other issues
	XML tutorial: Examples
	XML tutorial: Links to more information

	XML tutorial: DOM, SAX, and JDOM
	XML tutorial: XML and programming
	XML tutorial: The DOM API
	XML tutorial: A simple DOM example
	XML tutorial: The SAX API
	XML tutorial: A simple SAX example
	XML tutorial: SAX events
	XML tutorial: The JDOM API
	XML tutorial: A simple JDOM example
	XML tutorial: The JDOM packages
	XML tutorial: The JDOM tree model
	XML tutorial: JDOM input and output
	XML tutorial: JAXP
	XML tutorial: A Business Card editor
	XML tutorial: Problems with JDOM
	XML tutorial: Links to more information

	XML tutorial: W3C
	XML tutorial: W3C - The World Wide Web Consortium
	XML tutorial: Organization
	XML tutorial: Activities
	XML tutorial: Policies
	XML tutorial: Technical reports

