166

University of Pretoria etd

Chapter 6: Implementation details

Introduction

This chapter discusses the main building blocks that are necessary to implement ARGOS such
as the life cycle information infrastructure, constraints and the design of a conceptua
ARGOS. It explores the role that ARGOS could play in structured planning and design
knowledge delivery. The relationships between the ARGOS, ActiveX design object and
typical applications software are explored.

The basis for successful implementation is the formulation of a flexible and self-describing
design language. From the previous chapters and a study of ontology it is clear that a design
language with a hierarchical structure best facilitates the processing of design knowledge
fragments. A successful design is the result of many different cognitive processes at both tacit
and explicit levels. These processes can be augmented with many different techniques from
the world of manufacturing such as Knowledge Based Design, Systems Analysis, Kansel
Engineering, QFD and TRIZ. Many other techniques could be discussed such as FMEA
(Failure Mode and Effects Analysis), but it would not contribute significantly to the problem
under consideration, the storing of artefact design knowledge over the life cycle of a building
and the secondary adaptation of designs.

Once a design is available it can be brought into the ARGOS component (container) to
facilitate the positional and shape testing of design fragments. All of this must happen in a
neutral environment to guarantee a long life of design information and make it possible for
diverse design tools to process relevant parts of the information.

6.1 Life cycle Information infrastructure
6.1.1 Introduction

Of all the possible candidates investigated Extensible Mark-up Language (XML) proved to be
most useful language to solve the stringent requirements for the problem under consideration.

XML, describes a class of data objects called XML documents and partially describes the
behaviour of computer programs which process them. XML is an application profile or
restricted form of the Standard Generalised Mark-up Language (SGML). XML documents are
made of storage units called entities, which contain either parsed or unparsed data. Parsed
data is made up of characters, some of which form character data and some, which form the
mark-up structure. Mark-up encodes a description of the document’s storage layout and
logical structure. XML also provides a mechanism to impose constraints on the storage layout
and logical structure. A software module called an XML processor is used to read XML
documents and provide access to their content and structure.

XML was developed by an XML Working Group formed under the auspices of the World
Wide Web Consortium (W3C) in 1996. It was chaired by Bosak of Sun Microsystems with
the active participation of an XML Specia Interest Group also organised by the W3C.

The primary design goalsfor XML are:

e XML shall be straightforwardly usable over the Internet.

e XML shall support awide variety of applications.

e XML shall be compatible with SGML.

e It shall be easy to write programs which process XML documents.

167
University of Pretoria etd

e The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

e XML documents should be in human-legible form and reasonably clear.

e The XML design should be prepared quickly.

* Thedesign of XML shall be formal and concise.

e XML documents shall be easy to create.

e Tersenessin XML mark-up is of minimal importance.

6.1.2 XML asadesign language

Consider Code Fragment 1 below. Thisis atrivia example of how a materias library could
be structured by means of XML. This offers the immediate advantage that the information
can be used in other applications and downloaded from the Internet. This structure could be
used to implement the Materials Library as detailed in Figure 52 [E1]. In this case the
material library starts with the <MATERI AL_LI BRARY> label and ends with the
</ MATERI AL_LI BRARY> |abel. Each separate materia starts with the label

<MATERI AL keywor d1="METAL"” > and ends with a </ MATERI AL>. Hierarchically
nested under this is the <DESCRI PTI ON> label that contains a short description of the
material.

<DESCRI PTI ON>Al umi ni um (Al') 99. 0% pur e</ DESCRI PTI ON\>

This is followed by the list of applicable attributes. Note that the attributes are grouped
within the attribute label for example:

Densi ty</ A>

There are no hard and fast rules when to use child elements and when to use attributes.
Generally the application developer uses whichever suits his application. A rule of thumb is
that data themselves should be stored in elements. Information about the data (meta-data)
should be stored in attributes (Harold 1999:101).

Code Fragment 1 could be generated by means of many different methods such as:

e Output from arelational database.
e Dynamic upon demand generation by aweb based search engine or query builder.

Domain specific application software such as a design scenario builder could use the basic
information contained in the database or could present it in neatly formatted document for
reference purposes.

<?2xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xd" href="Material_fragment.xd"?>
<MATERIAL_LIBRARY>
<MATERIAL keyword1="METAL">
<NAME>ALUMINIUM</NAME>
<DESCRIPTION>Aluminium (Al) 99.0% pure</DESCRIPTION>
<ATTRIBUTES>
Density
Melting point
Modulus of elasticity (minimum)
Modul us of elasticity (average)
Modulus of elasticity (maximum)
Thermal conductivity (k)
</ATTRIBUTES>
</MATERIAL>
<MATERIAL keyword1="METAL">
<NAME>ALUMINIUM BRONZE</NAME>
<DESCRIPTION>Aluminium-Bronze Cu 5-10%: Al</DESCRIPTION>
<ATTRIBUTES>
Density (minimum)
Density (average)
Density (maximum)

168

University of Pretoria etd

Melting point (minimum)
Melting point (average)
Melting point (maximum)
Modulus of elasticity
Thermal conductivity (k) (minimum)
Thermal conductivity (k) (average)
Thermal conductivity (k) (maximum)
</ATTRIBUTES>
</MATERIAL>
<MATERIAL keyword1="METAL">
<NAME>BRASS</NAME>
<DESCRIPTION>Brass Cu 60%: Zn 40%</DESCRIPTION>
<ATTRIBUTES>
Density
Melting point
Modulus of elasticity
Thermal conductivity (k)
</ATTRIBUTES>
</MATERIAL>
<MATERIAL keyword1="WOOD" keyword2="CONSTRUCTION">
<NAME>PINE</NAME>
<DESCRIPTION>British Columbia pine</DESCRIPTION>
<ATTRIBUTES>
Density (minimum)
Density (average)
Density (maximum)
Durability (minimum)
Durability (average)
Durability (maximum)
</ATTRIBUTES>
</MATERIAL>
</MATERIAL_LIBRARY>

Code Fragment 1: Suggested XML structure for the storage of material definitions
(Author)

Code Fragment 1 could be formatted, for reporting purposes, at the most basic level by means
of Cascading Style Sheets (CSS). CSS styles only apply to XML element content not to
attributes in the elements. If CSS were applied to Code Fragment 1 in an Internet Explorer
then the attributes would be invisible rendering most of Code Fragment 1 data invisible.
However there is an aternative style sheet language that allows the user to access and display
attribute data as well. This language is Extensible Style language (XSL). XSL is divided into
two main sections:

* Transformations
* Formatting

Consider Code Fragment 2 for an example of a typical XSL that could be used to convert
Code Fragment 1 into a neatly formatted output for aweb page.

<?xml version="1.0"?>
<xdl:stylesheet xmlns:xsl="http://www.w3.0rg/ TR/WD-xd">
<xsl:template match="/">
<html>
<xdl:apply-templates/>
</html>
</xd:template>

<xsl:template match="/MATERIAL_LIBRARY">
<html>
<body>
<h1>Example Materid Library</h1>
<xsl:apply-templates/>
</body>
</html>
</xd:template>

University of Pretoria etd

169

<xdl:template match="MATERIAL">

<p>
<h3><u><x9d:value-of select="NAME"/></u></h3>
<xsl:apply-templates/>

<hr></hr></br>
</p>
</xd:template>

<xsl:template match="ATTRIBUTES">
<xdl:apply-templates/>
</xsl:template>

<xdl:template match="A">

<i><xd:vaue-of select="."/> = </i>
<xd:value-of select="@minvalue"/>
<xd:value-of seect="@value"'/>
<xsl:value-of select="@maxvalue"/>
<xdl:value-of select="@unit"/></br>

</xd:template>

</xsl:stylesheet>

Code Fragment 2: Typical style sheet to format XML data for web page display
(Author)

If the XSL in Code Fragment 2 is applied to Code Fragment 1 the output looks like Code
Fragment 3. At this stage the XML datain Code Fragment 1 can be used for two entirely
different purposes:

e Thetransfer of structured material attributes for design purposes
e Thedisplay of the material characteristicsin aweb page

170

University of Pretoria etd

Example Material Library

ALUMINIUM

Density = 2650.000 kg/m3

Melting point = 660.000 Deg C

Modulus of elasticity (minimum) = 68300.000 N/mm2
Modulus of elasticity (average) = 70350.000 N/mm?2
Modulus of elasticity (maximum) = 72400.000 N/mm2

Thermal conductivity (k) = 214.000 W/m deg C

ALUMINIUM BRONZE

Density (minimum) = 7570.000 kg/m3

Density (average) = 2650.000 kg/m3

Density (maximum) = 8150.000 kg/m3

Melting point (minimum) = 1041.000 Deg C

Melting point (average) = 1052.000 Deg C

Melting point (maximum) = 1063.000 Deg C

Modulus of elasticity = 120000.000 N/mm2

Thermal conductivity (k) (minimum) = 64.000 W/m deg C
Thermal conductivity (k) (average) = 74.500 W/m deg C

Thermal conductivity (k) (maximum) = 85.500 W/m deg C

BRASS

Density = 8380.000 kg/m3
Melting point = 904.000 Deg C
Modulus of elasticity = 103000.000 N/mm2

Thermal conductivity (k) = 129.000 W/m deg C

Code Fragment 3: Output generated by Code Fragment 2 applied to Code Fragment
1 (Author)

Consider the formatted output in code fragment 3 that is achieved by means of the XSL code
in Code Fragment 2. In this case the output generated from the XML in Code Fragment 1 is
HTML format that makes it suitable for direct display in web pages.

Code Fragment 4 below is an example of how the information of a CAD system such as
MicroGDS 6.0 is expressed in XML. This system was the first to offer the ability to trandate
CAD drawings into XML. The XML output is translated into Vector Mark-up Language
(VML) by means of astylefile. VML isan XML application that combines vector

171

University of Pretoria etd

</.0.=ZH .Z23¥8291ECS66V.eVS0°C.=AH .¢39T.€89/1052906V. T.=XH .0.=Z71 .¢322€956/1¢005.260°C-.=AT .0.=XT W_IX3>
<.,062Z.=RqunNyui e lgoIssybiH ,pe.=RqunNXUIT ..=R0eT .ONY 1S, =sWweN Bie>
<Jlofe1>

<9|A5/>
</.T.=yibueeuluiN e1nuapianbiun jego|6 1j0sonIN yoeny,=1dwold ,INDY,=BWeN JIuowau XS | >

<0|AIBUIT/>

</puzjores>
</,8.=Yibuaaulp|geleA>
</,T.=yibua deop|ce e A>
</.2.=Yyibuaaulp|geLe >
</,T.=yibua desp|ce e A>
</.2.=yibus8ulp|qeLe A>
</,T.=yibua desp|oe e A>
</Le1siopuz>
</.L=Y1BUa T 8ulpaxX 4>
<,ul,=buseyd g .=1bBHOQWAS ,2-35- ,=1sHOWBIY ,2-3G .,=1sioNR T &S} ,=enbedo ,ani1,=seplog ,TOGNAS ,=1U0H ,TLINIO =SweN a|Asaul >

</.2.=de9 ,0.=Ued .GZ.=BPH0qWAS ,2-36-.=1SHOWBIY .2-36.=1BSHON T 85 e},=dnbedO ,oni1,=spiog L 1NVY43d.=0H ,GZ',=dWeN a|A1seul 1>
</.2.=0e9 ,0.=ed .GZ.=BRHI0qWAS 2-3t-,.=1.sHOWP Y ,2-3p.=1.s1oNe T .&sel,=enbedo ,enin,=kplog 1 1NV43d,.=uo ,8T" =SueN a|Assul>
</.2.=0e9 ,0.=Ued .G Z.=IUbPH|0qwAs 8sel,=enbedo ,eni,=sepiog .1 1NY43A.=10H 00", =sweN a|Aseul >

</.ssIvG,=A|lWwed 3|qelle A, =Udlid ,8S[e4,=01el] ,8S[es,=INORN LIS ,8S[e),=8ullepun , [eWoN, =B M , [elV,=SWeNIUoS ,T.=UIPIM .SZ.=IUBBH .ZTdV.=8WweN a|fisieyd 1 1>
</,sSING,=A| e

LPlREA,=UY0Id 85[e),=01R) &SEL=INOMUIS 85.),=8ullepun ,eWION,=IUBBM , [BUY,=SWeNIUoH 87 T.=UIPIM .G€.=IUBBH 0T V..=sWeN m_>w§»otv
</,ssInNG,=A| e

2l0eleA,=uyolld 8Se),=0IR)| ,8Se),=INOM LIS ,8S[e),=dullispun ,eWION,=IYBBM ,[BUY,=SWeNW0H ,T-38°Z.=UYIPIM .T-39.=1Y6RH 904 V.=8ueN a|Aiskeyd 11>
</.L1Nv43a.=sweNoH ,§'€,=UIpIM .5€.=1UbBH ,GE.=dueN a]A1Is,eyd AD>

</,L1NVv43Q.=8WeNoH ,§Z.=UIPIM .52.=UbBH ,G2.=sueN 3]A1Is,eyd AD>

</,LINv43a.=sweNuoH ,87T.=bRH ,8T.=8weN 8|Aseyd ND>

<9A1S>

</sesel|v>

</yreds|is>

<590 DIN>

<.PIP"009SADOLIANTINX Aud SADOID AN W X\AUA\SM\:9//:3]1, wNT//ALA 009SADOIOIA//HN "0 X IFewojul NA//+. D179Nd SAD0LIN IdALO0Ai>
Ah.:_w-u_._.D__H@c__uoocw WO'T.=UOISIBA |LUX¢,>

172

University of Pretoria etd

<SAD0LIN/>

<fe/>

<dd0/>
<1%19o/>

<@ullkjod/>

</,.23ATT80859ZS0V8r690 T-.= A .ZI70886E6¥9958E9ST T.=X UIod>

</,23168/8525T00S/280 T-.=A .ZAVZy65976617¢29/ST T.=X Iod>

</,Z398500TESSZBEYI/0 T-.=A .ZAVBYIGETEYELITBIT T..=X UIOd>

<d@ullkjod>

</.0.=ZH .Z3aTT80859ZS0r8r690'T

-.=AH .Z3r8Y96ETEYEL9T]IT T.=XH .0.=Z 1 .ZIT68/8525T005/280 T-.=A T .Z3r0886E6¥99G8E9ST T .= X 1 JUSIXT>
<. 2Nl =) IeApug onil , =)IeN1relsS 00 __H®_>MQC_|_ OS[el) , =Pal0 Il ,0F .=RqunNXUlITaAlIWIIdgaUl 7>
@AW 1/>

<o Luonuipeass

dn<peluonuipgs

</.T-IEE0EYEC6SES.LEYI8'8.,=S .ZICY/9ES60000S.2EC T-.= A .CIEV/9ES6000SCTL8Z T.=X SOXY>

</.0.=ZH .2378099225666V. 76T T

-.=AH .2360S7£6T20052€80€ T.=XH .0.=271 .23Er.9€560000S8.2€2° T-.= A1 .23/L.68ET.6661726592 T.=X T WLIXT>
<,04d ,=uolreonisnt ,GZuN L .=9|A1s reyd

.8G86/VZEVZTITISCT T = I010eJ A ,3S[e},=ereq .8sfe},=wid ,3S[e},=X0g ,3S[e},=Pp3I0 A Ty ,=RquNNUITaAIIWIIdI | >
</.T3G.=S .T-398/00€8S/¥T86ES8"L-.,=Z .E-.= A SOXY/>

</.0.,=ZH .T325/020066ETH0S9'6

-.=AH .Z3E/6T0SE88SE9062Y T.=XH .0.=Z7 .Z3SG888£95578/£52 T-.=A T .ZIEP/9ES600005.250 T .,=X 1 1USIXI>
<,8S[e},=Swe1sureluod ,INON .=28|As1yb17 Ty = BqunNMulTeAllIwNLdISeybIH ,T8Z .=RequnN3ul 198 [go>
<, d1V1S:0NY 1S ,=sweN add0>

Code Fragment 4: Structure of a MicroGDS 6.0 CAD file described with XML (Author)

information with CSS markup to describe vector graphics that can be embedded in Web pages

in stead the bitmapped GIF and JPEG images loaded by HTML's IMG element. VML is
supported by the various components of Microsoft Office 2000 as well as by Internet Explorer

5.0.

The W3C has received four different proposals for vector graphics in XML from a wide

variety of vendors. It's formed the Scalable Vector Graphics (SVG) working group composed
of representatives from all these vendors to develop a single specification for an XML

representation of Scalable Vector Graphics. When SVG is complete it should provide

everything VML currently provides plus a lot more including animation, interactive elements,

173
University of Pretoria etd

filters, clipping, masking and pattern fills. A full SVG specification and the software that
implements the specification are some time away.

The World Wide Web Consortium released the first working draft of SVG in February 1999
and revised the draft in April 1999. A well advanced working draft appeared 29 June 2000.
Microsoft has stated publicly that they intend to ignore any Web graphics efforts except
VML.

Code Fragment 4 contains a portion of an XML file that encodes the graphics of a CAD
drawing. The XML data starts with the <M cr oG@S> label and ends with </ M cr oGDS>.
In this case the <St yl ePat h/ > and <Al i ases/ > labels are empty. The next section
between the <St yl es> and </ St yl es> labels defines the various character and linestyles
as well as the mnemonics for the attribute data that could be attached to drawing objects
(coloured in blue). The particular CAD system under consideration supports both vector type
and true type character styles. The former isindicated in alabel such as

<CV Charstyl e Nanme="18" Height="1.8" Font Nane="Default”/>
and the latter by

<TT Charstyl e Nanme=" AR06” Hei ght="6E-1" Wdth="2.8E-1"
Font Nane="Arial” Wi ght="Normal” Underline="fal se”
Strikeout="false” Italic="false” Pitch="Variable”

Fami | y="Sw ss” />

Linestyles could be simple or complex. A typical simple linestyle of .18 mm thicknessis
described by:

<Li nestyl e Nanme=".18" Font="DEFAULT” Border="true"
Opaque="fal se” Leftoffset="4E-2" Ri ghtOfset="-4E-2"
Synbol Hei ght ="2.5” Pen="0" Gap="2"/>

A more complex linestyle that contains patterns is described by:

<Li nestyl e Name="CENT1” Font="SYMBOL"” Border="true”"
Opaque="fal se” LeftOffset="5E-2" Ri ghtOfset="-5E-2"
Synbol Hei ght =" 5" Phasi ng="Li ne” >

<Fi xedLi ne Length="7"/>

<EndOf Start/ >

<Vari abl eGap Length="1"/>

<Vari abl eLi ne Length="2"/>

<Vari abl eGap Length="1"/>

<Vari abl eLi ne Length="2"/>

<Vari abl eGap Length="1"/>

<Vari abl eLi ne Length="8"/>

<StartOf End/ >

</ Li nestyl e>

The <Text Mhenoni c> label contains the definition of attribute data templates that could be
used in this particular case to attach non-graphical information to the graphical objects. In this
example a mnemonic called RGUI has been defined. The R in RGUI indicates that the data
will apply to a specific instance (reference) of a graphical object. GUI is a mnemonic for
Global Unique Identifier. This method has been used in the precedent system AEDES to
connect alphanumeric data and graphical data. This particular aspect will have to be
developed much further to accommodate the various levels of specificity required for CBR as
well asto facilitate constraint propagation, tacit and explicit requirements of design.

174
University of Pretoria etd

The actual graphical data are contained between the <Layer > and </ Layer > labels. In this
system graphical data must occur on a layer although it is not a layer-based system. In this
case the layer under consideration is“ STRUC” that indicate that graphical and textual entities
related to the structure of the building should be on this layer. The first graphical object is
indicated by the <OCD Name=" STRUC: STAI R’ > label. This label is closed by the
matching </ OCD> |abel lower down. Within the bounds of the <Obj ect > and </ Obj ect >
labels the graphical text and lines are defined. The part related to text isindicated in blue and
the part related to the graphical entities such as polylines in red. The text part is bounded by
the<TextPrim tive>and </ Text Prim ti ve> labels. The polylines are bounded by
the <Pol yl i ne> and </ Pol yl i ne> labels.

The hierarchical nature of the graphical example object conceptually follows the hierarchical
structure of:

<Layer >
<OCD>
<(bj ect >
<TextPrimtive>
</ TextPrimtive>
<Pol yl i ne>
</ Pol yl i ne>
</ Cbj ect >
</ OCD>
</ Layer >

This forms a useful basis for a design language on which the more extensive requirements of
a CBR system that supports design scenario generation and suspension of partially completed
designs can be built.

The integrity of Code Fragment 4 is supported by an extensive Document Type Definition
(DTD). A DTD provides alist of the elements, attributes, notations and entities contained in a
document as well as their relationships to one another. DTDs specify a set of rules for the
structure of a document. The DTD accomplishes this with a list of mark-up declarations for
particular elements, entities, attributes and notations.

Consider Code Fragment 5 below for a shortened example of aDTD that ensures the integrity
of the XML in Code Fragment 4. Only the entities used in Code Fragment 4 are included. The
DTD is not necessary if the output is generated by an application. If XML fragments are
obtained from other external sources then the DTD ensures conformance to the design
language.

<l-- Styles -->

<! ELEMENT Styles (

CVChar styl e| TTCharstyl e|

Li nestyl e| Materi al | Li ghtstyl e|

Text Mhenoni c| Wr dVvhenoni ¢| Doubl eMhenoni c| Si ngl evhenoni c| | nt eger Mhenoni ¢
)*>

<l-- Character Styles

A character style is either defined as a CAD Vector font or a (W ndows)
True- Type font.

-->

<l-- Attributes common to character styles -->

<IENTITY % Charstyl eAttributes '
Nanme CDATA #REQUI RED
Hei ght CDATA #REQUI RED
W dt h CDATA #1 VPLI ED

175

University of Pretoria etd

Pen CDATA "t
' >

<l-- CAD Vector Fonts. The FontNane attribute is a font nane. -->

<! ELEMENT CVCharstyle EMPTY>
<I ATTLI ST CVCharstyle

%Charstyl eAttributes;

Font Nane CDATA #REQUI RED
>

<l-- True-Type (Wndows) font -->
<! ELEMENT TTCharstyle EMPTY>

<! ATTLI ST TTCharstyl e
%Charstyl eAttributes;

Font Nane CDATA #REQUI RED
Wi ght (Dont Car e| Thi n| ExtraLi ght | Li ght | Nor mal | Medi uni Semni Bol d| Bol d|
Ext r aBol d| Heavy)
"Dont Car e"
Underl i ne (true| fal se) "fal se"
Stri keQut (true|fal se) "fal se"
Italic (true|false) "fal se"
Pitch (Defaul t| Fi xed| Vari abl e)
"Defaul t"
Fam |y (Decorative| Dont Car e| Moder n| Roman| Scri pt | Swi ss)
" Dont Car e"
Char Set (ANSI | Bal ti c| Chi neseBi g5| Def aul t | East Eur ope| GB2312| G eek|
Hangul | Mac| CEM Russi an| Shi ft JI S| Synbol | Tur ki sh| Hebr ew| Ar abi c|
Thai)
" ANSI "
>
<l-- Line styles -->

<! ELEMENT Linestyle (
(Fi xedLi ne| Fi xedGap| Synbol) *,

EndOf Start,
(Fi xedLi ne| Fi xedGap| Vari abl eLi ne| Vari abl eGap| Synbol) *,
Start O End,
(Fi xedLi ne| Fi xedGap| Synbol) *

) 7>

<l ATTLI ST Linestyle
Narme CDATA #REQUI RED
Font CDATA #| MPLI ED
VertexStart CDATA #1 MPLI ED
Vertexl nternal CDATA #1 MPLI ED
Ver t exEnd CDATA #| MPLI ED
Vert exM dPoi nt CDATA #| MPLI ED
SegLi neStart CDATA #1 MPLI ED
SegLi neEnd CDATA #1 MPLI ED
SegSegStart CDATA #1 MPLI ED
SegSegEnd CDATA #1 MPLI ED
Fi Il Synbol CDATA #| MPLI ED
Bor der (true|fal se) "true"
Qpaque (true|fal se) "fal se"
Left O f set CDATA "0"
Ri ght O f set CDATA "o"
Synbol Hei ght CDATA "2.5"
Pen CDATA "
Phasi ng (None| Angl e| Li ne| Gri d)

"None"
Fill (None| Hat chHori zont al | Hat chVerti cal | Hat chFDi agonal | Hat chBDi agonal |
Hat chCr oss| Hat chDi agCr oss| Sol i d0| Sol i d1| Sol i d5| Sol i d10| Sol i d15| Sol i d20|
Sol i d25| Sol i d30| Sol i d35| Sol i d40| Sol i d45| Sol i d50| Sol i d60| Sol i d70|
Sol i d80| Sol i d90| Sol i d100| Br ushBDi agonal | Br ushCr oss| BrushDi agCr oss|
Br ushFDi agonal | BrushHori zont al | BrushVertical | Fi || Synbol)

"None"
Gap CDATA #1 MPLI ED
Space CDATA #1 MPLI ED
Shear CDATA #1 MPLI ED
Sl ope CDATA #1 MPLI ED

>

<l-- Linestyle pattern elenents -->

176

University of Pretoria etd

<!l ELEMENT EndCf Start EMPTY>
<! ELEMENT StartCOf End EMPTY>

<! ELEMENT Fi xedLi ne EMPTY>
<! ATTLI ST Fi xedLi ne

Lengt h CDATA #REQUI RED
>

<! ELEMENT Fi xedGap EMPTY>
<! ATTLI ST Fi xedGap

Lengt h CDATA #REQUI RED
>

<! ELEMENT Vari abl eLi ne EMPTY>
<I ATTLI ST Vari abl eLi ne

Length CDATA #REQUI RED
>

<! ELEMENT Vari abl eGap EMPTY>
<! ATTLI ST Vari abl eGap

Length CDATA #REQUI RED
>

<! ELEMENT Synbol EMPTY>
<! ATTLI ST Synbol

Synbol CDATA #REQUI RED
>

<l-- Menonic definitions -->

<I ENTI TY % NMnhenoni cAttributes '
Nane CDATA #REQUI RED
Pr onpt CDATA "

' >

<! ELEMENT Text Mhenoni ¢ EMPTY>
<! ATTLI ST Text Mhenoni c
%vhenoni cAttri butes;

MaxLi nes CDATA "1
M nLi neLengt h CDATA "o"
MaxLi neLengt h CDATA "132"
>
<l-- Layers -->

<! ELEMENT Layer (Extent?, (Attribute| OCD)*)>
<! ATTLI ST Layer

Narme CDATA #REQUI RED
Label CDATA "
Li nkNunber CDATA #| MPLI ED
Hi ghest Obj ect Li nkNunber CDATA #| MPLI ED
GUI D CDATA #| MPLI ED

>

<l-- OCD

This is the top-level element for an Object which is a container for the object
name. OCD is short for (bject Code (ie nanme) Definition.
-->

<I ELEMENT OCD (Attribute| Obj ect| Obj ect | nstance) *>
<! ATTLI ST OCD

Nare CDATA #REQUI RED
>

<l-- bjects -->
<! ELEMENT Obj ect (Extent?, Axes,

(Attribute|LinePrimtive|TextPrimtive| RasterPhotoPrinmtive|
W ndowPhot oPrinmitive| A ePhotoPrimtive|ClunpPrimtive)*

)>

<I ATTLI ST Obj ect
Li nkNunber CDATA #| MPLI ED
Hi ghest PrimtiveLi nkNumber CDATA #l MPLI ED
Li ghtstyl e CDATA " NONE"

Containsltens (true|false) "false"

University of Pretoria etd

177

<l-- Line Primtive -->

<IELEMENT LinePrimtive (%rinmtiveContent;, Polyline)>
<I' ATTLI ST LinePrimtive
%rimtiveAttributes;

Linestyle CDATA " DEFAULT"
Start Mark (true| fal se) "true"
EndMar k (true|fal se) "true"

>

<l-- Text Primtive -->

<! ELEMENT DefinitionText (#PCDATA) >
<! ELEMENT ExpandedText (#PCDATA) >

<IELEMENT TextPrimtive (
%rimtiveContent;, Axes,
DefinitionText, ExpandedText?
)>

<I ATTLI ST TextPrinmtive
%PrimtiveAttributes;

Charstyle CDATA " DEFAULT"
Li nestyl e CDATA #1 MPLI ED
Justification (TL| TC] TR CL| CC| CR| BL| BC| BR)
npL"
Box (true|false) #1 MPLI ED
Di m (true| fal se) #1 MPLI ED
Dat a (true|fal se) #1 MPLI ED
YFact or CDATA "1
>
<l-- Points sinply consist of x,y,z coordinates -->

<! ELEMENT Poi nt EMPTY>
<! ATTLI ST Poi nt

X CDATA "o"
Y CDATA "o"
z CDATA "o"
>
<l-- As far as the DID is concerned, a vector is equivalent to a point -->

<! ELEMENT Vector EMPTY>
<! ATTLI ST Vector

X CDATA "o"
Y CDATA "o"
z CDATA "o"
>
<l-- BulgeAxis - this is a bulge factor
The B attribute represents the bulge factor, a value between 0 and 1. -->

<! ELEMENT Bul geAxi s EMPTY>
<! ATTLI ST Bul geAxi s

B CDATA "o"

X CDATA "o"

Y CDATA "o"

z CDATA "o"

A CDATA #| MPLI ED
>
<l-- Polyline

Start point, followed by a sequence of |ine segnents (curved or straight).
the first and last points are the same, the polyline is closed.
-->

<! ELEMENT Pol yl i ne (Point, (Bul geAxis?, Point)*)>

Code Fragment 5: Partial MicroGDS 6.0 XML Document Type Definition (DTD)

described with XML (Author)

178
University of Pretoria etd

At this stageit is possible to implement the conceptual design processor illustrated in Figure
46.

Structured Planning/ Design Knowledge Delivery

F G H E
:.":‘_—ﬂ ﬂﬁm Sgnindd | e project information over |fe-cycle
3 g
Disign Coaramnaation Cperaion Dizassanhiy
¥ - — L ; o
D Micoscft Indarmet Explores S0 B
Deskiop Planning!
Duosign Procossar) o G Ssarch Engine Dallvars B
tool using B B struchurad planndng design x
EML 3= design o newladgs Bragnean 1o deskiop B
RngUags] in XML]

Design Web Page
(Word, CAD, Graphic and static XML
structured documents

Remode
design data
fragments

Figure 1: Structured Planning/ Design Knowledge Delivery (Author)

The design knowledge delivery system will conceptually work as detailed in Figure 46. A
designer that wants to design a facility or solve a specific operational problem will activate a
purpose made search engine [B] in Microsoft Internet Explorer. The search engine [B] will
enable the user to set basic constraints and search criteria in order to expedite information
retrieval. If the relevant information is found it will be packaged in the form of XML design
knowledge fragments. The user can first view the result in Internet Explorer and if he is
satisfied ask the system to download it to the desktop. The desktop planning/ design processor
[D] will retrieve the downloaded XML knowledge fragment [C]. Due to the fact that design
takes place in an open world it is expected that many different planning concepts might exist
that need to be explored. These partially completed scenarios are stored in [F] and [G] again
in XML format. Once the planner is satisfied the solution can be plugged into a live project
environment [H]. It is also possible to publish good designs back into an office web page [A]
to make them available to other designers.

[D] could be seen as working memory (WM), [F] and [G] as long term memory (LTM)
(Simina 1999:39-43). The main purpose of WM is:

* Promote synergy among design parts

« WM facilitate external and internal event detection and processing
« WM keepsalimited store of recently accessed artefacts

The purposeof LTM is:

e Main repository of past design or design fragments
¢ Retrieval from LTM could be based on any combination constraints or functions

179
University of Pretoria etd

The XML Fragment interchange working draft (W3C 1999) defines a way to send fragments
of an XML document to an XML user, in this case the designer using the desktop/ planning
processor. It must be emphasised that although Figure 46 is an oversimplified example the
following important principles are used:

e Thedesigner remainsin full control of the ultimate solution at all times

» Design experienceis stored in a structured format (the beginning of CBR)

* Most information required in the planning and design environments are basically
hierarchical and occur at various levels of specificity

e XML supports the inclusion of non-XML data and can act as an integrator of diverse data
sources

e XML supports distribution of data as well as data hyper linking

e XML supports multi-media data sources

« The example attempts to support design as a pragmatic as well as a cognitive activity

e The solution assumes that planning and design requires a continuum of design methods
that use model based, rule based and case-based reasoning. It is ultimately up to the
designer to decide what method he prefers

e Current relational databases such as Oracle aready support the generation of XML data
from arelational query

By means of a style sheet defined in XSL it is possible to display the XML such as Code
Fragment 4 in vector format in a web page (Figure 47). For a complete listing of the style
sheet please consult Appendix D. The style sheet converts the XML code into Microsoft
VML format that makes the display in aweb page possible.

The display as illustrated in Figure 47 was done in the smallest possible custom developed
web browser for the following reasons:

e To test the feasability of a thin browser developed in Visual Basic by means of the
convenient Inet ActiveX control.

« Tofacilitate retrieval of XML code fragments in the ARGOS autonomous design objects
asmall Internet Explorer is required that has the ability to interpret the XML, stylesheets
and DTDs.

The actual code required to implement the minimal browser is included in Appendix F. The
browser was tested by means of a small test web page run on a personal computer by means
of the Personal Web Server provided with Microsoft Windows 98. Only minimal
functionality is provided but enough to facilitate connection to any potential design sitein the
world or design knowledge fragment on the personal machine or Intranet.

180
University of Pretoria etd
. I [| =] =]

[ik mrrora e =
=
Display of CAD drawing in XML format by means of VML
. |
i —a
E ¥l
= —
e

Figure 2: Display of CAD drawing in XML format by means of VML (Author)

Careful analysis of the display reveals numerous small errors such as inaccurate text display,
and problems with the interpretation of the bulge factor to display circles or arcs. Bit map
images, although saved in the XML file are not displayed at al in the web page. At this stage
the display capabilities of an AutoCAD Whip file in the web environment are superior to
what is offered by the static VML display. However the XML provides a structured and
accessible data format that can be processed further whereas the Whip' format is closed and

proprietary.
6.2 Packaging and retrieval of design knowledge
6.2.1 Introduction

The author proposes a totally new approach to architectural design knowledge packaging that
would require the lowest possible level of platform technology, such as a spreadsheset, as the
entry level. Many ambitious attempts have been made in the past to define universal Building
Product Models. At this stage none of them are entirely satisfactory due to complexity of the
artefact creation world. All indications are that conscensus will be reached soon (Eastman
1999)

The portable nature of Microsoft ActiveX controls makes it possible to support a wide range
of platforms without being tied into particular CAD systems, databases or design software. It
also ensures a cost effective design environment. By means of ActiveX controls that are
embedded into web pages it is possible for service providers to offer a subscription service of
design tools such as lightweight cases (architectural design kits) to designers. The designer
could then use design software in his Internet explorer without even installing or buying

! Whip isaproprietary format that facilitates the display of CAD drawingsin aweb page

181
University of Pretoria etd

expensive software. The user could then purchase time from the software service provider
only when required. It is proposed that the approach that has been followed in the
development of the precedent systems AEDES and PREMIS up to date be completely
changed around. The approach in the past was an application centric approach with particular
emphasis on specific database technology and CAD systems. It is proposed to use a
document-based approach (Figure 52). Designers and Architects are used to the concept of
documents. This will ensure that anybody that has Microsoft OLE, COM and DCOM
compliant software can significantly benefit from the approach. Microsoft developed these
technologies specifically to support the intelligent use of documents in a collaborative
environment.

The architectural design starter kits, developed by the Division of Building Technology, over
a long period of time provided a useful starting point for AEDES and the present research.
These starter kits have aready contributed significantly towards an accelerated and more
efficient design process in the domain of health facilities. These starter kits are available in
CAD format and contains “empirical ideal” total facility layouts. The author recently wrote a
prototype web page to test the technical feasibility of the distribution of these design kits via
the Internet.

The main shortcomings of the present CSIR starter kits (cases) are:

e They contain no traceability of the design process.

« Although staffing required, fixed and loose equipment are available in supporting
design documents, it is not in a structured way that could be used in Case-Based
Reasoning.

¢« No distinction is made between neutral and localised information. Heidegger
described this asthe “ Dasein” of tools (Biemel 1976:38).

* No object naming conventions have been used that can facilitate connection with
other data sources.

* Nointelligenceis available to predict operational performance.

* Nointegration with the total life cycle information infrastructure.

o Starter kits should contain knowledge from both the tacit and explicit levels of
knowledge management to give future users an idea what the design rationale was.

The use of structured methods such as QFD, Kansel and System Engineering is explicitly
time-consuming (Cohen 1995:31). In order to achieve the best possible future use of the
design knowledge it is important that knowledge can be reused. The object technologies
presently available are already mature enough to support this need well.

The AEDES prototype software solved some of the abovementioned knowledge packaging
challenges. However a few fundamental matters are till unresolved such as support for the
Internet, complete object encapsulation and a low-level entry platform. In the prototype CAD
drawings were embedded into an OLE field into an Oracle form field in an attempt to
encapsulate the various types of knowledge required. The main disadvantages of this
approach were:

e The object datais not persistent.

e Low-level users would require a database such as Oracle, Microsoft Access or SQL
Server as aminimum to use the starter kit.

e It would be difficult to distribute the design globally.

e The response by means of Visual Basic during interrogation of the embedded CAD
objects is presently very slow. This improved significantly in Oracle 8.0i (The latest
Oracle RDBMS release).

6.2.

182
University of Pretoria etd

e ltisdifficult and inconvenient to interface the alphanumeric and graphic contents of
the starter kit with other applications.

e It would be difficult for third party companies to build starter kits independently. This
is a prerequisite if the starter kits are to gain widespread commercia acceptance in
future.

e ltisparticularly difficult to profile or deliver design data to suit the specific needs of
the designer, planner or reasoner.

2 Constraints

Constraints form an important part of planning and design in general and should be supported
by ARGOS. The following different main categories of constraints can be identified that
could be supported by ARGOS:

Formulation. Thisis the process of adding or creating new constraints based on decisions.
Congtraints could originate from the designer, propagation of second order constraints
and by inheritance.

Propagation. Thisis the process of inferring values and constraints from other values and
constraints. Thisis achieved by means of functions associated with the constraint type.
Satisfaction. This is the process of finding values that satisfy a constraint set. Different
constraints can have different functions associated with the particular constraint.

The implementation of constraintsin an open world is subject to several requirements:

Sensitivity to incomplete knowledge. It is possible that constraints need to be evaluated
with some arguments missing. Hinrichs (1991:98) suggests that two evaluation functions
are used in this situation, one that is optimistic about the missing information and one that
ispessimistic.

Ability to relax preferences. Since design problems may have satisficing solutions, the
design processor needs to be able to relax constraints. To facilitate this the importance of
a specific constraint needs to be known.

Flexibility of propagation. The constraint poster should be able to propagate constraints
between different sets of variablesin a problem.

Protection of problem-independent constants. The flexibility of propagation necessitates
the restriction of what counts as a variable in a problem.

The constraints determine the class of problems that can be represented. Figure 48 illustrates
the taxonomy of constraint types that could be used in a design processor. The constraints fall
into five main categories.

Logical Connectives permit recursive combinations of constraints.

Nominal Constraints relate identities of values.

Ordinal Constraints capture relationships between continuous valued quantities.
Sructural Constraints constrain the existence of variables rather than their values.
Functional Constraints degenerate constraints (rules) that propagate only in one direction.
Second-Order Constraints are constraints on other constraints.

In the descriptions below, the term variable refers to a slot in some frame and argument refers
to an actual argument to the constraint, which could be either a variable or a constant (Figure

48).

Same. Two arguments are constrained to be identical. This is typically used to connect two

vari

ables together. It could also be used to restrict a variable to a constant.

183
University of Pretoria etd

Instance. The first argument must be a frame subtype of the second. In this case instances and
subtypes are treated equivalently.

Compatible. The arguments must be frames, in which neither is represented as being
incompatible with the other.

Inverse. The first argument must be the logical or functional inverse of the second.
Member. The first argument is a member of the set designated by the second argument.

Contains. The second argument is an ingredient or component of the first argument. Thisisa
transitive relationship.

Does-not-Contain. The second argument is not an ingredient or component of the first
argument. Thisis atransitive relationship.

Within. The first argument isin the numerical range designated by the second argument.
At-least. The first argument is greater than or equal to the second.

At-Most. The first argument is less than or equal to the second.

Max. The first argument is the maximum of all subsequent arguments.

Min. The first argument is the minimum of all subsequent arguments.

Same-Sructure. The variablesin the first argument are the same as the variables in the second
argument. The arguments to structural constraints of this sort are effectively quoted such that
variables themselves are returned, rather than the values of those variables. This permits

constraints on structure as well as on content.

Struc-Member. The variable in the first argument is a member of the variables in the second
argument.

Same-Constraints. Every constraint on the internal slots of the value of the variable is present
on the corresponding slots of the frame containing the variable.

Constraints. The constraints on the first argument are propagated to al the variables
designated by the second argument.

To carry out a planning and design activities certain information must be available. In
addition, certain conditions, states or evaluations may apply to the data. Eastman (1999: 343)
calls this the Readset and Before Constraints. When an activity is completed data will be
added or modified. That design data will possibly have new conditions, constraints or states
associated with it. Eastman call this the activities Writeset and After Constraints. Together
they define an activity @ that has the following general structure:

o =({E}"{E}" {C}°.{C}")

where {E}R
{E}"

the set of entities to be read into the application

the set of entities that are written by the application

! Thisterm refers to a convenient L1SP construct. LISP was a prominent language in Al ten years ago.

184

University of Pretoria etd

{C}® = the set of constraints that must be satisfied before the application can
be executed
{C}* = the set of constraints that are satisfied within the application and can

berelied on by later operations

The before constraints and after constraints specify alogical relationship between activities
and the information and the conditions that the activities require. The Readsets and Writesets
define data dependancies. The before constraints and after constraints identify process
dependencies.

Constraints, as defined here, can have one of four values (Eastman 1999:343):

<T >==True implies that it has been satisfied

<F >==False impliesthat it has been evaluated and has failed

<U >==Unknown impliesthat it has not been evaluated, possibly becauseit is
not available to do so

< X >==Blank implies that changes have been made to the context, so that
the state of the constraint is uncertain

185

University of Pretoria etd

S And
Logical Lo
onmective
E Mok
Sama
.' il:f'El'mt}' . —instance
Caonstraint Compatible
. Inverse
Hominal
Constraint
' —Mamber
| Membership
1 ——Corlains
| Constraint !
Caress-negt-Cankain
Constraints |
Warihin
ordinal - Liass
rdina
+— A asl
Constraint -
- —Max
Min
Structiifal Same-Sruciure
constraint Siruc-Mamber
. Fun-:tu:mal.; Same-Consirainis
Constraint | | Secamd-Oirdes :
—_—d Consirams L

Figure 3: Taxonomy of constraint types (Hinrichs 1991:99)

6.2.3 The design of the ARGOS intelligent component

In order to conveniently process design fragments on the desktop without the use of CAD
requires intelligent components that can encapsulate the design fragments. The component
should also be able to retrieve design fragments from anywhere. To test the idea a prototype
control was built. Consider Figure 49 for an example of the control running in Internet
Explorer 5.0 The component has the ability to be resized in the x and y axis whilst in two
dimensional mode and the x and z axis whilst in three dimensional mode. Appendix F
contains the actual code that connects the various parts of the control parametrically together.
The intention is that a designer might place a number of the controls in a spreadsheet to test
the relationship between architectural design units at any level of specificity. Each component
is an autonomous encapsulated world on its own.

186

University of Pretoria etd

AetveX comaimer such as Infermet Bxplorer 5.0

|4-‘~+u D & 4@ EEJ

Lt fpee— Blop Felesl fore Seevn Pavnres
JEM‘.’-'F*D-;'M-"-"r:-'luI\.Il:":l\.l'\-"l'.l\.-l":'El.rlll.l'.\-'B!!l.'.lIlll'.\:-fl':llhrl

| Mimmze hﬂnll‘_"'ll I;-_\._ﬂ:—"ﬂmlmme |:-:|u'h:|n |
2 ——_—

P -l-""h-..____-_-_-_-“—
2D 30 swicch ¥ Design Title |

'-_+ Y -nx1s m1_|1u.1|1|=11| |
cei

h“""il'l"nmpuml.l Descnption |
. a
"\‘}_ﬂw adjustment |

Figure 4: ARGOS object in 2D mode (Author)

Actve comaimer such as [ntermnet Explorer 5.0

|"=""--- »ﬁ. ﬁhm_m Jﬂ

:ﬂ_lﬂl.'l-'\-:vr I-lllI-IrL-rlll“I.r.I it HEF L prs” bl

Design Title
Lo e e

IhlhultlﬂclulDI:H'E A ad : +:'.‘-.-{a'-::|lt|iﬂl:'|':ﬂ.l1'l.l:r|:
4

FE_’iL} 3wn:h_ :
- ® ¥ _aiis adfjustment

® Consponent Description |

“-_-____--_-_'_‘+:-'.-u:¢:i: achjustment

Figure 5: ARGOS object in 3D mode (Author)

187
University of Pretoria etd

Synchronisation between the autonomous components can achieved by means of very simple
Visual Basic for Application codeiif it is used in a spreadshest.

Figure 50 illustrates the ARGOS control in 3D mode. The 3D mode enables a designer to get
a fedling for volume in a basic way. The z-axis adjustment facilitates the adjustment of the
height. The controls can be made highly sophisticated by adding automatic volume
calculation and readout of pertinent design parameters. It is envisaged that many different
variants of ARGOS can be built such as:

e Controls that are unlocked, leaving it up the user to place, size and populate them with
design information

e Controlsthat contain cases from the past at various levels of specificity

* Rule-Based controls that model certain well known design characteristics such as energy
use

e Model-Based controls that model the constructional performance of a structure such as
the forces on adlab

6.2.4 Classification and knowledge or ganisation in a packaged environment

If the packaging of architectural design knowledge in the form of encapsulated Microsoft
ActiveX controls is to be successful then it is important that a designer can easily find
relevant controls anywhere in the world. It is a'so important to realise that a control that has
not been brought into the specific environment where it will be used should contain
knowledge that is neutral. Once it arrives in the specific environment where it will be used it
should take on the localised qualities. An example of this is the cost of plant, labour,
construction materials, temperature and soil conditions.

The core problem in Information Science (IS) is seen as information seeking and “information
retrieval (IR). The design of information systems and knowledge organisation by
classification and indexing is a means to that end.

Hjorland (ISKO 1994:91) identifies nine principles on the organisation of knowledge.

1. Naiveredlistic perception of knowledge structures is not possible in more advanced
sciences. The deepest principle on the organisation on knowledge rests upon principles
developed in and by scientific disciplines.

2. Categorisations and classifications should unite related subjects and separate unrelated
ones. In naive realism, subject relationships are based on similarity. Two things or
subjects are seen as related if they are “alike”, that is if they have common properties or
descriptive terms ascribed.

3. For practical purposes, knowledge can be organised in different ways and with different
levels of ambition.

e Ad-hoc classification (categorisation) reflects a very low level of ambition in
knowledge organisation. Every time you arrange flowers in your private home, you
use akind of “ad-hoc classification” determined by your private taste, the colours of
your rooms, what other objects they should match with.

* Pragmatic classification reflects a middle level of ambition in knowledge
organisation. It is a compromise between ad hoc classifications and scientific
classifications. Amateur gardeners or horticulturists have other criteria for
categorising proteas and azaleas than the biologist would imply.

188
University of Pretoria etd

« Scientific classification reflects a very high level of ambition in knowledge
organisation. It is highly abstract and generalised way of organising knowledge. An
example of this is the classification of animals and plants according to biological
taxonomies.

Any given categorisation should reflect the purpose of that categorisation. It is very
important to teach the student to find out the lie of the land and apply ad hoc
classifications, pragmatic classifications or scientific classifications when appropriate.

Concrete scientific categorisations and classifications can aways be questioned. The
concept of “science” has more than one meaning.

e Science as a socia institution, consisting of people paid to do research. This is the
cultural concept of science.

e Science as a normative, epistemological concept (to argue in a scientific way). What
constitutes science in this respect is a matter of continuous development, argument
and criticism in methodology and theory of science and in the development of science
itself.

The concept of “polyrepresentation” is important. In typical information seeking
situations, some categorisations are useful to some degree, others to some other degree.

To a certain degree different arts and sciences could be understood as different ways of
organising the same phenomena.

The nature of disciplines varies. The distinction between “hard sciences’ and *“soft
sciences’ iswell known, but perhaps not fruitful.

Many authors indicated the important problem that the quality of knowledge production
in many disciplines is in great trouble. It seems if the priorities become more and more
short-sighted, that less effort are made to develop long-sighted, well organised and well-
cared for bodies of knowledge and literature. This means, that the integrity of scientific
knowledge as well as other forms of knowledge is threatened.

189

University of Pretoria etd

ARGOS Knowledge Packaging
;E - 45)| Conceptselection o'
g
:’; : AEDES System Shell ©' S
] cEgsIn
E 1l s QFD - hdcrosaoft Wiond] 9
1
Sl Help S.E Diagram Softwane £
E ; am | esl (Visko)
! =
E gr:ilg:f g% —n Fr-n-l:i::-s Analysis !
E | - B E gy
% . ; * Forms E g 1 e rr—
E "'JI—'—' l‘l::&n-i:'rlsmdl -E % [HTML, Jatva, Va5
gL Chn Computer LanguageH!
:E 1 ! T W -—-—I-EE ' (¥iaual Baac)
LN !
Y ¢l . e Spreadshest !
Sl y - ig 1 (Moot Exoch
Server| Workstation
[

Figure 6: The relationship between the ARGOS, ActiveX design object and the
applications software (Author)

6.2.5 The co-existence of ARGOS with other software

The Architectural General Object System (ARGOS) is a Microsoft ActiveX object with the
internal design fragment stored in XML. Microsoft Visual Basic provides enough
functionality to build the object (Appleman 1999). Although third party users can generate the
object independently, it is recommended that a structured front end consisting of an
appropriate collection of methodologies as described for the AEDES system could be used.
This will ensure that the object is optimal for the given set of requirements. COM software
components such as ActiveX controls can be developed with several different programming
languages. The most common choice, if Web pages on the subject are any indication, is
Microsoft Visual C++. Presently Visual Basic 5 and 6 also support the development of
ActiveX controls very well. Using Visua C++, COM software can be written using one of
three development libraries, the ActiveX Template Library, Microsoft Foundation Class
Library or the BaseCtl framework. ActiveX controls can use a variety of programming
languages from Microsoft for component design in addition to Visual C++ like Visual Basic,
Visual J++ and even Word or Excel’ s programming languages.

Currently only highly skilled programmers can build the ActiveX objects. For this reason a
special module B1, Packaging Software is proposed (Figure 51). This software tool takes the
final design fragment and encapsulates it into a single object. Once the object is created it can
be distributed in many different ways and used in a wide variety of environments. The
contents of the object can be imported back into the original environment that created it.
However the object can be used in many other environments such as spreadsheets, Web pages
and process analysis.

190

University of Pretoria etd

6.2.5.1 Concept selection

The process of concept selection is important in the product development environment and
therefore architectural design. In Architecture it is often necessary to compare alternative
architectural design concepts, especially during the early phases of design. To this end the
ARGOS kits could be inserted into a spreadsheet. The designer could then conveniently
analyse various design aspects in the familiar environment of a spreadsheet without doing any
programming. In this case the controls containing the likely concepts would be drawn into a
spreadsheet or a simple Visual Basic program. The ratings from the different concepts are
derived from the controls and subsequently compared with one another.

6.2.5.2 Spreadsheets

Spreadsheets such as Microsoft Excel support the use of ActiveX controls. Many people use
spreadsheets and it is a convenient environment for initial project planning tasks such as cost
estimating, area and energy analysis. In this environment there is no need to be connected to a
database, although the proposed design of the ARGOS abject includes links to material and
product databases.

In order to use the control in this environment, a user simply has to insert the control into the
spreadsheet. To access the list of properties and methods provided in the control in the
spreadsheet, the user has to connect the desired property in the control to a cell(s) in the
spreadsheet. This can be achieved by the example code fragments below (Code Fragment 3).

In this case the cells are manipulated by the Visual Basic GotFocus and LostFocus events. In
the case of the function ArgosAB GotFocus a range of cells Range(* AL1:A10") on
Worksheet(* Sheetl”) is set to the value of the GrossArea property retrieved from object
instance ArgosAB. Note that during the creation of the object certain properties were set to
read only. In a similar way the function ArgosAB_lostFocus sets the value of a range of cells
Range(* A1:A10") to an empty string. At the same time a property text of the text box
txtArgos is set to the text string “RESET TO EMPTY”. The control is a totally encapsul ated
world that contains many properties. These autonomous controls need to be connected
together in order to do something useful with it. This can be achieved in any ActiveX
compliant container environment.

Private Sub ArgosAB_Got Focus()
Wor ksheet s(" Sheet 1") . Range(" Al: A10"). Val ue = ArgosAB. G ossArea
t Xt Argos. Text = ArgosAB. G 0SSArea

End Sub

Private Sub ArgosAB_Lost Focus()
Wor ksheet s(" Sheet 1") . Range(" Al: A10"). Val ue
t xt Argos. Text = "RESET TO EMPTY"

End Sub

Code Fragment 3: Communication between an ARGOS ActiveX control and Excel
Spreadsheet cells (Author)

6.2.5.3 Computer languages

A systems integrator or software tool designer can use the ActiveX controls (objects) in
exactly the same way. However he can implement the objects in far more advanced
environments. A typical scenario would be where a suggested method such as
ArgosAB.UnpackFunction or ArgosAB.UnpackCAD could be invoked. This tells the particular

191
University of Pretoria etd

instance of the design component (ArgosAB) that the user wants to inspect the particular
design functions embodied into the design or want the design object to download the CAD
drawing to start with CAD based layout planning.

6.2.5.4 Process analysis

In an environment such as offered by Arena users can use the control to extract the desired
properties that he wants to analyse. The capabilities of Arena can be utilised to optimise flow
of people in the specific layout. Arena uses Visua Basic for Applications (VBA) as its
command language.

6.2.6 Thedesign of the ARGOS obj ect

The ARGOS object [A1] can be placed inside any ActiveX container [B1] such as supported
by Excel, Word, Visio or World Wide Web pages. Due to the intrinsic information that is
built into the object the designer can use the object immediately without connecting to any
outside information sources. However to realise the full power of this approach it is
recommended that a user connects to the Internet to access convenient outside data sources to
provide information such as product data [D1], material characteristics [E1], other existing
cases [F1] and Facilities Management cost models. Figure 52 illustrates this concept as well
as the relationship of the object with such remote data sources.

ARGOS ActiveX Intelligent Component
G|
| Products Database
ActiveX Control Container "' = 7| MR merpmdel com
ioeld Widks Wb Accass, Excel Word Wiso -"|.'E'|::_ -
- £ - o
B Al ey i = Er
T Duhmu"n : o _____w®m | Materials Database
A £y 5 Hilpofpvneany, coi cola
3::: Caze |* - : 3
0 F 1 s = o
% o o Fi
L Case Design Suppliers
Persisted Data ' neip Soesign case co.2e
(ML ke Forme) v
A
m k
& Local Relational Database i
(.IE (Omcis, Mcmaot §OL Senver, Mcrao Jed dalabase, Micmuol Data Enging

Figure 7: The relationship of the ARGOS object to other intelligent data sources
(Author)

Internally the ARGOS design case contains 4 main types of design knowledge that consists of
both al phanumeric and graphic information:

e Tacit design information
« Explicit design information

192
University of Pretoria etd

e Graphic information in the form of adesign drawing that should preferably be in a neutral
data format

e Functional design information such as the design functions and their alocation to
physical design elementsin a structured format. The W3C, XML format isideal for this

Some of the information in the first two groups is exposed directly as ActiveX properties. In
this case the design object properties is a synonym for surface features'. The indices of a case
are those combinations of features that distinguish it from other cases, because they are
predictive of something important in the case. In addition to be being predictive of something
important, indices need to be concrete enough to be recognisable and abstract enough to
make a case useful in a variety of future situations. This enables a designer to assess the
applicability of the design or to estimate approximate cost. If the design appears to be suitable
then the detailed functional design can be inspected.

Again it is important to note that it is an incorrect assumption when people argue about
surface features, deep features, structural features, pragmatic features and thematic features in
the sense of designing retrieval methods for cases based on one of those. To build a good
index it is important to choose from all these levels and make sure that it has the important
properties (Kolodner 1996:357). Those descriptors describe where a feature lies in a
representation or what its content is. Sengupta et al. (1999) gives an indication of the
usefulness of the W3C, XML standard for the representation of a case structure and describes
methods to translate between relational databases and XML. The author is of the opinion that
XML is amost ideal for the structured documentation of the intrinsic artefact design
functions. By structured the following is assumed:

» The structure can be analysed by means of computer software.

* It is a complete documentation of the design performance requirement, functions,
allocations to construction elements and specifications using systems engineering
principles.

» Design function groups can be inserted into the existing structure.

» Constraint posting can be supported.

* Quadlity isanintrinsic part of the function structure.

If adaptation is required then the functional tree can be modified. Modification could be by
means of the insertion of function fragments, elements or specifications. If existing design
fragments cannot be found then the designer has to design the specific parts from first
principles following a process of structured design.

Although the user definable properties that a user can set in this environment are persistent
within the particular container, this persistence is destroyed the moment the object is moved
to a different container environment. To overcome this problem two object methods
PersistDesignOut and PersistDesignin are introduced that will write the design data into an
XML computer file on alocal disk or an ftp directory on aremote project server. In this way
structured design functions can be freely exchanged. As indicated in Figure 52 there is a bi-
directional exchange of persistent data.

[D1] and [C1] are fictitious remote data sites that can be nominated by means of a data
address within the object. This is achieved by setting the object property Datal ocation to a
valid URL. By means of the method DisplayRemoteData or by pressing the command button,
these data will be displayed. The designer can then select the record and apply it to the current
design object. Note that the data flow from remote data sources is uni-directional at this stage.

! There is a difference between easily available and surface features. Surface features make good indices to the extent that they
are predictive of something important or useful.

193
University of Pretoria etd

The connection to the local database is conveniently achieved by means of the Microsoft
ActiveX Data Object.

6.3 World Wide Web Implementation

Microsoft Internet Explorer supports the ActiveX controls. When the ARGOS design object is
inserted into a web page the code looks like in Code fragment 4. The object starts with the
label

<obj ect classi d="cl si d: 59DF65DF- 632C- 11D3- 8D31- 4854E8284FB0"
i d="User Control 11" w dt h="250" hei ght ="467">

and ends with the |abel
</ obj ect >

The cl assi d is particularly important, because it is a totally unique code that is used to
identify the particular class of the ActiveX control. This code is guaranteed to be unique in
the world. This object was labelled with this code during the design and programming of the
object. Thei d is the name that will appear on the list of possible controls when a user wants
to insert an ActiveX control into his container software. In this case the id is
User Cont r ol 1. The properties available for the object is exposed with the statements that
read <param nane="_Extent X" val ue="5292">. In this example the ARGOS
object contains 15 user definable properties. These properties fall into two main groups:

* Explicit
+ Tacit

The explicit attributes have the prefix AE_ and the tacit ones AT_. The explicit properties
contain surface features (in CBR terminology) such as gross area, net area, rentable area,
construction area, volume, shape, durability, energy use and cost. The tacit properties contain
factors that were identified in Chapter 3, 3.5 where Kansel engineering was discussed in
detail. This gives an indication of the sensory aspects of the design such as sight, hearing,
taste, smell, internal sensitivity and recognition. Architecture has lot to do with the sensory
aspects such as feeling of space, colour and acoustics.

It is apparent from the code fragment that the design detail is hidden away from the designer
at this stage. The directly available properties make it possible to do basic preliminary
feasibility studies. To make the detail visible the user will have to press the command buttons
for CAD or Function that will unload the CAD drawing or the XML function tree. The
ARGOS object also contains two buttons that a user can use to maximize or minimize the
object. If a user wants to perform a specialised task he can invoke one of several object
methods available.

<htm >

<head>

<nmeta http-equi v="Cont ent - Type"
content="text/htm ; charset=iso-8859-1">

<nmeta nane="Tenpl ate"

cont ent =" C:. \ PROGRAM FI LES\ M CROSOFT OFFI CE\ OFFI CE\ ht mi . dot " >
<nmet a nane="GENERATOR' content="M crosoft FrontPage 4.0">
<title>AEDES</title>

</ head>

194

University of Pretoria etd

<body background="aedes_b.gi f" Iink="#0000FF" vl i nk="#800080"
bgproperties="fixed">

<obj ect classid="cl si d: 59DF65DF- 632C- 11D3- 8D31- 4854E8284FB0" i d="User Control 11"
wi dt h="250" hei ght ="467">
<param nane="_Extent X" val ue="5292">
<param nane="_Extent Y' val ue="9885">
<par am nane="BackCol or" val ue="0">
<par am nane="For eCol or" val ue="0">
<par am nane="Enabl ed" val ue="0">
<par am nane="BackStyl e" val ue="0">
<par am nane="Border Styl e* val ue="0">
<par am nane="AE_gr ossarea" val ue="0">
<param name="AE nettarea" val ue="0">
<par am nane="AE_rent abl e_area" val ue="0">
<par am nane="AE_construction_area" val ue="0">
<par am nane="AE_vol une" val ue="0">
<param nanme="AE_shape" val ue="0">
<param nane="AE_durability" val ue="0">
<par am nane="AE_ener gy_use" val ue="0">
<par am nane="AE_cost" val ue="0">
<param name="AT_si ght" val ue="0">
<par am nane="AT_heari ng" val ue="0">
<par am nane="AT_t aste" val ue="0">
<par am nane="AT_snel | " val ue="0">
<param name="AT_internal _sensitivity" val ue="0">
<par am nane="AT_recognition" val ue="0">
<par am nane="AF_f uncti on" val ue="0">
</ obj ect >

<hr size="1" noshade col or="#0000FF" >

<p align="left"><!--webbot

bot =" Ti nest anp" startspan s-type="EDI TED"

s-format="% 9B % % : %V %" -->12 February 2000 06: 46 AMK!--webbot bot="Ti nest anp"
i - CheckSum="54291" endspan --></p>

</ body>

</htm >

Code Fragment 4: ARGOS object placed in a web page (Author)

6.4 Hypothetical use of ARGOS

Due to time and financial constraints it is not the intention to develop a full commercial
system in this study. However this section provides a run-through of how a designer might
use the system.

It is assumed that a designer wants to design a new 16-bed male/femal e/paediatric in-patients
section. The designer decides to see whether a previous conceptual layout of this type of
facility exists. Unfortunately nothing exists in the office and a search of the web is aso
unsuccessful. It is aso assumed that the ARGOS ActiveX control set isinstaled and available
on the design workstation.

The designer decides that he will be using his Microsoft Excel Spreadsheet as a blackboard,
because this is convenient for the type of design testing that he wants to do. The design brief
specifies a design of not more than 260 m? and the cost should be below R 780 000-00. The
accommadation requirement for the design is the following:

Capacity of 16 beds
Staff WC
Patient ablution

195
University of Pretoria etd

Sit bath

Nurse station

Duty room

Clean linen storage
Clean utility room
Ward kitchen
Dirty utility room
Store

The client states that it is a specific requirement that energy be saved especially with regards
air conditioning.

The designer starts the process by calling up an Excel Spreadsheet with a default ARGOS
control panel. He selects a minimal parametric ARGOS control from the Control Toolbox
(ARGOS.CBR) and inserts it into the spreadsheet (Figure 53).

Wk M e e Pyl Tovk Dete Eks el sl
ey - AT p— e —
& n [& d] 3 r =] i] K L Y

1

= Nati m2 E

4 Gross m2

: i

B Yolume m2

T

B ARGOS > XML

]

L]

" | »id

: _-I i Kl

5 # = = G

= Al ZAD®

i7

5

T

20

2 L A

2

2%

I

ar H
b b, e Bl [L s
Renaxdy
s e Y | | | | | | | g | [Han L] e e

Figure 8: Design of 16 bed male/ female/ paediatric in-patients section step 1
(Author)

At this stage the spreadsheet contains four command buttons that enable the designer to
calculate net m2, gross m?, volume m? and a special button that enables him to export the
design in XML format to an XML aware CAD system for subsequent detailed design. For
convenience a combobox is also included where the designer can list the spaces in the design.
At the moment the ARGOS control is still default size and the internal properties al have
default or undefined values.

The designer now continues to develop the design according to the brief and his experience.
After some time the design looks like in Figure 54. The design contains 14 ActiveX controls
of varying size. The designer adjusts some of the properties that will be important for
subsequent retrieval of previous design cases. He sets the wall thickness in the M_wall1,

196

University of Pretoria etd

M_wall2, M_wall3 and M_wall4 properties to respectively 55, 220, 55 and 220. Seeing that
this is a special section intended for paediatrics some Kansei adjectives are added in the
AT hearing, AT internal_sensitivity, AT _recognition, AT _sight, AT smell and AT taste
properties.

. MR

_i__. = g — R |

k 8 s ARR

Ll

E :-'Il'I-FI ‘:.1_ mrim _I; - ‘_,; ----- [T} _; LEL 11§
|

&

.

:; - o -
i - 35

H

;- '_=_..--. _j: ..-.__,|_l_...-.-_’|_- H e - | T 1 — _]_ - e - u
= |

& |

H

=

- |

= L e L - - .

-

H

PI:-II'I]""H-I-H:M]I?_JI] | |.||.—
Heady

R SN | | | | | | | o | Tasis [Pl DR e mm

Figure 9: Design of 16 bed male/ female/ paediatric in-patients section step 2
(Author)

Some useful adjectives that could be used are listed in Figure 27. The Kansei properties now
read:

AT_hearing = quiet

AT _internal_sensitivity = warm, tranquil, cheerful
AT _recognition = cute, elegant

AT _sight = cute, elegant

AT_smell = pleasant

AT taste=

These properties are very important for subsequent retrieval of possible previous design
experience. The ARGOS properties can be defined by typing directly into the relevant
property, set by program or indirectly adjusted by means of the x, y or z slide controls. The
properties are also useful because they can be directly transferred to CAD systems that
support the definition of attributes such as MicroGDS or AutoCAD.

At this stage a typical property list for the 4 Bed Ward would look like the one illustrated in
Figure 55. Note the Kansel definitions at the top of the list and the various wall thickness
properties at the bottom of the list.

University of Pretoria etd

Akl Care ASILOE Husplel Mernae Slep 4

B Ein Bl Ve fresst Sgoral Trom Dst Yeedos e e I
3] - R
A, B E 7] [F [H | & d 8 L i
1
: :
2 Nett m2 | i
; Gross m2
g Mol e m3 [o |
ARGOS = XKL AfFEE |r.np_nl.1|_ Il
] AT Fmarig - d
BT wigmrd prm #te mary gL femak,
o T e e
13 (=N~ _|-F EAER -‘.:._.-l:n |:u.::m
13 =8 2 AQR (S
") gt cud d I}
1 W PATENT ARTON ﬂ_—fﬂ_ LEED RN il ok
1 2 ' T s
1] ! JCrs ke r]
] -
i '] s e 1
an Wit
1l : L
& |]
B 4 -
L i el
b e
i r.....l: — -,
an LT T Trias
a4 14 | S BT BT] i Wil
- -
B S Y | | | | | | | | [T PEIHE v

Figure 10: Setting design properties of a paediatric ward (Author)

At this stage the designer would like to know the gross and net area. This is accomplished by
selecting the relevant command buttons that start Visual Basic routines that scan through all
the design controls present and retrieve al the areas. In a similar way the volume is
determined.

The system reports the following (Figure 56):

Net m? = 221.256
Gross m? = 251.5808
Volume m3 = 639.42984

At this stage he is not sure what the construction cost per m? is and activate his Microsoft
Internet Explorer. He accesses the http://design.case.co.za web page that is one of the
available design information sites to search for an estimated construction cost/m? for this type
of facility. Thisis conceptualy illustrated in Figure 52. He finds this cost to be R 2800-00/m2.
On the basis of thisit is estimated that it would cost R 704 426-24 to build this facility. In the
meantime the air conditioning engineer is analysing the design from an energy point of view.
He finds that the current volume would require a significantly larger installation than
originally anticipated. In an attempt to solve this the ceiling height is lowered from 2 890mm
(34 brick courses) to 2 720mm (32 brick courses) (Figure 57). Thisis accomplished by setting
the AA_zdim property to 2 720 for each ARGOS component. The recal culation indicates that
the volume has now in fact been reduced from 639.43 m? to 604.29 m2. Thisis an immediate
saving of 5,5%. In asimilar way other direct design parameters can be adjusted and tested.

University of Pretoria etd

PATIENT ABLUTION [12.222]
4 BED WARD [28.182)

4 BEDWARD [28.182]
PATIENT ABLUTION [14.574]
4 BEDWARD [28.182]

DUTY ROOM [12.082]
CLEAN LINEN [9.282]
CLEAN UTILITY [5.282]

S5y PR TR RN (NS TS I i TR

Figure 12: The reduction of volume by lowering the ceiling (Author)

199
University of Pretoria etd

The designer is now satisfied with the basic design and continues with the detailed design. By
double clicking® on the ward the search engine is invoked to search for previous design cases
that fit the type and dimensions previously captured. Initially only the main description is
used to search for alist. The system reports that three types of ward is available:

Two Bed Ward
Four Bed Ward
Observation/ Trauma Ward

He selects the Four Bed Ward. ARGOS now uses the AA xdim, AA ydim, AA zdimaswell as
the set of Kansei descriptions such as AT_hearing, AT _internal_sensitivity, AT_recognition,
AT _sight, AT_smell and AT _taste as search parameters. This isimplemented with the dynamic
linguistic variable method described in detail in Chapter 3. Only one solution is found and
placed into the design (Figure 58). In asimilar way other parts of the design can be devel oped
and further refined. Once the designer is satisfied he can export the entire design to an XML
aware CAD system or a rendering/ visualisation package for detailed design and the
production of working drawings.

I
A] B [B 3 F G H Jome] tae T

] M'"""“' oL |

o [8

"|I F oL e

3 saizal®

1

H]

15 B R A O T

i - _ e
i . LA o & @ "

18

e Topr————— =

m = 7o M

a - hospieal bed || -k i

r.r] iim ; | -

o] i : =3 |

14 1} 2 ._ s
e beduide lacker ;. L

2

aT | curtadn track ||~ —& |

Eﬁ -

1 grip rafl OOF remiirady ||| | . |

3 | . |

11 G : i 12 - 1.

13 21 a4 r = Lt 1 iz

13

%

5 "
e O, Gl | e [Sl 1 | | W
Heady

R Y e A o e L o] W GE-| RIS e

Figure 13: The retrieval and insertion of a Four Bed Ward detailed case (Author)

6.5 Empirical response tests

To ensure that the proposed system would be scalable and could eventually be applied to real
problems in the architectural design domain a series of response tests were conducted. A
recently completed very large shopping centre analysed to establish the needs of the

! Two possibilities exist to implement the CBR retrieval in ARGOS. The basic ARGOS can switch to CBR mode or a special
separate ARGOS control can be written to handle only this aspect. The final implementation will become clearer with continued
research.

200
University of Pretoria etd

professional team consists of 57 spaces on the lower first floor, 148 on the ground floor and
73 on the upper first floor. The proposed component system should be capable of supporting
the following types of design activitiesin large and complex designs:

e Concept selection

* Retrieva of design experience
e Test of spatial relationships

e Scenario planning

e Collaboration on aglobal basis
e Modelling and simulation

To support and implement these activities require the ARGOS components to support any
combination of parametric, Rule-based, Model-based and Case-Based methodologies. The
tests concentrated on how responsive the components are to return direct and derived
parametric values such as gross area and wall-space ratio. The prototype component presently
supports 30 primary design properties, inter linked where appropriate.

The efficient response is primarily due to the fact that the parametric calculations are
performed inside the ARGOS components where it is optimal and in a compiled form. The
software that interrogated the components was, in this case, Visual Basic for Applications
running at a more moderate interpreted speed than compiled Visual Basic. Although the prime
purpose of the system is not efficient response, but rather opportunistic control, flexibility and
interfacing to external software these tasks need to be accomplished within reasonable time.

The tests were conducted on a Microsoft Excel spreadsheet used as a blackboard, because it is
so widely used and offers a convenient interface to spreadsheet capabilities and analysis
software. It is clear that the slow computer (266 MHz CPU with 32 MiB* of RAM) is efficient
up to about 75 components, whereas the moderate and fast computers are still efficient well
beyond 100 components. The tests consisted of a Visual Basic program requesting parametric
values that could be used in complex external analysis programs (Figure 59).

ARGOS component response

" 18 16.5

S 16 y .

8 I

o 14 =

S 7 ® 266 MHz CPU

= 12 95 7 ¢ 900 MHz CPU

EZ 10 5 87 — A 466 MHz CPU

EE 3 - ° 64 = = = Poly. (266 MHz CPU)
° 61477 433 5.1 - Poly. (900 MHz CPU)
%) o

2 4 & A i — —Poly. (466 MHz CPU)
2 2 063 062 05 0.74

0 R e

@ 0 = — ’ —

15 30 45 60 75 90 105
Number of ARGOS components

Figure 14: ARGOS component response (Author)

1 One mebibyte (MiB) is equivalent to 1 048 576 bytes whereas one megabyte is equivalent to 1 000 000 bytes.

201
University of Pretoria etd

Theincrease in file size is linear (Figure 60). It should be noted that the size is expressed in
kibibytes’ as recommended by the International Electrotechnical Commission for binary
multiples in December 1998.

ARGOS blackboard size

450 390

w b
a o
o O

N

(on)

o
N
N
~

200
140
150 /

100

Size in kibibyte (KiB)

a1
o

O 1 1 1 1 1 1 1 1
15 25 35 45 55 65 75 8 95

Number of ARGOS components

Figure 15: ARGOS blackboard size (Author)

Summary

A life cycle information infrastructure based on XML is used as a basis for ARGOS. The use
of XML as a design language facilitates design knowledge delivery to users. The use of
Cascading Style Sheets, XSL and VML was explored. This proves the versatility of XML
beyond doubt. The storage of a CAD drawing in XML was analysed in detail.

Due to the generic nature of ARGOS the range of possible applications is large. The role in
structured planning and design knowledge delivery is proposed. The relationships of ARGOS
to other intelligent data sources were explored.

A detailed parametric ARGOS object was written with the ability to switch between 2D and
3D modes. A compact miniature Internet browser was developed that could be combined with
the basic ARGOS component. Thiswill enable unlimited data access.

Internally the ARGOS design case should contain four main types of design information
consisting of both alphanumeric and graphic information:

e Tacit design information

* Explicit design information

e Graphic information in the form of XML

e Functiona design information and constraints

2 One kibibyte (KiB) is equivalent to 1 024 bytes whereas one kilobyte (kB) is equivalent to 1 000 bytes.

202

University of Pretoria etd

Finally a short hypothetical run-through of how the ARGOS system might be used is
described. Empirical response tests were also conducted for a blackboard (spreadsheet) with
25, 50 and 100 controls on different types of computer. This indicates that the ARGOS
blackboard type of architecture using a spreadsheet is effective.

	Introduction
	6.1 Life cycle Information infrastructure
	6.2 Packaging and retrieval of design knowledge
	6.3 World Wide Web implementation
	6.4 Hypothetical use of ARGOS
	6.5 Empirical response tests
	Summary

