

Microsoft .NET for Programmers

Microsoft .NET
for Programmers

FERGAL GRIMES

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-19-7

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

To Joe and Kate

contents

preface xiii

acknowledgments xviii

author online xix

about the cover illustration xx

1 Introduction 1
1.1 Developing for the .NET platform 2

A language-independent platform 2 ✦ .NET and managed code 3

1.2 A first .NET program 4
Compiling the C# Hello program 5 ✦ A Visual Basic .NET Hello program 5

1.3 The platform vs. the programming language 6

1.4 Exploring the . NET Framework class library 7
An overview of important namespaces 7 ✦ Programming with the .NET
Framework classes 9 ✦ What happened to ASP and ADO? 10

1.5 Putting .NET to work 11

1.6 Summary 14

2 Understanding types and assemblies 15
2.1 Introducing types 16

2.2 Value vs. reference types 18
The C# struct 19 ✦ Boxing and unboxing 20

2.3 Exploring System.Object 21
Overriding System.Object methods 22

2.4 Understanding finalization 23
Coding a finalizer 23
Finalization and the Dispose method 24

2.5 Introducing assemblies 26
Creating a multifile assembly 26 ✦ Disassembling with ILDASM 28
vii

2.6 Private vs. shared assemblies 29
Shared assemblies and versioning 29 ✦ Generating a strong name for
a shared assembly 30 ✦ Installing shared assemblies into the global
assembly cache 32 ✦ Creating an application configuration file 33

2.7 Downloading assemblies 35
Downloading the Person assembly from the Web 36

2.8 Programming in IL 37
Inspecting generated IL 37 ✦ Boxing and unboxing in IL 38
Coding IL programs 39 ✦ Generating native images 41

2.9 Types, assemblies, and reflection 41
An example of reflection 41 ✦ The System.Reflection.Emit namespace 43

2.10 Building a simple compiler 44
The AL language 44 ✦ Translating AL to IL 45 ✦ Dynamically
generating an assembly 46 ✦ Coding the AL compiler 46 ✦ Building
and testing the AL compiler 54

2.11 Summary 54

3 Case study: a video poker machine 55
3.1 Playing video poker 56

Winning poker hands 57 ✦ A profitable video poker machine 58

3.2 The Poker.Card class 58
Designing the Card class 58 ✦ Coding the Card class 59

3.3 The Poker.Hand class 61
Designing the Hand class 61 ✦ Coding the Hand class 61

3.4 SimPok: a simple poker game 68
The Poker.SimpleMachine class 68 ✦ The SimPok console interface 69

3.5 ComPok: a COM-based poker game 70
Registering the poker assembly as a COM object 70 ✦ Console poker
using COM and VBScript 71 ✦ RegAsm and the registry 72

3.6 IEPok: an Internet Explorer poker game 73
Downloading assemblies using Internet Explorer 73
Coding the IEPok application 74

3.7 Designing a complete game 76
Video poker: the poker engine and its interfaces 76

3.8 Summary 77

4 Working with ADO.NET and databases 78
4.1 The ADO.NET namespaces 79

The OLE DB and SQL Server managed providers 79

4.2 The ADO.NET DataSet 80
Creating and using a DataSet 80 ✦ A simple example 81
viii CONTENTS

4.3 DataSets and XML 83
The DataSet’s GetXml and GetXmlSchema methods 83

4.4 Updating the database using a DataSet 85
Committing changes 86

4.5 Updating the database directly 87

4.6 The DataReader 88

4.7 The Poker.Bank class 89
Logging errors and warnings 91 ✦ Creating the Poker.Bank class 92
Testing the Bank class 99

4.8 Using XML serialization to create a report 101
Serializing an object to an XML document 102 ✦ Performing an
XSL transformation 103 ✦ The XmlRep program 106

4.9 The Poker.Machine class 109

4.10 The Poker.Bet class 112

4.11 Building the poker DLL 113

4.12 ConPok: 3-tier client/server poker 114

4.13 Summary 116

5 Developing remote services 117
5.1 Introduction to remoting 118

Remoting and application domains 118 ✦ Marshaling objects 118
Hosting remote objects 119 ✦ Creating a remote service 119
Creating the client 121 ✦ Testing the service 122

5.2 Implementing server-activated remote objects 123
Coding a SingleCall HelloService 123 ✦ Testing the SingleCall HelloService 124

5.3 Configuring remoting 124
Using remoting configuration files 124 ✦ Coding HelloService 125
Coding the new client 126

5.4 Implementing client-activated remote objects 127
Configuring the service for client activation 127 ✦ Configuring the client
for client activation 128 ✦ Coding the new client 129 ✦ Testing the
client-activated service 129

5.5 Client activation and leasing 130
Understanding leasing 131 ✦ Amending the lease 133
Using a sponsor to amend lease duration 133

5.6 Handling remote events 136
The EchoObj class 136 ✦ The EchoService class 137 ✦ The EchoClient
class 137 ✦ Testing the EchoService 138

5.7 Hosting objects in Internet Information Server 140
Providing a public interface for a remote service 140 ✦ Coding the
RemoteEncoder.Base64Service class 140 ✦ Coding the client 141
CONTENTS ix

Compiling the Base64 string encoding application 142 ✦ Deploying the
StringEncoder service on IIS 142 ✦ Testing the IIS-hosted encoder 143

5.8 RemPok: a remote poker game 144
Developing the remote poker service 144 ✦ The remote poker machine
configuration file 145 ✦ The RemPok poker client 146 ✦ Testing
the remote poker machine 148

5.9 SvcPok: a remote poker game as a Windows service 149
Coding the poker Windows service 150 ✦ Installing the poker Windows
service 153 ✦ Creating the client 154

5.10 QuePok: a message queue-based poker game 155
Designing an MSMQ-based poker service 157 ✦ Creating the PokMsg and
PokerQueue classes 158 ✦ Creating the QuePokService service 159
Creating the QuePok client 160 ✦ Compiling and testing the QuePok service 161

5.11 Summary 163

6 Developing XML Web services 164
6.1 Introduction to XML Web services 165

6.2 Creating a first Web service 165
Creating the service 165 ✦ Testing the service 167

6.3 Creating an HTTP GET client 169

6.4 Using WSDL to describe a Web service 170
WSDL types 170 ✦ WSDL messages 171 ✦ WSDL portTypes 172
WSDL bindings 172 ✦ WSDL services 173

6.5 Coding a SOAP client 173
Generating the Web service proxy 175 ✦ Coding the client 177
Compiling and executing the client 178 ✦ Creating an asynchronous client 178

6.6 The WebMailService example 179

6.7 Managing service state 181
Creating a stateful Web service 181 ✦ Creating the stateful client 184
Testing the stateful service 185 ✦ Example: logging into a Web service 186
Maintaining state without cookies 188 ✦ Emulating singleton activation 189

6.8 Enabling Web service discovery 190
Generating a DISCO document 191 ✦ Creating a default.disco file 192
Processing a default.disco file 193

6.9 Using UDDI to advertise a Web service 194
Searching the UDDI registry 195 ✦ Installing the UDDI SDK and test
registry 197 ✦ Creating a simple inquiry client using the UDDI SDK 197
More on UDDI 198
x CONTENTS

6.10 WSPok: the Web service-based poker game 199
Creating the WSPokService poker Web service 199 ✦ Creating the
WSPok client 200 ✦ Testing the poker Web service 201

6.11 Summary 202

7 Creating the Windows Forms user interface 203
7.1 Beginning Windows Forms development 204

Creating a simple form 204 ✦ Adding controls to a form 205
Anchoring and docking controls 207 ✦ Handling form events 207

7.2 Understanding the Windows Forms programming model 208
The Component class 209 ✦ The Control class 211 ✦ The ScrollableControl
class 213 ✦ The ContainerControl class 214 ✦ The Form class 214

7.3 WinPok: the Windows Forms-based poker game 215
The WinPok program structure 215 ✦ Setting up the form 217
Creating the menu 218 ✦ Creating buttons 220 ✦ Creating labels 221
Creating text boxes 223 ✦ Creating check boxes 224 ✦ Displaying a status
bar 225 ✦ Creating picture boxes 226 ✦ Starting play 228 ✦ Dealing cards 230
Drawing cards 232 ✦ Accessing the Win32 API 233 ✦ Ending the application 233

7.4 Creating Windows Forms applications using Visual Studio .NET 234
Creating a Visual Studio .NET project 234 ✦ Designing a form 236
Adding code to the form 237

7.5 Overriding WndProc 238

7.6 Summary 240

8 Creating the Web Forms user interface 241
8.1 Comparing ASP.NET to ASP 242

A simple ASP application 242 ✦ A simple ASP.NET application 244

8.2 The System.Web.UI.Page class 245
The Page.Request and Page.Response properties 245 ✦ The Page lifecycle 246

8.3 Working with Web Forms and server controls 248
The anatomy of the Web Form 248 ✦ The System.Web.UI.WebControls and
System.Web.UI.HtmlControls namespaces 252 ✦ Using the Calendar Web control 253
Using the DataGrid Web control 254 ✦ Using the HtmlTable control 256

8.4 Creating user controls 258

8.5 Validating user input 261

8.6 Configuring and customizing ASP.NET applications 265
Creating a custom HTTP module 266 ✦ Creating a custom HTTP handler 268

8.7 Tracing ASP.NET applications 269
CONTENTS xi

8.8 Managing application and session state 272
Application state and the Global.Asax file 272 ✦ Managing session state 274

8.9 Creating Web Forms using Visual Studio .NET 275
Creating a Web application using Visual Studio .NET 275 ✦ Using the toolbox to design
a Web Form 276

8.10 Manually creating code-behind Web Forms 278

8.11 WebPok: the Web Forms-based poker machine 279

8.12 MobPok: the mobile Internet-based poker machine 286

8.13 Summary 288

appendix a Introduction to C# 289

appendix b The Poker.dll class listings 321

appendix c The WinPok.cs listing 335

index 347
xii CONTENTS

preface

As the title suggests, this book is written for programmers who want to learn about the Microsoft
.NET platform. There is a lot to learn. .NET development embraces many areas including:

• Windows desktop development

• Web-based development

• Component development

• Development of remote objects and services

• Development of XML Web services

In addition, programmers need to become familiar with an extensive new class library and a
new runtime environment. Even for seasoned Windows developers, this almost amounts to a
fresh start.

About this book

The purpose of this book is to explore the many parts that make up .NET, to assemble them into
a meaningful whole, and to do so within the confines of a compact and readable publication.
Although many of the topics we’ll explore, such as XML Web services, Windows Forms, or
ADO.NET, are worthy of separate books in their own right, all are just pieces of the .NET jigsaw
puzzle. I felt there was a need to examine each of the individual pieces, and to show how they
relate to one another, and how they fit together. This book is the result.

The scope and size of .NET make it impossible to cover everything in a single book. So I’ve
taken some shortcuts. In particular, I’ve tried to impart the essentials while avoiding unnecessary
handholding, repetition, or padding. In general, the documentation, online help, and samples,
which come with the .NET software development kit (SDK), are comprehensive and complete.
So, armed with the knowledge gleaned from this book, you should be able to consult the docu-
mentation for supplementary information.
xiii

This book’s audience

This book is written for intermediate and advanced programmers who plan to develop applica-
tions, components, or services for .NET. The typical reader will have some experience
programming with Visual Basic, C++, or Java. This is not an absolute requirement, since I’ve
included an appendix which provides an introduction to C#, the language used for the examples
in the book.

To get the most out of chapter 4, “Working with ADO.NET and databases,” you should have
some knowledge of SQL database objects including databases, tables, and SQL queries. Likewise,
chapter 8, “Creating the Web Forms user interface,” assumes a basic understanding of the Web
including HTML, HTTP, and forms processing.

Choosing a .NET programming language

.NET is a language-neutral platform, and comes with a huge set of class libraries that are acces-
sible to all .NET-compliant languages. Therefore, you can code equally powerful programs
using C#, Visual Basic .NET, JScript .NET, or a host of third-party languages. So which lan-
guage should you choose?

The obvious candidates are C# and Visual Basic .NET since most Windows developers will be
coming from a Visual C++ or Visual Basic background. At the outset, I considered including
examples using both C# and Visual Basic .NET. However, it quickly became clear that the result
would be a repetitious book, which might shortchange both groups of readers. I settled on C#
since it was designed for use with .NET and carries no legacy baggage. Being designed with .NET
in mind, it could also be argued that C# provides the most natural fit to .NET’s object model.

It is worth noting that there is less difference between C# and Visual Basic .NET than you might
think at first glance. Programmers from both camps will need to get comfortable with assemblies,
namespaces, types, classes, structs, enums, interfaces, methods, properties, events, delegates,
threads, and more. These are features of .NET, and not the preserve of a particular programming
language. So the differences between C# and Visual Basic .NET are mostly syntax-related.

Ultimately, you’ll choose the language(s) with which you are most comfortable. This book
teaches .NET, not C#. I hope that, by placing the C# introduction in a separate appendix, it will
help to distinguish the C# language from the (language-neutral) .NET platform.

Depending on the level of interest, I hope to be able to provide a Visual Basic .NET edition
of this book in the future. Stay tuned.

Do I need Visual Studio .NET?

Visual Studio .NET is Microsoft’s integrated development environment (IDE) for .NET program-
ming. It provides an impressive array of features that automate many tedious development tasks,
making your job easier. However, for the beginning .NET programmer, this automation hinders
understanding. So we’ll build our examples, and our case study, using the .NET SDK tools.

Although you don’t need a copy of Visual Studio .NET to follow along, we won’t completely
ignore the IDE. In particular, we’ll briefly explore the creation of Visual Studio .NET projects and
the use of the drag-and-drop forms designer to create both Windows Forms and Web Forms.
xiv PREFACE

Organization of this book

This book contains eight chapters and three appendixes:

Chapter 1 Introduction. Chapter 1 provides an overview of the .NET architecture and intro-
duces application development using the .NET Framework class library.

Chapter 2 Understanding types and assemblies. In chapter 2, we look at fundamental .NET
features including types, assemblies, and the Microsoft Intermediate Language, or IL. Also, to
illustrate reflection, we develop a simple language compiler.

Chapter 3 Case study: a video poker machine. The video poker case study is introduced and
described in chapter 3. We develop simple COM-based and Internet Explorer-based versions of
the game.

Chapter 4 Working with ADO.NET and databases. Chapter 4 introduces ADO.NET and
the new disconnected architecture for data access via the Internet. We also look at XML serializa-
tion, and we implement a data tier for the case study.

Chapter 5 Developing remote services. In chapter 5, we explore the .NET remoting architec-
ture and the activation models it offers. We also look at Windows Services and Microsoft Mes-
sage Queuing, and we use what we learn to develop several new versions of the case study.

Chapter 6 Developing XML Web services. Chapter 6 describes .NET’s features for developing
XML Web services. We look at SOAP, WSDL, and UDDI, and we present a Web service-based
implementation of the case study.

Chapter 7 Creating the Windows Forms user interface. We explore Windows Forms, the
new class library for the creation of Windows GUI applications, in chapter 7. We examine the
Windows Forms programming model, and we see how to design a GUI using the Visual Studio
.NET forms designer. We also implement a Windows Forms-based version of the case study.

Chapter 8 Creating the Web Forms user interface. Chapter 8 explores ASP.NET and the Web
Forms classes for the creation of browser-based applications. We examine the new server controls
and we learn how to create our own user controls. We also look at designing Web Forms inside
Visual Studio .NET, and we develop a Web Forms-based version of the case study.

Appendix A Introduction to C#. Appendix A provides an introduction to the C# program-
ming language. For readers who have no exposure to C#, this material provides all you need to
follow the book’s examples.

Appendix B The poker engine listings. Appendix B contains the C# code for the classes that
make up the Poker.dll assembly.

Appendix C The WinPok.cs listing. Appendix C presents the C# listing of the Windows
Forms-based video poker machine.

Each chapter builds on previous material. So the chapters are best read in the order presented.
PREFACE xv

The programming samples

This book contains many short programs and code snippets designed to illustrate .NET program-
ming. While writing the book I’ve had several discussions about so-called real-life examples and
I’ve had reason to think about this. Witness the increasing number of programming books that
use e-commerce as a vehicle for examples. I generally dislike this trend for the following reasons.

The obvious problem with real-life examples is that people’s lives differ. The reader engaged
in retail e-commerce may want to see an online shopping cart example. The banker might want
to see a financial application. The list goes on.

The second problem is that real-life examples often deviate from established principles of good
teaching. In general, an example should be just big enough to illustrate the point. Any bigger, and
it can obscure it. This is particularly relevant for a new technology such as .NET. If you can dem-
onstrate .NET remoting by invoking a method that says “Hello from Server X”, then there is no
need to distract the reader with details of an imaginary banking application.

However, there is no doubt that more substantial real-life examples can be useful, provided
they are confined to a case study where they do not interfere with the presentation of basic con-
cepts. Therefore, this book includes both short illustrative examples, and a complete case study.
The case study provides a realistic example of a production .NET system consisting of several
interrelated applications and components. For the most part, when introducing a concept for the
first time, I use examples that are as short as possible. When we are acquainted with the concept,
we apply what we’ve learned by integrating the feature into the case study.

The source code for all examples in this book is available for download from http://www.man-
ning.com/grimes.

The case study

The case study is an implementation of a video poker gaming machine. I think it makes a good
case study for the following reasons:

• Video poker is defined by a small set of simple rules that can be easily digested and remembered.

• It is most naturally implemented as a game engine and a set of interfaces. We’ll reuse the
same engine to implement different versions of the game based on COM, Internet Explorer,
remoting, Windows services, message queuing, XML Web services, Windows Forms, Web
Forms, and Mobile Forms. In doing so, we get a fairly complete tour of .NET development.

• The game looks nice on the screen.

• It will sharpen your poker skills!

Is this a real-life example? Yes. For a short period in the mid-1980s I made a meager living writ-
ing video poker machine software. For those of you who are interested, the game was coded in
PL/M-80, an Intel language for its 8080 series processors. The software was compiled on an
Intellec development system and transferred directly to EPROM for testing inside the machine.
(We didn’t have an in-circuit emulator.)

Any similarity between the game presented here and any commercial video poker machine, liv-
ing or dead, is purely coincidental. In particular, the payout control strategy we explore is designed
xvi PREFACE

to illustrate ADO.NET database programming. It is not intended to be a serious payout manage-
ment algorithm.

Organization of a typical chapter

Once we’ve established the basics and introduced the case study in the early chapters, the typical
structure of the each chapter is:

• Briefly introduce the new topic; e.g., XML Web services or Windows Forms

• Present a simple example program to illustrate the topic

• Present and discuss incrementally more complex examples to reveal the topic in full

• Apply what we’ve learned to the case study

Therefore, the case study is a recurring theme throughout the book, and serves as a vehicle to
implement what we’ve learned as we progress through the material.

Conventions used in this book

The following typographic conventions are used in this book:

• Constant width is used for all program code and listings, and for anything you would
typically type verbatim.

• Italic font is used for file and directory names, and for occasional emphasis such as when a
new term is being introduced.

• NOTE is used to indicate an important side comment to the main text.
PREFACE xvii

acknowledgments

I would like to the thank the following people for their expertise, their support, and their hard
work in getting this book to print.

A special thanks goes to Ruth Meade who helped conceive the original idea for the book, and
reviewed and edited each draft of the manuscript. I am indebted to Ruth for her suggestions and
advice which she always delivered with good humor.

There would be no book without the committed support and assistance of the team at Man-
ning Publications. So I thank Marjan Bace, for publishing this book and for many hours of good
conversation, and Ted Kennedy for coordinating the many reviews. To the production team, who
worked extremely hard to get this book out on time, many thanks: Mary Piergies, Syd Brown,
Dottie Marsico, and Elizabeth Martin. Thanks also to the rest of the Manning team, including
Susan Capparelle, Leslie Haimes, and Helen Trimes.

There were many people who reviewed the manuscript at various stages of development. I am
grateful to them all for their invaluable suggestions and comments: Daniel Anderson, Greg Bridle,
Gary DeCell, Mitch Denny, Marc Hoeppner, Bob Knutson, Grace Meade, Darrel Miller, Devon
O'Dell, and Mark Wilson. A special thanks to Eric Kinateder who reviewed the manuscript, the
sample programs, and the case study for their technical accuracy.

Finally, I would like to thank my family for their encouragement and support. I'm especially
grateful to my brother, Eoin, for pointing out, years ago, that Maslow's hierarchy is upside down.
xviii

author online

One of the advantages of buying a book published by Manning, is that you can participate in the
Author Online forum. So, if you have a moment to spare, please visit us at http://www.man-
ning.com/grimes. There you can download the book’s source code, communicate with the
author, vent your criticism, share your ideas, or just hang out.

Manning’s commitment to its readers is to provide a venue where a meaningful dialog between
individual readers and between readers and the author can take place. It is not a commitment to
any specific amount of participation on the part of the author, whose contribution to the AO
remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessible from the
publisher's Web site as long as the book is in print.
xix

about the cover illustration

The figure on the cover of Microsoft .NET for Programmers is a “Gran Visir,” the Prime Minister
to the Sultan in a medieval Arabic country. While the exact meaning of his position and his
national origin are lost in historical fog, there is no doubt that we are facing a man of stature and
authority. The illustration is taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo desubierto, dibu-
jados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en special para los que
tienen la del viajero universal

Which we translate, as literally as possible, as:

General Collection of Costumes currently used in the Nations of the Known World, designed and
printed with great exactitude by R.M.V.A.R. This work is very useful especially for those who hold
themselves to be universal travelers.

Although nothing is known of the designers, engravers, and workers who colored this illustration
by hand, the “exactitude” of their execution is evident in this drawing. The “Gran Visir” is just
one of many figures in this colorful collection which reminds us vividly of how culturally apart
the world’s towns and regions were just 200 years ago. Dress codes have changed since then and
the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhab-
itant of one continent from another. Perhaps we have traded a cultural and visual diversity for a
more varied personal life—certainly a more varied and interesting world of technology.

At a time when it can be hard to tell one computer book from another, Manning celebrates
the inventiveness and initiative of the computer business with book covers based on the rich diver-
sity of regional life of two centuries ago—brought back to life by the picture from this collection.
xx

C H A P T E R 1

Introduction

1.1 Developing for the .NET

platform 2
1.2 A first .NET program 4
1.3 The platform vs. the programming

language 6

1.4 Exploring the .NET Framework class
library 7

1.5 Putting .NET to work 11
1.6 Summary 14
Since Microsoft unveiled .NET in the summer of 2000, many have had difficulty
defining exactly what .NET is. According to Microsoft, “.NET is Microsoft’s platform
for XML Web Services.” That’s true, but it is not the whole story. Here are a few of
the highlights:

• .NET is a new platform for the development and deployment of modern,
object-oriented, “managed” applications.

• Fully functional .NET applications can be developed using any programming
language that targets the .NET runtime.

• .NET provides a comprehensive framework of language-neutral class libraries.

• .NET supports the creation of self-describing software components.

• .NET supports multilanguage integration, cross-language component reuse, and
cross-language inheritance.

• .NET introduces a new way to develop Windows desktop applications using the
Windows Forms classes.
1

• .NET provides a new way to develop Web browser-based applications using the
ASP.NET classes.

• .NET’s ADO.NET classes provide a new disconnected architecture for data
access via the Internet.

• .NET supports the creation of platform-independent XML Web services using
standards such as SOAP (Simple Object Access Protocol) and WSDL (Web Ser-
vice Description Language).

• .NET provides a new architecture for the development and deployment of
remote objects.

• .NET makes many Windows technologies and techniques obsolete.

So .NET is big, and requires almost a fresh start for developers working with
Microsoft platforms and tools. For Microsoft, the release of .NET is arguably the
most important event since the introduction of Windows itself.

1.1 DEVELOPING FOR THE .NET PLATFORM

For Windows developers, .NET offers relief from the hegemony of Visual C++ and
Visual Basic. .NET is independent of any programming language. There are .NET
compilers available for several languages and more are planned. Available at the time
of writing are C#, Visual Basic .NET, JScript .NET, COBOL, Perl, Python, Eiffel,
APL, and others. You can also use the managed extensions for Visual C++ to write
.NET applications. .NET supports these languages by supporting none directly.
Instead, .NET understands only one language, Microsoft Intermediate Language (IL).

1.1.1 A language-independent platform

A language compiler targets the .NET platform by translating source code to IL, as we
see in figure 1.1.

The output from compilation consists of IL and metadata. IL can be described as
an assembly language for a stack-based, virtual, .NET “CPU.” In this respect, it is similar
to the p-code generated by early versions of Visual Basic, or to the bytecode emitted by
a Java compiler. However, IL is fully compiled before it is executed. A further difference
is that IL was not designed with a particular programming language in mind. Instead,
IL statements manipulate common types shared by all .NET languages. This is known
as the Common Type System, or CTS. A .NET type is more than just a data type; .NET
types are typically defined by classes that include both code and data members.

At run time, the Common Language Runtime (CLR, in figure 1.1) is responsible for
loading and executing a .NET application. To do this, it employs a technique known
as Just-In-Time (JIT) compilation to translate the IL to native machine code. .NET code
is always compiled, never interpreted. So .NET does not use a virtual machine to exe-
cute the program. Instead, the IL for each method is JIT-compiled when it is called for
the first time. The next time the method is called, the JIT-compiled native code is
2 CHAPTER 1 INTRODUCTION

executed. (This is the general case, since .NET code can also be pre-JITted at installa-
tion time.)

The compilation process produces a Windows executable file in portable executable
(PE) format. This has two important implications. First, the CLR neither knows, nor
cares, what language was used to create the application or component. It just sees IL.
Second, in theory, replacing the JIT compiler is all that’s necessary to target a new plat-
form. In practice, this will likely happen first for different versions of Windows includ-
ing Windows CE and future 64-bit versions of Windows.

1.1.2 .NET and managed code

.NET applications, running under the scheme shown in figure 1.1, are referred to as
managed applications. In contrast, non-.NET Windows applications are known as
unmanaged applications. Microsoft recognizes that managed and unmanaged code
will coexist for many years to come and provides a means to allow both types of code
to interoperate. Most common will be the need for .NET applications to coexist
alongside COM in the immediate future. Therefore, Microsoft has endowed .NET
with the ability to work with unmanaged COM components. It is also possible to reg-
ister a .NET component as a COM object. Similarly, for Win32 API access, .NET
allows managed code to call unmanaged functions in a Windows dynamic-link
library (DLL). We’ll look at some examples of .NET/COM/Win32 interoperation in
the following chapters.

In addition to JITting the code, the CLR manages applications by taking responsi-
bility for loading and verifying code, garbage collection, protecting applications from
each other, enforcing security, providing debugging and profiling services, and

Figure 1.1

All languages are

compiled to IL
DEVELOPING FOR THE .NET PLATFORM 3

supporting versioning and deployment. Code management by the CLR provides an
extra layer that decouples the application from the operating system. In the past, the
services provided by this layer would have been implemented in the application itself,
provided by the operating system, or done without.

You may be wondering about the metadata emitted along with IL by the language
compilers shown in figure 1.1. This is a key feature of .NET. For those of you familiar
with COM or CORBA, the metadata can best be described as a form of Interface Def-
inition Language (IDL) that is automatically produced by the language compiler.
Metadata describes types including their fields, properties, method signatures, and sup-
ported operations. By producing this data automatically at compile time, .NET com-
ponents are self-describing and no additional plumbing is required to get .NET
components, written in different programming languages, to interoperate seamlessly.

1.2 A FIRST .NET PROGRAM

Without further delay, let’s take a look at a simple .NET application. The program
shown in listing 1.1 is a simple C# command-line program which greets the user.

// file : hello.cs
// compile : csc hello.cs

using System;

class Hello {

 public static void Main() {
 Console.WriteLine("Hello from C#");
 }
}

Every C# program must contain at least one class. In this case, that class is Hello and
its Main method is the program’s entry point where execution begins. (A member
function of a class is known as a method.) To display the greeting, the program calls:

 Console.WriteLine("Hello from C#");

This calls the WriteLine method of the Console class, which is contained in the
System namespace, to display the message. The System namespace is part of
.NET’s Framework class library. We could have coded this call, as follows:

 System.Console.WriteLine("Hello from C#");

Instead we declared the System namespace at the start of our program:

using System;

This allows us to omit the namespace name and provides a shorthand for referring to
System classes within our program.

 Listing 1.1 Hello from C#
4 CHAPTER 1 INTRODUCTION

This short example demonstrates the use of .NET’s Framework class library, a huge
repository of useful classes, which we can use in our .NET applications. These classes
are grouped by function and logically arranged in namespaces. We’ll look at some com-
mon namespaces in a moment.

1.2.1 Compiling the C# Hello program

To compile and test this example, you’ll need a copy of the .NET SDK, or Visual Stu-
dio .NET. At the time of writing, the SDK could be downloaded from the Microsoft
Developer Network site, http://www.msdn.com.

To compile and run this program, open a command window, and use the C# com-
mand-line compiler, as shown in figure 1.2.

If csc.exe is not found, you’ll have to add the directory where it resides to your path.
This directory will depend on the version of .NET you are using and should look like
C:\WINNT\Microsoft.NET\Framework\<.NET Version>.

We’ll be using C# for the programming examples in this book. For readers unfa-
miliar with the language, a complete introduction is provided in appendix A. However,
before we commit to C#, let’s take a brief look at Visual Basic .NET.

1.2.2 A Visual Basic .NET Hello program

For comparison, listing 1.2 shows the same program coded in Visual Basic .NET.

' file : hello.vb
' compile : vbc hello.vb

Imports System

module Hello

 sub main()
 Console.WriteLine("Hello from VB.NET")
 end sub

end module

Figure 1.2 Compiling and running the C# Hello program

 Listing 1.2 Hello from VB.NET
A FIRST .NET PROGRAM 5

You can see that the Visual Basic .NET version of the program is very similar. Specifi-
cally, the Visual Basic .NET program uses the same Console class from the System
namespace. The Framework class library is part of the .NET platform and is not the
preserve of a particular programming language.

In general, there is less difference between C# and Visual Basic .NET than you
might expect, and those differences that exist are mostly syntax-based. C# and Visual
Basic .NET programmers use the same framework classes and deal with the same .NET
concepts, including namespaces, classes, the CLR, and so forth. Also, as we saw in figure
1.1, both C# and Visual Basic .NET programs are compiled to IL. If you were to exam-
ine the generated IL for the previous C# and Visual Basic .NET examples, you’d find
the output almost identical.

1.3 THE PLATFORM VS.
THE PROGRAMMING LANGUAGE

IL is not a typical assembly language in the tradition of machine assembly languages
such as 8080 or 6809 assembler. Instead, it is comprised of an instruction set and an
array of features that are designed to support the essential operations and characteris-
tics of many modern, object-oriented languages. The focus of .NET is on a common
object system instead of a particular programming language.

The CLR directly supports many features which might ordinarily be features of the
programming language. This includes a language-neutral type system with support for
classes, inheritance, polymorphism, dynamic binding, memory management, garbage
collection, exception handling, and more. For example, the same garbage collector is
responsible for deleting unused objects from the heap and reclaiming memory, no mat-
ter which programming language was used to code the application. So, inclusion of fea-
tures such as these in the CLR provides a common bridge to facilitate language
interoperation and component integration.

To facilitate cross-language interoperability, .NET includes a Common Language
Specification, or CLS, that represents a common standard to which .NET types should
adhere. This standard lays down rules relating to allowed primitive types, array bounds,
reference types, members, exceptions, attributes, events, delegates, and so forth. Com-
ponents and libraries which adhere to this standard are said to be CLS-compliant.

Cross-language inheritance presents no special challenge when CLS-compliant code
is involved. You can create a base class using Visual Basic .NET, derive a C# class from
it, and seamlessly step through both with a source-level debugger. This level of lan-
guage interoperability is probably one of .NET’s greatest strengths. Many powerful and
elegant programming languages, commonly available on other platforms, have failed
to become first-class citizens of the Windows world due to their limited integration
with the platform. .NET promises to change this.
6 CHAPTER 1 INTRODUCTION

1.4 EXPLORING THE .NET FRAMEWORK
CLASS LIBRARY

In the early days of Windows development, applications were typically coded in C
and interaction with the operating system was through C-based API function calls
into system DLLs. This was a natural consequence of the fact that much of Windows
itself was written in C. Over the years, the emphasis has gradually shifted to more
flexible COM-based interfaces that can be invoked by both traditional C-based appli-
cations and by scripting languages.

.NET supplants both these approaches with a new language-independent frame-
work class library. Under the .NET Framework, everything is an object, from a humble
C# or Visual Basic .NET array (System.Array), to a directory under the file system
(System.IO.Directory), to the garbage collector itself (System.GC).

1.4.1 An overview of important namespaces

As we’ve already noted, the .NET Framework classes are grouped by function and log-
ically organized into namespaces. There are almost 100 namespaces shipped with the
.NET SDK, and some contain dozens of classes. Therefore we can’t explore them all
here. Even if we could, we’d soon forget most of them. So table 1.1 lists some of the
more commonly used namespaces and provides a brief description of each.

Table 1.1 Common .NET namespaces

Namespace Functional area of contained classes

Microsoft.CSharp Compilation and code generation using the C# language

Microsoft.JScript Compilation and code generation using the JScript
.NET language

Microsoft.VisualBasic Compilation and code generation using the Visual Basic
.NET language

Microsoft.Win32 Windows registry access and Windows system events

System Commonly used value and reference data types, events
and event handlers, interfaces, attributes, exceptions,
and more. This is the most important namespace

System.Collections Collection types, such as lists, queues, arrays, hashta-
bles, and dictionaries

System.ComponentModel Run-time and design-time behavior of components

System.Configuration Access to .NET Framework configuration settings

System.Data ADO.NET types

System.Data.SqlClient SQL Server .NET Data Provider types

System.Data.SqlTypes Native SQL Server data types

System.Diagnostics Application debugging and tracing. Also Windows
Event Log class.

continued on next page
EXPLORING THE .NET FRAMEWORK CLASS LIBRARY 7

System.DirectoryServices Active Directory access using service providers such
as LDAP and NDS

System.Drawing Windows GDI+ graphics types

System.Globalization Culture-related types embracing language, string sort
order, country/region, calendar, date, currency and
number formats

System.IO Reading and writing of streams and files

System.Messaging Sending, receiving, and managing queued messages
(MSMQ)

System.Net Simple API for network protocols such as DNS and
HTTP

System.Net.Sockets API for TCP/UDP sockets

System.Reflection Access to loaded types and their members

System.Reflection.Emit Metadata/IL emission and PE file generation

System.Resources Creation and management of culture-specific applica-
tion resources

System.Runtime.InteropServices Accessing COM objects and native APIs

System.Runtime.Remoting Creation and configuration of distributed objects

System.Runtime.Remoting.Channels Managing remoting channels and channel sinks

System.Runtime.Remoting.Channels.Http HTTP (SOAP) channel management

System.Runtime.Remoting.Channels.Tcp TCP (binary) channel management

System.Runtime.Remoting.Lifetime Managing the lifetime of remote objects

System.Security Accessing the underlying CLR security system

System.Security.Permissions Controlling access to operations and resources based
on policy

System.Security.Policy Code groups, membership conditions, and evidence,
which define the rules applied by the CLR security pol-
icy system

System.Security.Principal Identity/Principal classes, interfaces, and enumerations
used in role-based security

System.ServiceProcess Windows service installation and execution

System.Text Text encoding and conversion for ASCII, Unicode,
UTF-7, and UTF-8

System.Text.RegularExpressions Access to the built-in regular expression engine

System.Threading Classes and interfaces for multithreaded programming

System.Timers Timer component for raising events at specified
intervals

System.Web Browser/server communication including commonly
used ASP.NET classes such as HttpApplication,
HttpRequest, and HttpResponse

System.Web.Configuration ASP.NET configuration classes and enumerations

continued on next page

Table 1.1 Common .NET namespaces (continued)

Namespace Functional area of contained classes
8 CHAPTER 1 INTRODUCTION

The list of namespaces in table 1.1 includes only the more commonly used
namespaces, most of which are used in examples in the chapters that follow.

1.4.2 Programming with the .NET Framework classes

Namespaces provide a convenient way to logically group related classes together.
They also prevent name clashes where two or more classes have the same name, but
reside in different namespaces. The classes themselves physically reside in DLL files
that are shipped with the .NET Framework. Depending on the version of .NET you
are using, these DLLs can be found in the C:\WINNT\Microsoft.NET\Frame-
work\<.NET Version> directory.

The most common classes reside in the core library file, mscorlib.dll. When you use
classes that reside in other DLLs, you must refer to the DLL when you compile your
program. For example, the SecurityIdentity class from the System.Enter-
priseServices namespace resides in the System.Enterpriseservices.dll. To compile a
C# program that uses this class, you need to use the C# compiler’s /reference
option and provide the DLL name:

csc /reference:System.Enterpriseservices.dll MyProg.cs

Or, for short:

csc /r:System.Enterpriseservices.dll MyProg.cs

System.Web.Services Building and using Web services

System.Web.Services.Description Describing a Web service using WSDL

System.Web.Services.Discovery Discovering Web services via DISCO

System.Web.SessionState Access to ASP.NET session state

System.Web.UI Creation of ASP.NET Web pages and controls

System.Web.UI.Design Extending design time support for Web Forms

System.Web.UI.Design.WebControls Extending design time support for Web controls

System.Web.UI.HtmlControls Creating HTML server controls

System.Web.UI.WebControls Creating Web server controls

System.Windows.Forms Creating Windows Forms-based user interfaces and
controls

System.Windows.Forms.Design Extending design-time support for Windows Forms

System.Xml Standards-based XML support

System.Xml.Schema Standards-based support for XML schemas

System.Xml.Serialization Serializing objects into XML documents or streams

System.Xml.XPath The XPath parser and evaluation engine

System.Xml.Xsl Support for XSL transformations

Table 1.1 Common .NET namespaces (continued)

Namespace Functional area of contained classes
EXPLORING THE .NET FRAMEWORK CLASS LIBRARY 9

Note that there isn’t a one-to-one correspondence between namespaces and DLLs. A
DLL may contain classes from several different namespaces, while classes from the
same namespace may be physically distributed among several DLLs.

NOTE For each class in the Framework, the .NET reference documentation gives
both the containing namespace name, and the name of the physical file
where the class resides.

Figure 1.3 illustrates how the Framework fits into the .NET development model.

Metadata flows from the Framework class library to the C# compiler. The compiler
uses the metadata to resolve references to types at compile time. Unlike C and C++,
C# does not use header files, nor is there an explicit linkage stage in the build process.

In figure 1.3, we also see the CLR pulling in the IL and metadata for both the appli-
cation and the Framework classes it uses. This process is analogous to dynamic linking
under Windows, but with the extra .NET bells and whistles described earlier, such as
verifying type-safety and enforcing version policy.

1.4.3 What happened to ASP and ADO?

You may be familiar with Active Server Pages (ASP) and ActiveX Data Objects (ADO),
and you may wonder how they fit into the .NET puzzle. In fact, they are implemented
as part of the class library. For example, the System.Data, System.Data.Sql-
Client, and System.Data.SqlTypes namespaces, shown in table 1.1, make
up part of the new ADO.NET subsystem. Likewise, the System.Web,
System.Web.UI, and several other namespaces listed in table 1.1, make up part of
the new ASP.NET subsystem. In the same way, the Framework also embraces Windows
GUI development with the Windows Forms classes in System.Windows.Forms.

Figure 1.3 Architecture of .NET
10 CHAPTER 1 INTRODUCTION

This is consistent with the .NET approach in which previously disparate and often-
unrelated areas of Windows and Web-based development are combined in a single new
framework. The historical division of skills between Visual C++ component develop-
ers, Visual Basic graphical user interface (GUI) developers, and VBScript/HTML Web
developers, is a thing of the past.

Under .NET, coding Web-based applications is no longer a separate discipline and
the artificial divide between component development and scripting no longer exists.
For example, you can include C# code in an ASP.NET page. The first time the page is
requested, the C# compiler compiles the code and caches it for later use. This means
that the same set of programming skills can be employed to develop both Windows and
Web-based applications. Likewise, Visual Basic developers have the full power of Visual
Basic .NET with which to develop ASP applications, while VBScript has been retired.

1.5 PUTTING .NET TO WORK

The breadth of coverage of .NET, and the way it unifies previously separate program-
ming disciplines makes it possible to develop and deploy complex distributed applica-
tions like never before. Let’s consider an example. Figure 1.4 depicts a loan department
in a bank together with the applications, and users, involved with the system.

Let’s see how we use .NET to develop the applications and components required
to build and deploy a loan system like this:

1 Loan database—The database contains the data for individual loan accounts. It
also contains views of the bank’s customer database. The loan database might be
stored in SQL Server, Oracle, Informix, DB2, or some similar database manage-
ment system.

2 Data tier—This is the data tier in an N-tier, client/server arrangement. The data
tier uses ADO.NET to talk to the database system and it presents an object-
oriented view of the data to the logic tier. In other words, it maps database
records and fields to objects that represent customers, loans, payments, and so
forth. We could use C#, or Visual Basic .NET, or some other .NET-compliant
language to implement the data tier.

3 Logic tier—The logic tier contains the business rules. We can look upon this
layer as the engine at the heart of the system. Once again, we can use C# or
Visual Basic .NET, or some other .NET language here. Our choice of program-
ming language is not affected by the language used to develop the data tier.
Cross-language compatibility, including cross-language inheritance, means that
we can pick the best language for the task at hand. The CLR and the CLS com-
bine to ensure that we can freely mix and match languages, as required.

4 Internal loan department applications—We would probably choose to develop
internal-use applications as traditional Windows GUI applications. Using typi-
cal client/server techniques, these internal applications would talk directly to
PUTTING .NET TO WORK 11

the logic layer across the bank’s local area network. The traditional Windows
GUI model is known in .NET as Windows Forms. It is similar to the tried-and-
tested Visual Basic forms model. Using Visual Studio .NET, forms can be
designed using a drag-and-drop approach. Windows Forms can contain all the
familiar Windows controls, such as the buttons, check boxes, labels, and list
boxes. It also contains a new version of the Windows Graphical Device Inter-
face (GDI), a new printing framework, a new architecture for controls and con-
tainers, and a simple programming model similar to Visual Basic 6.0 and earlier
versions of Visual Basic.

5 Administrator console applications—Perhaps the bank uses Informix on UNIX as
the database management system. If so, we may have administrators who wish
to run .NET applications from their UNIX workstations. .NET’s humble
System.Console class can be used to create command line applications that
operate over a telnet connection. For example, using Visual Basic .NET or C#,
we might write a console application to allow an administrator on another

Figure 1.4 A sample bank loan system which uses .NET
12 CHAPTER 1 INTRODUCTION

platform to archive expired loans. Console I/O and a modern GUI cannot be
compared for usability, but it is useful and appropriate in a case such as this.

6 Business partner Web service (produce)—Here we have a business partner, a col-
lection agency, hired by the bank to pursue payment of delinquent loans. In the
past, we might have designed a batch application to extract delinquent accounts
every day and export them to a flat file for transmission to the collection agency.
With .NET, we can implement this function as a Web service that exposes delin-
quent accounts to remote clients. This means that the collection agency can
hook its own applications into the bank’s loan system and extract delinquent
accounts as required. While human surfers consume Web sites, Web services are
consumed by other applications. They promise a future, federal model where
independent Web services will be produced, consumed, reused, and combined
in the creation of powerful, interconnected applications. The simplicity of the
Web service model will likely give rise to a rapid increase in automated,
business-to-business, e-commerce applications.

7 Business partner Web service (consume)—The loan system might also be a con-
sumer of Web services produced by other business partners. Here, we see a
credit agency that produces a Web service to enable commercial customers to
perform credit checks on loan applicants. .NET provides the tools to build a cli-
ent to consume this service and integrate it into our loan system.

8 Customer Web-based applications—Using ASP.NET, we can quickly deploy a
Web-based loan application system which gives the customer immediate access
to the loan system. Also, .NET’s Mobile Internet Toolkit means that we can
deploy and integrate an interface that allows customers with handheld devices,
such as Web-enabled phones and personal digital assistants (PDAs), to access the
loan system for balance enquiries and transfers.

Perhaps it’s more instructive to consider what’s missing from figure 1.4. For example,
there are no CORBA or DCOM components. Instead, we leverage the Web server
using ASP.NET’s XML Web services infrastructure to expose system functions to
remote callers.

Neither do we employ any additional servers or filters to support multiple mobile
devices such as Web-enabled phones and hand-held PCs. We use the controls from the
Mobile Internet Toolkit to take care of detecting and supporting multiple devices.

Although not evident in figure 1.4, no special steps are taken to support multiple
browsers. Instead, we use ASP.NET controls that automatically take care of browser
compatibility issues. This means that our ASP.NET applications can take advantage of
the extended features of higher-level browsers, while automatically producing plain old
HTML for older browsers.

This example depicts a moderately complex system involving multiple interfaces
and different user types, including bank staff, customers, and business partners, who
PUTTING .NET TO WORK 13

are distributed in different locations working on multiple platforms. .NET provides us
with everything we need to build and deploy a system such as this.

Starting in chapter 3, we begin a case study containing all the essential features
of the system depicted in figure 1.4. We develop a video poker machine and deploy
it as a console application, a Windows application, a Web-based application, a
remote object, a mobile application, an XML Web service, a Windows service, and
a message-based service. We implement a 3-tier client/server architecture, and our
poker machine will exhibit all the essential features of a modern, multi-interface, dis-
tributed application.

1.6 SUMMARY

We have taken a first look at the features of the .NET platform. We learned about the
CLR and that .NET is fundamentally agnostic about the choice of programming lan-
guage. We explored the Framework class library and we noted that subsystems such as
ADO.NET and ASP.NET are integral pieces of the Framework. We also considered the
case of a distributed bank loan system and how we might use .NET to build it.

In the next chapter, we explore .NET types and assemblies, the fundamental build-
ing blocks of .NET applications.
14 CHAPTER 1 INTRODUCTION

C H A P T E R 2

Understanding types
and assemblies

2.1 Introducing types 16
2.2 Value vs. reference types 18
2.3 Exploring System.Object 21
2.4 Understanding finalization 23
2.5 Introducing assemblies 26
2.6 Private vs. shared assemblies 29

2.7 Downloading assemblies 35
2.8 Programming in IL 37
2.9 Types, assemblies, and

reflection 41
2.10 Building a simple compiler 44
2.11 Summary 54
Creating a .NET application involves coding types, and packaging them into assem-
blies. .NET types are similar to data types in non-object-oriented languages except
that they contain both data, in the form of fields, and behavior in the form of meth-
ods. .NET types are also language-neutral. An assembly containing types coded in one
language can be used by an application coded in a different language. So types and
assemblies are the basic building blocks and they are important concepts for .NET
developers.

In this chapter, we explore .NET types and assemblies. .NET provides both value
and reference types and uses an elegant mechanism called boxing to convert between
the two. Value types provide a lightweight, stack-based means of creating runtime
objects, thus avoiding the overhead of garbage collection. As we’ll see, most of the
primitive .NET types are value types.
15

We examine both private and shared assemblies. Private assemblies enable devel-
opers to ship DLLs while avoiding the potential problems associated with their public
accessibility and versioning. A shared assembly, on the other hand, is shared by mul-
tiple applications. We also develop a small sample program that downloads and installs
an assembly on demand.

The .NET Framework provides reflection classes to enable applications to inspect
assemblies and to discover and instantiate types at run time using late binding. The
System.Reflection.Emit namespace provides classes that can be used to
dynamically generate new types and assemblies at run time. We use these classes for
our final example in this chapter when we develop a complete compiler for a simple
programming language.

If you are new to C#, now would be a good time to refer to appendix A. There,
you’ll find an introduction to the language that should equip you with the skills to
work through the examples in this chapter, and in the remainder of the book.

2.1 INTRODUCING TYPES

Every object in a .NET program is an instance of a type that describes the structure of
the object and the operations it supports. Table 2.1 lists the built-in types available in
C#, Visual Basic .NET, and IL, and their relationship to the underlying .NET types.

From the table, we can see that the built-in language types are just aliases for underly-
ing .NET types. For example, .NET’s System.Single, which represents a 32-bit

Table 2.1 .NET built-in types

NET C# VB.NET IL
Value or

Reference

System.Boolean bool Boolean bool Value

System.Byte byte Byte unsigned int8 Value

System.Char char Char char Value

System.DateTime - Date - Value

System.Decimal decimal Decimal - Value

System.Double double Double float64 Value

System.Int16 short Short int16 Value

System.Int32 int Integer int32 Value

System.Int64 long Long int64 Value

System.Object object Object object Reference

System.SByte sbyte - int8 Value

System.Single float Single float32 Value

System.String string String string Reference

System.UInt16 ushort - unsigned int16 Value

System.UInt32 uint - unsigned int32 Value

System.UInt64 ulong - unsigned int64 Value
16 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

floating-point number, is known as float in C#, Single in Visual Basic .NET, and
float32 in IL. This cross-language type system is known as Common Type System
(CTS), and it extends beyond the primitive types. The CTS defines how types are
declared, used, and managed in the runtime, and it establishes the basis for cross-
language integration. In fact, it provides an object-oriented model that supports the
implementation of many modern programming languages, and it defines rules to
ensure that objects written in different languages can interoperate.

As we see in table 2.1, not all primitive types are directly supported in every language.
Visual Basic .NET provides a built-in Date type that is not provided by C#. Likewise,
C#’s unsigned integer types are not supported by Visual Basic .NET, and IL does not have
a decimal type. In such cases, you can always use the underlying .NET type directly:

 // C# date...
 System.DateTime d = System.DateTime.Now;

 ' VB unsigned integer...
 Dim u As System.UInt32

 // IL decimal...
 .locals (valuetype [mscorlib]System.Decimal d)

The CTS forms the foundation for .NET’s cross-language abilities. Since new types
are defined in terms of the built-in .NET types, mixed language application develop-
ment presents no special difficulty for .NET developers. However, since not all types
will be available in all languages, the Common Language Specification (CLS) specifies
a subset which should be used when developing libraries for cross-language use. Such
libraries are termed CLS-compliant.

For example, System.SByte, System.UInt16, System.UInt32, and
System.UInt64, are not CLS-compliant nor are they available as primitive types in
Visual Basic .NET. Generally, non-CLS-compliant types may not be directly supported
by some languages and should not be exposed as public members of programmer-
defined types in libraries designed for cross-language use. If you annotate your code
with the CLSCompliant attribute, the C# compiler will warn you about noncom-
pliance. (See appendix A for a discussion of attributes.)

Table 2.1 also includes the IL names of the .NET types. You can program directly
in IL and, later in this chapter, we’ll develop a skeleton program that can be used as
a starter template for your own IL programs. The low-level nature of IL makes it an
unsuitable choice for general-purpose application development. However, if you
intend to use the System.Reflection.Emit classes to generate your own assem-
blies, an understanding of IL will be essential.

We can explicitly create a new type by defining a class, as in listing 2.1.

// file : person.cs

public class Person {

 public Person(string firstName, string lastName, int age) {

 Listing 2.1 A Person class in C#
INTRODUCING TYPES 17

 FirstName = firstName;
 LastName = lastName;
 Age = age;
 }

 public readonly string FirstName;
 public readonly string LastName;
 public readonly int Age;
}

New types are defined in terms of their constituent types. In this example, the
FirstName, LastName, and Age field members are instances of the types
System.String, System.String, and System.Int32, respectively. Mem-
bers can be fields, methods, properties, or events.

Using the new operator, we can create instances of the Person type, as follows:

 Person p = new Person("Joe", "Bloggs", 40);
 System.Console.WriteLine(
 "{0} {1} is {2} years old.",
 p.FirstName,
 p.LastName,
 p.Age
); // displays "Joe Bloggs is 40 years old."

2.2 VALUE VS. REFERENCE TYPES

.NET types can be divided into value types and reference types. In table 2.1, we see
that the built-in types, with the exception of string and object, are value types.
Typically, value types are the simple types such as int, long, and char, which are
common to most programming languages. Objects, strings, and arrays are examples
of reference types:

 object o = new System.Object();
 string s = "Mary had a little lamb";
 int[] a = {1, 2, 3};

In this example, o is an object reference, s is a string reference, and a is a reference to
an array of integers. All, therefore, are reference types. A reference is a bit like a
pointer in C or C++. It is not in itself an object, rather, it refers to an object. In .NET,
all reference types implicitly derive from System.Object.

Space for value types is allocated on the stack. When a method returns, its local
value types go out of scope and the space allocated to them is automatically reclaimed.
The compiler creates the necessary code to do this automatically, so there is no need
for the program to take explicit steps to delete value types from memory. In contrast,
reference types are created on the managed heap. Figure 2.1 illustrates the distinction.

Both i and j in figure 2.1 are local integer value types. When their definitions are
encountered, two distinct data values are created on the stack. When their containing
method ends, they go out of scope.
18 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

Both s and t are reference types. The assignment, string s = "hello", causes
the string "hello" to be stored on the managed heap and a reference to the string,
s, to be created on the stack. So a reference type embodies a combination of both
location and data. Copying one reference type to another does not copy the data and
so the assignment, string t = s; creates a second reference, t, to the same object.
When their containing method ends, both references go out of scope, and are
destroyed. However, the string, "hello", although inaccessible, remains on the
heap until its space is recovered by the runtime. The recovery process is known as gar-
bage collection. Since it is an automatic process, the programmer generally does not
have to worry about it. Garbage collection means that there is no equivalent of the
C++ delete operator in C#.

A reference type can be null, while a value type cannot:

string s = null; // ok
int i = null; // error - value type

Here, s is declared as a string reference, but no string space is allocated. All references are
type-safe meaning that they can only refer to objects of the correct type. This means that
s, in this example, can refer to null, or to a string, or to its base class, System.Object.
We could not, for example, store a reference to a Person type in s.

2.2.1 The C# struct

Typically, when we create our own types, we create reference types by defining a class
type, such as the Person class in listing 2.1. However, we can create value types too.
In C#, we use a struct to create a new value type. The following example defines a
struct to represent the x and y coordinates of a point:

public struct Point {
 public Point(int x, int y) {
 this.x = x;

Figure 2.1

Value vs. reference types
VALUE VS. REFERENCE TYPES 19

 this.y = y;
 }
 private int x;
 private int y;
}

A struct is typically used for a lightweight class and often contains data members, but
no methods, as in this example. We use the same new operator to create an instance
of a struct:

 Point p = new Point(10, 20);

Small structs can be more efficient than classes because they avoid the extra level of
indirection associated with a reference, and they don’t have to be garbage collected.
However, when you pass a struct to a method, a copy of the struct is passed. In con-
trast, when you pass a class instance, a reference is passed. Therefore, passing large
structs as parameters can negatively impact performance.

A struct cannot inherit from another struct or class, nor can it serve as a base for
inheritance. However, a struct can implement interfaces.

2.2.2 Boxing and unboxing

To preserve the “everything is an object” philosophy, .NET provides a correspond-
ing reference type for every value type. This is known as the value type’s boxed type.
For example, if you store a value type in a reference type, the value type is automat-
ically boxed:

int i = 123;
object o = i;

In this example, we define i as an integer with the value 123. Then, we create an
object reference, o, and assign i to it. This causes an implicit boxing operation.

Boxing causes the runtime to create a new object, containing a copy of i’s value,
on the heap. A reference to this object is stored in o. The original value type, i, is unaf-
fected by the operation.

In contrast, unboxing must be explicitly requested with a cast:

int i = (int)o; // unbox o to i

In this case, we’re unboxing o into an integer i. For this to succeed, o must contain a
reference to an integer type and we must make our intentions clear by casting o to an
integer. Any attempt to unbox to an incompatible type, such as from a string to an
integer, will generate an InvalidCastException error at run time.

Boxing and unboxing provide an elegant way to allow programs to use small, effi-
cient value types without the overhead of full-blown heap-allocated objects, while, at
the same time, allowing such values to take on the form of an object reference when-
ever necessary.
20 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

Note that automatic boxing means that you can use an array of objects as a generic
collection:

object[] arr = {"cat", 1, 2.3, 'C'};

This example creates an array containing string, integer, double, and character ele-
ments. However, you’ll need to cast the individual array elements to the correct type
when unboxing.

2.3 EXPLORING SYSTEM.OBJECT

System.Object is the ultimate superclass from which all .NET reference types
implicitly derive. It provides several useful members that you should become famil-
iar with:

• Equals—An overloaded method that comes in both static and virtual instance
versions, and tests whether two object instances are equal. The default imple-
mentation tests for reference equality, not value equality. Therefore Equals
returns true if the object passed as an argument is the same instance as the
current object. It may make sense to override this method. For example, the
built-in string type overrides Equals to return true if the two strings contain
the same characters.

• Finalize—A protected virtual instance method that is automatically exe-
cuted when an object is destroyed. You can override this method in derived
classes to free resources and perform cleanup before the object is garbage col-
lected. In C#, this method is not directly overridden. Instead C++-style destruc-
tor syntax is used, as we’ll see in a moment.

• GetHashCode—A public virtual instance method that produces a hash code
for the object. GetHashCode returns an integer value that can be used as a
hash code to store the object in a hash table. If you override Equals, then you
should also override GetHashCode, since two objects, which are equal, should
return the same hash code.

• GetType—A public instance method that returns the type of the object,
thereby facilitating access to the type’s metadata. Under .NET, applications and
components are self-describing and that description is stored with the compo-
nent in the form of metadata. This contrasts with alternative schemes in which
such data was typically stored as IDL, or in TypeLibs, or in the registry.
GetType returns a Type object that programs can use to retrieve details of the
type’s members and even create an instance of the type and invoke those mem-
bers. This process of type inspection and dynamic invocation is known as reflec-
tion, and we examine it in more detail later in this chapter. GetType is not
virtual because its implementation is the same for all types.

• MemberwiseClone—A protected instance method that returns a shallow
copy of the object.
EXPLORING SYSTEM.OBJECT 21

• ReferenceEquals—A public static method that tests whether two object
instances are the same instance. If you’ve overridden the Equals method to
test for value equality, then you can use ReferenceEquals instead to test for
reference equality.

• ToString—A public virtual instance method that returns a string representa-
tion of the object. By default, ToString returns the fully qualified name of
the object’s type. In practice, ToString is typically overridden to provide a
more meaningful string representation of the object’s data members.

2.3.1 Overriding System.Object methods

Let’s see how we might leverage System.Object in a class of our own. Suppose we
had a class representing a pixel in a 256 x 256 pixel graphics coordinate system. List-
ing 2.2 illustrates how we might implement this class while overriding Equals,
GetHashCode, and ToString, to our advantage.

public class Pixel {

 public Pixel(byte x, byte y) {
 this.x = x;
 this.y = y;
 }

 private byte x;
 private byte y;

 public override string ToString() {
 // return "(x,y)"...
 return "(" + x + "," + y + ")";
 }

 public override bool Equals(object o) {
 try {
 Pixel p = (Pixel)o;
 return p.x == x && p.y == y;
 } catch (Exception) {
 return false;
 }
 }

 public override int GetHashCode() {
 // shift x one byte to the left...
 // and add y...
 return (x<<8) + y;
 }
}

 Listing 2.2 Overriding System.Object methods
22 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

The implementation of ToString simply returns the x and y coordinates in paren-
theses, separated by a comma. Methods such as Console.WriteLine automati-
cally call the ToString method on their arguments. Therefore, in this example, we
can create and display a pixel, p, as follows:

 Pixel p = new Pixel(200, 150);
 Console.WriteLine(p); // displays "(200,150)"

Equals returns true if the argument is a pixel with identical coordinates, while
GetHashCode combines the coordinates into a single integer value suitable for use
as a unique key. This ensures that pixels, which are in fact equal, will hash to the
same value.

2.4 UNDERSTANDING FINALIZATION

As we saw above, reference types are created on the managed heap. Management of the
heap is performed automatically by the runtime and involves garbage-collecting
unused objects when necessary to reclaim heap space. System.Object includes a
protected, virtual, instance method called Finalize that can be “overridden” by all
classes in order to free resources before an object is reclaimed by the garbage collector.
In C#, you do not directly override Finalize as you would other System.Object
methods such as Equals or ToString. Instead C# uses the familiar C++ destructor
notation, ~ClassName(), to identify the finalization method.

2.4.1 Coding a finalizer

Listing 2.3 provides a simple example of a base class and a derived class, each contain-
ing a finalizer that displays a message when the object is finalized.

// file : finalize.cs
// compile : csc finalize.cs

using System;

public class BaseClass {
 public BaseClass() {
 Console.WriteLine("creating BaseClass");
 }

 ~BaseClass() {
 Console.WriteLine("finalizing BaseClass");
 }
}

public class DerivedClass : BaseClass {
 public DerivedClass() {
 Console.WriteLine("creating DerivedClass");
 }

 ~DerivedClass() {

 Listing 2.3 Finalization of a derived class
UNDERSTANDING FINALIZATION 23

 Console.WriteLine("finalizing DerivedClass");
 }
}

public class Go {
 public static void Main() {
 DerivedClass dc = new DerivedClass();
 }
}

The Go.Main() method simply creates an instance of DerivedClass and exits.
The output generated, when you compile and run this program, is shown in figure 2.2.

Note that the base class constructor is automatically called before that of the derived
class. The finalizers are called in reverse order when the derived object is garbage col-
lected. This ensures that the base class object is not destroyed while a derived object
still exists, and thus ensures that the finalization chain is correctly followed.

Typically, since finalization takes time, you should avoid coding a finalizer
unless your program absolutely requires it, such as when it needs to close files, or
network connections.

2.4.2 Finalization and the Dispose method

If it is necessary to explicitly free resources when an object is destroyed, the .NET doc-
umentation recommends writing a Dispose method and calling it explicitly, as we
do in listing 2.4. The System.IDisposable interface is provided for this purpose.

// file : dispose.cs
// compile : csc dispose.cs

using System;

public class MyClass : IDisposable {

 public MyClass(string name) {
 Console.WriteLine("creating " + name);

Figure 2.2 Finalization of a derived class

 Listing 2.4 Implementing the IDisposable interface
24 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

 this.name = name;
 }

 ~MyClass() {
 Console.WriteLine("finalizing " + name);
 Dispose();
 }

 public void Dispose() {

 Console.WriteLine("disposing " + name);
 // free resources here, and...
 // suppress further finalization...
 GC.SuppressFinalize(this);
 }

 private string name;
}

public class Go {

 public static void Main() {

 MyClass obj1 = new MyClass("obj1");

 object obj2 = new MyClass("obj2");
 if (obj2 is IDisposable)
 ((IDisposable)obj2).Dispose(); // explicitly dispose of obj2

 // garbage collection (finalization) will dispose of obj1
 }
}

In this example, we implement the System.IDisposable interface and provide a
Dispose method to free resources. Dispose also suppresses any further finaliza-
tion by calling the static GC.SuppressFinalize(this). We include a finalizer
method that simply calls Dispose. This arrangement allows for explicit freeing of
resources by calling Dispose or implicit disposal by allowing finalization to do its
work. Figure 2.3 shows the output generated when we compile and run this example.

Figure 2.3 Finalizing and disposing objects
UNDERSTANDING FINALIZATION 25

The Framework classes include many examples of Dispose. A related method,
Close, is sometimes used instead of Dispose if the object can be reopened or
reused after it has been closed. A good example would be a class that represents a file
or stream that can be closed and reopened without creating a new object instance. On
the other hand, if clean-up means that the object is no longer usable, Dispose is
preferred. Remember that finalization costs time and should only be implemented if
an object needs to explicitly release resources.

2.5 INTRODUCING ASSEMBLIES

A .NET application is packaged into an assembly, which is a set of one or more files
containing types, metadata, and executable code. The .NET documentation describes
the assembly as the smallest versionable, installable unit in .NET. It is the functional
unit for code sharing and reuse. It is also at the center of .NET’s code security and
permissions model. All executable code must be part of an assembly.

When we compile a simple program, the compiler creates an assembly consisting
of a single executable file. However, assemblies can contain multiple files including
code module files and files containing resources such as GIF images. Therefore, an
assembly can be viewed as a “logical” DLL.

The assembly contains a manifest that stores metadata describing the types con-
tained in the assembly, and how they relate to one another. The runtime reads this
manifest to retrieve the identity of the assembly, its component files and exported
types, and information relating to other assemblies on which the assembly depends.
When an assembly consists of multiple files, one file will contain the manifest.

2.5.1 Creating a multifile assembly

In listing 2.1, we defined a Person class using C#. Let’s save this to a file called
person.cs, and compile it to a module, as follows:

csc /target:module /out:person.mod person.cs

The /target:module option tells C# to create a module target. Both C# and
Visual Basic .NET compilers support four different types of target output:

• exe—A console application

• winexe—A Windows GUI executable

• library—A nonexecutable assembly with its own manifest; typically one or more
components packaged as a DLL

• module—A file, without a manifest, suitable for adding to an assembly

Listing 2.5 shows how to create a separate program which creates Person objects.
26 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

// file : people.cs
// compile : csc /addmodule:person.mod people.cs

using System;

public class People {
 public static void Main() {

 Person p = new Person("Joe", "Bloggs", 40);
 Console.WriteLine(
 "{0} {1} is {2} years old.",
 p.FirstName,
 p.LastName,
 p.Age
);
 }
}

You can compile and execute this program, as shown in figure 2.4.

The /addmodule compiler option is used to link the person.mod module into the
People assembly. This gives us a multifile assembly consisting of two module files,
people.exe and person.mod. The assembly’s manifest is contained in people.exe. The
organization of the assembly is illustrated in figure 2.5.

A multifile assembly is always installed in its own directory tree. At run time, all
modules added with /addmodule must be in the same directory as the file contain-
ing the manifest.

 Listing 2.5 A C# program to create Person objects

Figure 2.4 Building a multifile assembly

Figure 2.5

The People assembly
INTRODUCING ASSEMBLIES 27

2.5.2 Disassembling with ILDASM

The .NET SDK provides a utility, ildasm.exe, which we can use to inspect .NET mod-
ules, libraries, and executables. To launch ildasm.exe and explore the people.exe file,
issue the following command:

ildasm people.exe

If ildasm.exe is not found, you’ll have to add the directory where it resides to your
path. Depending on your installation, the directory will look something like C:\Pro-
gram Files\Microsoft.NET\FrameworkSDK\Bin.

By default, ildasm.exe presents a tree-like view of the assembly containing both the
assembly manifest and the disassembled code. Double-click the manifest and you
should see the window shown in figure 2.6.

As you can see, the assembly manifest contains a lot of information. We won’t go
through it line by line here. Instead, we’ll note some relevant entries:

• .module extern person.mod—Specifies that the assembly includes an
externally linked module called person.mod.

• .assembly extern mscorlib—Specifies that the assembly references ver-
sion 1.0.2411.0 of the shared core assembly, mscorlib.dll. This entry also

Figure 2.6

Viewing the assembly manifest
28 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

includes the public key of the originator of the referenced assembly and a cryp-
tographic hash to verify its integrity. At run time, .NET uses this information,
together with the versioning policy set by an administrator, to locate, verify, and
load the correct version of an external assembly. We’ll look at shared assemblies
in a moment.

• .assembly people—Specifies the name of this assembly and its version,
0.0.0.0.

• .file person.mod—Specifies a hash value for the linked person.mod file.

• .class extern public Person—Specifies that the Person class resides
in the linked person.mod module.

• .module people.exe—Defines various flags relating to the people.exe
module.

The manifest enables an assembly, which may contain several physical files and refer-
ences to other assemblies on which it depends, to be managed as a single logical unit.
Depending on the needs of an application, installing an assembly on a target machine
can be a simple matter of copying the assembly directory to that machine. (Uninstall-
ing would simply involve deleting the directory.) This is known as an XCOPY installa-
tion, named after the MS-DOS XCOPY command which copies files and directory
trees. We look at alternative deployment strategies in this and following chapters.

2.6 PRIVATE VS. SHARED ASSEMBLIES

The assembly we created in the previous example is a private assembly, that is, one that
is used by a single application. .NET also supports shared assemblies. Installing a shared
assembly is analogous to placing a legacy Windows DLL file into the Windows\System
directory. The problem with such DLLs was that installing a new version often broke
something in one or more applications that used the DLL. Furthermore, there was
nothing to prevent a DLL being installed over an unrelated DLL of the same name.
.NET solves these problems using shared assemblies with so-called strong names, while
also allowing multiple versions of a shared assembly to coexist side-by-side.

2.6.1 Shared assemblies and versioning

Under .NET, the format of an assembly’s version number is <major number>.<minor
number>.<build number>.<revision number>, as we see in table 2.2.

Table 2.2 Assembly version numbering

Major Minor Build Revision Description

1 0 0 0 Original version

1 0 0 1 A revision (maybe a bug fix)

continued on next page
PRIVATE VS. SHARED ASSEMBLIES 29

In general, a new version of an assembly, which is incompatible with the previous
version, should be given a new major or minor version number. Compatible new ver-
sions should be given a new build or revision number. Note that the run time per-
forms version checking on shared assemblies only.

2.6.2 Generating a strong name for a shared assembly

Let’s explore assembly versioning by creating a shared person.dll assembly with multi-
ple versions. In other words, this time we deploy the Person class in its own assem-
bly. We’ll need to generate a strong name for the assembly. Since strong names are
based on public key encryption, we first need to use the strong name utility, sn.exe, to
generate a public-private key pair, as shown in figure 2.7.

We save the key pair to key.snk. At compile time, we can use the private key to sign
the assembly, thus identifying its originator. The runtime uses a combination of the
assembly name, version number, and the originator’s public key to uniquely identify
the assembly and to support the side-by-side existence of multiple versions of the
same assembly.

NOTE In practice, an organization might safeguard its private key so that it is not
available to the development team. In such cases, using only the public key
at compile time, you can use delayed signing to reserve space in the assem-
bly for the strong name signature, while deferring the actual signing until
just before the assembly is shipped. For details refer to the -Vr and -R op-
tions of the sn.exe utility.

The next step is to compile the person.cs file into a single file assembly and sign it
with the key. We’re going to create two side-by-side versions of this assembly, each
with the same file name. So we create two subdirectories called person1000 and

1 0 1 0 A new build

1 1 0 0 A new minor version

2 0 0 0 A new major version

Table 2.2 Assembly version numbering (continued)

Major Minor Build Revision Description

Figure 2.7 Generating a cryptographic key pair
30 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

person2000. Create the new person.cs file, shown in listing 2.6, and place it in the
person1000 subdirectory.

// file : person.cs
// version : 1.0.0.0
// compile : csc /target:library

// /out:person1000\person.dll
// person1000\person.cs
// note : compile from parent directory

using System;
using System.Reflection;

[assembly:AssemblyKeyFile(@"..\key.snk")]
[assembly:AssemblyVersion("1.0.0.0")]

public class Person {

 public Person(string firstName, string lastName, int age) {

 AssemblyName aName = GetType().Assembly.GetName();
 Console.WriteLine("----------------------");
 Console.WriteLine("name : {0}", aName.Name);
 Console.WriteLine("version : {0}", aName.Version);
 Console.WriteLine("----------------------");

 FirstName = firstName;
 LastName = lastName;
 Age = age;
 }

 public readonly string FirstName;
 public readonly string LastName;
 public readonly int Age;
}

The new file contains some changes from the example we saw earlier. First, we declare
a key file attribute to enable the assembly to be signed at compile time using the
key.snk file generated in figure 2.7. We also insert an assembly version attribute to
declare that this is version 1.0.0.0. (The use of attributes is discussed in appendix A.)
Finally, we insert code into the Person constructor to display the name and version
of the assembly in which the class resides.

Copy person1000\person.cs to the new person2000 subdirectory. Then edit it to
change the version declaration from:

[assembly:AssemblyVersion("1.0.0.0")]

to:

[assembly:AssemblyVersion("2.0.0.0")]

 Listing 2.6 Declaring assembly version and key file attributes
PRIVATE VS. SHARED ASSEMBLIES 31

Now we have two different versions of an otherwise identical assembly. Each will
announce its version number when a new Person object is instantiated. Compile
both versions, as shown in figure 2.8.

Next, we’re going to install both assembly versions side-by-side.

2.6.3 Installing shared assemblies into

the global assembly cache

We explicitly share the two assemblies by installing them into the global assembly
cache. We use the gacutil.exe utility to do this, as shown in figure 2.9.

To check our work, we can launch Windows Explorer and browse the global cache at
C:\WINNT\Assembly. (See figure 2.10.)

The global cache shows both versions of the assembly installed side-by-side. Note
the public key token that identifies the originator of the assembly. To test our work,
recompile the people.cs program, referencing version 1.0.0.0 of the Person assembly,
and execute it, as shown in figure 2.11.

The program should execute as expected, announce that it is using version 1.0.0.0
of the Person assembly, and create an instance of the Person class. Without modify-
ing or rebuilding the application, we can make it use version 2.0.0.0 of the referenced
assembly. To do so, we must create an application configuration file. The ability to

Figure 2.8 Compiling the shared person assemblies

Figure 2.9 Installing the shared person assemblies
32 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

configure compiled applications to use different versions of shared DLLs goes a long
way toward solving the DLL compatibility problems of the past.

2.6.4 Creating an application configuration file

.NET applications can be configured using an application configuration file. By
default, this file resides in the same directory as the application and has the same
name as the application with .config appended on the end. For example, we would
create the file MyApp.exe.config to configure MyApp.exe. The configuration file is an
XML file with the layout shown in listing 2.7.

<configuration>

 <startup>
 ...
 </startup>

 <runtime>
 ...
 </runtime>

 ...

</configuration>

Figure 2.10 Exploring the global assembly cache

Figure 2.11 Using version 1.0.0.0 of the Person assembly

 Listing 2.7 Configuration file layout
PRIVATE VS. SHARED ASSEMBLIES 33

The file is divided into sections nested inside <configuration> tags. These sec-
tions include startup data, configuration data for the run time and for remoting ser-
vices, security settings, and more. You can also use the application configuration file
to record application settings similar to the way you might have used an INI file in
the past. We’ll look at several examples of configuration files as we explore different
.NET subsystems throughout the book. For now, we’re interested in specifying ver-
sioning policy for our people.exe application. We do this by creating the people.exe.con-
fig file shown in listing 2.8, and saving it to the application directory.

<configuration>
 <startup>
 <requiredRuntime safeMode="true"/>
 </startup>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="person"
 publicKeyToken="08515fdfd3860a0b"
 culture=""/>
 <bindingRedirect oldVersion="1.0.0.0"
 newVersion="2.0.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

In the <startup> section, the <requiredRuntime safeMode="true">
causes the runtime startup code to search the registry to determine the runtime
version. This is not necessary here and is included to illustrate that the CLR itself is
versioned. Where multiple versions of the CLR are installed, you can specify the ver-
sion used to run the application, as follows:

<requiredRuntime version="v1.0.2901"/>

The value specified should be identical to the name of the subdirectory where the
corresponding version of the run time is installed. (In this case, version 1.0.2901.0
can be found at C:\WINNT\Microsoft.NET\Framework\v1.0.2901.)

In the <runtime> section, we can specify assembly binding information. In this
example, we specify that the application is dependent on the Person assembly and we
use the <assemblyIdentity> tag to provide the name and public key token of the
assembly. (The latter can be found by browsing the assembly cache, seen in
figure 2.10.) We could specify culture information here if we had different assemblies
for different cultures. For our purposes, the most important item is the binding redi-
rect information:

 Listing 2.8 Configuring the People.Exe application
34 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

<bindingRedirect oldVersion="1.0.0.0"
 newVersion="2.0.0.0"/>

This tells the runtime to redirect references to version 1.0.0.0 of the Person assembly to
the newer 2.0.0.0 version. Saving the configuration file and executing the people.exe
application causes the application to run with the newer version, as shown in figure 2.12.

.NET’s facility to allow multiple versions of shared assemblies to coexist is a major fea-
ture of the platform and goes a long way toward solving the “dll hell” of the past. Using
appropriate configuration file entries, an application, which has been broken by the
installation of a new version of a shared dependent assembly, can be restored to health.
However, remember that private assemblies are the default under .NET. They are not
installed in the global assembly cache and are not subject to versioning by the runtime.
Instead, it is the responsibility of the application to deploy the correct versions of
assemblies to its own private directory tree. Installing a shared versioned assembly is
recommended only if the assembly is to be shared across multiple applications.

2.7 DOWNLOADING ASSEMBLIES

The potential to deliver software as a service, instead of shipping it in a shrink-
wrapped box, has become a reality with the widespread adoption of the Internet and,
in particular, the Web. There are several different potential models. For example,
there are the browser-hosted applications including popular, Web-based email and
shopping services. These applications are server-based and simply transport the user
interface to the user in the form of a Web page. We explore the development of such
applications in chapter 8 when we look at ASP.NET and the Web Forms program-
ming model.

Alternative models include using .NET’s remoting or XML Web services classes,
which facilitate the development of applications that can call, or expose, remote
objects across the network or across the Web. This approach enables applications to
aggregate remote services into a meaningful whole, effectively leveraging the Internet
as a huge runtime library. We look at remoting in chapter 5 and XML Web services
in chapter 6.

.NET also supports the downloading of assemblies at run time enabling an appli-
cation to incrementally install features as required. This approach could be used to

Figure 2.12 Using version 2.0.0.0 of the Person assembly
DOWNLOADING ASSEMBLIES 35

support a pay-as-you-go model where users pay for only those features they use. For
example, a Word processor might only download the spell-checking assembly, if the
user requested the feature and was willing to pay for it.

2.7.1 Downloading the Person assembly from the Web

Let’s take our person.dll assembly and deploy it to the Web server. First, we need to
delete both shared versions of this assembly from the global cache. You can delete
them from Windows Explorer, or use gacutil.exe with the -u option.

Now, create a new virtual directory on your Web server. Call this virtual directory
deploy and map it to the person1000 subdirectory, thus making the assembly available
at http://localhost/deploy/person.dll, as seen in figure 2.13.

Next, edit the application configuration file, people.exe.config as shown in listing 2.9.

<configuration>
 <startup>
 <requiredRuntime safeMode="true"/>
 </startup>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="person"
 publicKeyToken="08515fdfd3860a0b"
 culture=""/>

 <codeBase version="1.0.0.0"
 href="http://localhost/deploy/person.dll"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

 Listing 2.9 Configuring an assembly download

Figure 2.13

Deploying the Person

assembly on the Web
36 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

This time we use the <codeBase/> tag to specify that version 1.0.0.0 of the Person
assembly can be downloaded at http://localhost/deploy/person.dll, if it is not already
on the machine. The program should run with the new configuration file as normal.
To satisfy yourself that the assembly has been downloaded, take a look at the assembly
download cache, as shown in figure 2.14. Depending on your installation, you’ll find
it at C:\WINNT\Assembly\Download. Alternatively use gacutil.exe with the /ldl
option to list the contents of the download cache.

The .NET SDK also includes a utility called the Assembly Binding Log Viewer, which
you can use to diagnose failed attempts to bind to a referenced assembly. To launch it,
execute fuslogvw.exe from the command line.

To clear the contents of the download cache, use gacutil.exe with the /cdl option.

2.8 PROGRAMMING IN IL

.NET’s native tongue is IL, the Microsoft Intermediate Language. IL is a stack-based
assembly language that is fully compiled at load time. Its instruction set includes
instructions for common operations such as loading and storing values, arithmetic
and logical operations, and branching. It also includes specialized instructions for
object-oriented programming. While a detailed knowledge of IL is not a prerequisite
for day-to-day application programming, you will require an understanding of IL if
you plan to take advantage of many of the advanced classes in the Sys-
tem.Reflection.Emit namespace. These can be used to generate executable
code and dynamically build assemblies at run time. Later in this chapter, we’ll use the
classes in the System.Reflection.Emit namespace to build a simple compiler.

2.8.1 Inspecting generated IL

The best way to learn about IL is to create short C# programs, compile them, and
inspect the generated IL using ildasm.exe. The following short C# program adds two
integers and displays the result:

public class Test {
 public static void Main() {

Figure 2.14 Exploring the assembly download cache
PROGRAMMING IN IL 37

 int i = 10;
 int j = 13;
 i += j;

 // display the result
 System.Console.WriteLine(i);
 }
}

If you launch ILDASM and inspect the code generated for the Main method, you
should see something like the following:

 ...

 .locals (int32 V_0, int32 V_1) // integers i and j in C# program

 IL_0000: ldc.i4.s 10 // load constant 10 as 4-byte signed int
 IL_0002: stloc.0 // store at location V_0
 IL_0003: ldc.i4.s 13 // load constant 13 as 4-byte signed int
 IL_0005: stloc.1 // store at location V_1
 IL_0006: ldloc.0 // load V_0
 IL_0007: ldloc.1 // load V_1
 IL_0008: add // add them
 IL_0009: stloc.0 // store result
 IL_000a: ldloc.0 // load result

 // display the result
 IL_000b: call void [mscorlib]System.Console::WriteLine(int32)

 ...

I’ve added comments to the IL to clarify the generated code. (The identifiers of the
form IL_NNNN are just statement labels and can be ignored.) The stack-based nature
of IL means that instructions typically operate on one or more operands on the top of
the stack. (FORTH programmers will likely be comfortable with this programming
idiom, although that’s where the similarity ends.) In this example, the generated IL
loads the 4-byte signed integer constants, 10 and 13, onto the stack, adds them, and
calls System.Console::WriteLine(int32) to display the result on the con-
sole. The C# local variables, i and j, become V_0 and V_1 respectively, in the gener-
ated IL version of the program. Note the use of :: as in Class::Method. Also, the
call is preceded by the name of the library where the Console class resides, mscor-
lib.dll. Later in this chapter, we’ll create a skeleton IL program that we can use as
a template for our own IL programs.

2.8.2 Boxing and unboxing in IL

Using ildasm.exe, we can see what boxing and unboxing look like underneath the cov-
ers. To find out, create the short C# file, box.cs, shown in listing 2.10.

class Box {
 public static void Main() {

 Listing 2.10 Boxing and unboxing in C#
38 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

 int i = 123;
 object o = i;
 int j = (int)o;
 }
}

When we compile and disassemble this file, we get the IL shown in listing 2.11.

 ...

 .locals (int32 V_0, object V_1, int32 V_2) // i, o, and j
 IL_0000: ldc.i4.s 123 // load 123
 IL_0002: stloc.0 // store in i
 IL_0003: ldloc.0 // load i
 IL_0004: box [mscorlib]System.Int32 // box i
 IL_0009: stloc.1 // store ref in o
 IL_000a: ldloc.1 // load o
 IL_000b: unbox [mscorlib]System.Int32 // unbox ref
 IL_0010: ldind.i4 // load value via ref
 IL_0011: stloc.2 // store in j

 ...

The first thing we notice is that the box and unbox operations are IL primitives.
Boxing and unboxing are features of the platform, not the preserve of C#. The box
operation takes a value type from the top of the stack, stores it in a new reference type
which it creates on the managed heap, and places a reference to the newly created
type on top of the stack. In this example, that reference is then stored in V_1, or o in
C#. Unboxing involves the reverse operation and leaves the unboxed value type on
top of the stack. In this case, the result is stored in V_2, or j in our C# program.

2.8.3 Coding IL programs

You can write your own IL programs and assemble them using .NET’s ilasm.exe
assembler. Depending on your installation, you should find ilasm.exe at
C:\WINNT\Microsoft.NET\Framework\<.NET Version>. Listing 2.12 presents a skele-
ton program that you can use as a template for your own IL programs.

// file : skel.il
// assemble : ilasm skel.il

.assembly extern mscorlib {} // reference the core assembly

.assembly 'skel' {} // this assembly name

.module 'skel.exe' // this module

.class Skel extends ['mscorlib']System.Object {

 Listing 2.11 Boxing and unboxing in IL

 Listing 2.12 A skeleton IL program
PROGRAMMING IN IL 39

 .method public static void
 Main(class System.String[] args) cil managed {

 .entrypoint // program starts here
 .maxstack 8 // maximum number of stack slots

 .locals (

 // local variables here ////////////

)

 // main code goes here ///////////////
 ldstr "IL Skeleton Program!"
 call void ['mscorlib']System.Console::WriteLine(string)

 ret // exit
 }

 // methods go here /////////////////////

 // constructor follows...
 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed {
 .maxstack 8
 ldarg.0
 call instance void ['mscorlib']System.Object::.ctor()
 ret
 }
}

The program begins by accessing the .NET core assembly, mscorlib.dll, in which many
of the classes in fundamental namespaces, such as System, reside. To use the skele-
ton for your own IL programs replace the comments to insert required local variables,
the main line code, and any methods your program may require. Figure 2.15 illus-
trates how to assemble and execute the result.

Figure 2.15 Assembling and executing the skeleton IL program
40 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

2.8.4 Generating native images

To speed program loading, assemblies can be pre-JITted to create a native image
which can then be installed in the assembly cache. To pre-JIT an assembly use the
ngen.exe utility. In figure 2.16, we pre-JIT the skel.exe assembly to create a native
image and install it into the assembly cache.

Figure 2.17 shows the pre-JITted assembly in the cache.

To delete the native image from the cache, use ngen with the /delete option.

2.9 TYPES, ASSEMBLIES, AND REFLECTION

Reflection is a mechanism that allows programs to inspect assemblies and types at run
time. This capability is provided by the classes in the System.Reflection
namespace. Using these classes we can compile a list of types in an assembly, and a list
of methods, fields, properties, events, and attributes for each type. We can use this
information to create instances of these classes using late binding and invoke their
methods on the fly.

2.9.1 An example of reflection

Listing 2.13 explores reflection with a new version of the Person class we created
earlier.

Figure 2.16 Pre-JITting and assembly

Figure 2.17 The pre-JITted skel assembly
TYPES, ASSEMBLIES, AND REFLECTION 41

// file : reflect.cs
// compile : csc reflect.cs

using System;
using System.Reflection;
using System.Text.RegularExpressions;

public class Person {

 public Person(string firstName, string lastName) {
 FirstName = firstName;
 LastName = lastName;
 }

 public void DisplayFirstName() {
 Console.WriteLine("First Name={0}", FirstName);
 }

 public void DisplayLastName() {
 Console.WriteLine("Last Name={0}", LastName);
 }

 public void ShowAll() {
 Console.WriteLine("Person...");
 Console.WriteLine("First Name={0}", FirstName);
 Console.WriteLine("Last Name={0}", LastName);
 }

 public readonly string FirstName;
 public readonly string LastName;
}

public class Reflect {
 public static void Main() {

 // get the Person type...
 Type typ = Type.GetType("Person");

 // create array of constructor arguments...
 object[] args = {"Joe", "Bloggs"};

 // create an instance of the Person type...
 Object obj = Activator.CreateInstance(typ, args);

 // get a list of Person methods...
 MethodInfo[] met = typ.GetMethods();

 // find and invoke all display methods...
 Regex r = new Regex("^display", RegexOptions.IgnoreCase);
 foreach (MethodInfo m in met)
 if (r.IsMatch(m.Name))
 m.Invoke(obj, null); // invoke display method
 }
}

 Listing 2.13 Using reflection
42 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

This version of the Person class has two display methods, DisplayFirstName
and DisplayLastName. It also has a method called ShowAll that displays both
the first and last names. The Reflect.Main method retrieves the type of the
Person class and uses Activator.CreateInstance(typ, args) to invoke
its constructor and pass the required arguments. The arguments are passed as an array
of objects. The program then loops through the type’s methods using a regular
expression to identify and call all methods whose names begin with the string
"Display". The regular expression is created by:

Regex r = new Regex("^display", RegexOptions.IgnoreCase);

This expression will match any method names beginning with the string "Dis-
play" while ignoring case.

Note that nowhere in our Main method do we declare a Person object. Instead
we dynamically retrieve the Person type. Then we use reflection to discover its
methods, and we use late binding to create a run time instance of the type and call its
methods. When we save the file as reflect.cs, compile it, and run it, we get the result
shown in figure 2.18.

We use the static Type.GetType method to retrieve the Person type. We can also
search external assemblies by file name. For example, we could have used the follow-
ing code:

 Assembly asm = Assembly.Load("reflect");
 Type typ = asm.GetType("Person");

2.9.2 The System.Reflection.Emit namespace

System.Reflection.Emit is another important namespace in the reflection
class library. The classes in this namespace enable IL to be generated and emitted on
the fly thereby creating a dynamic assembly at run time. Such features are typically
used by compilers, interpreters, script engines, and servers. For example the ASP.NET
engine uses this facility to compile and execute code in a Web page when a client
requests the page. In the next section, we use the Reflection.Emit classes to
build a compiler for a simple programming language.

Figure 2.18 Dynamically creating a Person object using reflection
TYPES, ASSEMBLIES, AND REFLECTION 43

2.10 BUILDING A SIMPLE COMPILER

So far, our assemblies have been created for us by the C# compiler. Our final example
in this chapter is a little more ambitious. We will use our knowledge of assemblies,
types, and IL to create a compiler for a simple arithmetic language, we’ll call AL,
which adds, subtracts, and displays integers. We use the classes in the Sys-
tem.Reflection.Emit namespace to generate the executable code. These classes
provide a fully object-oriented framework for code generation.

The ability to generate IL can be useful in the development of certain types of appli-
cations such as simple search languages, or rule-based systems, or in the implementa-
tion of our own .NET scripting language.

We can create a compiler for our simple language in fewer than 200 lines of code.
Doing so clarifies the relationship between the language compiler, JIT compiler, and
CLR. In particular, we’ll see that we don’t have to concern ourselves with native code
generation, since .NET automatically takes care of that difficult task.

2.10.1 The AL language

Listing 2.14 presents a sample AL program.

- file : example1.al
- description : a sample al program
- compile : alc example1.al

add 3
add 47
add 390
print - displays 440
add 12

print - displays 452
reset
print - displays 0
sub 7
add -4
print - displays -11
add 11
print - displays 0

Like IL, AL is a simple stack-based language. It consists of just four statements as illus-
trated in table 2.3.

AL allows just one statement per line and the program executes from top to bottom
with no variation in control flow. In spite of its simplicity, however, it provides a good
vehicle for experimenting with code generation and the System.Reflec-
tion.Emit classes.

 Listing 2.14 A Sample AL Program
44 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

In listing 2.14, we use the hyphen (-) to delimit comments. In fact, our compiler will
simply ignore lines that don’t start with one of the four statements in the language.
Also, it will ignore any text after a statement and its argument, if present. So we can
insert comments directly after statements on the same line without using the com-
ment delimiter, if we like.

The output from the compiler, alc.exe, will be a PE format Windows executable.
If the input file is called progname.al, the output will be written to progname.exe.

2.10.2 Translating AL to IL

Let’s explore how we translate AL to IL. The IL program will need somewhere to store
the result of AL’s arithmetic operations so we’ll use a single local integer variable that
we’ll initialize to zero at start up. Therefore, we need to emit the following IL to start:

.locals (int32 V_0)
ldc.i4.0
stloc.0

This creates the local integer variable, V_0, then loads zero, and stores it in V_0 to
initialize it. From then on, each AL instruction will generate code to update V_0 with
the result of each arithmetic operation. With this scheme in mind, we can translate
AL’s add statement, with just a few lines of IL. For example, add 123 would be
translated, as follows:

// example AL statement...
// add 123
// compiles to...

ldloc.0 // load V_0
ldc.i4 123 // load constant 123
add // add
stloc.0 // store result back in V_0

We load the local V_0, add the integer constant 123 to it, and store the result back in
V_0. The sub statement is almost identical:

// example AL statement...
// sub 123
// compiles to...

Table 2.3 The AL programming language

Statement Description

add i Adds integer i to value on top of stack, and leaves the result on the stack in
its place

sub i Subtracts integer i from value on top of stack, and leaves the result on the
stack in its place

reset Sets value on top of stack to zero

print Writes value on top of stack to the console
BUILDING A SIMPLE COMPILER 45

ldloc.0 // load V_0
ldc.i4 123 // load constant 123
sub // subtract
stloc.0 // store result back in V_0

The reset statement simply sets V_0 to zero:

// example AL statement...
// reset
// compiles to...

ldc.i4.0 // load constant zero
stloc.0 // store in V_0

To implement AL’s print statement, we’ll use System.Console.WriteLine to
display V_0 on the console:

// example AL statement...
// print
// compiles to...

ldloc.0 // load V_0
call void [mscorlib]System.Console::WriteLine(int32) // display V_0

2.10.3 Dynamically generating an assembly

We know that we’re going to need some sort of
assembly to contain the executable code. Since
AL does not support objects or methods, we’ll
use a simple translation scheme. To create the
executable program, we’ll generate an assembly
with a Main method into which we’ll place all
the generated IL. Figure 2.19 illustrates the struc-
ture of the executable produced by the compiler.

The compiler takes progname.al, compiles it,
and generates an executable called progname.exe.
The latter represents a single-file assembly,
AlcAsm, which in turn contains a single mod-
ule, AlcMod, containing a single class AlcCls.
The compilation process automatically generates
a default constructor for AlcCls which simply
calls the base class, System.Object, construc-
tor. AlcCls.Main is where we place the IL
generated by the compilation process.

2.10.4 Coding the AL compiler

We’ll use the Framework’s System.Reflection.Emit classes to create each of
these building blocks, and we’ll discuss them in turn. The full compiler program is
presented in listing 2.15. It is presented here in outline form.

Figure 2.19 The assembly generat-

ed dynamically by the AL compiler
46 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

The AL compiler is implemented as a class called ArithLang.ALC:

namespace ArithLang {

 using System;
 using System.IO;
 using System.Threading;
 using System.Reflection;
 using System.Reflection.Emit;

 class ALC {

 public static void Main(string[] args) {
 Console.WriteLine("Arithmetic Language Compiler...");
 if (args.Length != 1) {
 Console.WriteLine("usage: alc progname.al");
 return;
 }
 new ALC(args[0]); // launch AL compiler
 }

 public ALC(string filePath) {

 ...

 init();

 ...
 }

 ...

 private string inFile;
 private string outFile;

 private AssemblyBuilder alcAsm;
 private ModuleBuilder alcMod;
 private TypeBuilder alcCls;
 private ILGenerator alcILG;

 private MethodInfo writeIntMethod;

 }
}

The program starts by declaring the reflection namespaces that we’ll use to manage
types and build the assembly. When the compiler starts, it checks for a command line
argument containing the name of the AL source file. If this is absent, the compiler
aborts with a message. The private string fields, inFile and outFile, contain the
paths of the input source file and target executable file. We also declare references to
an AssemblyBuilder, a ModuleBuilder, a TypeBuilder, and an ILGen-
erator, which we use to build the target assembly, its types, and the generated IL.
The writeIntMethod will be used to reference the System.Console.Write-
Line method call that we’ll insert into the IL to display the value on top of the stack.
BUILDING A SIMPLE COMPILER 47

The init() method creates the assembly in which the executable will be stored:

 // create dynamic assembly...
 AssemblyName asmName = new AssemblyName();
 asmName.Name = "AlcAsm";
 alcAsm = Thread.GetDomain().DefineDynamicAssembly(
 asmName,
 AssemblyBuilderAccess.Save
);

The AssemblyName class is used to uniquely identify an assembly by its name, cul-
ture, originator, and version number. In this case, we’re only interested in the name of
the assembly, and we call it AlcAsm. Next, we define a new dynamic assembly in the
current application domain. .NET uses application domains to separate executing
applications. We’ll look at application domains in more detail when we explore
remoting in chapter 5. In this case, we’re just going to save the assembly to disk. We
specify this using the AssemblyBuilderAccess.Save option.

Next, we create a module in the assembly:

 // create module...
 alcMod = alcAsm.DefineDynamicModule(
 "AlcMod",
 outFile
);

We call the module AlcMod and we specify the path, outFile of the executable file
produced.

Now, it’s time to create the AlcCls class:

 // define AlcCls class.
 alcCls = alcMod.DefineType(
 "AlcCls",
 TypeAttributes.Public
);

This creates the AlcCls class and specifies that it is public. Next, the constructor:

 // create AlcCls class constructor...
 ConstructorBuilder alcCon = alcCls.DefineConstructor(
 MethodAttributes.Public | MethodAttributes.HideBySig,
 CallingConventions.Standard,
 new Type[0]
);

We specify that the constructor is public and that it is hidden by its method signa-
ture, and not by its name alone. We also specify CallingConventions.Stan-
dard for the constructor. Alternatives include the ability to call with variable
arguments, or with a this reference included in the argument list.

Now that we have a constructor, we need to generate some IL. For our default con-
structor, we just call the base constructor in System.Object:
48 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

 // generate constructor IL...
 ILGenerator conILG = alcCon.GetILGenerator();
 ConstructorInfo conObj =
 typeof(object).GetConstructor(new Type[0]);
 conILG.Emit(OpCodes.Ldarg_0);
 conILG.Emit(OpCodes.Call, conObj);
 conILG.Emit(OpCodes.Ret);

We create an ILGenerator instance and create a reference, conObj to
System.Object’s constructor. We use ILGenerator.Emit to write IL into the
constructor. The OpCodes enumeration contains enumerated names for all the
instructions in IL.

The real work happens in the Main method:

 // create AlcCls.Main() method...
 MethodBuilder mainMethod = alcCls.DefineMethod(
 "Main",
 MethodAttributes.Public |
 MethodAttributes.Static |
 MethodAttributes.HideBySig,
 Type.GetType("void"),
 null);

This code generates IL similar to that which would result from compiling the C# sig-
nature for Main():

 public static void Main() {
 ...
 }

We need to set Main() as the program’s entry point. We also need to create the local
integer variable that AL programs will use to store the result of arithmetic operations:

 // set Main as program entrypoint...
 alcAsm.SetEntryPoint((MethodInfo)mainMethod);

 // generate IL for Main.
 alcILG = mainMethod.GetILGenerator();

 // create local integer variable...
 LocalBuilder v_0 = alcILG.DeclareLocal(
 Type.GetType("System.Int32"));

 // set IL local V_0 to 0...
 alcILG.Emit(OpCodes.Ldc_I4_0);
 alcILG.Emit(OpCodes.Stloc_0);

We use a LocalBuilder reference to insert the local integer variable declaration
into the emitted IL and we emit the opcodes necessary to initialize the variable to zero.

That completes the creation and setup of the building blocks that our assembly
requires. We’ll be inserting calls to System.Console.WriteLine into the IL. So
BUILDING A SIMPLE COMPILER 49

the final initialization step is to obtain, and store, a reference to the version of this
method which takes an integer as an argument:

 // get method for displaying integers...
 Type[] argTypes = {typeof(int)};
 writeIntMethod = typeof(Console).GetMethod(
 "WriteLine",
 argTypes
);
 }

With these building blocks in place, we simply loop through the source file, scanning
for AL statements and emitting the appropriate IL. For example, for AL’s add state-
ment we call the doAddStatement method:

 private void doAddStatement(string arg) {
 alcILG.Emit(OpCodes.Ldloc_0);
 alcILG.Emit(OpCodes.Ldc_I4, Int32.Parse(arg));
 alcILG.Emit(OpCodes.Add);
 alcILG.Emit(OpCodes.Stloc_0);
 }

This attempts to parse the integer operand from the arg string passed in. If it fails, the
compiler will report an error and the offending line number, as shown in figure 2.20.

The remaining statements are implemented using similar methods. The complete
program is presented in listing 2.15.

// file : alc.cs
// compile : csc alc.cs

namespace ArithLang {

 using System;
 using System.IO;
 using System.Threading;
 using System.Reflection;
 using System.Reflection.Emit;

 class ALC {

 public static void Main(string[] args) {
 Console.WriteLine("Arithmetic Language Compiler...");

 Listing 2.15 The AL compiler

Figure 2.20 Reporting compiler errors
50 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

 if (args.Length != 1) {
 Console.WriteLine("usage: alc progname.al");
 return;
 }
 new ALC(args[0]); // launch AL compiler
 }

 public ALC(string filePath) {

 inFile = filePath;
 outFile = Path.ChangeExtension(inFile, "exe");

 int lineNum = 0;
 string line = "";
 StreamReader sr = null;

 try {
 sr = File.OpenText(inFile); // open source file
 init(); // create new assembly

 char[] separator = {' '};
 while ((line = sr.ReadLine()) != null) {

 lineNum++;
 string[] tokens = line.Trim().ToLower().Split(separator);

 if (tokens[0].Equals("add")) {
 doAddStatement(tokens[1]);
 continue;
 }

 if (tokens[0].Equals("sub")) {
 doSubStatement(tokens[1]);
 continue;
 }

 if (tokens[0].Equals("print")) {
 doPrintStatement();
 continue;
 }

 if (tokens[0].Equals("reset")) {
 doResetStatement();
 continue;
 }
 }
 } catch (Exception e) {
 Console.WriteLine("ERROR LINE({0}): {1}", lineNum, line);
 Console.WriteLine(e.Message);
 return;
 } finally {
 if (sr != null) sr.Close();
 }
 save();
 Console.WriteLine("Done!");
 }
BUILDING A SIMPLE COMPILER 51

 private void init() {

 // create dynamic assembly...
 AssemblyName asmName = new AssemblyName();
 asmName.Name = "AlcAsm";
 alcAsm = Thread.GetDomain().DefineDynamicAssembly(
 asmName,
 AssemblyBuilderAccess.Save
);

 // create module in this assembly...
 alcMod = alcAsm.DefineDynamicModule(
 "AlcMod",
 outFile
);

 // create class in this module...
 alcCls = alcMod.DefineType(
 "AlcCls",
 TypeAttributes.Public
);

 // create AlcCls class constructor...
 ConstructorBuilder alcCon = alcCls.DefineConstructor(
 MethodAttributes.Public | MethodAttributes.HideBySig,
 CallingConventions.Standard,
 new Type[0]
);

 // generate constructor IL...
 ILGenerator conILG = alcCon.GetILGenerator();
 ConstructorInfo conObj =
 typeof(object).GetConstructor(new Type[0]);
 conILG.Emit(OpCodes.Ldarg_0);
 conILG.Emit(OpCodes.Call, conObj);
 conILG.Emit(OpCodes.Ret);

 // create AlcCls.Main() method...
 MethodBuilder mainMethod = alcCls.DefineMethod(
 "Main",
 MethodAttributes.Public |
 MethodAttributes.Static |
 MethodAttributes.HideBySig,
 Type.GetType("void"),
 null);

 // set Main as program entrypoint...
 alcAsm.SetEntryPoint((MethodInfo)mainMethod);

 // generate IL for Main.
 alcILG = mainMethod.GetILGenerator();

 // create local integer variable...
 LocalBuilder v_0 = alcILG.DeclareLocal(
 Type.GetType("System.Int32"));
52 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

 // set IL local V_0 to 0...
 alcILG.Emit(OpCodes.Ldc_I4_0);
 alcILG.Emit(OpCodes.Stloc_0);

 // get method for displaying integers...
 Type[] argTypes = {typeof(int)};
 writeIntMethod = typeof(Console).GetMethod(
 "WriteLine",
 argTypes
);
 }

 private void doAddStatement(string arg) {
 alcILG.Emit(OpCodes.Ldloc_0);
 alcILG.Emit(OpCodes.Ldc_I4, Int32.Parse(arg));
 alcILG.Emit(OpCodes.Add);
 alcILG.Emit(OpCodes.Stloc_0);
 }

 private void doSubStatement(string arg) {
 alcILG.Emit(OpCodes.Ldloc_0);
 alcILG.Emit(OpCodes.Ldc_I4, Int32.Parse(arg));
 alcILG.Emit(OpCodes.Sub);
 alcILG.Emit(OpCodes.Stloc_0);
 }

 private void doPrintStatement() {
 alcILG.Emit(OpCodes.Ldloc_0);
 alcILG.Emit(OpCodes.Call, writeIntMethod);
 }

 private void doResetStatement() {
 alcILG.Emit(OpCodes.Ldc_I4_0);
 alcILG.Emit(OpCodes.Stloc_0);
 }

 private void save() {
 alcILG.Emit(OpCodes.Ret); // emit return statement
 alcCls.CreateType(); // create our new type
 Console.WriteLine("Writing " + outFile);
 alcAsm.Save(outFile); // save the assembly
 }

 private string inFile;
 private string outFile;

 private AssemblyBuilder alcAsm;
 private ModuleBuilder alcMod;
 private TypeBuilder alcCls;
 private ILGenerator alcILG;

 private MethodInfo writeIntMethod;
 }
}

BUILDING A SIMPLE COMPILER 53

2.10.5 Building and testing the AL compiler

The first step is to compile the AL compiler. Then, we use the compiler to compile
the AL program in listing 2.14. Finally, we execute the resulting AL program. These
steps are shown in figure 2.21.

How about that? We’ve just created our own language compiler with less than 200
lines of code, although it is hardly likely to shake up the computer science commu-
nity. Note that we don’t care about back-end generation of native code. The CLR’s JIT
compiler looks after that difficult problem for us at program load time. Alternatively,
we can use ngen.exe to generate a native image and install it in the assembly cache.

2.11 SUMMARY

In this chapter we looked at types and assemblies. We saw how both are independent
of the programming language used to develop the application or component. A type
implemented in one .NET language can be used by an application coded in a differ-
ent language and this language interoperability even extends to cross-language inher-
itance. We also explored the difference between value and reference types and how
the runtime uses boxing and unboxing to convert between the two.

We explored System.Object, the ultimate superclass from which all types
derive, and we learned about finalization under .NET. We looked at assemblies, the
smallest versionable, installable unit in .NET and we saw how to install a shared assem-
bly and how to download an assembly from the Web on demand.

Finally, we looked at IL and we used the reflection classes to discover the methods
exposed by a type. We also used the classes in System.Reflection.Emit to
dynamically generate our own assembly and to build a compiler for a simple program-
ming language.

In the next chapter, we begin our case study, a video poker machine. We’ll develop
multiple versions of the poker machine in following chapters. In doing so, we’ll
explore important elements of .NET including ADO.NET, ASP.NET, Windows
Forms, remoting, and XML Web services.

Figure 2.21 Compiling and running the AL compiler
54 CHAPTER 2 UNDERSTANDING TYPES AND ASSEMBLIES

C H A P T E R 3

Case study:
a video poker machine

3.1 Playing video poker 56
3.2 The Poker.Card class 58
3.3 The Poker.Hand class 61
3.4 SimPok: a simple

poker game 68

3.5 ComPok: a COM-based poker
game 70

3.6 IEPok: an Internet Explorer
poker game 73

3.7 Designing a complete game 76
3.8 Summary 77
In chapter 1, we considered the architecture of a loan management system for a bank.
In doing so, we saw how .NET gives us the building blocks we need to create multi-
tier applications with shared back-end systems and multiple interfaces to customers,
business partners, and other bank departments. In this chapter, we begin a case study
in which we employ these building blocks to implement a 3-tier, multiuser, distrib-
uted video poker machine.

I’ve chosen video poker for several reasons:

• Unlike examples from mainstream business or commerce, the rules of poker can
be fully explained in a few paragraphs, leaving us free to concentrate on .NET
development.
55

• A video poker machine can have all the important ingredients of a distributed,
client/server, multi-interface application. It can be naturally implemented as a
game engine and a set of interfaces. We’ll reuse the engine to implement differ-
ent game applications based on COM, Internet Explorer, remoting, Windows
services, message queuing, XML Web services, Windows Forms, Web Forms,
and Mobile Forms. We’ll also use SQL Server and ADO.NET to store play his-
tory and provide data to drive the payout management algorithm.

• Video poker is a real-world application which generates millions of dollars in
profits each year in places like Las Vegas and Atlantic City.

• Best of all, we’ll need to play lots of poker to test our work.

We’ll develop the poker engine, a DLL assembly, in this and the next chapter. In later
chapters, we’ll develop different interfaces to the engine using most of the important
features of .NET. In doing so, we’ll get a reasonably complete tour of .NET applica-
tion development. In the meantime, we take a short break from .NET and play a
little poker.

3.1 PLAYING VIDEO POKER

Video poker took the casino industry by storm in the early 1980s. In Las Vegas casi-
nos, and elsewhere, it now accounts for a greater share of income than traditional slot
machines. The game is simple. You play against a machine which acts as dealer and
you insert money to receive credits. Then you make a bet and hit the Deal button.
The machine displays five cards from the deck. The idea is to make the best possible
poker hand out of these five cards by holding onto the best cards and drawing
replacements for those you wish to discard. You do this by selecting the cards you
want to hold and clicking Draw. The cards you hold are retained while the others are
replaced. At this point the hand is scored and you either win or lose. Typically to win
you need a pair of jacks or better. If you win, your winnings are calculated by multi-
plying the score for the hand by the amount of your bet. The total is added to your
existing credits.

Figure 3.1 shows the Windows Forms version of the game. The screenshot shows
the state of the game after we have placed our bet and received five cards. At this stage
the bet text box in the top right of the screen is disabled to prevent us from changing
our bet mid-game. In the top left we can see that we have 98 credits remaining. Under-
neath the two jacks we have checked the checkboxes to indicate that we want to hold
onto these two cards when we draw. By doing so, we are guaranteed to win since the
minimum scoring hand is a pair of jacks or better.

At this point we would click DRAW and the three remaining cards would be
replaced. Drawing a third jack would result in a scoring hand known as three of a kind.
56 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

3.1.1 Winning poker hands

Table 3.1 lists the winning poker hands, their scores, and some examples. We use a
two-character identifier for a card’s name. For example, the ace of diamonds has the
name “AD”, and so forth. This gives us a user-friendly shorthand for displaying cards
on the console.

Figure 3.1

The Windows Forms version

of video poker

Table 3.1 Winning video poker hands

Hand Example Score Description

Royal Flush TD JD QD KD AD 10 A straight to the ace in the same suit

Straight Flush 3H 4H 5H 6H 7H 9 A straight in the same suit

Four of a Kind 5C 5D 5H 5S QH 8 Four cards of the same number

Full House KC KH KD 8C 8S 7 Three of a kind with any pair

Flush 9S 3S QS TS AS 6 5 cards of the same suit

Straight 8C 9S TC JC QH 5 5 cards with consecutive numbers

Three of a Kind TD 4C 4S 3S 4D 4 Three cards of the same number

Two Pair AD QH QD 7C 7D 3 Any pair with any pair

Jacks or Better KD 8C 7D KS 5C 2 A pair of jacks, queens, kings, or aces
PLAYING VIDEO POKER 57

If a player bets 5 and scores three of a kind, the player’s credits increase by 20 (5 times
4). Note that a card’s number is the number on the card. The non-numbered cards,
jack, queen, king, and ace are given the numbers, 11, 12, 13, and 14 respectively. (An
ace can also double as the bottom card in a straight to the 5; e.g., AC 2D 3D 4C 5H.)

3.1.2 A profitable video poker machine

In the bottom right of the screenshot in figure 3.1, we can see statistics for the
machine. These statistics are based on data collected at the end of each game and
stored in SQL Server. The figures include the total amounts taken in and paid out by
the machine. The differences between these two figures is the profit. The house mar-
gin is the percentage profit, while the target margin represents the machine’s target
profit. These figures reflect data for all games played by all players and provide an
overview of profitability from the machine’s perspective and not from the current
player’s point of view.

You may be wondering about target profit. How can we set a target profit for a
machine which is governed by chance? We do it by implementing a payout control
algorithm which continually adjusts the odds in an effort to keep the machine on tar-
get. In figure 3.1, the machine has a 25% profit goal.

The delta figure is the difference between the target margin and the house margin.
If delta is positive, then bias is zero. In other words, if the machine is meeting or
exceeding its profit target, then no machine bias is necessary. Otherwise bias is calcu-
lated by taking the absolute value of delta and rounding it to an integer. The effect
of this is that bias increases as the machine increasingly falls short of its profit goal. The
bias value is used to tilt the odds back in favor of the machine, thus restoring profit-
ability and reducing bias toward zero once again. In figure 3.1, the actual percentage
profit is 17.54%, and the machine is falling 7.46% short of its 25% profit target.
Therefore, bias is 7 and the machine will be harder to beat. The payout control algo-
rithm is presented in detail in the following chapter.

3.2 THE POKER.CARD CLASS

We’ll start with a simple version of the game consisting initially of just a couple of
classes to represent playing cards and hands. Later in this chapter, we’ll explore the
design of the distributed, 3-tier version of video poker.

3.2.1 Designing the Card class

It’s pretty obvious that we’re going to need a class to represent a playing card, and a
class to represent a hand. In fact, that’s all we need to get a simple game engine up
and running. Figure 3.2 depicts some sample card objects.

The card class will have three public properties, Number, Suit, and Name. A
card’s number can range from 2 to 14 and its suit will be an integer ranging from 1
to 4 representing clubs, diamonds, hearts, and spades in alphabetical order. We’ll use
58 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

the two-character identifier for the card’s name. This simple scheme supports the effi-
cient generation of random cards with a user-friendly way to display them as text.

3.2.2 Coding the Card class

Before we code the Card class, we observe that card objects are immutable. As in a
real game, once a card is drawn from the deck, its number, suit, or name cannot be
altered. Therefore, we can gain a little in both efficiency and simplicity by imple-
menting a card’s properties as public, read-only fields.

We’ll need the ability to construct random playing cards to simulate dealing and
drawing cards from the deck. We’ll also need the ability to construct specific playing
cards on demand. The code for the Card class is presented in listing 3.1.

using System.Reflection;
[assembly:AssemblyVersion("1.0.0.0")]

namespace Poker {

 using System;

 internal class Card {

 public Card() : this(new Random()) {}

 public Card(Random r) {
 Number = r.Next(2, 15);
 Suit = r.Next(1, 5);
 Name = numberArray[Number - 2] + suitArray[Suit - 1];
 }

 public Card(string name) {
 string n = name.Substring(0, 1);
 string s = name.Substring(1, 1);
 Number = numberString.IndexOf(n) + 2;
 Suit = suitString.IndexOf(s) + 1;
 Name = name;
 }

 public readonly int Number;
 public readonly int Suit;
 public readonly string Name;

 public override string ToString() {

Figure 3.2 Example Card objects

 Listing 3.1 The Poker.Card class
THE POKER.CARD CLASS 59

 return Name;
 }

 public override bool Equals(object o) {
 try {
 Card c = (Card)o;
 return c.Number == Number && c.Suit == Suit;
 } catch (Exception) {
 return false;

 }
 }

 public override int GetHashCode() {
 return (Suit<<4) + Number;
 }

 // private fields...
 private static string[] numberArray
 = {"2","3","4","5","6","7","8","9","T","J","Q","K","A"};
 private static string[] suitArray = {"C","D","H","S"};
 private static string numberString = "23456789TJQKA";
 private static string suitString = "CDHS";
 }
}

The Card class begins by specifying the version number of the Poker assembly where
the Card class will reside. We could specify this in any of the source files which make
up the assembly and choose to do so here only for convenience.

We place the code for the Card, and all other poker classes, inside a new
namespace called Poker. We also specify internal access to the Card class, as it
should be accessible only to a Hand object within the same assembly.

The Card class contains three constructors. The default constructor simply creates
a new random number generator and calls the second constructor. To facilitate the
generation of a valid pseudorandom sequence when dealing cards, we’ll typically use
the second constructor and pass a random number generator from the calling appli-
cation. This constructor uses the private numberArray and suitArray as look up
tables to create the Name. The third constructor accepts a card name as an argument
and builds the corresponding Card object. This allows us to create specific cards to
order when necessary.

The rest of the Card class should look familiar. We override Equals to return
true if the two cards have the same number and suit. Therefore, we should override
GetHashCode to ensure that cards, which are equal, hash to the same code. In this
case, we combine number and suit into a single unique integer hash code. We also
override ToString to display the card’s name.

That completes the Card class. It provides us with a means of creating cards, dis-
playing them on the console, comparing them for equality, and storing them in a
hash table.
60 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

3.3 THE POKER.HAND CLASS

In video poker, cards are always assembled into a hand consisting of 5 cards. The
machine starts by dealing 5 cards at random. The user can discard none, some, or all
of these cards in an attempt to improve the hand’s score. Therefore, a hand is an obvi-
ous choice for an application class.

3.3.1 Designing the Hand class

The Hand class represents a poker hand consisting of 5 cards. Figure 3.3 depicts a
Hand object for a royal flush in spades.

The Hand class contains a private array of 5 card objects. It also contains public
Score, Title, and Text properties. As shown in figure 3.3, for a royal flush in
spades, Score is 10, Text is "TS JS QS KS KS", and Title is "Royal Flush".

3.3.2 Coding the Hand class

We know that the Hand class will require one or more constructors, together with
properties representing the hand’s score, text, and title. The score will need to be cal-
culated according to the scheme shown in table 3.1.

Although the Hand class is simple, calculating the hand’s score takes quite a few
lines of code. The full source code for the Hand class is presented in listing 3.2. In the
meantime, we’ll go through the code in outline here.

Figure 3.3 Example Hand object representing a royal flush in spades
THE POKER.HAND CLASS 61

We begin the Hand class with the default constructor which simply creates a hand
of 5 cards taking care to avoid duplicates:

 public Hand() {
 Random r = new Random();
 for (int i = 0; i < 5; i++) {
 while (true) {
 cards[i] = new Card(r);
 if (containsCard(cards[i], cards, i)) continue;
 break;
 }
 }
 }

When a player selects cards to hold, and then draws, we’ll need to create a new hand
from the old. To do this, we’ll need a constructor that takes an existing hand, and a
list of cards to hold, and creates a new hand. In fact we’ll provide three different con-
structors to do this, as follows:

 public Hand(string handText) {
 cardsFromString(handText);
 }

 public Hand(string handText, string holdString) {
 cardsFromString(handText);
 holdCards(holdString);
 draw();
 }

 public Hand(Hand hand, string holdString) {
 this.cards = hand.cards;
 holdCards(holdString);
 draw();
 }

In each case the handText argument is a string representation of an existing hand
which we get from the hand’s Text property. These constructors support the cre-
ation of new hands from existing hands, as follows:

 Hand newHand = Hand(oldHand.Text)
 ...
 Hand newHand = Hand(oldHand.Text, "13") // hold 1st and 3rd cards
 ...
 Hand newHand = Hand(oldHand, "52") // hold 5th and 2nd cards

Although not obvious at this point, these constructors will provide a convenient
means of drawing cards in both the text-based, Windows GUI, and Web versions of
the poker game.

We could implement a scheme that uses just a single hand object for each game
played, as follows:
62 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

 Hand h = new Hand();
 ...
 h.Hold(1); // hold 1st card
 h.Hold(4); // hold 4th card
 ...
 h.Draw(); // replace 2nd, 3rd, and 5th cards

While this scheme would work fine, it requires maintaining the state of a single hand
for the duration of a game. In contrast, we’ll find that using an immutable hand
object, which is discarded and replaced by a new hand when cards are drawn, pro-
vides a better model for loosely coupled, remote and Web-based versions of the game.

The rest of the Hand class is straightforward. Note that we only compute the
Score property on demand:

 public int Score { get {
 if (score < 0) calcScore();
 return score;
 } }

We’re not interested in the score until cards have been drawn and the game is over.
The calcScore, while a little long, is simple. It simply checks for a scoring hand
starting with a royal flush and ending with jacks or better.

The full Hand class is presented in listing 3.2.

namespace Poker {

 using System;

 public class Hand {

 public Hand() {
 Random r = new Random();

 for (int i = 0; i < 5; i++) {
 while (true) {
 cards[i] = new Card(r);
 if (containsCard(cards[i], cards, i)) continue;
 break;
 }
 }
 }

 public Hand(string handText) {
 cardsFromString(handText);
 }

 public Hand(string handText, string holdString) {
 cardsFromString(handText);
 holdCards(holdString);
 draw();
 }

 public Hand(Hand hand, string holdString) {

 Listing 3.2 The Poker.Hand class
THE POKER.HAND CLASS 63

 this.cards = hand.cards;
 holdCards(holdString);
 draw();
 }

 public int Score { get {
 if (score < 0) calcScore();
 return score;
 } }

 public string Title { get {
 return titles[Score];
 } }

 public string CardName(int cardNum) {
 return cards[cardNum - 1].Name;
 }

 public string Text { get {
 return CardName(1) + " " +
 CardName(2) + " " +
 CardName(3) + " " +
 CardName(4) + " " +
 CardName(5);
 } }

 public override string ToString() {
 return Text;
 }

 private void cardsFromString(string handText) {
 char[] delims = {' '};
 string[] cardStrings = handText.Split(delims);
 for (int i = 0; i < cardStrings.Length; i++)
 cards[i] = new Card(cardStrings[i]);
 }

 private void holdCards(string holdString) {
 for (int i = 0; i < 6; i++) {
 int cardNum = i + 1;
 if (holdString.IndexOf(cardNum.ToString()) >= 0)
 isHold[cardNum - 1] = true;
 }
 }

 private void draw() {

 // remember which cards player has seen...
 Card[] seen = new Card[10];
 for (int i = 0; i < 5; i++) {
 seen[i] = cards[i];
 }

 int numSeen = 5;
 Random r = new Random();
 for (int i = 0; i < 5; i++) {
64 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

 if (!isHold[i]) {
 while (true) {
 cards[i] = new Card(r);
 if (containsCard(cards[i], seen, numSeen)) continue;
 break;
 }
 seen[numSeen++] = cards[i];
 }

 }
 }

 private bool containsCard(Card c, Card[] cs, int count) {
 for (int i = 0; i < count; i++)
 if (c.Equals(cs[i]))
 return true;
 return false;
 }

 private void calcScore() {

 // are cards all of the same suit?
 bool isFlush = true;
 int s = cards[0].Suit;
 for (int i = 1; i < 5; i++) {
 if (s != cards[i].Suit) {
 isFlush = false;
 break;
 }
 }

 // sort card values...
 int[] sortedValues = new int[5];
 for (int i = 0; i < 5; i++)
 sortedValues[i] = cards[i].Number;
 Array.Sort(sortedValues);

 // do we have a straight?
 bool isStraight = true;
 for (int i = 0; i < 4; i++) {
 if (sortedValues[i] + 1 != sortedValues[i+1]) {
 isStraight = false;
 break;
 }
 }
 // is it a straight to the ace?
 bool isTopStraight = (isStraight && sortedValues[4] == 14);

 // maybe it is a straight from the ace (i.e. A, 2, 3, 4, 5)
 if (! isStraight)
 if (sortedValues[0] == 2 &&
 sortedValues[1] == 3 &&
 sortedValues[2] == 4 &&
 sortedValues[3] == 5 &&
 sortedValues[4] == 14) // ace on top
THE POKER.HAND CLASS 65

 isStraight = true;

 // now calculate score...

 // royal flush...
 if (isTopStraight && isFlush) {
 score = 10;
 return;

 }

 // straight flush...
 if (isStraight && isFlush) {
 score = 9;
 return;
 }

 // four of a kind...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[1] == sortedValues[2] &&
 sortedValues[2] == sortedValues[3]) {
 score = 8;
 return;
 }
 if (sortedValues[1] == sortedValues[2] &&
 sortedValues[2] == sortedValues[3] &&
 sortedValues[3] == sortedValues[4]) {
 score = 8;
 return;
 }

 // full house...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[1] == sortedValues[2] &&
 sortedValues[3] == sortedValues[4]) {
 score = 7;
 return;
 }
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[2] == sortedValues[3] &&
 sortedValues[3] == sortedValues[4]) {
 score = 7;
 return;
 }

 // flush...
 if (isFlush) {
 score = 6;
 return;
 }

 // straight...
 if (isStraight) {
 score = 5;
 return;
66 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

 }

 // three of a kind...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[1] == sortedValues[2]) {
 score = 4;
 return;
 }
 if (sortedValues[1] == sortedValues[2] &&

 sortedValues[2] == sortedValues[3]) {
 score = 4;
 return;
 }
 if (sortedValues[2] == sortedValues[3] &&
 sortedValues[3] == sortedValues[4]) {
 score = 4;
 return;
 }

 // two pair...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[2] == sortedValues[3]) {
 score = 3;
 return;
 }
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[3] == sortedValues[4]) {
 score = 3;
 return;
 }
 if (sortedValues[1] == sortedValues[2] &&
 sortedValues[3] == sortedValues[4]) {
 score = 3;
 return;
 }

 // jacks or better...
 if (sortedValues[0] > 10 &&
 sortedValues[0] == sortedValues[1]) {
 score = 2;
 return;
 }
 if (sortedValues[1] > 10 &&
 sortedValues[1] == sortedValues[2]) {
 score = 2;
 return;
 }
 if (sortedValues[2] > 10 &&
 sortedValues[2] == sortedValues[3]) {
 score = 2;
 return;
 }
 if (sortedValues[3] > 10 &&
THE POKER.HAND CLASS 67

 sortedValues[3] == sortedValues[4]) {
 score = 2;
 return;
 }
 score = 0;
 return;
 }

 private Card[] cards = new Card[5];

 private bool[] isHold = {false, false, false, false, false};

 private static string[] titles = {
 "No Score",
 "",
 "Jacks or Better",
 "Two Pair",
 "Three of a Kind",
 "Straight",
 "Flush",
 "Full House",
 "Four of a Kind",
 "Straight Flush",
 "Royal Flush",
 };

 private int score = -1;
 }
}

3.4 SIMPOK: A SIMPLE POKER GAME

Now it is time to build our first version of video poker. This version will provide a
simple poker machine class which can deal and draw cards, but which ignores game
histories and omits profit calculations for now. We also implement a simple console
interface to this machine.

3.4.1 The Poker.SimpleMachine class

Listing 3.3 presents a class called SimpleMachine which represents a simple poker
machine with the ability to deal and draw hands.

namespace Poker {
 public class SimpleMachine {
 public Hand Deal() {
 return new Hand();
 }
 public Hand Draw(Hand oldHand, string holdCards) {
 return new Hand(oldHand, holdCards);
 }

 Listing 3.3 The Poker.SimpleMachine class
68 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

 public Hand Draw(string oldHand, string holdCards) {
 return new Hand(oldHand, holdCards);
 }
 }
}

SimpleMachine is really just a wrapper class for constructing Hand objects. We’ll
build a more powerful machine with database support, and payout control, in the fol-
lowing chapter.

Appendix B contains the code for all the classes, which make up the poker engine,
together with a makefile to build the DLL. These files can also be downloaded from
http://www.manning.com/grimes. If, however, you wish to build the DLL with the
classes presented so far, you can issue the following compiler command:

csc /t:library /out:poker.dll card.cs hand.cs simplemachine.cs

3.4.2 The SimPok console interface

Let’s create a short console program to deal and draw cards. Listing 3.4 illustrates.

// file : simpok.cs
// compile : csc /r:poker.dll simpok.cs

using System;
using Poker;

class SimPok {

 public static void Main() {
 new SimPok(); // start game
 }

 public SimPok() {
 Console.WriteLine("A simple poker game...");
 Console.WriteLine("Hit Ctrl-c at any time to abort.\n");
 machine = new SimpleMachine(); // create poker machine
 while (true) nextGame(); // play
 }

 private void nextGame() {

 Hand dealHand = machine.Deal(); // deal hand
 Console.WriteLine("{0}", dealHand.Text); // display it

 // invite player to hold cards...
 Console.Write("Enter card numbers (1 to 5) to hold: ");
 string holdCards = Console.ReadLine();

 // draw replacement cards...
 Hand drawHand = machine.Draw(dealHand, holdCards);
 Console.WriteLine(drawHand.Text);
 Console.WriteLine(drawHand.Title);

 Listing 3.4 The SimPok program
SIMPOK: A SIMPLE POKER GAME 69

 Console.WriteLine("Score = {0}\n", drawHand.Score);
 }

 private SimpleMachine machine;
}

The program starts by greeting the user and creating a new instance of SimpleMa-
chine. Then it repeatedly calls nextGame until the user presses CTRL+C to abort.
The nextGame method deals a hand, displays it to the user, and asks the user which
cards to hold. (Cards are identified by their positions, 1 to 5.) The user’s reply is cap-
tured in holdCards and cards are drawn by constructing a new hand from the old,
as follows:

 Hand drawHand = machine.Draw(dealHand, holdCards);

Compile and execute this program, as shown in figure 3.4.

3.5 COMPOK: A COM-BASED POKER GAME

Before .NET came along, we might have developed and deployed our poker machine
as a COM object. Doing so would have enabled us to create various clients which use
COM automation to play video poker. Since COM and .NET will likely coexist for
some time to come, .NET provides the ability for both to interoperate. For example,
the assembly registration utility, regasm.exe, allows us to register a .NET assembly as a
COM object. Let’s explore this as a deployment option with a simple COM-based ver-
sion of video poker.

3.5.1 Registering the poker assembly as a COM object

Copy poker.dll to the C:\WINNT\system32 directory and then execute regasm.exe to
register it in the registry, as shown in figure 3.5.

Figure 3.4

Compiling and

running SimPok
70 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

The regasm.exe utility reads the assembly metadata and makes the necessary entries in
the registry to enable COM clients to create instances of the .NET types.

3.5.2 Console poker using COM and VBScript

Listing 3.5 presents a VBScript client which plays a COM-based version of our simple
poker game.

' file: compok.vbs
' description: VBScript poker game
' execute: cscript compok.vbs

wscript.stdout.writeLine "A simple poker game..."
wscript.stdout.writeLine "Hit Ctrl-c at any time to abort"
wscript.stdout.writeLine

set machine = wscript.createObject("Poker.SimpleMachine")
do while true ' play forever

 set dealHand = machine.Deal()
 wscript.stdout.writeLine dealhand.Text

 wscript.stdout.write "Enter card numbers (1 to 5) to hold: "
 holdCards = wscript.stdin.readLine

 set drawHand = machine.Draw(dealHand, holdCards)
 wscript.stdout.writeLine drawHand.Text
 wscript.stdout.writeLine drawHand.Title
 wscript.stdout.writeLine "Score = " & drawHand.Score
 wscript.stdout.writeLine

loop

For our purposes, the most important line in the program is where we create a COM-
based instance of the SimpleMachine:

 set machine = wscript.createObject("Poker.SimpleMachine")

Figure 3.5 Registering the Poker.dll assembly

 Listing 3.5 The ComPok program
COMPOK: A COM-BASED POKER GAME 71

The fully qualified .NET type name, Poker.SimpleMachine, is used as the
ProgID to identify the COM class in the registry.

We use the console version of the Windows Scripting Host to load and run this
version of the poker game, as shown in figure 3.6.

3.5.3 RegAsm and the registry

When we run regasm.exe, all public types from the assembly are registered in the reg-
istry. To check this, run regasm.exe again, using the /regfile:poker.reg option
to generate a registration file instead of updating the registry directly. (The poker.reg
file can be used to install the component on another machine.) The file should con-
tain an entry for Poker.SimpleMachine which looks something like:

[HKEY_CLASSES_ROOT
 \CLSID
 \{5F9EF3C3-6A12-3636-A11E-C450A65F3C0C}
 \InprocServer32]
@="C:\WINNT\System32\mscoree.dll"
"ThreadingModel"="Both"
"Class"="Poker.SimpleMachine"
"Assembly"="poker, Version=1.0.0.0,
 Culture=neutral,
 PublicKeyToken=null"
"RuntimeVersion"="v1.0.2904"

There should be a similar entry for Poker.Hand, but not for Poker.Card
because the latter is internal to the assembly.

To unregister poker.dll enter:

regasm /unregister poker.dll

For readers who are familiar with COM+ services, .NET also provides a utility called
RegSvcs which allows you to install a .NET assembly into a COM+ application. You’ll
find more information about this in the .NET and COM+ reference documentation.

Figure 3.6 Running ComPok
72 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

3.6 IEPOK: AN INTERNET EXPLORER
POKER GAME

Internet Explorer can download assemblies on demand and install them in the assem-
bly download cache. This gives us the ability to install the poker engine directly from
a Web page and to script a browser-hosted version of the game. So, before we leave
our simple poker machine, let’s create a more user-friendly interface by hosting the
game inside Internet Explorer and providing a graphical interface similar to a real
poker machine.

3.6.1 Downloading assemblies using Internet Explorer

We can deploy poker.dll on the Web server and can use the following <object> tag
to install it directly from a Web page:

<object id=machine
 classid=http:poker.dll#Poker.SimpleMachine>
</object>

This causes Internet Explorer to download poker.dll, install it in the download cache,
and instantiate a SimpleMachine object. In this example, the poker.dll assembly
must be in the same virtual directory as the Web page. It is downloaded and activated
without prompting the user, and without making any entries in the registry.

Let’s explore this as a deployment option. First, we need to use Internet Services
Manager to create a new virtual directory on the server. I called this directory iepok
and mapped it to the local path C:\DotNet\poker\IEPok. Figure 3.7 shows the prop-
erties of this virtual directory.

Figure 3.7

The IEPok virtual directory
IEPOK: AN INTERNET EXPLORER POKER GAME 73

3.6.2 Coding the IEPok application

Next, copy poker.dll to this new Web directory. We’ll implement the Internet
Explorer version of the game as the HTML file, IEPok.html, shown in listing 3.6.
You’ll find the GIF images of the playing cards in the download.

<!-- file: IEPok.html -->
<html><head>

<object id=machine
 classid=http:poker.dll#Poker.SimpleMachine>
</object>
<script>
Hand = null;

function Cards() {
 if (Btn.value == "Deal") {
 Hand = machine.Deal();
 Hold1.checked = Hold2.checked = Hold3.checked =
 Hold4.checked = Hold5.checked = false;
 Btn.value = "Draw";
 Title.innerText = "Hold and Draw";
 } else { // draw cards...
 holdCards = "";
 if (Hold1.checked) holdCards += "1";
 if (Hold2.checked) holdCards += "2";
 if (Hold3.checked) holdCards += "3";
 if (Hold4.checked) holdCards += "4";
 if (Hold5.checked) holdCards += "5";
 Hand = machine.Draw(Hand, holdCards);
 Title.innerText = Hand.Title + " (" + Hand.Score + ")";
 Btn.value = "Deal";
 }
 Card1.src="images/" + Hand.CardName(1) + ".gif";
 Card2.src="images/" + Hand.CardName(2) + ".gif";
 Card3.src="images/" + Hand.CardName(3) + ".gif";
 Card4.src="images/" + Hand.CardName(4) + ".gif";
 Card5.src="images/" + Hand.CardName(5) + ".gif";
}
</script></head>

<body>
<table rules="none" border=1 cellpadding="4" cellspacing="1">
 <tr><td align=center colspan=5>.NET Video Poker</td></tr>
 <tr><td id="Title" align=center colspan=5>Click Deal</td></tr>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 <td></td>
 <td></td>

 Listing 3.6 The IEPok.html file
74 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

 </tr>
 <tr>
 <td align=center><input type="checkbox" id="Hold1" /></td>
 <td align=center><input type="checkbox" id="Hold2" /></td>
 <td align=center><input type="checkbox" id="Hold3" /></td>
 <td align=center><input type="checkbox" id="Hold4" /></td>
 <td align=center><input type="checkbox" id="Hold5" /></td>
 </tr>

 <tr><td align=middle colSpan=5>
 <input type="button" value="Deal" id="Btn" onClick="Cards()"/>
 </td></tr>
</table>
</body></html>

The <object> tag installs poker.dll. (Refer to chapter 2 for details on listing the
contents of the download cache.) The remaining code is just standard HTML and
JavaScript to create a table that displays 5 cards with checkboxes underneath. We use
the same button for both dealing and drawing cards. All the user interface logic for
the game is contained in the Cards JavaScript function. When the user clicks Deal/
Draw, the program checks the button caption to see if it should deal or draw. If deal-
ing, it simply deals a hand, clears the hold checkboxes, sets the button caption to
Draw, and tells the user to hold and draw cards. If drawing, it examines the check-
boxes to see which cards to hold, draws replacement cards, sets the button caption to
Deal again, and tells the user the score. Refer to figure 3.8 to see how the game looks
in the browser. The card images, which are available in the download for this book,
are placed in the images subdirectory on the server. The image files follow the familiar
two-character naming convention. For example, qh.gif is an image of the queen of
hearts. Note that cb.gif is an image of the back of the cards.

Figure 3.8

Internet Explorer-hosted

video poker
IEPOK: AN INTERNET EXPLORER POKER GAME 75

3.7 DESIGNING A COMPLETE GAME

In the next chapter, we’ll expand our poker machine to record game histories and
enforce payout control. To do so, we’ll use SQL Server to store the data. It has become
common to design so-called N-tier client/server systems which partition the applica-
tion into separate layers. A typical design often involves three tiers, or layers: data,
logic, and interface. Since we intend to develop multiple, distributed interfaces for
our poker machine, this kind of partitioning is an absolute requirement. We don’t
want to restrict application access to just Windows or Web users when .NET provides
the building blocks for wider deployment. With a little extra work, we can support
users coming from Windows, the Web, UNIX via telnet, a mobile phone, a PDA,
and, using either remoting or XML Web services, we can expose the poker engine to
other developers who wish to build their own customized application front ends.

3.7.1 Video poker: the poker engine and its interfaces

Figure 3.9 shows an overview of the complete video poker application.

The poker.dll assembly is logically divided into data and logic layers. We’ll add the
data layer, containing the Bank class, in the next chapter. The MsgLog class is just a
utility class for logging errors and warnings in the Windows event log.

Figure 3.9 A model of the video poker application
76 CHAPTER 3 CASE STUDY: A VIDEO POKER MACHINE

We’ve already developed the Card, Hand, and SimpleMachine classes. The full
machine, a 3-tier application that supports betting and payout control, will be imple-
mented in the Machine class, also in the next chapter.

Eleven versions of the poker game are shown:

• SimPok—The simple console-based poker game already seen in this chapter.

• ComPok—The VBScript/COM-based poker game already seen in this chapter.

• IEPok—The Internet Explorer-based poker game already seen in this chapter.

• ConPok—A 3-tier console poker game using SQL Server and ADO.NET.

• RemPok—A client/server poker game which uses .NET remoting services.

• SvcPok—A Windows service-based poker game.

• QuePok—A message queue-based poker game.

• WSPok—A client/server poker game which uses XML Web services.

• WinPok—A 3-tier Windows GUI poker game using Windows Forms, SQL
Server, and ADO.NET.

• WebPok—A Web server-based, ASP.NET poker game.

• MobPok—A mobile poker game playable on a Web-enabled phone or PDA.
We’ll use .NET’s Mobile Internet Toolkit to build this game.

In developing these game versions, we’ll get a fairly complete tour of the different
application models that .NET supports. We’ll use the poker.dll assembly as a common
poker engine behind each application.

3.8 SUMMARY

In this chapter, we introduced our case study and developed a simple, console-based
poker game. We also saw how to expose the poker machine as a COM object, and
how to download and install it inside Internet Explorer. We also laid out a model for
a complete implementation of the poker machine which leverages the features of the
.NET platform to gain maximum deployment.

In the next chapter, we’ll explore ADO.NET and build the data layer for the poker
machine. We’ll also put the finishing touches to the poker engine assembly.
SUMMARY 77

C H A P T E R 4

Working with ADO.NET
and databases

4.1 The ADO.NET namespaces 79
4.2 The ADO.NET DataSet 80
4.3 DataSets and XML 83
4.4 Updating the database

using a DataSet 85
4.5 Updating the database directly 87
4.6 The DataReader 88
4.7 The Poker.Bank class 89

4.8 Using XML serialization
to create a report 101

4.9 The Poker.Machine class 109
4.10 The Poker.Bet class 112
4.11 Building the poker DLL 113
4.12 ConPok: 3-tier client/

server poker 114
4.13 Summary 116
If you’ve programmed on the Windows platform for a while, you’ve probably
encountered several different database access libraries such as Jet, ODBC, DAO, RDO,
or ADO. ADO.NET, the latest incarnation of Microsoft ActiveX Data Objects, con-
tains new features to bring ADO in line with connectionless Internet protocols, while
retaining familiar ADO objects such as Connection and Command.

In this chapter, we explore the ADO.NET namespaces, and we program ADO.NET
using C# to create the data layer of our video poker application. Familiarity with SQL
databases and database objects, including tables and queries, is assumed. In addition,
a basic understanding of XML will help when we discuss the ADO.NET DataSet.

Also in this chapter, we create the Poker.Bank class which encapsulates all of the
application’s data needs in a convenient package, while shielding the rest of the
78

application from database or network errors. Finally, we create a reporting application,
which uses XML/XSLT to report on machine statistics and profitability.

4.1 THE ADO.NET NAMESPACES

ADO.NET has several namespaces containing classes that represent database objects
such as connections, commands, and datasets. Perhaps the most important of these
classes is the new XML-enabled DataSet which provides a relational data store and a
standard API independent of any underlying database management system. We’ll
look at the DataSet class in more detail in the following section. First we look at
managed providers which provide the link between a DataSet and the underlying
data store.

4.1.1 The OLE DB and SQL Server managed providers

Although a DataSet provides a stand-alone entity separate from the underlying
store, in most cases it will get its data from a managed provider whose role is to con-
nect, fill, and persist the DataSet to and from a data store. .NET offers two such
providers embodied in the following two namespaces:

• System.Data.SqlClient—Used to talk directly to Microsoft SQL Server.

• System.Data.OleDb—Used to talk to any other provider that supports
OLE DB (a COM-based API for accessing data).

For the most part, both namespaces provide the same important classes which repre-
sent the following major ADO.NET objects:

• Connection—Represents a connection to a data source.

• Command—Represents an executable SQL statement or stored procedure.

• DataReader—Facilitates the reading of a forward-only stream of rows from a
database.

• DataAdapter—Represents a set of commands and a connection which can
be used to fill a DataSet and update the underlying data store.

Depending on the provider used, these ADO.NET objects have different class names,
as shown in table 4.1.

Table 4.1 The ADO.NET objects

ADO.NET Object System.Data.SqlClient Class System.Data.OleDb Class

Connection SqlConnection OleDbConnection

Command SqlCommand OleDbCommand

DataReader SqlDataReader OleDbDataReader

DataAdapter SqlDataAdapter OleDbDataAdapter
THE ADO.NET NAMESPACES 79

4.2 THE ADO.NET DATASET

The DataSet is the heart of ADO.NET. It contains a subset of an underlying data-
base and contains both data and schema information. Unlike the legacy ADO
Recordset, an ADO.NET DataSet can contain more than one table and also
contains information about table relationships, the columns they contain, and any
constraints that apply. Each table in a DataSet can contain multiple rows. Figure
4.1 is a diagram of a simple DataSet, called myDataSet, containing several tables.

In the diagram, you can see that a DataSet has a Tables collection. In turn, each
table has a Rows collection, and each row contains a collection of columns. Using
indexing, we can access the fourth column of the third row of the first table as:

 myDataSet.Tables[0].Rows[2][3]

Once data is retrieved from the database into a DataSet object, an application can
disconnect from the database before processing the DataSet. This is an important
feature of the ADO.NET DataSet. It gives us an in-memory, disconnected copy of a
portion of the database which we can process without retaining an active connection
to the database server. In the world of connectionless, Internet protocols, ADO.NET
provides us with a workable solution for database access. Furthermore, because of the
disconnected nature of ADO.NET, it is possible to use DataSet, DataTable, and
other database-type objects, without using an underlying database management sys-
tem (DBMS).

4.2.1 Creating and using a DataSet

The typical steps in creating and using a DataSet are:

• Create a DataSet object

• Connect to a database

• Fill the DataSet with one or more tables or views

Figure 4.1 A DataSet containing a collection of tables
80 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

• Disconnect from the database

• Use the DataSet in the application

4.2.2 A simple example

Listing 4.1 illustrates the creation of a DataSet by connecting to Microsoft’s sample
Pubs database (shipped with SQL Server and MSDE, the Microsoft Data Engine) and
displaying the numbers of records in the authors, publishers, and titles tables.

// file : pubscount.cs
// compile : csc pubscount.cs

using System;
using System.Data;
using System.Data.SqlClient;

public class PubsCount {

 public static void Main() {

 // change the following connection string, as necessary...
 string con =
 @"server=(local)\NetSDK;database=pubs;trusted_connection=yes";

 DataSet ds = new DataSet("PubsDataSet");
 SqlDataAdapter sda;
 string sql;

 sql = "SELECT COUNT(*) AS cnt FROM authors";
 sda = new SqlDataAdapter(sql, con);
 sda.Fill(ds, "a_count");

 sql = "SELECT COUNT(*) AS cnt FROM titles";
 sda = new SqlDataAdapter(sql, con);

 sda.Fill(ds, "t_count");

 sql = "SELECT COUNT(*) AS cnt FROM publishers";
 sda = new SqlDataAdapter(sql, con);
 sda.Fill(ds, "p_count");

 int numAuthors = (int) ds.Tables["a_count"].Rows[0]["cnt"];
 int numTitles = (int) ds.Tables["t_count"].Rows[0]["cnt"];
 int numPubs = (int) ds.Tables["p_count"].Rows[0]["cnt"];

 Console.WriteLine(
 "There are {0} authors, {1} titles and {2} publishers.",
 numAuthors,
 numTitles,
 numPubs
);
 }
}

 Listing 4.1 Counting records in database tables
THE ADO.NET DATASET 81

In this example we connect to the Pubs database on the local machine using a trusted
connection. If your setup is different, you’ll need to change this connection string to
run this example.

Next, we create a new DataSet object, PubsDataSet, to store our query results
and we declare a reference to a SqlDataAdapter object which we’ll use to execute
commands against the underlying database and to fill the DataSet with results.

We build a string containing a SQL SELECT statement to count the number of
records in the authors table and return the result as cnt. Then, we build a new
SqlDataAdapter object passing the SELECT statement and connection string as
arguments. We could explicitly create a connection object using the built-in SQL-
Connection class (see “Updating the database directly” in this chapter). However, in
this example we use the connection string and leave it to ADO.NET to create the con-
nection under the covers.

Calling the Fill method on the SqlDataAdapter object makes the connec-
tion, executes the query, populates the DataSet by storing the results in a local table
called a_count, and then disconnects. In this case the a_count table does not yet
exist so ADO.NET creates it for us. Subsequent calls to Fill can append to, or refresh,
this table.

We repeat the count process for the titles and publishers tables. We store the results
of all three queries in a single DataSet object called ds. The structure of a DataSet
is simple: it contains a collection of DataTable objects, each of which exposes a col-
lection of DataRow objects.

Finally, we retrieve and display the record counts from the results DataSet. We
could also use indexing to retrieve the author count:

int numAuthors = (int) ds.Tables[0].Rows[0][0];

Or we could create explicit references to the DataTable and DataRow objects as
follows:

DataTable dt = ds.Tables["a_count"];
DataRow dr = dt.Rows[0];
int numAuthors = (int) dr["cnt"];

We can even access the results as elements in an XML document, as we’ll see in the
next section.

Figure 4.2 shows the result produced by compiling and running the pubscount
program.
82 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

4.3 DATASETS AND XML

As we’ve seen, a DataSet can be processed as a collection of tables, each containing
rows and columns. It can also be processed as an XML document.

4.3.1 The DataSet’s GetXml and GetXmlSchema methods

We can display both the XML data and schema for the ds DataSet created in the
pubscount program, as follows:

 Console.WriteLine(ds.GetXml()); // display DataSet as XML
 Console.WriteLine(ds.GetXmlSchema()); // display DataSet schema as XML

Listing 4.2 shows what the XML schema looks like.

<xsd:schema id="PubsDataSet"
 targetNamespace=""
 xmlns=""
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xsd:element name="PubsDataSet" msdata:IsDataSet="true">

 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">

 <xsd:element name="a_count">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cnt"
 type="xsd:int"
 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="t_count">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cnt"
 type="xsd:int"
 minOccurs="0" />

Figure 4.2 Compiling and running PubsCount

 Listing 4.2 DataSet XML schema
DATASETS AND XML 83

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="p_count">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cnt"
 type="xsd:int"

 minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:choice>
 </xsd:complexType>

 </xsd:element>

</xsd:schema>

The XML schema, returned by the GetXmlSchema method, defines the structure
of, and data types used in, the XML document returned by GetXml. In this example,
it defines a single element, PubsDataSet, containing three elements, a_count,
t_count, and p_count, each containing a single cnt element of type integer.
Details of the XML schema namespace used to define these elements can be found on
the World Wide Web Consortium’s site at http://www.w3.org/2001/XMLSchema.

Listing 4.3 shows the XML produced by the GetXml method. It represents the
data values in the DataSet, structured according to the above schema.

<PubsDataSet>
 <a_count>
 <cnt>23</cnt>
 </a_count>
 <t_count>
 <cnt>18</cnt>
 </t_count>
 <p_count>
 <cnt>8</cnt>
 </p_count>
</PubsDataSet>

We can persist (or save) a DataSet by saving both its schema and data as XML doc-
uments stored as text files, as follows:

 ds.WriteXmlSchema("pubscount.schema");
 ds.WriteXml("pubscount.data");

 Listing 4.3 DataSet XML data
84 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

Then we can recreate the DataSet and reload its data as follows:

 DataSet pubsDataSet = new DataSet("PubsDataSet");
 pubsDataSet.ReadXmlSchema("pubscount.schema");
 pubsDataSet.ReadXml("pubscount.data");

It is not strictly necessary to save and reload the schema. If we reload just the data with-
out the schema information ADO.NET will use heuristics to infer the correct data types.
However it is better to explicitly specify the schema if the information is available.

It should be clear from this example that we don’t even need an underlying DBMS
to create, store, and retrieve relational data using ADO.NET.

The tight integration of databases with XML suggests all sorts of interesting appli-
cation design opportunities. We can stream relational data over the network as XML.
We can traverse our database using an XML parser. We can embed a portion of our
database directly in a document. We can probably throw away our proprietary report
formatting tools and use XML with XSL, a style language for transforming XML, to cre-
ate attractive reports with little coding effort.

Later in this chapter, we create a program which builds a simple XML document
containing the elements of a report on the poker machine’s statistics and profitability.
The class uses an XSL transformation to convert the XML to HTML so that the report
can be viewed online in a Web browser.

4.4 UPDATING THE DATABASE USING A DATASET

The underlying database can be updated directly by passing SQL INSERT/UPDATE/
DELETE statements, or stored procedure calls, through to the managed provider. It
can also be updated using a DataSet. First let’s look at updating the database by cre-
ating and updating an in-memory DataSet and then writing it back to the data-
base. The steps are:

1 Create and fill the DataSet with one or more DataTables

2 Call DataRow.BeginEdit on a DataRow

3 Make changes to the row’s data

4 Call DataRow.EndEdit

5 Call SqlDataAdapter.Update to update the underlying database

6 Call DataSet.AcceptChanges (or DataTable.AcceptChanges or
DataRow.AcceptChanges)

Step 2 switches off validation constraints for the duration of the edit operation and
step 4 turns them on again. This is necessary when making multiple changes to pre-
vent an intermediate, inconsistent state from triggering the validation rules. Calls to
EndEdit should be enclosed in a try-catch block since breaking a constraint
raises an exception.
UPDATING THE DATABASE USING A DATASET 85

Step 5 updates the table in the underlying database while step 6 is not always nec-
essary, as we’ll see next.

4.4.1 Committing changes

Every DataRow has a RowState property which indicates the state of the
DataRow in a DataTable. The RowState property takes its value from the
DataRowState enumeration shown in Table 4.2.

Calling DataTable.AcceptChanges causes Deleted rows to disappear from
the table while Added and Modified rows become Unchanged. We can also call
DataRow.AcceptChanges on a particular DataRow. Similarly, calling
DataSet.AcceptChanges causes DataTable.AcceptChanges to be called
for every table which, in turn, calls DataRow.AcceptChanges for every row. This
gives a high degree of granularity when it comes to controlling changes to a
DataSet. Note that calling AcceptChanges on these DataSet-related objects is
not the same as committing changes to the underlying database, such as when execut-
ing SQL’s COMMIT TRANSACTION statement. Therefore, if the DataSet is to be
discarded following the call to Update, the call to AcceptChanges is unnecessary
as it has no effect on the underlying database. The DataSet also provides a
RejectChanges method to roll back DataSet changes.

Listing 4.4 presents a program which takes the last name of the first author it finds
called “White” in the authors table and changes it to “Black.” In a production envi-
ronment, we would wrap it in a try-catch block and check for errors before com-
mitting the changes to the database.

// file : pubsedit.cs
// compile : csc pubsedit.cs

using System;
using System.Data;
using System.Data.SqlClient;

public class PubsEdit {

Table 4.2 The System.Data.DataRowState enumeration

Value Description

Added The row has been added since the last call to AcceptChanges

Deleted The row has been deleted from the table since the last call to AcceptChanges

Detached The row is not attached to a DataTable

Modified The row has been modified since the last call to AcceptChanges

Unchanged The row is unchanged since the last call to AcceptChanges

 Listing 4.4 Using a DataSet to update a database
86 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 public static void Main() {

 // change the following connection string, as necessary...
 string con =
 @"server=(local)\NetSDK;database=pubs;trusted_connection=yes";

 DataSet ds = new DataSet("PubsDataSet");
 DataRow dr;
 SqlDataAdapter sda;

 string sql;

 // get an author...
 sql = "SELECT * FROM authors WHERE au_lname = 'White'";
 sda = new SqlDataAdapter(sql, con);
 sda.Fill(ds, "authors");
 dr = ds.Tables["authors"].Rows[0];

 // create a SqlCommandBuilder to ...
 // automatically generate the update command...
 SqlCommandBuilder scb = new SqlCommandBuilder(sda);

 // edit author row...
 dr.BeginEdit();
 dr["au_lname"] = "Black";
 dr.EndEdit();
 sda.Update(ds, "authors"); // update database
 ds.AcceptChanges(); // accept changes to DataSet
 }
}

To delete a row, we can use DataRow.Delete. If the RowState property is
Added, the row is physically removed, otherwise it is marked for deletion and removed
when AcceptChanges is called. To insert a row use DataTable.NewRow.
Remember, we are changing only the in-memory DataSet and that we must call
SqlDataAdapter.Update to have changes reflected in the underlying database
when using a managed provider.

There is more to the DataSet than we’ve seen here. The DataSet exposes a col-
lection of DataRelations which models the column relationships between
DataTables. It also models other schema information including constraints and it
can raise events when certain changes to the DataSet occur.

4.5 UPDATING THE DATABASE DIRECTLY

To update the database directly, we can use the SqlCommand object, which allows us
to execute SQL INSERT, UPDATE, and DELETE statements against a database. List-
ing 4.5 provides an example of a DELETE operation.
UPDATING THE DATABASE DIRECTLY 87

// file : pubsdelete.cs
// compile : csc pubsdelete.cs

using System;
using System.Data;
using System.Data.SqlClient;

public class PubsDelete {
 public static void Main() {
 SqlConnection con = new SqlConnection(
 @"server=(local)\NetSDK;database=pubs;trusted_connection=yes"
);
 string sql = "DELETE FROM authors WHERE au_lname = 'Green'";
 SqlCommand cmd = new SqlCommand(sql, con);
 con.Open();
 int numRecsAffected = cmd.ExecuteNonQuery();
 con.Close();
 Console.WriteLine("{0} record(s) deleted.", numRecsAffected);
 }
}

In this example we create a SqlConnection object using the connection string.
SqlCommand.ExecuteNonQuery executes the DELETE statement and returns
the number of records affected (deleted).

We can execute stored procedures in this way too. However, if your stored proce-
dure returns data you’ll need to use a DataSet to access that data.

4.6 THE DATAREADER

The DataReader provides a read-only, forward-only stream of results from a data-
base query or stored procedure. You should use a DataReader if it is desirable,
and possible, to keep the connection to the database open while data is being pro-
cessed. Listing 4.6 presents an example which displays the names of the authors in
the Pubs database.

// file : pubsreader.cs
// compile : csc pubsreader.cs

using System;
using System.Data;
using System.Data.SqlClient;

public class PubsReader {
 public static void Main() {
 SqlConnection con = new SqlConnection(
 @"server=(local)\NetSDK;database=pubs;trusted_connection=yes"
);
 string sql = "SELECT * FROM authors";

 Listing 4.5 Using SqlCommand to update the database directly

 Listing 4.6 Using a DataReader
88 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 con.Open();
 SqlDataReader sdr = new SqlCommand(sql, con).ExecuteReader();
 while (sdr.Read()) {
 Console.WriteLine(sdr["au_fname"] + " " + sdr["au_lname"]);
 }
 con.Close();
 }
}

4.7 THE POKER.BANK CLASS

Now it is time to use what we’ve learned about ADO.NET to implement the data
layer of our video poker machine. First, we need to create the application database.
If you have SQL Server installed on your local machine, or you have database cre-
ation privileges on a server elsewhere, then you can create a new database with the
script shown in listing 4.7. Otherwise, you’ll have to seek the assistance of your local
database administrator.

-- file : pokdb.sql
-- description : .NET Video Poker database creation script
-- execute : osql -E -S(local)\NetSDK -ipokdb.sql

-- DROP DATABASE poker

CREATE DATABASE poker
GO
USE poker

CREATE TABLE games (
 id INT IDENTITY(1,1) PRIMARY KEY,
 date_time DATETIME NOT NULL DEFAULT(getdate()),
 hand CHAR(15) NOT NULL,
 score INT NOT NULL,
 bet INT NOT NULL)

INSERT INTO games(hand, score, bet)
 VALUES ('QC 7C QH KS QS ', 4, 1)

INSERT INTO games(hand, score, bet)
 VALUES ('QC JD 6H 5C KH ', 0, 1)

INSERT INTO games(hand, score, bet)
 VALUES ('KC 2C KD JD 6C ', 2, 1)

CREATE TABLE integers (
 name CHAR(30) PRIMARY KEY,
 value INT NOT NULL)

INSERT INTO integers(name, value) VALUES ('MinBet', 1)
INSERT INTO integers(name, value) VALUES ('MaxBet', 5)
INSERT INTO integers(name, value) VALUES ('StartCredits', 100)
INSERT INTO integers(name, value) VALUES ('TargetMargin', 25)
GO

 Listing 4.7 Creating the poker database
THE POKER.BANK CLASS 89

The script starts by creating the poker database and the games table in which we’ll
store the results of every game played. This data will be used to drive the machine’s
payout control algorithm. We also insert three records into the table. These represent
sample hands along with their scores and bet amounts. We’ll use these records to test
the data layer later in this chapter. We also create an integers table which we use as a
convenient place to store machine configuration parameters, including the maximum
and minimum bet amounts, the number of credits with which a player starts, and the
target margin for the machine.

Save this script as pokdb.sql and use SQL Server’s osql utility to execute it, as
shown in figure 4.3.

If all goes well, the database and tables should be created. Try selecting from the
games table to check your work, as shown in figure 4.4.

The meanings of the columns in the games table are:

• id—This is an integer automatically generated by SQL Server to number the
records in ascending sequence in the order they are created. We’ll use this as a
primary key since there are no other suitable candidate columns.

• date_time—This field is automatically generated by SQL Server and will
contain the date and time the record was created.

Figure 4.3 Creating the poker database

Figure 4.4 Selecting from the games table
90 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

• hand—This is a string representation of a poker hand. For example, "TD JD
QD KD AD" denotes a royal flush in diamonds.

• score—This is the score assigned to the hand. Strictly speaking, it is not nec-
essary to store the score since it depends on the hand and can be recomputed by
the application. (In fact, doing so creates a non-key dependency of score on
hand.) However, it is more convenient and efficient to store the score when it is
available for free at the time the game is played and the record created. Omit-
ting the score column would make it impossible to use SQL to compute the
amount paid out and the profit.

• bet—The amount the player bet on this hand.

With the games table in place, we can use the following SQL statement to retrieve the
total amounts taken in and paid out, and the profit for our poker machine:

SELECT
 SUM(bet) AS taken_in,
 SUM(score * bet) AS paid_out,
 SUM(bet) - SUM(score * bet) as profit
FROM games

4.7.1 Logging errors and warnings

Handling application errors in a sensible way can often be a frustrating task for which
there are few firm rules. The poker machine’s data layer is a potential source of errors.
The database server will sometimes be unavailable, and occasionally the network con-
nection may be broken. Unfortunately, many applications treat all errors as fatal
when some are, in fact, recoverable.

For our poker machine, we need to decide on a robust error-handling strategy
which will fit with our multi-interface design. We intend to implement multiple,
local, and remote user interfaces including console, GUI, and Web versions. So we
can’t simply pop up error messages on the user’s screen whenever there is a problem.
Furthermore, we would like the application to be fault-tolerant so that it can recover
from an error and continue whenever it makes sense to do so. For example, if SQL
Server is unavailable, we’d like to continue playing without database support. There
is a thin line between fault-tolerance and fault-concealment, so errors should be han-
dled silently, but logged fully, and the log should be checked regularly. Listing 4.8
illustrates the approach.

using System;
using System.Diagnostics;
namespace Poker {
 public class MsgLog {
 public MsgLog(string errMsg) {
 DateTime now = DateTime.Now;
 errMsg = String.Format("{0} : {1}", now, errMsg);

 Listing 4.8 Logging errors
THE POKER.BANK CLASS 91

 EventLog log = new EventLog("Application", ".", "Poker");
 log.WriteEntry(errMsg, EventLogEntryType.Error);
 }
 }
}

Now, we can use MsgLog to log errors with a one-liner such as:

new MsgLog("Oooops! Something funny happened in method m, class c.");

To view the messages, select Start|Programs|Administrative Tools
|Event Viewer from the Windows task bar, and click the application log in the
left pane. (This is the procedure for Windows 2000 machines.) You should see some-
thing like the window in figure 4.5.

In the Source column you’ll see the name of the application that logged the message.
Our log messages will identify themselves with the name Poker in this column.
Double-click a message to view details of the error.

4.7.2 Creating the Poker.Bank class

The Poker.Bank class is the heart of the application’s data layer. It provides the
interface between the various poker applications and the database. The full source
code for the Bank class is presented in listing 4.9. In the meantime, we’ll go through
the code in outline here. First, the constructor:

 public class Bank {

 public Bank() {
 setConnectString();
 TargetMargin = GetParm("TargetMargin", 25);
 refresh();
 }

 ...

 }

Figure 4.5 Windows event viewer with logged poker messages
92 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

We don’t want the application talking directly to the Bank class. When the applica-
tion needs data, it should ask the Poker.Machine class, which asks the
Poker.Bank class, which talks to the database directly. (We’ll look at the
Poker.Machine class soon.) This creates a nice layer of insulation around the data-
base and allows the application to ignore database connectivity issues, or other errors.

The private setConnectString method looks for the connect string in the
application configuration file. If not found, it defaults to a trusted connection to the
poker database on the local host. We haven’t looked at configuration files in sufficient
detail yet, so we won’t create one. Instead, the default will work for now.

 private void setConnectString() {
 connectString = ConfigurationSettings.AppSettings["dsn"];
 if (connectString == null) connectString = "";
 if (connectString == "")
 connectString =
 @"server=(local)\NetSDK;database=poker;trusted_connection=yes";
 }

The public Bank.GetParm method is used to retrieve the target margin from the
SQL integers table. The target margin is the profit goal for the video poker machine.
If the target margin equals 25, then the machine aims to keep 25% of the money
taken in.

 public int GetParm(string parmName, int defaultValue) {

 int parmValue = defaultValue;

 if (connectString == "") return parmValue;

 string sql =
 "SELECT value FROM integers WHERE name='" + parmName + "'";
 DataSet ds = new DataSet("PokerParm");
 SqlDataAdapter sda = new SqlDataAdapter(sql, connectString);

 try {
 sda.Fill(ds, "result");
 parmValue = (int) ds.Tables["result"].Rows[0][0];
 } catch (Exception e) {
 connectString = "";
 new MsgLog(
 String.Format("Bank.GetParm(): {0}", e.Message));
 }
 return parmValue;
 }

The private refresh method executes the SQL statement, seen earlier, to retrieve
the amounts taken in, paid out, and the profit:

 ...

 public int TakenIn { get { return takenIn; } }
 public int PaidOut { get { return paidOut; } }
THE POKER.BANK CLASS 93

 public int Profit { get { return profit; } }

 ...

 private void refresh() {

 if (connectString == "") return;

 string sql =
 "SELECT " +

 "SUM(bet) AS taken_in, " +
 "SUM(score * bet) AS paid_out, " +
 "SUM(bet) - SUM(score * bet) as profit " +
 "FROM games";

 SqlDataAdapter sda = null;
 try {
 sda = new SqlDataAdapter(sql, connectString);
 DataSet ds = new DataSet("PokerProfit");
 sda.Fill(ds, "stats");
 DataRow dr = ds.Tables[0].Rows[0];
 takenIn = (int) dr[0];
 paidOut = (int) dr[1];
 profit = (int) dr[2];
 status = "Machine Stats (All Players)";
 } catch (Exception e) {
 new MsgLog(
 String.Format("Bank.refresh(): {0}", e.Message));
 }
 }

 ...

 private int takenIn = 0;
 private int paidOut = 0;
 private int profit = 0;

Next comes the house margin property:

 public double HouseMargin { get {
 if (takenIn == 0) return TargetMargin;
 return (double) profit * 100.0 / takenIn;
 } }

This is a simple percentage profit calculation. If the database connection is unavail-
able, the target margin is returned instead. The effect of this default is an assumption,
in the absence of data to the contrary, that the machine is meeting its profit target.

We use a public property called Delta to reflect the difference between the target
and actual house margins:

 public double Delta { get {
 return HouseMargin - TargetMargin;
 } }
94 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

If Delta is positive, then the machine is meeting or exceeding its profit goal. The
public Bias comes next. It drives our payout control algorithm. Bias is calculated
as follows:

 public int Bias { get {
 if (Delta >= 0.0) return 0;
 int bias = (int) Math.Round(Math.Abs(Delta));
 if (bias > 10) return 10;
 return bias;
 } }

The public SaveGame method is used to store the result of a game:

 public void SaveGame(string hand, int score, int bet) {

 if (connectString == "") return;

 SqlConnection conn = null;
 try {
 conn = new SqlConnection(connectString);
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot create SqlConnection",
 e.Message));
 return;
 }

 string sql =
 "INSERT INTO games(hand, score, bet) VALUES " +
 "('" + hand + "'," + score + "," + bet + ")";
 SqlCommand comm = null;
 try {
 comm = new SqlCommand(sql, conn);
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot create SqlCommand",
 e.Message));
 return;
 }

 try {
 conn.Open();
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot open SqlConnection",
 e.Message));
 return;
 }

 try {
 comm.ExecuteNonQuery();
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot execute SqlCommand",
 e.Message));
THE POKER.BANK CLASS 95

 return;
 }
 finally {
 if (conn.State == ConnectionState.Open) conn.Close();
 }

 refresh();
 }

Most of the code in the SaveGame method is there to provide meaningful error
messages in the event of failure. The method takes a string representation of a poker
hand, and integers representing the hand’s score and the amount bet, and stores them
in a record in the games table. Then it calls refresh to reload the statistics.

The complete Bank class is presented in listing 4.9.

namespace Poker {

 using System;
 using System.Configuration;
 using System.IO;
 using System.Data;
 using System.Data.SqlClient;

 public class Bank {

 public Bank() {
 setConnectString();
 TargetMargin = GetParm("TargetMargin", 25);
 refresh();
 }

 public readonly int TargetMargin;

 public int TakenIn { get { return takenIn; } }
 public int PaidOut { get { return paidOut; } }
 public int Profit { get { return profit; } }

 public double HouseMargin { get {
 if (takenIn == 0) return TargetMargin;
 return (double) profit * 100.0 / takenIn;
 } }

 public double Delta { get {
 return HouseMargin - TargetMargin;
 } }

 public int Bias { get {
 if (Delta >= 0.0) return 0;
 int bias = (int) Math.Round(Math.Abs(Delta));
 if (bias > 10) return 10;
 return bias;
 } }

 Listing 4.9 The Poker.Bank class
96 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 public string Status { get {
 return status;
 } }

 public string Text { get {
 return "\n" +
 status + "\n" +
 "===========================\n" +
 "Taken In : " + takenIn + "\n" +
 "Paid Out : " + paidOut + "\n" +
 "Profit : " + profit + "\n" +
 "House Margin % : " +
 String.Format("{0:00.00}", HouseMargin) + "\n" +
 "Target Margin % : " +
 String.Format("{0:00.00}", TargetMargin) + "\n" +
 "Delta : " +
 String.Format("{0:00.00}", Delta) + "\n" +
 "Bias : " + Bias + "\n";
 } }

 public override string ToString() {
 return Text;
 }

 public void SaveGame(string hand, int score, int bet) {

 if (connectString == "") return;

 SqlConnection conn = null;
 try {
 conn = new SqlConnection(connectString);
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot create SqlConnection",
 e.Message));
 return;
 }

 string sql =
 "INSERT INTO games(hand, score, bet) VALUES " +
 "('" + hand + "'," + score + "," + bet + ")";
 SqlCommand comm = null;
 try {
 comm = new SqlCommand(sql, conn);
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot create SqlCommand",
 e.Message));
 return;
 }

 try {
 conn.Open();
 } catch (Exception e) {
THE POKER.BANK CLASS 97

 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot open SqlConnection",
 e.Message));
 return;
 }

 try {
 comm.ExecuteNonQuery();
 } catch (Exception e) {

 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot execute SqlCommand",
 e.Message));
 return;
 }
 finally {
 if (conn.State == ConnectionState.Open) conn.Close();
 }

 refresh();
 }

 public int GetParm(string parmName, int defaultValue) {

 int parmValue = defaultValue;

 if (connectString == "") return parmValue;

 string sql =
 "SELECT value FROM integers WHERE name='" + parmName + "'";
 DataSet ds = new DataSet("PokerParm");
 SqlDataAdapter sda = new SqlDataAdapter(sql, connectString);

 try {
 sda.Fill(ds, "result");
 parmValue = (int) ds.Tables["result"].Rows[0][0];
 } catch (Exception e) {
 connectString = "";
 new MsgLog(
 String.Format("Bank.GetParm(): {0}", e.Message));
 }
 return parmValue;
 }

 private void setConnectString() {
 connectString = ConfigurationSettings.AppSettings["dsn"];
 if (connectString == null) connectString = "";
 if (connectString == "")
 connectString =
 @"server=(local)\NetSDK;" +
 @"database=poker;trusted_connection=yes";
 }

 private void refresh() {

 if (connectString == "") return;
98 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 string sql =
 "SELECT " +
 "SUM(bet) AS taken_in, " +
 "SUM(score * bet) AS paid_out, " +
 "SUM(bet) - SUM(score * bet) as profit " +
 "FROM games";

 SqlDataAdapter sda = null;
 try {

 sda = new SqlDataAdapter(sql, connectString);
 DataSet ds = new DataSet("PokerProfit");
 sda.Fill(ds, "stats");
 DataRow dr = ds.Tables[0].Rows[0];
 takenIn = (int) dr[0];
 paidOut = (int) dr[1];
 profit = (int) dr[2];
 status = "Machine Stats (All Players)";
 } catch (Exception e) {
 new MsgLog(
 String.Format("Bank.refresh(): {0}", e.Message));
 }
 }

 // private static Bank bank = null;
 private string connectString = "";
 private string status = "Machine Stats Unavailable";
 private int takenIn = 0;
 private int paidOut = 0;
 private int profit = 0;
 }
}

4.7.3 Testing the Bank class

Let’s test the Bank class by temporarily inserting the following Main into it:

 public static void Main() {
 Bank b = new Bank();
 Console.WriteLine("TargetMargin: {0}", b.TargetMargin);
 b.SaveGame("5C 2D TH JD QD", 0, 5);
 Console.WriteLine(b);
 }

Then compile the Bank class, together with the MsgLog class, and execute it, as
shown in figure 4.6.

As you can see, I’ve already played (more than) a few hands. The actual profit is
42 and the house margin is 24.28%. This is less than the 25% target, and so bias is
equal to one.
THE POKER.BANK CLASS 99

Launch the Windows Services Manager and pause SQL Server. See figure 4.7.

Then execute the program once again, as shown in figure 4.8.

Note that the program executes without error and we get the default property values.
See figure 4.9 for the logged message.

Figure 4.6 Displaying Bank data

Figure 4.7 Pausing SQL Server

Figure 4.8

Displaying Bank data when SQL

Server is paused
100 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

Don’t forget to start SQL Server again when you’re done. Also, if you’re editing the
code as we go, you can delete the Bank.Main method which we inserted for test-
ing purposes.

4.8 USING XML SERIALIZATION
TO CREATE A REPORT

Before we leave the data layer, let’s take the opportunity to use the functionality of the
Poker.Bank class to create a reporting utility class, called XmlRep. We design it so
that it generates the report in XML format. This gives us the flexibility to convert the
report to HTML for display in a Web browser, or to send the XML to other applica-
tions for further processing.

We want the XML to look like the following:

<XmlRep>
 <TakenIn>303</TakenIn>

 <PaidOut>161</PaidOut>
 <Profit>142</Profit>
 <Bias>0</Bias>
 <HouseMargin>46.86</HouseMargin>
 <Delta>21.86</Delta>
</XmlRep>

This gives us the essential data necessary to evaluate the poker machine’s perfor-
mance. Because the report is in XML format, we can take advantage of the Framework

Figure 4.9

The Bank error message
USING XML SERIALIZATION TO CREATE A REPORT 101

to easily generate the report and to format it for display. We’ll combine two important
techniques to generate the report:

• XML Serialization—XML serialization provides a way of serializing (storing) a
class instance into an XML document, and deserializing (loading) it back again.
We’ve already seen an example of this when we serialized a DataSet to disk
using its GetXml and GetXmlSchema methods. XML serialization goes fur-
ther by supporting the serialization of any built-in or programmer-defined class.

• XSL Transformation (XSLT)—XSLT provides a standards-based way to trans-
form the content of an XML document into a new document with a different
structure. The transformation is specified using a set of rules. In our case, we’ll
use XSLT to transform the XML-formatted poker machine report into an
HTML document for display in the browser.

We look at each of these two techniques in the following sections.

4.8.1 Serializing an object to an XML document

To prepare a class for XML serialization, you need to annotate its members with
attributes from the System.Xml.Serialization namespace to identify them to
the serializer. Listing 4.10 presents a simple Person class which serializes itself to a
file called person.xml.

// file : person.cs
// compile : csc person.cs

using System;
using System.IO;
using System.Xml.Serialization;

[XmlRootAttribute]
public class Person {

 [XmlElementAttribute]
 public string FirstName;

 [XmlElementAttribute]
 public string LastName;

 public static void Main() {

 Console.WriteLine("generating person.xml");

 // create a new Person...
 Person p = new Person();
 p.FirstName = "Joe";
 p.LastName = "Bloggs";

 // serialize to disk...
 XmlSerializer sr = new XmlSerializer(typeof(Person));
 TextWriter tw = new StreamWriter("person.xml");

 Listing 4.10 Serializing a simple class
102 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 sr.Serialize(tw, p);
 tw.Close();
 }
}

Annotating the Person class with XmlRootAttribute specifies that <Person>
will be the root tag of the generated XML file. Using the XmlElementAttribute
on members causes them to occur as elements in the XML file. The Main routine cre-
ates an instance of Person and then creates an XmlSerializer passing the type
to be serialized as an argument. Next, it creates a TextWriter to write the instance
to the file. If you open the generated XML file in Internet Explorer, you should see a
page similar to the one shown in figure 4.10.

4.8.2 Performing an XSL transformation

Now that we’ve generated the person.xml file, let’s transform it to HTML for display.
First, we specify the XSLT rules and place them in the file person.xsl, shown in
figure 4.11.

Unfortunately, XSLT is a complex and often confusing topic worthy of a book in
its own right. However, the .NET SDK comes with several examples which you can
study. In the meantime, we’ll just note that this file has just two rules of the form:

 <xsl:template match=" ... ">

The first rule matches the root document element, Person. When it matches, it
generates a new HTML document with a suitable heading. It then calls
<xsl:apply-templates/> to recursively apply the remaining rules. It wraps the
result in a table and finishes by ending the HTML document. In this case, there is
only one other rule. It matches either the <FirstName> or <LastName> tags and
inserts their values into table cells.

Figure 4.10 The serialized Person object
USING XML SERIALIZATION TO CREATE A REPORT 103

To programmatically generate the transformation, we need a simple program which
loads the XML file, transforms it using the XSLT rules, and writes the result to an
HTML file. This program, personrep.cs, is shown in listing 4.11.

// file : personrep.cs
// compile : csc personrep.cs

using System;
using System.IO;
using System.Xml;
using System.Xml.Xsl;
using System.Xml.XPath;

 Listing 4.11 The XML to HTML transformation program

Figure 4.11 The XSLT rules for transforming Person.Xml
104 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

public class PersonRep {

 public static void Main() {

 Console.WriteLine("generating person.html");

 // load the XML document...
 XPathDocument xd =
 new XPathDocument(new XmlTextReader("Person.xml"));

 // create HTML output file...
 TextWriter tw = new StreamWriter("Person.html");

 // load the XSLT rules...
 XslTransform xt = new XslTransform();
 xt.Load("person.xsl");

 // perform the transformation...
 xt.Transform(xd, null, tw);
 tw.Close();
 }
}

We use System.Xml.XPath.XPathDocument to load the XML document. The
XPathDocument is designed for fast XML processing by XSLT. The transformation
is achieved by creating an XslTransform object and loading the XSLT rules into it.
Then we call its Transform method to write the HTML file, passing a suitable
TextWriter as the third argument. If you view the generated HTML source, you
should see something similar to figure 4.12.

The report itself is shown in figure 4.13.

Figure 4.12 The generated HTML source
USING XML SERIALIZATION TO CREATE A REPORT 105

Although the result is not very exciting in this case, the combination of XML serializa-
tion and XSL transformation gives us a powerful way to automatically persist and
transform application objects.

4.8.3 The XmlRep program

Now that we’ve explored XML serialization and XSL transformation, we have the
skills to create a simple reporting application to display poker machine statistics in
the browser. A good way to start would be to annotate certain members of the Bank
class with XML serialization attributes. In the interest of clarity and simplicity, we
won’t do that here. Instead, we create a new XmlRep class as a wrapper around the
Bank data, and serialize it. Then we transform it to HTML and launch the browser to
view it. The complete program is shown in listing 4.12.

// file : xmlrep.cs
// description : generate XML/HTML report for poker machine

namespace Poker {

 using System;
 using System.IO;
 using System.Xml;
 using System.Xml.Xsl;
 using System.Xml.XPath;
 using System.Xml.Serialization;
 using System.Diagnostics;

 [XmlRootAttribute]
 public class XmlRep {

 public XmlRep() {
 Bank b = new Bank();
 this.TakenIn = b.TakenIn;
 this.PaidOut = b.PaidOut;
 this.Profit = b.Profit;
 this.HouseMargin = Math.Round(b.HouseMargin, 2);

Figure 4.13

Viewing the person report

 Listing 4.12 The XmlRep report program
106 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 this.Delta = Math.Round(b.Delta, 2);
 this.Bias = b.Bias;
 }

 [XmlElementAttribute]
 public int TakenIn;

 [XmlElementAttribute]
 public int PaidOut;

 [XmlElementAttribute]
 public int Profit;

 [XmlElementAttribute]
 public int Bias;

 [XmlElementAttribute]
 public Double HouseMargin;

 [XmlElementAttribute]
 public Double Delta;

 public static void Main() {

 Console.WriteLine("Serializing data to report.xml...");
 XmlSerializer sr = new XmlSerializer(typeof(XmlRep));
 TextWriter tw = new StreamWriter("report.xml");
 sr.Serialize(tw, new XmlRep());
 tw.Close();

 Console.WriteLine("Creating report.html...");
 XPathDocument xd =
 new XPathDocument(new XmlTextReader("Report.xml"));
 tw = new StreamWriter("Report.html");
 XslTransform xt = new XslTransform();
 xt.Load("pokrep.xsl");
 xt.Transform(xd, null, tw);
 tw.Close();

 Console.WriteLine("Launching report in browser...");
 ProcessStartInfo si = new ProcessStartInfo();
 si.FileName = "Report.html";
 si.Verb = "open";
 Process pr = new Process();
 pr.StartInfo = si;
 pr.Start();

 Console.WriteLine("Done!");
 }
 }
}

USING XML SERIALIZATION TO CREATE A REPORT 107

The only thing that’s new here is the code to launch the browser. To do that, we cre-
ate an instance of ProcessStartInfo and set its public FileName property to
"Report.html". Then, we create a new process using this start-up information.
This will launch whatever application is associated with .html files.

The XSLT rules used to transform the poker report are shown in figure 4.14.

Figure 4.14 The poker report XSL stylesheet
108 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

Finally, the generated report is shown in figure 4.15.

NOTE This book was created as an XML document using a handful of custom tags.
A simple C# program was used to apply XSLT rules to transform the manu-
script into HTML for online review. Later, a further XSL transformation
was used to prepare it for input to FrameMaker.

4.9 THE POKER.MACHINE CLASS

In the previous chapter, we created a SimpleMachine class to encapsulate the func-
tionality of the basic poker machine. This time, we create Poker.Machine to bring
together the full functionality of the client/server poker game. Poker.Machine
deals and draws cards, implements payout control, saves games to the database, and
provides play statistics. The full source code for the Machine class is presented in
listing 4.13. In the meantime, we’ll go through the code in outline here.

We implement Machine as a singleton class. This ensures that only a single
instance of the class can be created and provides a convenient way to store program-
wide global variables without passing arguments around:

 public class Machine {

 public readonly int MinBet;
 public readonly int MaxBet;
 public readonly int StartCredits;
 public readonly int Bias;

 // private constructor...
 private Machine() {
 bank = new Bank();
 MinBet = bank.GetParm("MinBet", 1);
 MaxBet = bank.GetParm("MaxBet", 5);

Figure 4.15

Browsing the poker machine report
THE POKER.MACHINE CLASS 109

 StartCredits = bank.GetParm("StartCredits", 100);
 Bias = bank.Bias;
 }

 public static Machine Instance {
 get {
 // allow just one instance...
 if (machine == null) machine = new Machine();
 return machine;

 }
 }

 ...

 private static Machine machine = null;
 private Bank bank = null;

 ...
 }

To enforce singleton mode, we make the constructor private and provide access to a
single instance of the poker machine through the static Instance property. As a
result, a caller will never need to explicitly create an instance of the
Poker.Machine class, allowing for the following type of application code:

 int minBet = Machine.Instance.MinBet;
 int maxBet = Machine.Instance.MaxBet;
 int credits = Machine.Instance.StartCredits;

Payout control is implemented in the public Deal and Draw methods:

 ...

 public Hand Deal() {
 Hand hand = new Hand();
 int bias = Bias;

 while (hand.Score > 0 && bias-- > 0)
 hand = new Hand();
 return hand;
 }

 public Hand Draw(Hand oldHand, string holdCards, int bet) {
 int bias = Bias;
 Hand newHand = new Hand(oldHand, holdCards);
 while (newHand.Score > 0 && bias-- > 0)
 newHand = new Hand(oldHand, holdCards);
 bank.SaveGame(newHand.ToString(), newHand.Score, bet);
 return newHand;
 }

 ...

The payout management algorithm is simple. If bias is non-zero, the Deal method
will silently discard one or more scoring hands before finally dealing a hand. For
example, if bias is 3, the machine will make three attempts to deal a nonscoring
110 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

hand. If, on the third attempt, the new hand is a scoring hand, the machine will deal
it anyway. The draw hand implements the same algorithm. When cards are drawn,
the game is complete and is saved to the database.

The complete Poker.Machine class is presented in listing 4.13.

namespace Poker {

 using System;

 public class Machine {

 public readonly int MinBet;
 public readonly int MaxBet;
 public readonly int StartCredits;
 public readonly int Bias;

 // private constructor...
 private Machine() {
 bank = new Bank();
 MinBet = bank.GetParm("MinBet", 1);
 MaxBet = bank.GetParm("MaxBet", 5);
 StartCredits = bank.GetParm("StartCredits", 100);
 Bias = bank.Bias;
 }

 public static Machine Instance {
 get {
 // allow just one instance...
 if (machine == null) machine = new Machine();
 return machine;
 }
 }

 public Hand Deal() {
 Hand hand = new Hand();
 int bias = Bias;
 while (hand.Score > 0 && bias-- > 0)
 hand = new Hand();
 return hand;
 }

 public Hand Draw(Hand oldHand, string holdCards, int bet) {
 int bias = Bias;
 Hand newHand = new Hand(oldHand, holdCards);
 while (newHand.Score > 0 && bias-- > 0)
 newHand = new Hand(oldHand, holdCards);
 bank.SaveGame(newHand.ToString(), newHand.Score, bet);
 return newHand;
 }

 public Hand Draw(string handString, string holdCards, int bet) {
 return Draw(new Hand(handString), holdCards, bet);
 }

 Listing 4.13 The Poker.Machine class
THE POKER.MACHINE CLASS 111

 public string Stats { get {
 return bank.Text;
 } }

 public static string PayoutTable { get {
 return "\n" +
 "Payout Table\n" +
 "============\n" +
 "Royal Flush : 10\n" +

 "Straight Flush : 9\n" +
 "Four of a Kind : 8\n" +
 "Full House : 7\n" +
 "Flush : 6\n" +
 "Straight : 5\n" +
 "Three of a Kind : 4\n" +
 "Two Pair : 3\n" +
 "Jacks or Better : 2\n";
 } }

 private static Machine machine = null;
 private Bank bank = null;
 }
}

4.10 THE POKER.BET CLASS

We’re almost ready to build the final version of the Poker DLL, which serves as the
engine at the heart of the different poker applications in the remainder of the book.
Before we do this, we create a simple helper class called Bet, which provides a conve-
nient way to check the validity of placed bets and is shown in listing 4.14.

using System;
namespace Poker {
 public class Bet {
 public Bet(int bet, int credits, int minBet, int maxBet) {
 if (credits < minBet) {
 Message =
 "You don't have enough credits to bet... Game over!";
 Amount = 0;
 return;
 }
 if (bet < minBet) {
 Message = String.Format(
 "You must bet the minimum... betting {0}.", minBet);
 Amount = minBet;
 Credits = credits - Amount;
 return;
 }
 maxBet = credits < maxBet ? credits : maxBet;

 Listing 4.14 The Poker.Bet class
112 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 if (bet > maxBet) {
 Message = String.Format(
 "You can only bet {0}... betting {0}.", maxBet);
 Amount = maxBet;
 Credits = credits - Amount;
 return;
 }
 Message = "";

 Amount = bet;
 Credits = credits - Amount;
 }
 public readonly int Amount;
 public readonly int Credits;
 public readonly string Message;
 }
}

The Bet class simply checks that the placed bet is no less than the minimum, or
greater than the maximum allowable bet, and that the player has sufficient credits to
cover it.

4.11 BUILDING THE POKER DLL

Now we can build the final version of the Poker DLL. To recap, the classes involved are:

• Bank

• Bet

• Card

• Hand

• Machine

• MsgLog

• SimpleMachine

Compile these classes, as shown in figure 4.16.

Figure 4.16 Compiling the poker DLL
BUILDING THE POKER DLL 113

4.12 CONPOK: 3-TIER CLIENT/SERVER POKER

Now we can pull all the pieces together with a console poker game with full database
support, statistics, and payout control. Listing 4.15 presents ConPok, the client/
server console poker game.

// file : ConPok.cs
// compile : csc /r:poker.dll conpok.cs

using System;
using System.Collections;
using System.Text;

using Poker;

class ConPok {

 public ConPok() {

 greeting();

 machine = Machine.Instance;
 uiBet = minBet = machine.MinBet;
 maxBet = machine.MaxBet;
 uiCredits = machine.StartCredits;

 // play until our opponent is wiped out!
 while (uiCredits >= minBet)
 nextGame();
 Console.WriteLine("*** Loser! *** :-)");
 }

 private void greeting() {
 Console.WriteLine(
 "\nWelcome to the Console Version of Video Poker.");
 Console.WriteLine(
 "Cards are numbered 1 to 5 from left to right.");
 Console.WriteLine(
 "To hold cards, enter card numbers and hit enter.");
 Console.WriteLine(
 "Hit Ctrl-c at any time to abort.\n");
 }

 private void nextGame() {

 Console.WriteLine("Credits Remaining : {0}", uiCredits);
 Console.Write("Enter amount of bet : ");

 string reply = Console.ReadLine();
 int newBet;
 try {
 newBet = Int32.Parse(reply);
 }
 catch (Exception) {

 Listing 4.15 ConPok: client/server console video poker
114 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

 // use previous bet...
 newBet = uiBet;
 }

 Bet bet = new Bet(newBet, uiCredits, minBet, maxBet);
 uiBet = bet.Amount;
 uiCredits = bet.Credits;
 if (bet.Message.Equals(""))
 Console.WriteLine("Betting {0}...", uiBet);

 else
 Console.WriteLine(bet.Message + '\u0007'); // ring bell

 Hand dealHand = machine.Deal(); // deal
 Console.WriteLine("{0}", dealHand);

 Console.Write("Enter card numbers (1 to 5) to hold: ");
 string holdCards = Console.ReadLine();

 Hand drawHand =
 machine.Draw(dealHand.ToString(), holdCards, uiBet);

 int uiWin = drawHand.Score * uiBet;
 uiCredits += uiWin;
 string uiMsg =
 drawHand.ToString() + " - " + drawHand.Title + " " +
 "(Score=" + drawHand.Score + ", " +
 "Bet=" + uiBet + ", " + "Win=" + uiWin + ")";

 Console.WriteLine(uiMsg);

 Console.WriteLine(machine.Stats);
 }

 private Machine machine;
 private int minBet;
 private int maxBet;
 private int uiCredits;
 private int uiBet;

} // end Class ConPok

// action starts here...
public class Go {
 public static void Main() {
 ConPok cp = new ConPok();
 }
}

A makefile is provided in appendix B, which will build the console, and other ver-
sions, of the poker machine. Alternatively, to build ConPok alone, issue the follow-
ing compiler command:

csc /r:poker.dll conpok.cs
CONPOK: 3-TIER CLIENT/SERVER POKER 115

Figure 4.17 shows ConPok in play.

4.13 SUMMARY

In this chapter, we coded and tested the data layer for the poker machine. In doing
so, we examined the DataSet which is the centerpiece of ADO.NET. We learned
how to use a DataSet to retrieve and process data from the database and how to
persist both schema and data as XML documents. We saw how ADO.NET can oper-
ate without a managed provider. We also learned how to perform updates on an
underlying database using the DataSet object and how to directly execute SQL
UPDATE/INSERT/DELETE statements using the SqlCommand object.

We coded the data layer for our case study. In doing so we employed a fault-
tolerant error handling strategy that records errors while ensuring that the poker
machine remains playable even if SQL Server goes down.

We used XML and XSLT to create a flexible reporting mechanism so that reports
can be read by users, or consumed in XML form by other applications. We finished
by building a complete client-server console version of our case study application.

In the next chapter we explore .NET’s remoting services, which provide us with the
infrastructure to build distributed .NET applications. We build a remote version of the
poker application and we also lay the necessary groundwork for our discussion of XML
Web services in chapter 6.

Figure 4.17 Playing ConPok
116 CHAPTER 4 WORKING WITH ADO.NET AND DATABASES

C H A P T E R 5

Developing remote services

5.1 Introduction to remoting 118
5.2 Implementing server-activated

remote objects 123
5.3 Configuring remoting 124
5.4 Implementing client-activated

remote objects 127
5.5 Client activation and leasing 130
5.6 Handling remote events 136

5.7 Hosting objects in Internet
Information Server 140

5.8 RemPok: a remote poker game 144
5.9 SvcPok: a remote poker game

as a Windows service 149
5.10 QuePok: a message queue-based

poker game 155
5.11 Summary 163
In this chapter, we examine .NET’s remoting infrastructure which supports the acti-
vation and use of remote objects across the network. The .NET remoting architec-
ture offers a simple programming model which helps to make remote object
invocation and use transparent to the client application. Developers can take advan-
tage of this model to create distributed applications, or to expose application objects
to remote clients.

.NET remoting can use TCP and HTTP channels to communicate between remote
endpoints, and the channel services are pluggable so that alternative custom channels
can be implemented. We’ll explore both TCP and HTTP options. As usual, to illus-
trate the discussion, we’ll use .NET’s remoting services to implement a remote poker
machine service. We’ll create several versions of this service including one which oper-
ates as a Windows service (formerly known as an NT service).
117

Also, although not strictly part of .NET’s remoting services, Microsoft Message
Queuing (MSMQ) offers an alternative approach to developing distributed services.
Therefore, as a bonus, this chapter includes an MSMQ-based version of our poker service.

5.1 INTRODUCTION TO REMOTING

The .NET remoting infrastructure allows developers to create applications which
invoke methods across the network as though they were local to the application. This
is made possible by the use of a proxy which acts as the local representative of the
remote object. The proxy automatically forwards all remote method calls to the corre-
sponding remote object and the results are returned to the calling client. To the cli-
ent, this appears no different than invoking a method on a local object.

5.1.1 Remoting and application domains

Traditional Win32 applications were isolated from each other at run time by running
each application in a separate process. Process boundaries ensured that memory and
resources in one application were inaccessible to other applications, and that faults
were isolated to the application in which they occurred. .NET avoids some of the
overhead inherent in process switching by introducing a more lightweight unit of
processing known as an application domain. Executing a .NET application causes the
CLR to create an application domain into which it loads the application’s assemblies
and types. The Win32 process has not gone away. Instead a Win32 process can con-
tain one or more managed application domains.

Under .NET, a remote object is an object which resides in a different application
domain than the caller. A remote object need not necessarily reside on a remote
machine, or even in a different process. .NET remoting simply allows objects to inter-
act across application domains.

5.1.2 Marshaling objects

To make an object accessible outside its own application domain, the remoting infra-
structure must provide a mechanism to transport objects, or object references,
between domains. It does this using a technique known as marshaling which comes
in two alternative forms:

• Marshal by value—Causes remoting services to make a copy of the object,
serialize it, and transport it to the destination domain where it is recon-
structed. This is the default for types passed as arguments to a remote
method, and for types returned by that method. Objects which are passed by
value must be serializable. For programmer-defined types, this may require
implementing the ISerializable interface or marking the object with the
Serializable attribute.

• Marshal by reference—Causes remoting services to create a reference to the
remote object. This reference is returned to the calling domain to produce a
118 CHAPTER 5 DEVELOPING REMOTE SERVICES

proxy object. The proxy acts as a local representative of the remote object and
transparently takes care of forwarding calls to, and receiving results from, the
remote object. To facilitate this process, all remote objects must derive from
System.MarshalByRefObject.

5.1.3 Hosting remote objects

A remote object must be hosted in a server application and the object is available only
as long as the server is running. This server can be a minimal .NET managed execut-
able which might do nothing more than register the object with .NET’s remoting
infrastructure. Remote objects can also be hosted in COM+ services, or in IIS. We’ll
look at an example of an IIS-hosted remote service later in this chapter.

It is the hosting server’s job to make remote objects available on the network by
registering them with the remoting infrastructure. To do so, it must uniquely iden-
tify each object using a URI (Uniform Resource Identifier, the generic term for URLs
and URNs). The URI identifies each object by a unique name, scheme (i.e., channel),
and endpoint (remote machine name/port). This information is used by clients to
locate the remote object and invoke its services. Figure 5.1 depicts a remote service
called RemService.

This remote service resides on the SomeServer machine and listens on a TCP channel
on port number 6789. It hosts two remote objects, RemObj1 and RemObj2.
RemObj1 is uniquely identified on the network by its URI, tcp://SomeServer:6789/-
RemObj1. RemObj2 is similarly identified.

5.1.4 Creating a remote service

Let’s illustrate the discussion so far with a simple example. Listing 5.1 presents a
remote service called HelloService which exposes an object called HelloObj. The
program includes the code for both the server and the remote object which it hosts.
The server could reside in a separate executable assembly but, for this example, we
place both server and remote object together in a single assembly.

We have a lot of ground to cover as we explore the different features of the remoting
infrastructure. We’ll be creating several versions of HelloService, and several clients to
test them. To keep the discussion short and manageable, our sample services will do lit-
tle more than return a greeting to connecting clients.

Figure 5.1 A remote service
INTRODUCTION TO REMOTING 119

// file: helloservicest.cs
// compile: csc helloservicest.cs

// Exposes HelloObj in Singleton mode over TCP

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

// the remote HelloObj object...
public class HelloObj : MarshalByRefObject {

 public HelloObj() {
 Console.WriteLine("HelloObj activated...");
 }

 public string Greet(string name) {
 // lock out other clients while incrementing numGreet...
 lock(this) { numGreet++; }
 // greet...
 string greeting = "Hello, " + name + "!";
 Console.WriteLine("greeting #{0}: " + greeting, numGreet);
 return greeting;
 }

 private int numGreet = 0;
}

// the hosting service, HelloService...
public class HelloService {
 public static void Main(string[] args) {

 // register a channel...

 ChannelServices.RegisterChannel(new TcpChannel(6789));

 // register HelloObj with remoting services...
 Console.WriteLine("registering HelloObj as Singleton...");

 RemotingConfiguration.RegisterWellKnownServiceType(
 Type.GetType("HelloObj"), // remote object type
 "HelloObj", // remote object name
 WellKnownObjectMode.Singleton); // activation mode

 Console.WriteLine("waiting for remote calls...");
 Console.WriteLine("hit ENTER to exit...");
 Console.ReadLine();
 }
}

In listing 5.1, HelloObj provides a single public Greet method which displays a
greeting on the server console and also returns the greeting to the client. It keeps
count of the number of times Greet was invoked in the private integer field

 Listing 5.1 Hello service hosting singleton HelloObj
120 CHAPTER 5 DEVELOPING REMOTE SERVICES

numGreet. To support marshaling by reference, we derive HelloObj from the
MarshalByRefObject class.

The server is implemented in the HelloService.Main routine and simply reg-
isters the HelloObj object. The call to ChannelServices.RegisterChannel
in Main registers a new TCP channel. Then we call RemotingConfigura-
tion.RegisterWellKnownServiceType to register HelloObj with remoting
services. The arguments include the type of the remote object, its name, and the mode
in which the remote object should be activated. In this case, we specify that the object
should be activated in Singleton mode which means that a single object is activated
on the server and shared by multiple clients. We’ll look more closely at this, and explore
alternative activation modes, in more detail in the next section. Registration makes the
object visible to clients. For example, a client on the same local machine will be able
to connect to the object at tcp://localhost:6789/HelloObj.

Note that if you press ENTER to halt the server, the remote object will no longer
be available to clients.

5.1.5 Creating the client

Listing 5.2 presents a client program which activates the remote object.

// file: helloclient.cs
// compile: csc /r:helloservicest.exe helloclient.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

class HelloClient {

 public static void Main(string[] args) {

 ChannelServices.RegisterChannel(new TcpChannel());

 HelloObj helloObjRef = (HelloObj)Activator.GetObject(
 typeof(HelloObj),
 "tcp://localhost:6789/HelloObj"
);

 Console.WriteLine(helloObjRef.Greet("Joe Bloggs"));
 Console.WriteLine(helloObjRef.Greet("Mary Bloggs"));
 }
}

The client registers a new TCP channel and calls Activator.GetObject, passing
the remote object type and its URI, to retrieve a reference to the remote object. Then
it calls the Greet method and exits.

 Listing 5.2 The HelloObj client
INTRODUCTION TO REMOTING 121

5.1.6 Testing the service

To test our work, first open a command window and compile and launch the server,
as shown in figure 5.2.

Next, open a second command window, compile the client and execute it a number
of times, as seen in figure 5.3.

The /r:helloservicest.exe compiler option references the service assembly
where the HelloObj type resides. This means that the remote server assembly must
be available to the client at compile time. This won’t always be possible. We’ll look at
alternative solutions to this problem later in the chapter.

Note the greetings returned from the remote object each time we invoked the cli-
ent. Now return to the first command window and view the output from the server
shown in figure 5.4.

Figure 5.2 Running the HelloServiceSt service

Figure 5.3 Running the HelloClient client

Figure 5.4 The output from the HelloServiceSt service
122 CHAPTER 5 DEVELOPING REMOTE SERVICES

There are two important things to note here. First, we see that HelloObj was acti-
vated (i.e., its constructor executed) just once when the server was initially launched,
and not when the client called Activator.GetObject. In this case, HelloObj
is implemented as a server-activated object. We’ll look more closely at server-activated
objects in the following section.

Second, we can see that the greeting number has been incremented each time we
executed the client program and called the Greet method. Obviously the remote
object’s state is being maintained on the server. If we open a third command window
and run a second client against the server, the two clients will share the same object
state, and the greeting count will reflect calls made by both. This is a consequence of
activating the remote object in singleton mode.

5.2 IMPLEMENTING SERVER-ACTIVATED
REMOTE OBJECTS

.NET remoting supports both server- and client-activated objects. We’ll look at client-
activated objects later in this chapter. The helloservicest.exe application registered Hel-
loObj as a server-activated, singleton mode object. Server-activated objects can be
Singleton or SingleCall:

• Singleton—A single instance of the object is activated by the server at start-
up. It lives as long as the server executes, and its state is shared by all clients.

• SingleCall—The object is activated by the server on receipt of a method call
and is discarded immediately thereafter. No state is maintained between calls.

Since both Singleton and SingleCall objects are activated by the server, they
must provide a default, parameterless constructor for the server to call at activation time.

Singleton objects are appropriate where clients need to maintain and share
state. An example might be a chat server where all clients share the community chat
history. On the other hand, SingleCall objects live only as long as necessary to ser-
vice a method call, and they do not share state. Therefore SingleCall objects can
be more easily load-balanced across servers.

5.2.1 Coding a SingleCall HelloService

To illustrate the differences between Singleton and SingleCall objects, let’s
create a SingleCall version of the server. Copy helloservicest.cs to helloservicesc.cs
and change the activation mode to SingleCall, as follows:

 RemotingConfiguration.RegisterWellKnownServiceType(
 Type.GetType("HelloObj"), // remote object type
 "HelloObj", // endpoint name
 WellKnownObjectMode.SingleCall); // activation mode

IMPLEMENTING SERVER-ACTIVATED REMOTE OBJECTS 123

5.2.2 Testing the SingleCall HelloService

Compile and launch this new version of the service. (Generally, you would recompile
the client against the new service assembly. However, this is unnecessary here since
both the HelloObj type and the service URI are unchanged.) When you execute the
client a couple of times, you should see the server output shown in figure 5.5.

This time, the server object is activated (i.e., its constructor executed) each time the
client calls the Greet method. The number of greetings is always equal to one
because the object is discarded after each method call, so state is not maintained. Note
the extra activation at startup caused by the initial registration process.

5.3 CONFIGURING REMOTING

In the above example, we had to recompile the server to change the activation mode
of HelloObj from Singleton to SingleCall. To avoid this, .NET remoting
supports the use of configuration files for registering remote objects on the network.
Our final version of HelloService, which we’ll save as helloservice.cs, will use a
configuration file to register HelloObj.

5.3.1 Using remoting configuration files

Listing 5.3 presents a sample configuration file called helloservice.exe.http.single-
ton.config, which registers HelloObj as a Singleton. This time we specify HTTP
for the channel.

<!--
 file : helloservice.exe.http.singleton.config
 description : server configuration file for HelloService
-->

<configuration>

Figure 5.5 Output from the HelloServiceSc service

 Listing 5.3 A remoting configuration file for HelloService
124 CHAPTER 5 DEVELOPING REMOTE SERVICES

 <system.runtime.remoting>
 <application>

 <service>
 <wellknown
 type="HelloObj, HelloService"
 objectUri="HelloObj"
 mode="Singleton"
 />
 </service>

 <channels>
 <channel
 ref="http"
 port="6789"
 />
 </channels>

 </application>
 </system.runtime.remoting>
</configuration>

The format of the configuration file is identical to the application configuration files
we saw in chapter 2. In this case, we’ll be using multiple configuration files and we’ll
dynamically configure our remote service by passing the name of the configuration
file as a command line argument at run time. The file in listing 5.3 is called helloser-
vice.exe.http.singleton.config to remind us that it uses the Singleton mode of activa-
tion over an HTTP channel.

Inside the <service> tags we define a single well known object and specify the
type using an attribute of the form "typeName, assemblyName":

 <wellknown
 type="HelloObj, HelloService"
 objectUri="HelloObj"
 mode="Singleton"
 />

We specify that HelloObj be activated in Singleton mode. This time, we use a
HTTP channel:

 <channel
 ref="http"
 port="6789"
 />

5.3.2 Coding HelloService

The new version of the service, which uses this configuration file, is presented in
listing 5.4.
CONFIGURING REMOTING 125

// file: helloservice.cs
// compile: csc helloservice.cs

// Exposes HelloObj using a remoting configuration file

using System;
using System.Runtime.Remoting;

public class HelloObj : MarshalByRefObject {

 public HelloObj() {
 Console.WriteLine("HelloObj activated...");
 }

 public string Greet(string name) {
 lock(this) { numGreet++; }
 string greeting = "Hello, " + name + "!";
 Console.WriteLine("greeting #{0}: " + greeting, numGreet);
 return greeting;
 }

 private int numGreet = 0;
}

public class HelloService {
 public static void Main(string[] args) {

 Console.WriteLine("configuring remoting...");
 string configFile = "helloservice.exe.http.singleton.config";
 if (args.Length > 0) configFile = args[0];
 RemotingConfiguration.Configure(configFile);

 Console.WriteLine("waiting for remote calls...");
 Console.WriteLine("hit ENTER to exit...");
 Console.ReadLine();

 }
}

This new version of the server accepts the name of a configuration file as a command-
line argument, and calls:

RemotingConfiguration.Configure(configFile);

This causes remoting services to configure the server using the information in the file.

5.3.3 Coding the new client

As we’ll see in the next section, we can also use a configuration file to configure the
client. For now, however, the following changes to the client will register an HTTP
channel and communicate with our new server:

 Listing 5.4 Using a configuration file with Hello server
126 CHAPTER 5 DEVELOPING REMOTE SERVICES

 ...

 using System.Runtime.Remoting.Channels.Http;

 ...

 ChannelServices.RegisterChannel(new HttpChannel());

 HelloObj helloObjRef = (HelloObj)Activator.GetObject(
 typeof(HelloObj),

 "http://localhost:6789/HelloObj"
);

 ...

The choice of HTTP over TCP makes little practical difference in this example. By
default, HTTP uses XML/SOAP to format the payload, while TCP uses binary format-
ting which yields better performance. However, HTTP is a better option for cross-
Internet remoting where firewalls may block TCP communications, while TCP may
suit intranet scenarios.

5.4 IMPLEMENTING CLIENT-ACTIVATED
REMOTE OBJECTS

Both Singleton and SingleCall are examples of server-activated objects. .NET
remoting also supports client-activated objects. Client-activated objects are analogous
to common class instances where each caller gets its own copy of the object. For
example, a remote chess-playing service might export client-activated objects which
separately maintain the state of each client game on the server.

5.4.1 Configuring the service for client activation

To configure our service for client activation, we need only amend our configuration
file, as shown in listing 5.5.

<!--
 file : helloservice.exe.http.ca.config
 description : server configuration file for HelloService
-->

<configuration>
 <system.runtime.remoting>
 <application>

 <service>
 <activated type="HelloObj, HelloService" />
 </service>

 <channels>

 Listing 5.5 Configuring the service for client activation
IMPLEMENTING CLIENT-ACTIVATED REMOTE OBJECTS 127

 <channel
 ref="http"
 port="6789"
 />

 </channels>

 </application>
 </system.runtime.remoting>

</configuration>

This is similar to our original configuration file, save for replacement of the
<wellknown> entry by an <activated> entry:

<activated type="HelloObj, HelloService" />

This registers the object for client activation.

5.4.2 Configuring the client for client activation

This time, we also use a configuration file with the client, as shown in Listing 5.6.

<!--
 file : helloclient.exe.http.ca.config
 description : client configuration file for client activation
 of HelloObj over HTTP channel
-->

<configuration>
 <system.runtime.remoting>
 <application>

 <client url="http://localhost:6789">
 <activated type="HelloObj, HelloService" />
 </client>

 <channels>
 <channel
 ref="http"
 />
 </channels>

 </application>
 </system.runtime.remoting>
</configuration>

The <client> entry provides the URL of the service, the type name of the remote
object, and name of the assembly where it resides. The client uses this information to
locate and instantiate the remote object.

 Listing 5.6 Client-activation configuration file for HelloService client
128 CHAPTER 5 DEVELOPING REMOTE SERVICES

5.4.3 Coding the new client

Our new client is shown in listing 5.7. We’ll be creating three versions of this client,
so we’ll save this version as helloclientca1.cs.

// file: helloclientca1.cs

// compile: csc /r:helloservice.exe helloclientca1.cs

using System;
using System.Runtime.Remoting;

class HelloClient {
 public static void Main(string[] args) {
 Console.WriteLine("starting HTTP Hello client...");
 string configFile = "helloclient.exe.http.ca.config";
 RemotingConfiguration.Configure(configFile);
 HelloObj helloObjRef = new HelloObj();
 for (int i = 0; i < 2; i++) {
 Console.WriteLine(helloObjRef.Greet("Joe Bloggs"));
 Console.WriteLine(helloObjRef.Greet("Mary Bloggs"));
 }
 }
}

Since the client configuration file contains all the information to locate the remote
object, the client can simply use new to instantiate the object as if it were local to
the client:

 HelloObj helloObjRef = new HelloObj();

5.4.4 Testing the client-activated service

Compile the service, and then launch it passing the new configuration file name, as
shown in figure 5.6.

Then, in a separate command window, compile the client and execute it a couple of
times, as shown in figure 5.7.

 Listing 5.7 Client-side remote object activation

Figure 5.6 Running the client-activated HelloService service
IMPLEMENTING CLIENT-ACTIVATED REMOTE OBJECTS 129

In the server window, you should see the results shown in figure 5.8.

In this case, we can see that the object constructor ran when the client instantiated
HelloObj. Thereafter, the client object was kept alive on the server, and serviced
(four) calls by the client. In contrast to Singleton activation mode, executing the
client a second time caused a fresh instance of the remote object to be created.

5.5 CLIENT ACTIVATION AND LEASING

We’ve seen how a Singleton object has just one instance which is activated at
server startup, shared between clients, and lives as long as the server is running. In
contrast, a SingleCall object is activated (i.e., its constructor is executed) each
time a client invokes a method on it. When the method completes, the instance is
discarded. In both cases, object lifetime is determined by the activation mode.

Figure 5.7 Running the client-activated HelloClient client

Figure 5.8 Output from the client-activated HelloService service
130 CHAPTER 5 DEVELOPING REMOTE SERVICES

In contrast, client-activated objects require the server to create a fresh instance each
time a client activates a new object, and the server must retain the state of each unique
instance created by each client. If there are many clients, this can place a heavy burden
on the server.

5.5.1 Understanding leasing

To manage the potential burden of many clients, remoting services implement a sim-
ple leased-based approach to client-activated object lifetime. When a client activates a
new object, it obtains a time-based lease on it. The object instance is available to the
client until the lease expires. Listing 5.8 presents a new version of the client,
helloclientca2.cs, which displays the default lease information for the remote
HelloObj reference.

// file: helloclientca2.cs
// compile: csc /r:helloservice.exe helloclientca2.cs

using System;
using System.Threading;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Lifetime;

class HelloClient {

 public static void Main(string[] args) {

 Console.WriteLine("starting HTTP Hello client...");
 string configFile = "helloclient.exe.http.ca.config";
 RemotingConfiguration.Configure(configFile);
 HelloObj helloObjRef = new HelloObj();

 ILease lease = (ILease)helloObjRef.GetLifetimeService();

 while (true) {

 Console.WriteLine(helloObjRef.Greet("Joe Bloggs"));
 Console.WriteLine(helloObjRef.Greet("Mary Bloggs"));

 Console.WriteLine("CurrentState : " +
 lease.CurrentState);
 Console.WriteLine("CurrentLeaseTime : " +
 lease.CurrentLeaseTime);
 Console.WriteLine("InitialLeaseTime : " +
 lease.InitialLeaseTime);
 Console.WriteLine("RenewOnCallTime : " +
 lease.RenewOnCallTime);
 Console.WriteLine();

 Thread.Sleep(10000); // sleep for 10 seconds
 }
 }
}

 Listing 5.8 Displaying lease information for client-activated remote objects
CLIENT ACTIVATION AND LEASING 131

The GetLifetimeService method is a member of the MarshalByRefOb-
ject class from which HelloObj derives. This allows us to get a reference to the
lease and query its properties, as we do in this example. Once again, if not already
running, start the server, as shown in figure 5.6.

Now compile and launch the new client as shown in figure 5.9. You can use
CTRL+C to stop the client after a couple of iterations.

Note the lease information. The CurrentState property indicates that the lease is
active. Possible values for the CurrentState property are:

• Null (The lease is not initialized)

• Initial

• Active

• Renewing

• Expired

The InitialLeaseTime is 5 minutes by default, and this is the starting value for
CurrentLeaseTime which is displayed above as 4:59.9090000 seconds. The pro-
gram sleeps for 10 seconds before reinvoking the remote object’s Greet method. By
then, the value for CurrentLeaseTime has reduced to 4:49.8450000 seconds.
The lease time continues to diminish toward expiration in this way. When it falls
below the RenewOnCallTime, which is 2 minutes in this example, every subse-
quent method invocation resets the lease duration back to 2 minutes. In this way,
provided the object is referenced at least once every 2 minutes (the RenewOnCall-
Time), the reference will remain alive. If the lease expires, a RemotingException
will be raised stating that the service has disconnected.

Figure 5.9 Displaying the lease information
132 CHAPTER 5 DEVELOPING REMOTE SERVICES

5.5.2 Amending the lease

Both remote object and client can amend the lease. The remote object, which
derives from MarshalByRefObject, can override the MarshalByRefOb-
ject.InitializeLifetimeService method and set values for the Ini-
tialLeaseTime, RenewOnCallTime, and so forth, before the lease becomes
active. A better approach is to place these values in the server’s configuration file. For
example, the following entry in the server’s configuration file sets the Initial-
LeaseTime to 24 hours (1D) and the RenewOnCallTime, for connecting clients,
to 15 minutes (15M):

<configuration>
 <system.runtime.remoting>
 <application>

 <service>

 ...

 </service>

 <channels>

 ...

 </channels>

 <!-- set lease parameters -->
 <lifetime leaseTime = "1D"
 renewOnCallTime = "15M"
 />

 </application>
 </system.runtime.remoting>

</configuration>

However, increasing the lease duration on the server-side increases the lease duration
for all clients, thus increasing the server burden. If a particular client requires a longer
lease, this can be done by implementing a callback sponsor in the client.

5.5.3 Using a sponsor to amend lease duration

The client can register a callback sponsor by calling ILease.Register and pass-
ing a reference to an object that implements the ISponsor interface. The ISpon-
sor interface requires a class to implement the Renewal method which returns a
TimeSpan object containing the amount of time by which the lease should be
extended. The Renewal method is invoked by the service when the lease is about to
expire. Listing 5.9 presents another version of the client which uses a sponsor.
CLIENT ACTIVATION AND LEASING 133

// file: helloclientca3.cs
// compile: csc /r:helloservice.exe helloclientca3.cs

using System;
using System.Threading;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Lifetime;

[Serializable]
class HelloSponsor : ISponsor {
 public TimeSpan Renewal(ILease lease) {
 Console.WriteLine("sponsor invoked by lease manager...");
 return new TimeSpan(1,0,0); // another hour
 }
}

class HelloClient {

 public static void Main(string[] args) {

 Console.WriteLine("starting HTTP Hello client...");
 string configFile = "helloclient.exe.http.ca.config";
 RemotingConfiguration.Configure(configFile);
 HelloObj helloObjRef = new HelloObj();

 ILease lease = (ILease)helloObjRef.GetLifetimeService();
 lease.Register(new HelloSponsor());

 while (true) {

 Console.WriteLine(helloObjRef.Greet("Joe Bloggs"));
 Console.WriteLine(helloObjRef.Greet("Mary Bloggs"));

 Console.WriteLine("CurrentState : " +

 lease.CurrentState);
 Console.WriteLine("CurrentLeaseTime : " +
 lease.CurrentLeaseTime);
 Console.WriteLine("InitialLeaseTime : " +
 lease.InitialLeaseTime);
 Console.WriteLine("RenewOnCallTime : " +
 lease.RenewOnCallTime);
 Console.WriteLine();

 Thread.Sleep(350000); // sleep for more than 5 minutes
 }
 }
}

This new client registers a sponsor with the lease manager. The HelloSponsor
object implements the ISponsor interface by providing a public Renewal method

 Listing 5.9 Implementing the ISponsor interface in the client
134 CHAPTER 5 DEVELOPING REMOTE SERVICES

which renews the lease for a further hour. The main routine sleeps for more than 5
minutes (the InitialLeaseTime) to ensure that the lease manager invokes the
sponsor to see if the client would like to renew. (You’ll have to wait.) Executing the
client produces the output shown in figure 5.10.

Note that the sponsor is called before the loop executes for the second time. In the
meantime, the CurrentLeaseTime has increased to 1 hour (59:09.9480000 min-
utes). Figure 5.11 presents the view from the service window.

Implementing a sponsor does not guarantee that it will be successfully called in an
Internet scenario where client and server are loosely coupled and the client sponsor
may be unreachable. Also, using a sponsor requires that both client and server be run-
ning under the .NET runtime. This is not necessarily the case for our earlier examples.
For example, a .NET remoting server which registers an object and exposes it on an
HTTP channel could be called by a SOAP client running on a non-.NET platform.

Figure 5.10 Amending the lease—client view

Figure 5.11 Amending the lease—service view
CLIENT ACTIVATION AND LEASING 135

5.6 HANDLING REMOTE EVENTS

So far our remoting examples, with the exception of the sponsor callback example,
have followed a typical client/server pattern. However, an endpoint can be either cli-
ent, or server, or both. Furthermore, a client can register a handler for an event raised
by a remote object. For example, a chat server might raise an event when a member
enters a chat room. A chat client, which registers a handler for this event, could
update its user interface accordingly.

5.6.1 The EchoObj class

Let’s look at an example of remote events. Listing 5.10 presents the code for the
EchoObj class which contains an event member called ServerEchoEvent. The
public Echo method accepts a string as an argument, creates a new EchoEventArgs
object, and fires the event. A remote client can register a handler for ServerEcho-
Event and invoke the Echo method to cause the event to be fired.

// file: echoobj.cs
// compile: csc /target:library echoobj.cs

using System;

namespace Echo {

 public delegate void EchoEvent(object sender, EchoEventArgs e);

 [Serializable]
 public class EchoEventArgs : EventArgs {
 public EchoEventArgs(string message) {
 Message = message;
 }

 public string Message;
 }

 public class EchoObj : MarshalByRefObject {

 public EchoObj() {
 Console.WriteLine("EchoObj activated...");
 }

 public event EchoEvent ServerEchoEvent;

 public void Echo(string message) {
 Console.WriteLine("received message: " + message);
 if (ServerEchoEvent != null) // ensure handler is registered
 ServerEchoEvent(this, new EchoEventArgs(message));
 }
 }
}

 Listing 5.10 The EchoObj class
136 CHAPTER 5 DEVELOPING REMOTE SERVICES

5.6.2 The EchoService class

This time, we’ll create a separate service application, echoservice.exe, to host the object
and register it with remoting services. Listing 5.11 shows the service program.

// file: echoservice.cs

// compile: csc echoservice.cs

using System;
using System.Reflection;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

public class EchoService {
 public static void Main() {

 // register a channel...
 ChannelServices.RegisterChannel(new HttpChannel(6789));

 // register HelloObj with remoting services...
 Console.WriteLine("registering EchoObj as Singleton...");

 Assembly ass = Assembly.Load("echoobj");

 RemotingConfiguration.RegisterWellKnownServiceType(
 ass.GetType("Echo.EchoObj"), // remote object type
 "EchoObj", // endpoint name
 WellKnownObjectMode.Singleton); // activation mode

 Console.WriteLine("waiting for remote calls...");
 Console.WriteLine("hit ENTER to exit...");
 Console.ReadLine();
 }
}

5.6.3 The EchoClient class

Next, we create the simple client shown in listing 5.12.

// file: echoclient.cs
// compile: csc /r:echoobj.dll echoclient.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Threading;
using Echo;

 Listing 5.11 The EchoService class

 Listing 5.12 The EchoClient class
HANDLING REMOTE EVENTS 137

public class EchoHandler : MarshalByRefObject {
 public void Handler(object sender, EchoEventArgs e) {
 Console.WriteLine("echo callback: {0}", e.Message);
 }
}

public class EchoClient {
 public static void Main() {

 ChannelServices.RegisterChannel(new HttpChannel(0));
 EchoObj echoObjRef = (EchoObj)Activator.GetObject(
 typeof(EchoObj),
 "http://localhost:6789/EchoObj"
);

 EchoHandler echoHandler = new EchoHandler();
 EchoEvent echoEvent = new EchoEvent(echoHandler.Handler);
 echoObjRef.ServerEchoEvent += echoEvent;

 echoObjRef.Echo("Hello!");
 echoObjRef.Echo("Goodbye!");

 Console.WriteLine("Press Enter to end...");
 Console.ReadLine();
 Console.WriteLine("Ending...");
 Thread.Sleep(2000); // give event time to fire

 echoObjRef.ServerEchoEvent -= echoEvent;
 }
}

As before, the client starts by registering a new HTTP channel and retrieving a refer-
ence to the remote object. The code:

 EchoHandler echoHandler = new EchoHandler();

 EchoEvent echoEvent = new EchoEvent(echoHandler.Handler);
 echoObjRef.ServerEchoEvent += echoEvent;

creates a new instance of EchoHandler and registers its public Handler method
as the handler for the remote ServerEchoEvent. Now EchoHandler too must
derive from MarshalByRefObject so that remoting services can marshal its
instance to register the handler. The client then calls the remote Echo method twice,
unregisters the event handler, and ends.

5.6.4 Testing the EchoService

Compile and launch the remote object and service, as shown in figure 5.12.
138 CHAPTER 5 DEVELOPING REMOTE SERVICES

When you compile and execute the client, the client messages are echoed back from
the remote object by the fired event as seen in figure 5.13.

The view from the service window is shown in figure 5.14.

Figure 5.12 Running EchoService

Figure 5.13 Testing EchoClient

Figure 5.14 Output from EchoService EchoClient
HANDLING REMOTE EVENTS 139

5.7 HOSTING OBJECTS IN
INTERNET INFORMATION SERVER

So far, each of our remote objects has been hosted inside a dedicated server program,
developed for that purpose. Next, we’ll use IIS to host remote objects over HTTP. We
explore this option with an example of a remote encoding service, hosted in IIS,
which can encode strings in Base 64 format and decode them again. We’ll also take
this opportunity to illustrate the use of a separate interface assembly, against which
client applications can be compiled.

5.7.1 Providing a public interface for a remote service

In all of our examples so far, the assembly containing the metadata for the remote
object was required by the client at compile time. This is not always desirable or con-
venient, especially when client and service are developed by different parties. In such
cases, a public interface to the object can be defined and made available to developers
for use in developing client applications. This avoids the need to make the remote
object assembly publicly available. In listing 5.13, we define the RemoteEn-
coder.IStringEncoder interface which provides public methods for both
encoding and decoding strings.

// file: istringencoder.cs
// compile: csc /target:library istringencoder.cs

namespace RemoteEncoder {

 public interface IStringEncoder {
 string Encode(string s);
 string Decode(string s);

 }
}

The remote encoding class will implement this interface and, at compile time, the cli-
ent will reference the library containing the interface.

5.7.2 Coding the RemoteEncoder.Base64Service class

Next, we turn our attention to the remote encoding class itself. It will implement the
RemoteEncoder.IStringEncoder interface to provide both Encode and
Decode methods, as shown in listing 5.14.

// file: base64service.cs
// compile: csc /target:library
// /r:istringencoder.dll
// base64service.cs

 Listing 5.13 An interface for an encoding object

 Listing 5.14 The RemoteEncoder.Base64Service class
140 CHAPTER 5 DEVELOPING REMOTE SERVICES

using System;
using System.Text;

namespace RemoteEncoder {

 public class Base64Service : MarshalByRefObject, IStringEncoder {

 public string Encode(string s) {
 byte[] b = Encoding.ASCII.GetBytes(s);

 return Convert.ToBase64String(b);
 }

 public string Decode(string s) {
 byte[] b = Convert.FromBase64String(s);
 return Encoding.ASCII.GetString(b);
 }
 }
}

The purpose of the RemoteEncoder.Base64Service class is to encode and
decode strings using Base 64 transfer encoding. Base 64 format is often used to
encode nonprintable binary data as printable ASCII text and is a common format for
encoding binary attachments. (It is also used in ASP.NET to encode the viewstate of a
Web Form, as we’ll see in chapter 8.) We use it here to encode and decode strings. For
example, this can be a convenient way to obfuscate (but not encrypt) text in a URL or
Web page.

The Encode method takes a string as an argument, transforms it to Base 64 format
and returns the result. The Decode method reverses the procedure. Both methods use
the built-in Encoding class from the System.Text namespace. Since it will be
hosted in a remote server, we derive Base64Service from MarshalByRefOb-
ject. We also specify that it implements the IStringEncoder interface.

5.7.3 Coding the client

Listing 5.15 presents a client for our encoding service.

// file: base64client.cs
// compile: csc /r:istringencoder.dll base64client.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

namespace RemoteEncoder {

 class Base64Client {

 public static void Main(string[] args) {

 Listing 5.15 The RemoteEncoder.Base64Client class
HOSTING OBJECTS IN INTERNET INFORMATION SERVER 141

 ChannelServices.RegisterChannel(new HttpChannel());

 IStringEncoder objRef = (IStringEncoder)Activator.GetObject(
 typeof(IStringEncoder),
 "http://localhost/RemoteEncoder/Base64Service.rem"
);

 string s1 = "Mary had a little lamb.";
 if (args.Length > 0) s1 = args[0];

 Console.WriteLine("original : {0}", s1);

 string s2 = objRef.Encode(s1);
 Console.WriteLine("encoded : {0}", s2);
 Console.WriteLine("decoded : {0}", objRef.Decode(s2));
 }
 }
}

We call Activator.GetObject to get a reference to the remote object. However,
we don’t refer to the remote object’s type anywhere in the client program. Instead, we
use the interface type IStringEncoder.

5.7.4 Compiling the Base64 string encoding application

Compile the IStringEncoder interface, and the Base64Service and Base64-
Client classes, as shown in figure 5.15.

As you can see, the base64service.dll library is not required to compile the client.
Instead we reference the interface.

5.7.5 Deploying the StringEncoder service on IIS

To deploy the service on IIS, we need to create a virtual directory on the server. Call
this directory RemoteEncoder and associate it with an appropriate physical directory.

Figure 5.15 Compiling the string encoding application
142 CHAPTER 5 DEVELOPING REMOTE SERVICES

Create a bin subdirectory and copy the interface assembly, istringencoder.dll, and the
remote object assembly, base64service.dll, into it.

Next, we need to configure the remote service. In a Web scenario, the application
configuration file is called web.config and is placed in the application’s root directory.
(We’ll look at web.config in more detail in chapter 8.) Listing 5.16 presents a web.config
file which exposes the object for Singleton mode activation.

<!--
 file : web.config
 description : IIS config file for RemoteEncoder.Base64Service
-->

<configuration>
 <system.runtime.remoting>
 <application>

 <service>
 <wellknown
 type="RemoteEncoder.Base64Service, Base64Service"
 objectUri="Base64Service.rem"
 mode="Singleton"
 />
 </service>

 </application>
 </system.runtime.remoting>
</configuration>

We specify Base64Service.rem as the objectUri. You must use an object URI
that ends in .rem or .soap when hosting server-activated objects inside IIS.

5.7.6 Testing the IIS-hosted encoder

We don’t need to do anything special to load the remote object into IIS. Instead, IIS
does so automatically when it receives the first client request. Therefore, we need only
launch the client, as shown in figure 5.16.

 Listing 5.16 The web.config configuration file

Figure 5.16 Testing Base64Service
HOSTING OBJECTS IN INTERNET INFORMATION SERVER 143

5.8 REMPOK: A REMOTE POKER GAME

We return to our case study with a version of the poker machine which uses a RemPok-
Service object to deal and draw cards. The service supports both server-activated
Singleton mode and client-activated mode on either TCP or HTTP channels.

5.8.1 Developing the remote poker service

Listing 5.17 presents the service program called RemPokService.cs:

// file : RemPokService.cs
// compile : csc /r:poker.dll RemPokService.cs

namespace Poker {

 using System;
 using System.Runtime.Remoting;

 // use serializable GameResult struct to return game result...
 [Serializable]
 public struct GameResult {
 public string Hand;
 public int Score;
 public string Title;
 }

 public class RemPokService : MarshalByRefObject {

 public RemPokService() {
 Console.WriteLine("RemPokService activated...");
 }

 public string Deal() {
 string hand = new SimpleMachine().Deal().Text;
 Console.WriteLine("Dealing : {0}", hand);
 return hand;
 }

 public GameResult Draw(string oldHand, string holdCards) {
 GameResult g = new GameResult();
 Hand h = new SimpleMachine().Draw(oldHand, holdCards);
 g.Hand = h.Text;
 g.Score = h.Score;
 g.Title = h.Title;
 Console.WriteLine("Drawing : {0} ({1})", g.Hand, g.Title);
 return g;
 }

 public static void Main(string[] args) {

 // get the default application configuration file name...
 string configFile =
 AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

 Listing 5.17 A remote poker machine service
144 CHAPTER 5 DEVELOPING REMOTE SERVICES

 // configure remoting...
 Console.WriteLine("using " + configFile + "...");
 RemotingConfiguration.Configure(configFile);

 Console.WriteLine("waiting for remote calls...");
 Console.WriteLine("hit ENTER to exit...");
 Console.ReadLine();
 }
 }

}

The game is similar to versions seen earlier. The most notable difference is the addi-
tion of a serializable GameResult structure to return the game result to the client.
This provides a neat way of packaging the hand, score, and title fields for transmis-
sion to the calling client.

The Main routine retrieves the default configuration file name, as follows:

 string configFile =
 AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

In this case, this should return RemPokService.exe.config, which we’ll look
at next. Then the program configures remoting.

5.8.2 The remote poker machine configuration file

Listing 5.18 shows the configuration file for the remote service.

<!--
 file : RemPokService.exe.config
 description : server configuration file for remote poker service

-->

<configuration>
 <system.runtime.remoting>
 <application>
 <service>

 <!-- server-activated singleton -->
 <wellknown
 type="Poker.RemPokService, RemPokService"
 objectUri="RemPokService"
 mode="Singleton"
 />

 <!-- client-activated -->
 <activated
 type="Poker.RemPokService, RemPokService"
 />

 </service>
 <channels>

 Listing 5.18 The remote poker machine configuration file
REMPOK: A REMOTE POKER GAME 145

 <!-- TCP channel -->
 <channel
 ref="tcp"
 port="6789"
 />

 <!-- HTTP channel -->
 <channel
 ref="http"

 port="8085"
 />

 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

The configuration file specifies both server-activated singleton and client-activated
modes. It also specifies both TCP and HTTP channels. We’ll use command-line
switches with the client program to choose the operational activation mode and
channel at run time.

5.8.3 The RemPok poker client

Listing 5.19 shows the poker client.

// file: rempok.cs
// description: a remote poker machine client
// compile: csc /r:rempokservice.exe rempok.cs

namespace Poker {

 using System;
 using System.Runtime.Remoting;
 using System.Runtime.Remoting.Channels;
 using System.Runtime.Remoting.Channels.Tcp;
 using System.Runtime.Remoting.Channels.Http;
 using System.Runtime.Remoting.Activation;

 class RemPok {

 public static void Main(string[] args) {

 string argLine = String.Join(" ", args).ToLower() + " ";

 string uri = "";
 if (argLine.IndexOf("/tcp") >= 0) {
 Console.WriteLine("starting TCP RemPok client...");

 Listing 5.19 The RemPok poker client
146 CHAPTER 5 DEVELOPING REMOTE SERVICES

 ChannelServices.RegisterChannel(new TcpChannel());
 uri += "tcp://localhost:6789";
 } else {
 Console.WriteLine("starting HTTP RemPok client...");
 ChannelServices.RegisterChannel(new HttpChannel());
 uri += "http://localhost:8085";
 }

 if (argLine.IndexOf("/ca") >= 0) {

 Console.WriteLine("client activation...");
 } else {
 Console.WriteLine("server activation...");
 uri += "/RemPokService"; // append well-known endpoint name
 }

 new RemPok(argLine, uri); // start game
 }

 public RemPok(string argLine, string uri) {
 this.argLine = argLine;
 this.uri = uri;
 Console.WriteLine("A remote poker game...");
 Console.WriteLine("Hit Ctrl-c at any time to abort.\n");
 while (true) nextGame(); // play
 }

 private void nextGame() {
 RemPokService service = getService();
 string dealHand = service.Deal(); // deal hand
 Console.WriteLine(dealHand); // display it
 Console.Write("Enter card numbers (1 to 5) to hold: ");
 string holdCards = Console.ReadLine();

 // draw replacement cards...
 GameResult res = service.Draw(dealHand, holdCards);
 Console.WriteLine(res.Hand);
 Console.WriteLine(res.Title);
 Console.WriteLine("Score = {0}\n", res.Score);
 }

 private RemPokService getService() {

 if (argLine.IndexOf("/ca") >= 0) {
 object[] constructorArguments = new object[0];
 object[] activationAttributes = new object[1];
 activationAttributes[0] = new UrlAttribute(uri);
 return (RemPokService)Activator.CreateInstance(
 typeof(RemPokService),
 constructorArguments,
 activationAttributes
);
 } else {
REMPOK: A REMOTE POKER GAME 147

 return (RemPokService)Activator.GetObject(
 typeof(Poker.RemPokService),
 uri
);
 }
 }

 private string argLine = null;
 private string uri = null;

 }
}

The /tcp command line switch instructs the client to use a TCP channel. Other-
wise, HTTP is the default. Likewise, the /ca switch causes the client to use client
activation when instantiating the remote object. Otherwise, the default is server acti-
vation in Singleton mode, with /RemPokService appended to the URL.

The RemPok.getService method takes care of remote object activation. For
server activation, it uses the familiar Activator.GetObject method to retrieve
a reference to the remote object. This time, for client activation, we use Activa-
tor.CreateInstance to create a new object reference. As arguments, we pass the
remote object type, an empty array of constructor arguments, and an array of acti-
vation arguments containing just one element representing the URL of the object to
be activated.

5.8.4 Testing the remote poker machine

To test the application, we first compile and execute the poker service, as shown in
figure 5.17.

Then, try compiling the client and starting it in different modes, on different chan-
nels, as shown in figure 5.18.

Figure 5.17 Running RemPokService
148 CHAPTER 5 DEVELOPING REMOTE SERVICES

In the service window, you should see the output shown in figure 5.19.

5.9 SVCPOK: A REMOTE POKER GAME AS
A WINDOWS SERVICE

As we’ve seen, a remote object must be hosted by a server and is available only as long
as the server is running. In our examples so far, with the exception of the IIS-hosted
service, we’ve started and stopped the server manually. This would be unacceptable in
a production environment. Instead, we need the server to start automatically when
the machine is booted and to run forever. We can do this with a Windows service.

A Windows service runs in its own session, typically with no user interface, instead
using the event log for recording errors and warnings. Windows services can be started
automatically when the machine is booted. They can also be started, stopped, paused,

Figure 5.18 Testing RemPokService—client view

Figure 5.19 Testing RemPokService—service view
SVCPOK: A REMOTE POKER GAME AS A WINDOWS SERVICE 149

and resumed by an administrator using the Services Control Manager. Windows ser-
vices run in the security context of a specific user account which typically differs from
the logged-on user or default account.

Coding a Windows service involves defining methods to handle the start, stop,
pause, continue, and any custom commands. We do this by deriving our service class
from System.ServiceProcess.ServiceBase and overriding the appropriate
protected instance methods:

• OnStart—Executes when a start command is sent to the service. This can
happen automatically when the machine is booted or the service may be started
manually by an administrator using the Services Control Manager. Typically,
you would add code here to open a connection to a database or perform some
other initialization of the service. In our case, we’ll use it to configure remoting
and load any remote objects.

• OnStop—Executes when a stop command is sent to the service. We might add
code here to release resources and close connections.

• OnPause—Executes when a pause command is sent to the service.

• OnContinue—Executes when a continue command is issued to resume a
paused service.

• OnShutdown—Executes when the system is shutting down.

5.9.1 Coding the poker Windows service

In our case, we’re interested in only the OnStart method since, when the service
stops, the remote object will no longer be available. Also, we don’t need the ability to
pause and resume the poker machine so we’ll disable these commands. The Pok-
erService will look like:

 public class PokerService : ServiceBase {

 public PokerService() {
 CanPauseAndContinue = false;
 CanStop = true;
 ServiceName = "PokerService";
 }

 protected override void OnStart(string[] args) {
 ChannelServices.RegisterChannel(new HttpChannel(6789));

 RemotingConfiguration.RegisterWellKnownServiceType(
 new SvcPokService().GetType(), // remote object type
 "SvcPokService", // remote object name
 WellKnownObjectMode.Singleton); // activation mode
 }

 public static void Main() {
 ServiceBase.Run(new PokerService());
 }
 }
150 CHAPTER 5 DEVELOPING REMOTE SERVICES

In OnStart we configure remoting, as before. In Main, we call Service-
Base.Run to launch the service.

We use the installer utility, installutil.exe, to install the service. (You’ll need to be
logged on as administrator to do this.) This utility looks for installer classes, marked
with the RunInstallerAttribute(true) attribute, in a given assembly and
executes the installation code in the constructor:

 [RunInstallerAttribute(true)]
 public class PokerServiceInstaller : Installer {

 public PokerServiceInstaller() {

 ServiceProcessInstaller processInstaller =
 new ServiceProcessInstaller();
 processInstaller.Account = ServiceAccount.LocalSystem;

 ServiceInstaller serviceInstaller = new ServiceInstaller();
 serviceInstaller.StartType = ServiceStartMode.Manual;
 serviceInstaller.ServiceName = "PokerService";

 Installers.Add(serviceInstaller);
 Installers.Add(processInstaller);
 }
 }

We name the installer class PokerServiceInstaller and we derive it from the
System.Configuration.Install.Installer class. The constructor creates
a new ServiceProcessInstaller which is used to install the service named
PokerService. We specify that the service will be started manually and run under
the local system account. To have the service started automatically at boot time, we
would specify ServiceStartMode.Automatic.

Listing 5.20 presents SvcPokService.cs containing the new poker machine together
with the PokerService and PokerServiceInstaller classes.

// file: SvcPokService.cs
// compile: csc /r:poker.dll SvcPokService.cs

namespace Poker {

 using System;
 using System.ServiceProcess;
 using System.Runtime.Remoting;
 using System.Configuration.Install;
 using System.ComponentModel;
 using System.Runtime.Remoting.Channels;
 using System.Runtime.Remoting.Channels.Http;

 // use serializable GameResult struct to return game result...
 [Serializable]
 public struct GameResult {

 Listing 5.20 A Windows service-based poker machine
SVCPOK: A REMOTE POKER GAME AS A WINDOWS SERVICE 151

 public string Hand;
 public int Score;
 public string Title;
 }

 public class SvcPokService : MarshalByRefObject {

 public string Deal() {
 string hand = new SimpleMachine().Deal().Text;

 Console.WriteLine("Dealing : {0}", hand);
 return hand;
 }

 public GameResult Draw(string oldHand, string holdCards) {
 GameResult g = new GameResult();
 Hand h = new SimpleMachine().Draw(oldHand, holdCards);
 g.Hand = h.Text;
 g.Score = h.Score;
 g.Title = h.Title;
 Console.WriteLine("Drawing : {0} ({1})", g.Hand, g.Title);
 return g;
 }
 }

 public class PokerService : ServiceBase {

 public PokerService() {
 CanPauseAndContinue = false;
 CanStop = true;
 ServiceName = "PokerService";
 }

 protected override void OnStart(string[] args) {
 ChannelServices.RegisterChannel(new HttpChannel(6789));

 RemotingConfiguration.RegisterWellKnownServiceType(
 new SvcPokService().GetType(), // remote object type
 "SvcPokService", // remote object name
 WellKnownObjectMode.Singleton); // activation mode
 }

 public static void Main() {
 ServiceBase.Run(new PokerService());
 }
 }

 [RunInstallerAttribute(true)]
 public class PokerServiceInstaller : Installer {

 public PokerServiceInstaller() {

 ServiceProcessInstaller processInstaller =
 new ServiceProcessInstaller();
 processInstaller.Account = ServiceAccount.LocalSystem;

 ServiceInstaller serviceInstaller = new ServiceInstaller();
 serviceInstaller.StartType = ServiceStartMode.Manual;
152 CHAPTER 5 DEVELOPING REMOTE SERVICES

 serviceInstaller.ServiceName = "PokerService";

 Installers.Add(serviceInstaller);
 Installers.Add(processInstaller);
 }
 }
}

5.9.2 Installing the poker Windows service

We compile svcpokservice.cs and install it as a Windows service using the installutil.exe
utility, as shown in figure 5.20.

Installutil performs a transacted two-phase installation and will roll back in the
event of an error. Launch the Services Control Manager and you should see Pok-
erService listed among the installed services, as shown in figure 5.21.

Double-click PokerService to view its properties shown in figure 5.22.
From the properties window, you can issue commands to start and stop the service.

You can also change the Startup type to automatic or disabled, change the local sys-
tem account under which the service runs, and specify recovery steps if the service fails.
In this case, we just want to start the service, so click Start. The service should start
up and the Stop button should be enabled. (We disabled the Pause and Resume
options in the PokerService class.)

Figure 5.20 Installing SvcPokService—service view

Figure 5.21 The PokerService Windows service
SVCPOK: A REMOTE POKER GAME AS A WINDOWS SERVICE 153

5.9.3 Creating the client

The client program, shown in listing 5.21, is essentially the same as the RemPok cli-
ent we saw earlier and is presented here for completeness. This version dispenses with
the configuration file and configures remoting directly instead.

// file: SvcPok.cs
// description: a client for the Windows service poker machine
// compile: csc /r:SvcPokService.exe;poker.dll SvcPok.cs

namespace Poker {

 using System;
 using System.Runtime.Remoting;
 using System.Runtime.Remoting.Channels;
 using System.Runtime.Remoting.Channels.Http;

 class SvcPok {

 public static void Main(string[] args) {
 Console.WriteLine("starting HTTP SvcPok client...");
 ChannelServices.RegisterChannel(new HttpChannel());
 string url = "http://localhost:6789/SvcPokService";
 SvcPokService service = (SvcPokService)Activator.GetObject(
 typeof(Poker.SvcPokService),
 url
);

Figure 5.22

The PokerService properties

 Listing 5.21 The SvcPok client
154 CHAPTER 5 DEVELOPING REMOTE SERVICES

 new SvcPok(service); // start game
 }

 public SvcPok(SvcPokService service) {
 this.service = service;
 Console.WriteLine("A Windows service-based poker game...");
 Console.WriteLine("Hit Ctrl-c at any time to abort.\n");
 while (true) nextGame(); // play
 }

 private void nextGame() {

 string dealHand = service.Deal(); // deal hand
 Console.WriteLine(dealHand); // display it
 Console.Write("Enter card numbers (1 to 5) to hold: ");
 string holdCards = Console.ReadLine();

 GameResult res = service.Draw(dealHand, holdCards);
 Console.WriteLine(res.Hand);
 Console.WriteLine(res.Title);
 Console.WriteLine("Score = {0}\n", res.Score);
 }

 private SvcPokService service = null;
 }
}

Once again, if you want the service to be started automatically when the machine
boots, use the Services Control Manager to change the startup type to automatic.
Finally, to uninstall the service, execute installutil /u svcpokservice.exe.

5.10 QUEPOK: A MESSAGE QUEUE-BASED POKER GAME

Our final example of a remote machine is based on MSMQ. While not strictly part of
.NET’s remoting services, MSMQ offers an alternative means of communicating with
a remote application by sending and receiving messages. MSMQ guarantees message
delivery. If the remote application is unavailable, messages are stored in a queue and
remain there until the application comes back up. This can provide a more robust
solution than regular remoting when the application is suited to the request/response
messaging model. Also, several related messages can be combined into a single trans-
action to ensure that they are delivered in order, and only once, and are successfully
retrieved from their queue by the remote application. If an error occurs, the entire
transaction is rolled back.

Message queues can be categorized into public, private, and system.

• Public queues—MSMQ enables computers to participate in a message queuing
network and to send and receive messages across the network. A public queue is
a message queue that is visible throughout the network and can potentially be
accessed by all participant machines.
QUEPOK: A MESSAGE QUEUE-BASED POKER GAME 155

• Private queues—A private message queue is visible only on the local machine
and can be accessed only by applications which know the full path or name of
the queue.

• System queues—System queues can be journal queues which store copies of mes-
sages, dead letter queues which store copies of undelivered or expired messages,
and report queues which contain message routing information. An application
can specify which system queues it needs depending on its journaling, acknowl-
edgement, and audit requirements.

We use the System.Messaging.MessageQueue class to work with message
queues. For example, the following code creates a private queue for sending
Poker.Hand objects:

 using System.Messaging;

 ...

 string qPath = @".\Private$\PokerHandQueue";
 if (!MessageQueue.Exists(qPath))
 MessageQueue.Create(qPath); // create the queue
 MessageQueue q = new MessageQueue(qPath); // instantiate a queue object

We create a queue specifying its path and we access it by instantiating a queue object.
The general syntax for a queue’s path is machineName\queueName for a public
queue and machineName\Private$\queueName for a private queue. You can
use “.” a period to represent the local machine and you can change a queue’s Path
property at runtime:

 // access local private Poker.Hand queue...
 q.Path = @".\Private$\PokerHandQueue";

 // access public Poker.Hand queue on myMachine...
 q.Path = @"myMachine\PokerHandQueue";

We set the queue’s Formatter property so that we can send and receive our own
user-defined types. For example, the following code creates a XmlMessageFor-
matter to format the queue to store an XML-encoded representation of the
Poker.Hand type:

 ...

 q.Formatter =
 new XmlMessageFormatter(new string[]{"Poker.Hand"});

 ...

 // receive a Poker.Hand object...
 Poker.Hand pokerHand = (Poker.Hand)q.Receive().Body;

 ...

 // send a Poker.Hand object...
 q.Send(pokerHand);
156 CHAPTER 5 DEVELOPING REMOTE SERVICES

5.10.1 Designing an MSMQ-based poker service

The design of our message queue-based poker machine is simple and is illustrated in
figure 5.23. We’ll create a service which will read DEAL and DRAW requests from its
incoming queue and respond appropriately using each client’s unique incoming queue.

All request and response messages will use a PokMsg class which contains fields to
store the client queue’s ID, the DEAL/DRAW command, the hand, the cards to hold,
and the hand’s title and score. Table 5.1 presents a sample of the four messages
exchanged during a single poker game.

The client creates a PokMsg object and sets its QID field to "PokClient_123"
and its Command field to "DEAL". The QID is the name of the client queue the
service should use when responding to the client’s request. Each client will generate
its own unique random QID by appending a random number to “PokClient_”. In

Table 5.1 Sample PokMsg messages

PokMsg

Member:
QID Command Hand HoldCards Title Score

1: Client Deal
Request:

“PokClient_123” “DEAL” - - - -

2: Service Deal
Response:

- - “8D 7D AH
TD 2S”

- - -

3: Client Draw
Request:

“PokClient_123” “DRAW” “8D 7D AH
TD 2S”

“3” - -

4: Service Draw
Response:

- - “7S 7C AH
JD JC”

- “Two
Pair”

3

Figure 5.23 A remote service
QUEPOK: A MESSAGE QUEUE-BASED POKER GAME 157

this example, the generated client queue name is "PokClient_123". The service
will use a single queue for all incoming requests.

The service responds by dealing a hand, storing its string representation in Pok-
Msg.Hand, and sending it to the client. The client sends a new request with the same
QID, a "DRAW" command, the original hand, and the string of cards to hold. The ser-
vice responds by drawing cards, setting the new value for PokMsg.Hand, setting the
Title and Score fields, and returning the result to the client. As you can see, the
different messages do not use all the fields. A single message format is used here to sim-
plify the presentation of the example.

5.10.2 Creating the PokMsg and PokerQueue classes

Let’s begin by creating our own private local PokerQueue message queue which can
send, receive, and store a new user-defined PokMsg type. We’ll use these classes to
build both service and client programs. Listing 5.22 presents the code.

// file: PokerQueue.cs
// compile: csc /target:library PokerQueue.cs

using System;
using System.Messaging;

namespace Poker {

 public class PokMsg {
 public string QID;
 public string Command;
 public string Hand;
 public string HoldCards;
 public string Title;
 public int Score;
 }

 public class PokerQueue {

 public PokerQueue (string qPath) {
 QPath = @".\Private$\" + qPath;
 // create and instantiate queue...
 if (!MessageQueue.Exists(QPath)) MessageQueue.Create(QPath);
 q = new MessageQueue(QPath);

 // format queue for storing the PokMsg type...
 // from the pokerqueue.dll assembly
 q.Formatter =
 new XmlMessageFormatter(
 new string[]{"Poker.PokMsg, pokerqueue"}
);
 }

 public void Send(PokMsg msg) {
 q.Send(msg); // send a PokMsg object

 Listing 5.22 The PokMsg and PokerQueue classes
158 CHAPTER 5 DEVELOPING REMOTE SERVICES

 }

 public PokMsg Receive() {
 return (PokMsg)q.Receive().Body; // receive a PokMsg object
 }

 public void Kill() {
 q.Purge(); // zap messages (not strictly necessary)
 MessageQueue.Delete(QPath); // delete the queue

 }

 private string QPath;
 private MessageQueue q;
 }
}

5.10.3 Creating the QuePokService service

The message queue-based poker service, shown in listing 5.23, creates the service’s
incoming PokerQueue, and a SimpleMachine poker engine, and loops indefi-
nitely responding to incoming "DEAL" and "DRAW" requests.

// file: QuePokService.cs
// compile: csc /r:PokerQueue.dll;poker.dll QuePokService.cs

using System;

namespace Poker {

 public class QuePokService {

 public static void Main () {

 PokerQueue inQ = new PokerQueue("PokerServer");
 SimpleMachine machine = new SimpleMachine();

 Console.WriteLine("waiting for messages...");
 while(true) {

 PokMsg pokMsg = inQ.Receive();
 Console.WriteLine(
 "received : {0} : {1}",
 pokMsg.QID, pokMsg.Command
);

 PokerQueue outQ = new PokerQueue(pokMsg.QID);

 if (pokMsg.Command.Equals("DEAL")) {
 pokMsg.Hand = machine.Deal().Text;
 outQ.Send(pokMsg);
 continue;
 }

 if (pokMsg.Command.Equals("DRAW")) {

 Listing 5.23 The QuePokService service
QUEPOK: A MESSAGE QUEUE-BASED POKER GAME 159

 Hand h = machine.Draw(pokMsg.Hand, pokMsg.HoldCards);
 pokMsg.Hand = h.Text;
 pokMsg.Title = h.Title;
 pokMsg.Score = h.Score;
 outQ.Send(pokMsg);
 }
 }
 }

 }
}

When the service receives a message, it extracts the QID and uses it to create a refer-
ence to the outgoing queue for sending its response to the client.

5.10.4 Creating the QuePok client

The QuePok client, shown in listing 5.24, is similarly simple.

// file: QuePok.cs
// description: a MSMQ poker machine client
// compile: csc /r:PokerQueue.dll QuePok.cs

namespace Poker {

 using System;

 class QuePok {

 public static void Main(string[] args) {
 new QuePok(); // start game
 }

 public QuePok() {
 inQPath = "PokClient_" + new System.Random().Next(1, 1000000);
 inQ = new PokerQueue(inQPath);
 outQ = new PokerQueue("PokerServer");
 pokMsg = new PokMsg();
 pokMsg.QID = inQPath;
 Console.WriteLine("A message queue-based poker game...");
 while (!gameOver) nextGame(); // play
 }

 private void nextGame() {

 pokMsg.Command = "DEAL";
 outQ.Send(pokMsg);
 pokMsg = inQ.Receive();

 Console.WriteLine(pokMsg.Hand); // display it
 Console.Write(
 "Enter card numbers (1 to 5) to hold, or Q to exit: "
);

 Listing 5.24 The QuePok client
160 CHAPTER 5 DEVELOPING REMOTE SERVICES

 string command =
 pokMsg.HoldCards =
 Console.ReadLine().Trim().ToUpper();

 if (command.Equals("Q")) {
 inQ.Kill();
 gameOver = true;
 return;
 }

 pokMsg.Command = "DRAW";
 outQ.Send(pokMsg);
 pokMsg = inQ.Receive();

 Console.WriteLine(pokMsg.Hand); // the hand
 Console.WriteLine(pokMsg.Title); // the title
 Console.WriteLine("Score = {0}\n", pokMsg.Score); // the score
 }

 private bool gameOver = false;
 private string inQPath;
 private PokerQueue inQ;
 private PokerQueue outQ;
 private PokMsg pokMsg;
 }
}

Typically, queues live forever in the system until deleted. Therefore, this time, we tell
the user to enter "Q" to end the client and we call inQ.Kill() to delete the queue
from the system.

5.10.5 Compiling and testing the QuePok service

Compile both client and service, as shown in figure 5.24.
Now, launch the service in one window and a few clients in their own windows.

The output in the service window is shown in figure 5.25.

Figure 5.24 Compiling the QuePok application
QUEPOK: A MESSAGE QUEUE-BASED POKER GAME 161

In this case, the service is communicating with three clients, each with its own unique
response queue. If you stop the service, the clients will continue to run without error.
However, they will block while waiting for a response from the service. Restarting the
service will allow the clients to proceed and no messages will be lost. This is one of
the key reliability features of the message queuing architecture. If you open the Com-
puter Management window, found under Administrative Tools in Windows 2000,
you can view the new poker message queues in the system, as in figure 5.26.

Figure 5.25 The QuePokService output

Figure 5.26 Viewing message queues
162 CHAPTER 5 DEVELOPING REMOTE SERVICES

5.11 SUMMARY

Remoting services open the way for the creation of powerful distributed applications
without requiring the developer to work with complex protocols or a special interface
description language. In this chapter, we looked at both server- and client-activated
remote objects and how to configure services and clients for both. For client-activated
objects, we explored the leasing mechanism used by remoting to manage remote
object lifetime.

We developed a remote version of our poker game which supports Singleton
and client-activated modes of operation over both TCP and HTTP channels. We also
created a remote poker machine which runs as a Windows service.

Finally, we explored an alternative to remoting services when we developed a
remote, message queue-based version of our poker machine. In the next chapter, we
build on our knowledge of .NET remoting when we explore XML Web services.
SUMMARY 163

C H A P T E R 6

Developing XML
Web services

6.1 Introduction to XML

Web services 165
6.2 Creating a first Web service 165
6.3 Creating an HTTP GET

client 169
6.4 Using WSDL to describe

a Web service 170
6.5 Coding a SOAP client 173

6.6 The WebMailService example 179
6.7 Managing service state 181
6.8 Enabling Web service

discovery 190
6.9 Using UDDI to advertise

a Web service 194
6.10 WSPok: the Web service-based

poker game 199
6.11 Summary 202
XML Web services are one of the most talked-about features of the .NET platform.
Many see a future where businesses expose applications to customers as Web services
using a pay-per-use model and where the systems of different companies interact with
one another across the Web. The Universal Description, Discovery, and Integration
(UDDI) project, initiated by Microsoft, IBM, and others, supports these goals by
allowing companies to publish information about the Web services they produce in a
universal registry that will be accessible by all.

Perhaps the most attractive feature of Web services is that, unlike DCOM or
CORBA, they are founded on universal, nonproprietary standards including XML and
HTTP. Web services are not exclusive to .NET. On the contrary, one of their strengths
is that they offer a model that is platform independent. However, .NET includes sev-
eral tools and a degree of support which simplify the development of Web services by
164

automating many of the tasks involved and shielding the developer from many of the
technical details.

In this chapter, we explore XML Web services by developing sample services and
client applications. We learn how to manage state within a Web service and how to
emulate remoting’s singleton, single-call, and client-activated modes. We also explore
Web service discovery and learn how to use UDDI to publish services to potential cus-
tomers. As usual, we’ll round out the discussion by returning to our case study and
presenting a poker machine Web service.

6.1 INTRODUCTION TO XML WEB SERVICES

A Web service is an application that exposes a programming interface to remote call-
ers over the Web. Unlike alternative remoting models, such as DCOM and CORBA,
Web services offer a simple, scalable model based on industry standards such as XML/
SOAP. SOAP, in turn, uses HTTP as the transport layer to move structured type infor-
mation across the Internet. (SOAP version 1.1 opened the possibility of using other
Internet protocols as transport layers.)

SOAP messages are essentially one-way transmissions, but can be combined to cre-
ate a request/response conversation model suited to remote method invocation. SOAP
data is encapsulated for transmission in a SOAP envelope which is basically an XML
document containing the structured data to be transmitted.

Developing XML Web services and clients does not necessarily require an under-
standing of SOAP, although it doesn’t hurt. Using ASP.NET, developing the service
can be as simple as coding a C#, or Visual Basic .NET class and deploying it on IIS.
Microsoft IIS and the ASP.NET infrastructure look after compiling the source, build-
ing a WSDL contract which describes the service, forwarding client calls to the service,
and returning results. (We’ll look at ASP.NET in more detail in chapter 8.) The .NET
SDK, and Visual Studio .NET, both provide tools to query the WSDL contract, and
generate a proxy class to be used in compiling client applications.

6.2 CREATING A FIRST WEB SERVICE

Without further delay, let’s create our first Web service. We’ll develop a simple service
that accepts the caller’s name and returns a greeting. We’ll be installing our Web ser-
vices on IIS, so we’ll need a virtual directory on the Web server. Call this new virtual
directory ws (for Web services) and remember to assign it permission to execute scripts.

6.2.1 Creating the service

Web services are stored on the server in files with a .asmx extension. These files are a
bit like .asp files and can contain server directives and C# code. You can also use the
CodeBehind directive to place the C# code in a separate file, as Visual Studio .NET
does when you create a new Web service project. We don’t bother to do this for the
simple examples shown here.
CREATING A FIRST WEB SERVICE 165

Once again, we’ll use our old friend HelloService. While not very exciting, its
simplicity will allow us to cover more ground within the confines of a single chapter.
We’ll be creating several versions of HelloService, so we’ll call the first version
HelloService1 and store it as helloservice1.asmx. Listing 6.1 contains the code for
this first version.

<%@ WebService Language="C#" Class="HelloService1" %>

// file: helloservice1.asmx
// description: hello web service - basic version

using System.Web.Services;

[WebService(
 Description="A greeting Web service",
 Namespace="http://manning.com/dotnet/webservices"
)]

public class HelloService1 : WebService {

 [WebMethod(Description="Greet by name.")]
 public string Greet(string name) {
 if (name == "") name = "Stranger";
 return "Hello, " + name + "!";
 }
}

The first line in the file identifies the application as a Web service coded in C# and
contained in the class HelloService1. The WebService attribute assigns a
description for the Web service and a default XML namespace for schemas generated
for the service. This attribute is not strictly necessary and your service will work with-
out it. However, it allows you to specify a name for the service which is not con-
strained by the naming rules of the CLR. In this example, we just accept the default
class name, HelloService1. You should assign a unique namespace when you are
publicly exposing your Web service to callers. This will disambiguate your service
from other services on the Web which have the same name. You can use your com-
pany’s Internet domain name as part of the XML namespace, as I have done in this
example. Note that, although this may look like a URL, it does not point to an actual
resource on the Web.

The HelloService1 class is derived from System.Web.Services.Web-
Service. Doing so provides access to the ASP.NET Context property and makes
available the familiar ASP.NET objects including Request, Response, and Ses-
sion. We’ll use some of these objects later when we consider how to maintain state
between service invocations.

 Listing 6.1 The HelloService1 Web service
166 CHAPTER 6 DEVELOPING XML WEB SERVICES

Public methods which clients can call must be annotated with the WebMethod
attribute. This attribute has several optional properties including the Description
property which we set in this case.

6.2.2 Testing the service

Save this file to the server, launch Internet Explorer and go to the URL. By default,
you should see a page similar to that shown in figure 6.1.

ASP.NET provides these default pages to allow you to browse Web service descrip-
tions. The page in figure 6.1 is generated by the DefaultWsdlHelpGenerator.aspx
page, which is shipped with .NET. You can change this default by editing the <web-
Services> section of the machine-wide configuration file, machine.config, typi-
cally installed at C:\WINNT\Microsoft.NET\Framework\<version>\CONFIG. See
figure 6.2.

Figure 6.1

Browsing the Hello service

Figure 6.2 The default WSDL help generator setting
CREATING A FIRST WEB SERVICE 167

Returning to the page in figure 6.1, click the Greet link and you should be presented
with a page containing a textbox where you can enter your name, and a button to
invoke the Greet method. See figure 6.3.

Enter your name and click the button. If your name is Joe Bloggs, you should see a
page similar to that shown in figure 6.4.

The result is an XML document containing the greeting string returned by the ser-
vice. Note the XML namespace name in the response. Also, the URL of the returned
page is http://localhost/ws/helloservice1.asmx/Greet?name=Joe+Bloggs. This is sim-
ply the URL of the virtual directory followed by the name of the file where the service
resides, followed by the method name and arguments. This is the familiar URL string
for a HTTP GET request. Next, we’ll code a C# client program which also uses HTTP
GET to invoke the service.

Figure 6.3

Browsing the Hello service

Figure 6.4

Invoking the Hello

service
168 CHAPTER 6 DEVELOPING XML WEB SERVICES

6.3 CREATING AN HTTP GET CLIENT

A simple HTTP GET client is shown in listing 6.2. It calls WebRequest.Create to
create a WebRequest object and issue an HTTP GET command to the service. An
XmlDocument object is used to capture the returned document and extract the result.

// file: helloget.cs
// compile: csc helloget.cs

using System;
using System.Net;
using System.IO;
using System.Xml;

class HelloGet {
 public static void Main(string[] args) {

 // build URL...
 string url =
 "http://localhost/ws/helloservice1.asmx/Greet?name=";
 string argLine = String.Join(" ", args);
 if (argLine.Length > 0) url += argLine;

 // create Web request...
 WebRequest req = WebRequest.Create(new Uri(url));
 WebResponse resp = req.GetResponse();

 // get reply...
 StreamReader sr = new StreamReader(resp.GetResponseStream());
 XmlDocument xd = new XmlDocument();
 xd.LoadXml (sr.ReadToEnd());

 // display returned value...
 Console.WriteLine(xd.DocumentElement.InnerText);
 }
}

The HTTP client program takes an optional user’s name as a parameter and builds a
URL to invoke the service’s Greet method. It uses the built-in System.Net.Web-
Request class to invoke the HTTP request and the System.Net.WebResponse
to retrieve the result which is, as we saw in figure 6.4, an XML document. Then it dis-
plays the text of the root document element which, in this case, is the greeting string
returned by HelloService1.

Compiling and executing this client produces the output shown in figure 6.5.
Although this client is perfectly useful in its current form, there are better ways to

build a client to interact with a Web service, as we’ll see soon. First, we take a look at
WSDL which is an XML language for describing Web services.

 Listing 6.2 An HTTPGET client for HelloService1
CREATING AN HTTP GET CLIENT 169

6.4 USING WSDL TO DESCRIBE A WEB SERVICE

Remember that Web services are not exclusive to .NET. Other vendors have their own
vision of an interconnected business-to-business marketplace based on the Web ser-
vice model. (For an IBM-centric view, check out http://www.ibm.com/developer-
works/webservices.) Since Web services provide a nonproprietary, open model, they
must be based on common standards. WSDL is one such standard, and is the product
of a collaborative effort of Microsoft, IBM, and others.

WSDL provides a means of describing Web services. These descriptions may be
stored with the service itself or published in the UDDI registry which we mentioned
earlier and to which we’ll return later in this chapter. The good news is that .NET’s
Web service infrastructure will automatically generate the necessary WSDL to fully
describe .NET services. This is yet another benefit of the self-describing nature of .NET
types based on metadata and reflection. Even better, .NET provides tools that can con-
sume WSDL descriptions of services and use these descriptions to generate proxy
classes for use in client applications. So in the .NET world, the developer can choose
to remain ignorant of WSDL, and even SOAP, and still benefit from the ability to cre-
ate feature-rich Web services and clients.

To retrieve the WSDL for HelloService1, point your browser to http://local-
host/ws/helloservice1.asmx?WSDL. The WSDL listing comes to more than 100 lines
of XML, so we won’t show it in full here. It consists of a <definitions> section
containing subsections for types, messages, portTypes, bindings, and services.

6.4.1 WSDL types

The <types> section defines two complex types, Greet and GreetResponse, as
string types. These correspond to the argument passed to HelloService1 and the
response returned, respectively. The generated WSDL looks like:

<types>
 <s:schema
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://manning.com/dotnet/webservices">

Figure 6.5 Testing HelloService1
170 CHAPTER 6 DEVELOPING XML WEB SERVICES

 <s:element name="Greet">
 <s:complexType>
 <s:sequence>
 <s:element
 minOccurs="1"
 maxOccurs="1"
 name="name"
 nillable="true"

 type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GreetResponse">
 <s:complexType>
 <s:sequence>
 <s:element
 minOccurs="1"
 maxOccurs="1"
 name="GreetResult"
 nillable="true"
 type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
</types>

WSDL supports a rich set of common types in accordance with the draft standard for
the XML Schema Definition Language. These include signed and unsigned integer
and floating-point types, boolean and string types, and arrays of same. The SOAP ver-
sion of a service supports the serialization of complex types built from these underly-
ing simple types.

6.4.2 WSDL messages

A message can be compared to an envelope containing information moving from a
source to a destination. In our example, HelloService1 defines a single Greet
method which, when called, responds by returning a result. Both the call and the
response are messages. Therefore the round-trip involves two messages.

The generated WSDL specifies support for three protocols:

• HttpGet—Uses HTTP GET to invoke service. See listing 6.2 for a sample client.

• HttpPost—Uses HTTP POST to invoke the service.

• Soap—Uses SOAP to invoke the service.

With two messages involved in a single round-trip method invocation, and three sup-
ported protocols, the generated WSDL defines six messages:
USING WSDL TO DESCRIBE A WEB SERVICE 171

• GreetSoapIn—Greet method call via SOAP.

• GreetSoapOut—Greet method response via SOAP.

• GreetHttpGetIn—Greet method call via HTTP GET.

• GreetHttpGetOut—Greet method response via HTTP GET.

• GreetHttpPostIn—Greet method call via HTTP POST.

• GreetHttpPostOut—Greet method response via HTTP POST.

SOAP is a superior message format because of its ability to represent complex types.
Therefore, from now on, we’ll work with SOAP only. The generated WSDL for the
SOAP messages looks like:

<message name="GreetSoapIn">
 <part name="parameters" element="s0:Greet" />
</message>
<message name="GreetSoapOut">
 <part name="parameters" element="s0:GreetResponse" />
</message>

The GreetSoapIn and GreetSoapOut messages encapsulate the sent Greet
and returned GreetResponse types seen above.

6.4.3 WSDL portTypes

Next come the <portType> entries. This time, we confine ourselves to the SOAP
entry:

 <portType name="HelloService1Soap">
 <operation name="Greet">
 <documentation>Greet by name.</documentation>
 <input message="s0:GreetSoapIn" />
 <output message="s0:GreetSoapOut" />
 </operation>
 </portType>

A <portType> section contains a set of one or more <operation> entries, each
of which represents a single round-trip method invocation and return. In this case,
the Greet operation involves sending a GreetSoapIn message and receiving a
GreetSoapOut message in reply. Both messages must be defined in the prior
<message> sections.

6.4.4 WSDL bindings

Next we look at the <binding> entries. Once again, we confine ourselves to the
SOAP-related entry:

 <binding name="HelloService1Soap" type="s0:HelloService1Soap">
 <soap:binding
 transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="Greet">
172 CHAPTER 6 DEVELOPING XML WEB SERVICES

 <soap:operation
 soapAction="http://manning.com/dotnet/webservices/Greet"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />

 </output>
 </operation>
 </binding>

A <binding> entry binds an operation to a protocol. In this example, it specifies
that the Greet operation, http://manning.com/dotnet/webservices/Greet, is avail-
able via SOAP-encoded format over the HTTP transport. (Since version 1.1, SOAP
can be used with other transports.)

6.4.5 WSDL services

The <service> entry represents a set of ports, where a port represents a defined
binding at a specific location:

 <service name="HelloService1">
 <documentation>A greeting Web service</documentation>
 <port name="HelloService1Soap"
 binding="s0:HelloService1Soap">
 <soap:address
 location="http://localhost/ws/helloservice1.asmx" />
 </port>
 <port name="HelloService1HttpGet"
 ...
 </port>
 <port name="HelloService1HttpPost"
 ...

 </port>
 </service>

6.5 CODING A SOAP CLIENT

The WSDL standard for describing Web services means that we can query a service
description and discover information about it. For example, listing 6.3 presents a
simple program which queries a service at a given URL and displays the service name,
description, and ports.

// file: wsdldesc.cs
// compile: csc wsdldesc.cs

namespace WsdlServices {

 using System;

 Listing 6.3 Querying a service description
CODING A SOAP CLIENT 173

 using System.Xml;
 using System.Web.Services.Description;

 class WsdlDesc {

 public static void Main(string[] args) {

 string url;
 if (args.Length > 0)

 url = args[0];
 else
 url = "http://localhost/ws/helloservice1.asmx?WSDL";

 ServiceDescription desc = ServiceDescription.Read(
 new XmlTextReader(url)
);

 Console.WriteLine("url : {0}", url);
 foreach (Service s in desc.Services) {
 Console.WriteLine("service name : {0}", s.Name);
 Console.WriteLine("description : {0}", s.Documentation);
 Console.Write("ports : ");
 foreach (Port p in s.Ports) {
 Console.Write("{0} ", p.Name);
 }
 Console.WriteLine();
 }
 }
 }
}

The System.Web.Services.Description.ServiceDescription class
provides an object-oriented model of a WSDL document which we can use to inspect
or create WSDL documents. Compiling this program and executing it against the
HelloService1 service results in the output shown in figure 6.6.

Conceivably, we could use this technique to code a utility which can query a service
description and automatically generate the code to build the necessary SOAP

Figure 6.6 Retrieving the description of HelloService1
174 CHAPTER 6 DEVELOPING XML WEB SERVICES

messages and call the service. However, we don’t need to do so because .NET’s
wsdl.exe can do the work for us.

6.5.1 Generating the Web service proxy

The developer tools provided with the .NET SDK and Visual Studio .NET, remove
the need for the developer to work at the SOAP level. Instead, clients make calls
against a proxy object derived from the System.Web.Services.Proto-
cols.SoapHttpClientProtocol and .NET takes care of setting up, format-
ting, and transmitting messages. The proxy class can be generated automatically
using the command-line utility, wsdl.exe, as shown in figure 6.7.

By default, this generates the file, HelloService1.cs, in the current directory.
Note the optional /namespace:Hello switch which causes wsdl.exe to place
the generated proxy class in the Hello namespace. The http://local-
host/ws/helloservice1.asmx?WSDL argument tells the utility to use the
WSDL description at the specified URL. By default, wsdl.exe generates C# code.
However, you can specify the language of your choice using the /language
switch. For example, use /language:VB for Visual Basic.

HelloService1.cs is shown in listing 6.4.

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.2914.16
//

// Changes to this file may cause incorrect behavior and will
// be lost if the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by wsdl, Version=1.0.2914.16.
//
namespace Hello {
 using System.Diagnostics;

Figure 6.7 Generating the HelloService1 proxy

 Listing 6.4 The HelloService1.cs proxy
CODING A SOAP CLIENT 175

 using System.Xml.Serialization;
 using System;
 using System.Web.Services.Protocols;
 using System.Web.Services;

 [System.Web.Services.WebServiceBindingAttribute(
 Name="HelloService1Soap",
 Namespace="http://manning.com/dotnet/webservices")]

 public class HelloService1 :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public HelloService1() {
 this.Url = "http://localhost/ws/helloservice1.asmx";
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://manning.com/dotnet/webservices/Greet",
 RequestNamespace="http://manning.com/dotnet/webservices",
 ResponseNamespace="http://manning.com/dotnet/webservices",
 Use=
 System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=
 System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public string Greet(string name) {
 object[] results = this.Invoke("Greet", new object[] {
 name});
 return ((string)(results[0]));
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public System.IAsyncResult BeginGreet(
 string name,
 System.AsyncCallback callback,
 object asyncState) {
 return this.BeginInvoke("Greet", new object[] {
 name}, callback, asyncState);
 }

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 public string EndGreet(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
 }
 }
}

The generated file contains the Hello.HelloService1 proxy class which is
derived from System.Web.Services.Protocols.SoapHttpClientPro-
tocol. It contains the following methods:
176 CHAPTER 6 DEVELOPING XML WEB SERVICES

• HelloService1—The default constructor simply stores the URL of the ser-
vice. Url is a public read/write property.

• Greet—This is the method we call to invoke the service synchronously. It calls
SoapHttpClientProtocol’s protected Invoke method. It passes the
name of the remote method and the name argument, storing the returned string
in the first element of the results array and returning it to the caller. As you
can see, this arrangement shields the developer from the details of the underly-
ing SOAP/XML/HTTP processing required to actually make the remote call.

• BeginGreet—This is the method we call to invoke the service asynchro-
nously. In a loosely coupled, widely distributed environment such as the Web,
we cannot be guaranteed that remote calls will return promptly, or at all. Using
asynchronous calls will prevent the client from blocking while waiting for a
response, and allow it to proceed with other tasks. We’ll look at an example of
asynchronous Web service invocation later in this chapter.

• EndGreet—This method is called to retrieve the result of an asynchronous
request.

6.5.2 Coding the client

Now that we have a proxy class, we need to create a client which uses it to invoke the
service. Listing 6.5 presents a client, helloclient1.cs, for this purpose.

// file: helloclient1.cs
// compile: csc /out:helloclient1.exe
// helloclient1.cs helloservice1.cs

namespace Hello {

 using System;

 class HelloClient1 {
 public static void Main(string[] args) {
 HelloService1 h = new HelloService1();
 string name = "";
 if (args.Length > 0) name = args[0];
 Console.WriteLine(h.Greet(name));
 }
 }
}

The client creates an instance of HelloService1 and invokes its Greet method
in the ordinary way. The fact that the object represents a remote Web service makes
no difference since the local proxy takes care of marshaling the call.

 Listing 6.5 A test client
CODING A SOAP CLIENT 177

6.5.3 Compiling and executing the client

To invoke the service, we compile the client, together with the generated proxy, and
execute it, as shown in figure 6.8.

The client should execute as expected, with no discernible evidence that a remote
Web service invocation is involved. In a wide-area scenario, where the service is phys-
ically distant from the client, you might find that occasionally the client is unable to
connect and will time out, generating a System.Net.WebException in the pro-
cess. You can trap this exception and attempt a recovery strategy. One strategy would
be to increase the time-out value and/or try an alternative URL where a backup ser-
vice is installed:

 string response = "";
 try {
 // invoke the service...
 response = hs.Greet(name);
 } catch (System.Net.WebException) {
 // try backup URL...
 hs.Url = "http://backup_machine/ws/helloservice1.asmx";
 // and double the timeout...
 hs.Timeout *= 2;
 // and try again...
 response = hs.Greet(name);
 }

6.5.4 Creating an asynchronous client

The previous example used a synchronous call to invoke the Greet method. This
means that the client will block until the method returns or times out. We can use the
asynchronous methods of the generated proxy class to allow the client to proceed
with other tasks while waiting for a response from the service. Listing 6.6 illustrates
the asynchronous approach.

Figure 6.8 Testing the Hello client
178 CHAPTER 6 DEVELOPING XML WEB SERVICES

// file: helloclient1a.cs
// compile: csc /out:helloclient1a.exe
// helloclient1a.cs helloservice1.cs

namespace Hello {

 using System;
 using System.Threading;
 using System.Runtime.Remoting.Messaging;
 using System.Web.Services.Protocols;

 class HelloClient1a {

 public static void Main(string[] args) {
 string name = "";
 if (args.Length > 0) name = args[0];
 new HelloClient1a(name);
 }

 public HelloClient1a(string name) {
 HelloService1 hs = new HelloService1();
 AsyncCallback ac = new AsyncCallback(this.GreetCallback);
 IAsyncResult ar = hs.BeginGreet(name, ac, hs);

 while (waitingOnReply) Thread.Sleep(500);
 Console.WriteLine("Done!");
 }

 private void GreetCallback(IAsyncResult ar) {
 HelloService1 hs = (HelloService1) ar.AsyncState;
 string reply = hs.EndGreet(ar);
 Console.WriteLine("callback: " + reply);
 waitingOnReply = false;
 }

 private bool waitingOnReply = true;
 }
}

This time the program uses the BeginGreet method, provided in the generated
helloservice1.cs file, to invoke the service. We pass the Web method argument, an
AsyncCallback object, and a reference to the service, as arguments. The client
then sleeps until the callback method executes. The callback method retrieves the ser-
vice reference and calls EndGreet to retrieve the returned result.

6.6 THE WEBMAILSERVICE EXAMPLE

Web services provide a simple, standardized way of exposing application or server
functionality to any client that can talk XML and HTTP. Let’s look at a realistic exam-
ple of a useful Web service. Listing 6.7 presents a simple Web service that clients can
use to send email via SMTP.

 Listing 6.6 Invoking Web methods asynchronously
THE WEBMAILSERVICE EXAMPLE 179

<%@ WebService Language="C#" Class="WebMailService" %>

// file: WebMailService.asmx
// description: SMTP mail Web service

using System;
using System.Web.Services;
using System.Web.Mail;

[WebService(
 Description="An SMTP mail Web service",
 Namespace="http://manning.com/dotnet/webservices"
)]

public class WebMailService : WebService {

 [WebMethod(Description="Send an SMTP mail message")]
 public string Send(string from,
 string to,
 string subject,
 string cc,
 string bcc,
 string body) {
 try {
 MailMessage msg = new MailMessage();
 msg.From = from;
 msg.To = to;
 msg.Subject = subject;
 msg.Cc = cc;
 msg.Bcc = bcc;
 msg.Body= body;
 // set SMTP server here, if necessary
 // SmtpMail.SmtpServer = "smtp.server.com";
 SmtpMail.Send(msg);
 return "OK";
 } catch (Exception e) {
 return "ERROR : " + e.Message;
 }
 }
}

This example uses the System.Web.Mail.MailMessage class to construct a
mail message and send it using the static SmtpMail.Send method. To a client, the
service exposes a single method which can be used to send an email:

 WebMailService wms = new WebMailService();
 wms.Send(fromStr, toStr, subjectStr, ccStr, bccStr, bodyStr);

If you browse this service at http://localhost/ws/webmailservice.asmx?op=Send you
should get a ready-made page for sending simple emails as shown in figure 6.9. (You’ll
need to have SMTP configured on the server to use this service.)

 Listing 6.7 An SMTP mail Web service
180 CHAPTER 6 DEVELOPING XML WEB SERVICES

This simple example illustrates one of the benefits of Web services. In just a few lines
of code, we have provided a simple platform independent interface to the Windows
SMTP mail service.

6.7 MANAGING SERVICE STATE

Web services provide a stateless model similar to the SingleCall activation mode
which we explored in the previous chapter when we looked at remoting. Therefore,
when a client invokes a remote method, the server automatically constructs the rele-
vant object, executes the method, returns any results, and discards the object. This is
in keeping with the stateless nature of the HTTP protocol. In this section, we explore
ways of maintaining state between method calls and we see how to emulate singleton
and client-activated modes of operation.

6.7.1 Creating a stateful Web service

Web services can make use of ASP.NET’s state management capabilities to augment
services with the ability to store session- and application-based state information. We
can use these features to emulate something akin to remoting’s singleton and client-

Figure 6.9

The WebMailService

page
MANAGING SERVICE STATE 181

activated models. Listing 6.8 presents a new version of our earlier sample service,
helloservice2.asmx, which stores session state between requests. This version counts
the number of times the service is invoked, and the number of times the Greet
method is called by an individual client.

<%@ WebService Language="C#" Class="HelloService2" %>

// file: helloservice2.asmx
// description: hello web service with session state info

using System.Web.Services;

[WebService(
 Description="A stateful greeting Web service",
 Namespace="http://manning.com/dotnet/webservices"
)]

public class HelloService2 : WebService {

 public HelloService2() {
 if (newSession) {
 newSession = false; // no longer a new session
 numInst = 0; // no instances so far
 numGreet = 0; // no greetings yet either
 }
 numInst++;
 }

 [WebMethod(
 Description="Greet by name.",
 EnableSession= true
)]
 public string Greet(string name) {
 numGreet++;
 if (name == "") name = "Stranger";
 return "Hello, " + name + "!";
 }

 [WebMethod(
 Description="Get number of greetings.",
 EnableSession= true
)]
 public int NumGreet() {
 return numGreet; // return private property
 }

 [WebMethod(
 Description="Get number of times constructor invoked.",
 EnableSession= true
)]
 public int NumInst() {
 return numInst; // return private property
 }

 Listing 6.8 Saving session state in a Web service
182 CHAPTER 6 DEVELOPING XML WEB SERVICES

 private bool newSession {
 // wraps Session["newSession"] in a private property
 get {
 if (Session["newSession"] == null) return true;
 return (bool) Session["newSession"];
 }
 set {
 Session["newSession"] = value;
 }
 }

 private int numGreet {
 // wraps Session["numGreet"] in a private property
 get {
 return (int) Session["numGreet"];
 }
 set {
 Session["numGreet"] = value;
 }
 }

 private int numInst {
 // wraps Session["numInst"] in a private property
 get {
 return (int) Session["numInst"];
 }
 set {
 Session["numInst"] = value;
 }
 }
}

The new service uses the Session property to reference the HttpSessionState
object for the current session. For convenience, we wrap session variables inside pri-
vate class properties:

 private bool newSession {
 // wraps Session["newSession"] in a private property
 get {
 if (Session["newSession"] == null) return true;
 return (bool) Session["newSession"];
 }
 set {
 Session["newSession"] = value;
 }
 }

This allows us to use the more natural:

 if (newSession) ...

instead of:

 if (Session["newSession"]) ...
MANAGING SERVICE STATE 183

Since the constructor is called every time the service is invoked, we need to check that
this is indeed a new session before we initialize the session variables:

 public HelloService2() {
 if (newSession) {
 newSession = false; // no longer a new session
 numInst = 0; // no instances so far
 numGreet = 0; // no greetings yet either
 }
 numInst++;
 }

The private numInst property records the number of times the class is instantiated,
while the numGreet property counts the number of times the Greet Web method
is invoked. The public NumInst and NumGreet Web methods return these values
to the client. Note that the WebMethod attribute must set EnableSes-
sion=true for each method that uses session data. We’ll use cookies in the client to
take advantage of this.

6.7.2 Creating the stateful client

The new client is presented in listing 6.9.

// file: helloclient2.cs
// compile: csc /out:helloclient2.exe
// helloclient2.cs helloservice2.cs

namespace Hello {

 using System;
 using System.Net;

 class HelloClient2 {

 public static void Main(string[] args) {

 HelloService2 h = new HelloService2();

 string argLine = String.Join(" ", args).ToLower() + " ";
 if (argLine.IndexOf("/state") >= 0)
 h.CookieContainer = new CookieContainer(); // enable state
 else
 h.CookieContainer = null; // stateless

 for (int i = 0; i < 3; i++) {
 Console.WriteLine(h.Greet("Mary"));
 Console.WriteLine("Num. Greet.: {0}", h.NumGreet());
 Console.WriteLine("Num. Inst.: {0}", h.NumInst());
 }
 }
 }
}

 Listing 6.9 Enabling session state in the client
184 CHAPTER 6 DEVELOPING XML WEB SERVICES

This client accepts an optional command-line /state switch to turn on stateful
execution. If this switch is set, the client enables the use of cookies with the service,
as follows:

 h.CookieContainer = new CookieContainer(); // enable state

This creates a new cookie container which enables client and service to retain state
information by enabling cookies for the session.

6.7.3 Testing the stateful service

Once again, we use wsdl.exe to generate the service proxy which we compile into the
client, as shown in figure 6.10.

Now, let’s execute the client, first without cookies, and then with cookies enabled. See
figure 6.11.

With cookies disabled, the count of the number of times the Greet method was
invoked is always zero, while the count of the number of times the service was invoked

Figure 6.10 Building the stateful service

Figure 6.11 Testing the stateful service
MANAGING SERVICE STATE 185

is always one. (The NumInst call necessarily invokes the service.) Setting the /state
switch enables cookies causing the correct count to be returned. This essentially emu-
lates remoting’s client-activated behavior which we explored in the previous chapter.

6.7.4 Example: logging into a Web service

You could use the stateful approach to provide application-level login/logout for a
service. Listing 6.10 presents a StringCaseService service which requires the
client to login in order to call the ToUpper and ToLower Web methods. In con-
trast, the GetLength method can be executed without logging in.

<%@ WebService Language="C#" Class="StringCaseService" %>

// file: stringcaseservice.asmx
// description: A web service to change string case.
// Requires user to login first.

using System.Web.Services;
using System.Security;

[WebService(
 Description="A web service to change case. Requires login.",
 Namespace="http://manning.com/dotnet/webservices"
)]

public class StringCaseService : WebService {

 [WebMethod(
 Description="Login with username and password.",
 EnableSession= true
)]
 public bool Login(string username, string password) {
 loggedIn = false; // logout existing user, if any
 if (username == "jbloggs" && password == "secret")
 loggedIn = true;
 return loggedIn;
 }

 [WebMethod(
 Description="Logout.",
 EnableSession= true
)]
 public void Logout() {
 loggedIn = false; // logout existing user
 }

 [WebMethod(
 Description="Uppercase a string. Must be logged in to call.",
 EnableSession= true
)]
 public string ToUpper(string s) {
 requireLogin();

 Listing 6.10 StringCaseService
186 CHAPTER 6 DEVELOPING XML WEB SERVICES

 return s.ToUpper();
 }

 [WebMethod(
 Description="Lowercase a string. Must be logged in to call.",
 EnableSession= true
)]
 public string ToLower(string s) {
 requireLogin();

 return s.ToLower();
 }

 [WebMethod(
 Description="Return string length."
)]
 public int GetLength(string s) {
 // login not necessary...
 return s.Length;
 }

 private void requireLogin() {
 if (!loggedIn)
 throw new SecurityException("Client not logged in!");
 }

 private bool loggedIn {
 get {
 if (Session["loggedIn"] == null) return false;
 return (bool) Session["loggedIn"];
 }
 set {
 Session["loggedIn"] = value;
 }
 }
}

This time we have a single private loggedIn property which we set to true when
the client successfully logs in. Those methods that require the client to log in, namely
ToUpper and ToLower, call requireLogin before doing any work. The latter
raises a SecurityException if the client is not logged in. A client for this service
is shown in listing 6.11.

// file: stringcaseclient.cs
// compile: csc /out:stringcaseclient.exe
// stringcaseservice.cs stringcaseclient.cs

namespace StringCase {

 using System;
 using System.Net;

 Listing 6.11 StringCaseClient
MANAGING SERVICE STATE 187

 class StringCaseClient {

 public static void Main(string[] args) {

 StringCaseService scs = new StringCaseService();
 scs.CookieContainer = new CookieContainer(); // enable state

 string s = "Hello";

 Console.WriteLine("length of {0} : {1}", s, scs.GetLength(s));

 Console.WriteLine(
 "logging in mmouse:secret : {0}",
 scs.Login("mmouse", "secret")
);
 Console.WriteLine(
 "logging in jbloggs:secret : {0}",
 scs.Login("jbloggs", "secret")
);
 Console.WriteLine("ToUpper {0} : {1}", s, scs.ToUpper(s));
 Console.WriteLine("ToLower {0} : {1}", s, scs.ToLower(s));
 Console.WriteLine("Logging out...");
 scs.Logout();
 Console.WriteLine("Logged out.");

 // following call will raise a client-side SoapException...
 Console.WriteLine("ToLower {0} : {1}", s, scs.ToLower(s));
 }
 }
}

Once again we enable cookies to support session state. We execute GetLength
before we log in. Next, we make an unsuccessful login attempt, followed by a success-
ful login. Then we call ToUpper and ToLower before we log out. Finally, we
attempt to call ToLower again after we have logged out.

To test the client, execute wsdl.exe to generate the proxy. Then compile and execute
the client. The program should end in an exception because we tried to invoke the
ToLower method after the client logged out.

NOTE When implementing a scheme such as this, the service should be exposed
via a Secure Sockets Layer (SSL) connection to prevent the username and
password being sent in clear text. Also, note that you cannot secure just the
Login Web method with SSL, while leaving other service methods unse-
cured. Instead, you must implement the Login function as a separate se-
cured service.

6.7.5 Maintaining state without cookies

If you’re implementing application-level security to authenticate users of your Web
service, you could avoid using cookies by using a user’s identity to generate a key for
the duration of a session:
188 CHAPTER 6 DEVELOPING XML WEB SERVICES

 [WebMethod(Description="Login to Web service.")]
 public string Login(string username, string password) {
 if (isSubscriber(username, password)) {
 string key = genKey(username,
 Context.Request.UserHostAddress,
 DateTime.Now.ToString()
);
 addKey(key, username);

 return key;
 }
 return "";
 }

The Login method checks that the caller is a current subscriber. If so, it calls gen-
Key to generate a session key using the caller’s username, IP address, and the current
time. (The current time could be used to expire a session after a certain time has
elapsed.) Thereafter, the caller must include the key as the first parameter in each
method invocation:

 [WebMethod(Description="Greet by name.")]
 public string Greet(string key, string name) {
 if (!validKey(key))
 throw new SecurityException ("Invalid session key!");
 return "Hello, " + name + "!";
 }

Each secured Web method should check the key and throw an exception if the key is
invalid. For example, we might design genKey to perform a cryptographic hash on
the generated key using a secret password known only to our Web service. (Coding
genKey is left as an exercise.) The validKey key-validation routine would first
recompute the hash and immediately reject the key if the hash does not compute.
Only after the hash successfully computes, should the key be looked up in our data-
base and the username retrieved.

Finally, you might wish to create a Logout method to delete the session key
from storage:

 [WebMethod(Description="Logout of Web service.")]
 public void Logout(string key) {
 if (!validKey(key))
 throw new SecurityException ("Invalid session key!");
 delKey(key);
 }

6.7.6 Emulating singleton activation

Before we close our discussion of stateful Web services, let’s quickly see how we can
emulate a singleton service. The solution is simple. We use ASP.NET’s application-
level, instead of session-level, storage. Listing 6.12 presents a third version of our
HelloService. This version counts the number of times the Greet method has
been called by all clients since the service was launched.
MANAGING SERVICE STATE 189

<%@ WebService Language="C#" Class="HelloService3" %>

// file: helloservice3.asmx
// description: hello web service with application state info

using System.Web.Services;

[WebService(
 Description="A stateful greeting Web service",
 Namespace="http://manning.com/dotnet/webservices"
)]

public class HelloService3 : WebService {

 [WebMethod(Description="Greet by name.")]
 public string Greet(string name) {
 numGreet++;
 if (name == "") name = "Stranger";
 return "Hello, " + name + "!";
 }

 [WebMethod(Description="Get number of greetings.")]
 public int NumGreet() {
 return numGreet;
 }

 private int numGreet {
 get {
 if (Application["numGreet"] == null) return 0;
 return (int) Application["numGreet"];
 }
 set {
 Application.Lock();
 if (Application["numGreet"] == null)
 Application["numGreet"] = 0;
 Application["numGreet"] = value;
 Application.UnLock();
 }
 }
}

This time we use ASP.NET’s Application object to store the data. In effect, the
numGreet property can be looked upon as a static property of the service, shared by
all instances.

We won’t bother to create a test client in this case. Instead, you can use your
browser to test the service at http://localhost/ws/helloservice3.asmx. Launch several
instances of the browser and note how the number of greetings is shared by all clients.

6.8 ENABLING WEB SERVICE DISCOVERY

The process of locating Web services and retrieving their WSDL contracts is known
as Web service discovery. Discovery can be facilitated by storing a so-called DISCO file

 Listing 6.12 Storing application-level state in a Web service
190 CHAPTER 6 DEVELOPING XML WEB SERVICES

with the service, or at an appropriate URL such as in a UDDI registry. The DISCO
file is a regular XML document which provides links to the WSDL contract and asso-
ciated documentation.

6.8.1 Generating a DISCO document

The XML Web services infrastructure will automatically generate a bare-bones
DISCO file for your service. Point your browser to http://localhost/ws/-
helloservice1.asmx?DISCO to generate the DISCO document shown in figure 6.12.

In this case, the DISCO document provides a link to the WSDL contract and a
docRef documentation link to the service itself. It also provides the address and
binding information for the service.

You can also generate and save a DISCO document for your service using the
disco.exe utility, as shown in figure 6.13.

Figure 6.12

Browsing a DISCO

document

Figure 6.13 Generating a DISCO document
ENABLING WEB SERVICE DISCOVERY 191

This generates three files in the local directory:

• helloservice1.wsdl—The service’s WSDL contract.

• helloservice1.disco—The service’s discovery document.

• results.discomap—A discovery client results file containing links to both the con-
tract and the discovery document, as shown in listing 6.13.

<?xml version="1.0" encoding="utf-8"?>
<DiscoveryClientResultsFile
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Results>
 <DiscoveryClientResult
 referenceType=
 "System.Web.Services.Discovery.ContractReference"
 url="http://localhost/ws/helloservice1.asmx?wsdl"
 filename="helloservice1.wsdl" />
 <DiscoveryClientResult
 referenceType=
 "System.Web.Services.Discovery.DiscoveryDocumentReference"
 url="http://localhost/ws/helloservice1.asmx?DISCO"
 filename="helloservice1.disco" />
 </Results>

</DiscoveryClientResultsFile>

6.8.2 Creating a default.disco file

DISCO documents can point to other DISCO documents, thus building a discovery
hierarchy. For example, we could store a master DISCO document at a root URL such
as http://www.MyCompany.com/default.disco. Then, using the Framework’s Sys-
tem.Web.Services.Discovery.DiscoveryDocument class, we could enu-
merate all the public services at the site. Listing 6.14 presents a default.disco document
which references some of the sample Web services we have developed so far.

<?xml version="1.0" encoding="utf-8"?>
<discovery
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/disco/">

 <discoveryRef
 ref="http://localhost/ws/helloservice1.asmx?DISCO" />
 <discoveryRef
 ref="http://localhost/ws/helloservice2.asmx?DISCO" />

 Listing 6.13 results.discomap

 Listing 6.14 A sample default.disco file
192 CHAPTER 6 DEVELOPING XML WEB SERVICES

 <discoveryRef
 ref="http://localhost/ws/helloservice3.asmx?DISCO" />

</discovery>

6.8.3 Processing a default.disco file

Listing 6.15 is a short program which extracts references to other DISCO files from
this DISCO file. For each extracted reference, the program retrieves the new DISCO
file and displays the contract reference.

// file: alldisco.cs
// compile: csc alldisco.cs

namespace WsdlServices {

 using System;
 using System.Xml;
 using System.Web.Services.Discovery;

 class WsdlDesc {

 public static void Main(string[] args) {

 string url;
 if (args.Length > 0)
 url = args[0];
 else
 url = "http://localhost/ws/default.disco";

 DiscoveryDocument desc = DiscoveryDocument.Read(
 new XmlTextReader(url)
);

 Console.WriteLine("default : {0}", url);
 // get each discovery reference...
 foreach (object o in desc.References) {
 if (o is DiscoveryReference) {
 DiscoveryReference d = (DiscoveryReference) o;
 Console.WriteLine("=======================");
 // get the WSDL contract...
 discover(d.Url);
 }
 }
 }

 public static void discover(string url) {
 // get WSDL contract at this URL...
 DiscoveryDocument desc = DiscoveryDocument.Read(
 new XmlTextReader(url)
);
 Console.WriteLine("url : {0}", url);
 foreach (object o in desc.References) {
 if (o is ContractReference) {
 ContractReference c = (ContractReference) o;

 Listing 6.15 Processing the default.disco file
ENABLING WEB SERVICE DISCOVERY 193

 Console.WriteLine("Ref : {0}", c.Ref);
 Console.WriteLine("DocRef : {0}", c.DocRef);
 }
 }
 }
 }
}

We call DiscoveryDocument.Read to load the DISCO document from the sup-
plied URL. Then we look through any discovery references, retrieve them in turn, and
display details of their contracts. Compiling and executing this program produces the
output shown in figure 6.14.

The combination of DISCO, WSDL, and .NET’s proxy generation ability gives us a
robust framework for the automatic discovery and inspection of Web services and for
the creation of client applications which use those services.

6.9 USING UDDI TO ADVERTISE A WEB SERVICE

The UDDI specification represents the combined efforts of several technology com-
panies to produce a global Internet-based registry of businesses and the services they
provide. The idea is that business partners will be able to efficiently discover each
other and interact through published, standards-based services.

In chapter 1, we considered the example of a loan department in a bank using Web
services to communicate with business partners. The department produced a Web ser-
vice to allow a collection agency to hook its own applications into the bank’s loan sys-
tem and extract delinquent accounts as required. The loan department also acted as
consumer of a credit agency Web service which provided real-time credit reports on the
bank’s loan applicants. These are examples of business partners using Web service tech-
nology to communicate with each other’s applications in a standardized, platform-

Figure 6.14 Processing the default.disco file
194 CHAPTER 6 DEVELOPING XML WEB SERVICES

independent way. UDDI is designed to help such partners discover and interact with
one another.

Some of the functionality of UDDI is similar to the Yellow Pages. If you know the
service you want, you can search the UDDI registry to find potential providers of that
service. You can tailor your search to specific companies, industries, or geographical
areas. Alternatively, you might simply use the UDDI registry to retrieve contact infor-
mation for a particular company. In either case, you can search manually using a Web
browser, or automatically using a SOAP-based client application. The UDDI registry
API is itself exposed as a Web service to facilitate programmatic searching. (This would
be a case of invoking a service to find a service.)

UDDI is a comprehensive standard worthy of a book in its own right. However,
at the time of writing, it has yet to be widely adopted by business, and the public UDDI
test and production registries appear largely unused. Therefore, we’ll examine UDDI
only briefly here. We’ll take a look at the public Microsoft UDDI registry. We’ll also
use the UDDI SDK to write a client application which can interact with a UDDI reg-
istry, search for businesses and services, and retrieve service descriptions.

Of course, you don’t have to publish your Web service. In fact, it is likely that
many custom Web services will be used by other in-house departments, or that they
will be specialized to the individual requirements of unique business engagements.
Such services will be of no interest to the larger marketplace and should not be pub-
lished. (Of course, this does not preclude the use of private UDDI registries to serve
closed communities.)

6.9.1 Searching the UDDI registry

At the time of writing, there were two beta UDDI implementations:

• http://uddi.microsoft.com

• http://www.ibm.com/services/uddi

From both sites you can navigate the registry, search for businesses and services, and,
with the proper authorization, publish your own services. Also, Microsoft and IBM
provide both test and production registries. The former can be used in the develop-
ment and test of UDDI clients.

If you visit http://uddi.microsoft.com, and click the Search link, you should be
presented with a search form similar to that shown in figure 6.15.

The list box on the right allows you to search the registry by categories such as busi-
ness name or location, service type, and several important international and North
American standardized categories:

• SIC codes—Standard Industrial Classification codes were developed by the U.S.
Department of Labor to classify industries. These are numerical codes with
associated alphanumeric descriptions and they cover everything from Irish pota-
toes, SIC 0134, to antitank rocket launchers, SIC 3489. Categories are classified
into hierarchical groups of related industries.
USING UDDI TO ADVERTISE A WEB SERVICE 195

• NAICS codes—North American Industry Classification System codes were
developed jointly by the U.S., Mexico, and Canada, to replace the SIC classifi-
cation system. Like SIC, NAICS is a hierarchical, numerical system for classify-
ing industries and business sectors.

• UNSPSC—Universal Standard Products and Services Classification is a system
of 8-digit numerical codes which provide a hierarchical classification system.
They are divided into four 2-digit elements which specify the segment, family,
class, and commodity to which the product or service belongs. For example,
25.10.18.01 denotes motorcycles, while scooters are 25.10.18.02 and mopeds
are 25.10.18.03.

• ISO 3166 Geographic Taxonomy—This is an international standard for the rep-
resentation of geographic areas using codes for individual countries and their
subdivisions. For example, California is US-CA, while IT-MI is the Italian prov-
ince of Milano. You can use this code to narrow a UDDI registry search by geo-
graphic area.

If you are familiar with the standardized codes, they typically offer the ability to per-
form a much more tightly focused search than regular keywords.

Let’s explore a client application that can interact with the UDDI registry. First, we
need to install Microsoft’s UDDI SDK.

Figure 6.15 Searching Microsoft’s UDDI registry
196 CHAPTER 6 DEVELOPING XML WEB SERVICES

6.9.2 Installing the UDDI SDK and test registry

At the time of writing, the UDDI .NET SDK, Microsoft.UDDI.SDK.v1.5.2.exe, was
available as a separate download from http://uddi.microsoft.com/developer. Down-
loading and installing the SDK should create the C:\Program Files\Microsoft UDDI
SDK directory containing the Microsoft.Uddi.Sdk.dll assembly.

NOTE When I installed the SDK, the UDDI assembly was not automatically in-
stalled in the global assembly cache. You can do this yourself (see chapter 2)
or copy it to your working directory for now.

In addition to the UDDI assembly, the SDK can install a private registry on your
machine which requires Microsoft SQL Server or MSDE to host the data. We won’t
use the private registry for our example.

6.9.3 Creating a simple inquiry client using the UDDI SDK

We begin with a simple client which searches the UDDI test registry. The URL of the
inquiry service for Microsoft’s test registry is http://test.uddi.microsoft.com/inquire.
Listing 6.16 presents the code for a simple program which will search the registry for
business names beginning with a certain string.

// file : uddifindbus.cs
// compile : csc /r:microsoft.uddi.sdk.dll uddifindbus.cs
// note : make sure microsoft.uddi.sdk.dll is installed...
// in global cache, or copy to working directory

namespace UddiTest {

 using System;
 using Microsoft.Uddi; // from UDDI SDK

 using Microsoft.Uddi.Api; // from UDDI SDK
 using Microsoft.Uddi.Business; // from UDDI SDK

 public class FindBus {

 public static void Main(string[] args) {

 Inquire.Url = "http://test.uddi.microsoft.com/inquire";

 FindBusiness fb = new FindBusiness();
 if (args.Length == 0)
 fb.Name = "Joe";
 else
 fb.Name = args[0];
 Console.WriteLine("searching for {0}...", fb.Name);

 fb.MaxRows = 5; // no more than 5 businesses
 BusinessList bl = fb.Send(); // get the list
 foreach(BusinessInfo bi in bl.BusinessInfos) {
 Console.WriteLine("================================");
 Console.WriteLine(bi.Name); // the business name

 Listing 6.16 Searching the UDDI registry by business name
USING UDDI TO ADVERTISE A WEB SERVICE 197

 foreach(Description d in bi.Descriptions) {
 Console.WriteLine(d.Text); // the business description
 }
 }

 Console.WriteLine("Done!");
 }
 }
}

To start, we reference the Microsoft.Uddi namespaces. In the Main routine we
set the static Url property of the Microsoft.Uddi.Inquire class to point to the
URL of the inquiry service. We’ll be searching businesses by name, so we create a new
FindBusiness class and store a partial business name in its Name property. We use
the Send method to perform the search and capture the result in a BusinessList.
Then we loop through the list to display the results, as shown in figure 6.16.

As you can see, we got just three results including a suspiciously familiar provider of
video poker services.

6.9.4 More on UDDI

The previous introduction just scratches the surface of UDDI. The UDDI API pro-
vides full support for registering and administering business entities, and services, and
for searching the registry. For more information on the emerging UDDI standard try
the following sites:

• http://www.uddi.org—The UDDI program management team’s site

• http://uddi.microsoft.com/developer—Microsoft’s UDDI developer site

• http://www.ibm.com/services/uddi/—IBM’s UDDI site

Figure 6.16 Finding a business
198 CHAPTER 6 DEVELOPING XML WEB SERVICES

Before we move on, note that the UDDI inquiry API is itself exposed as a Web service.
This allows us to dispense with the proprietary SDK and generate a proxy for use in
developing our own UDDI clients. This is a good example of the power of the Web
services model.

6.10 WSPOK: THE WEB SERVICE-BASED
POKER GAME

Like all other versions, the Web service-based version of the poker game will use the
same poker.dll assembly. Our Web service will provide Web methods to deal and
draw cards.

Create a virtual directory called wspok on your Web server and associate it with a
suitable working directory. We’ll create our Web service, wspokservice.asmx, in this
directory. Also create a bin subdirectory and place the poker.dll assembly in it.

6.10.1 Creating the WSPokService poker Web service

Our poker Web service will be just a few lines of code to wrap the public Simple-
Machine.Deal and SimpleMachine.Draw methods. Also, like the remoting
version, rempokservice.cs, we’ll use a GameResult struct to return the game result.
Listing 6.17 presents the poker Web service, wspokservice.asmx.

<%@ WebService Language="C#" Class="WSPokService" %>

// file: WSPokService.asmx
// description: poker machine web service

using System.Web.Services;
using Poker;

[WebService(
 Description="A Poker Web service",
 Namespace="http://manning.com/dotnet/webservices"
)]

public class WSPokService : WebService {

 [WebMethod(Description="Deal a poker hand.")]
 public string Deal() {
 return new SimpleMachine().Deal().Text;
 }

 [WebMethod(Description="Draw cards.")]
 public GameResult Draw(string oldHand, string holdCards) {
 GameResult g = new GameResult();
 Hand h = new SimpleMachine().Draw(oldHand, holdCards);
 g.Hand = h.Text;
 g.Score = h.Score;
 g.Title = h.Title;
 return g;

 Listing 6.17 The poker Web service
WSPOK: THE WEB SERVICE-BASED POKER GAME 199

 }
}

public struct GameResult {
 public string Hand;
 public int Score;
 public string Title;
}

The WebService attribute contains a description and a unique namespace for the
service, while the WSPokService class provides the familiar Deal and Draw meth-
ods. Browsing the service should produce the page shown in figure 6.17.

6.10.2 Creating the WSPok client

As usual, run the wsdl.exe utility to generate the client proxy:

wsdl /namespace:Poker http://localhost/wspok/wspokservice.asmx

This will generate the wspokservice.cs file containing definitions for both the
Poker.WSPokService and Poker.GameResult classes.

All that remains is to code the simple client shown in listing 6.18.

// file : WSPok.cs
// compile : csc /out:WSPok.exe WSPokService.cs WSPok.cs

namespace Poker {

 using System;

Figure 6.17

Browsing the

WSPokService

poker Web service

 Listing 6.18 The WSPok client
200 CHAPTER 6 DEVELOPING XML WEB SERVICES

 class WSPok {

 public static void Main() {
 new WSPok(); // start game
 }

 public WSPok() {
 Console.WriteLine("A WebService-based poker game...");
 Console.WriteLine("Hit Ctrl-c at any time to abort.\n");

 service = new WSPokService(); // create poker service
 while (true) nextGame(); // play
 }

 private void nextGame() {

 string dealHand = service.Deal(); // deal hand
 Console.WriteLine(dealHand); // display it
 Console.Write("Enter card numbers (1 to 5) to hold: ");
 string holdCards = Console.ReadLine();

 // draw replacement cards...
 GameResult res = service.Draw(dealHand, holdCards);
 Console.WriteLine(res.Hand);
 Console.WriteLine(res.Title);
 Console.WriteLine("Score = {0}\n", res.Score);
 }

 private WSPokService service;
 }
}

This is almost identical to previous simple console-based versions of the game. This
time, however, most of the heavy work takes place on the Web server.

6.10.3 Testing the poker Web service

To test the service, compile and run the client, as shown in figure 6.18.

Figure 6.18 Testing WSPokService
WSPOK: THE WEB SERVICE-BASED POKER GAME 201

6.11 SUMMARY

We’ve come a long way in this chapter. We started by presenting Web services and
noting the advantages of this technology over previous alternatives such as DCOM
and CORBA. By being founded on simple, open standards, Web services provide a
simple model for interconnecting applications across the Internet.

We developed simple services and built both synchronous and asynchronous cli-
ents to invoke these services. We looked at WSDL contracts and generated proxies
using the wsdl.exe utility. We also examined important techniques for maintaining
state across method calls.

We explored DISCO and UDDI and saw how these initiatives are designed to help
potential clients discover services. Finally, as usual, we put our knowledge to work by
implementing a poker Web service and client.

Although, at the time of writing, Web services are in their infancy, there can be lit-
tle doubt that this technology will be a hit with developers. It provides the means to
leverage the Internet as a huge repository of callable services and a way to expose appli-
cation functionality to a potentially vast audience. Most importantly, it achieves this
using simple, open standards.

In the next chapter, we examine Windows Forms which provide a new model for
building traditional Windows GUI applications.
202 CHAPTER 6 DEVELOPING XML WEB SERVICES

C H A P T E R 7

Creating the Windows
Forms user interface

7.1 Beginning Windows Forms

development 204
7.2 Understanding the Windows Forms

programming model 208
7.3 WinPok: the Windows Forms-based

poker game 215

7.4 Creating Windows Forms applica-
tions using Visual Studio .NET 234

7.5 Overriding WndProc 238
7.6 Summary 240
Windows Forms is Microsoft’s new forms-based programming model for creating
Windows GUI applications. In the past Windows developers have used C/SDK or
MFC, or Visual Basic, to build Windows applications. Each approach had its own
special advantages, disadvantages, quirks, and limitations. Using C with the Windows
SDK, a simple “Hello, World!” program took almost 100 lines of code. The drudgery
was somewhat alleviated by the introduction of Visual C++ 1.0 and the Microsoft
Foundation Classes (MFC) which provided a class library for the automation of
many tedious programming tasks. At the same time, Visual Basic programmers
enjoyed a highly productive drag-drop environment for creating GUI applications,
although those applications were limited in their access to the underlying operating
system. Windows Forms provides a new unified model that is fully integrated into
the .NET Framework, independent of the programming language, and almost as sim-
ple as the Visual Basic approach.
203

So far, we have avoided using Windows Forms in our examples. The code required
to set up a form, position controls, and hook up event handlers, tends to obscure the
point of even simple examples. However, Windows Forms programming is not diffi-
cult and much of the tedious work can be avoided by using the automated wizards,
and drag-drop designer, provided by Visual Studio .NET. On the other hand, this
automation makes it more difficult for the beginner to learn the programming model.
We compromise in this section by hand-coding our simple examples and the Win-
dows Forms version of our poker game, WinPok. Then we revisit WinPok and
recreate the GUI using Visual Studio .NET.

7.1 BEGINNING WINDOWS FORMS DEVELOPMENT
BEGINNING WINDOWS FORMS DEVELOPMENT

Creating a simple Windows Forms application involves creating the form to represent
the main application window, adding any necessary controls such as buttons, menus,
check boxes, and labels, and displaying the form on the screen. Let’s explore some
simple examples.

7.1.1 Creating a simple form

Listing 7.1 presents a bare-bones Windows Forms application. It just displays a win-
dow, centers it on the screen, and shows a message in the title bar.

// file : firstform.cs
// compile : csc /t:winexe firstform.cs

using System.Windows.Forms; // for the Form class

namespace MyForms {

 public class FirstForm : Form {

 public static void Main() {
 // create form and start Windows message loop...
 Application.Run(new FirstForm());
 }

 public FirstForm() {
 Text = "My First Form"; // title bar text
 Width = 200; // form width
 Height = 100; // form height
 CenterToScreen(); // display center screen
 }
 }
}

The form represents the application’s main window. Use the /t:winexe switch to tell
the compiler that you are building a Windows Forms application. If you don’t, you’ll see

 Listing 7.1 A first Windows Form
204 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

an ugly console window behind your form when you exe-
cute the program. Figure 7.1 shows the form displayed by
this simple program.

You typically create a Windows Forms application by
deriving a new class from the System.Win-
dows.Forms.Form class. Then, to execute the applica-
tion, create an instance of your new form class and call

Application.Run passing the class instance. This shows the form and begins run-
ning a standard Windows message loop on the current thread. (We’ll look at the Win-
dows message loop later in this chapter when we explore WndProc.) In the form’s
constructor, you typically set up the GUI by creating controls such as buttons, menus,
check boxes, text boxes, and labels. In this example, we just set the form’s title bar text,
its width and height, and we center it on the screen. All are public instance properties
of the base Form class.

Application.Run is one of several static members provided by the Appli-
cation class to start and stop an application, process Windows messages, provide
information about the application, and so forth. For example, to end an application,
you can call Application.Exit, and to allow messages to proceed while your
program is busy looping, you can call Application.DoEvents. The Applica-
tion class also provides convenient static properties for retrieving the application
name and version.

7.1.2 Adding controls to a form

Listing 7.2 presents a second version of our simple form. This version contains a but-
ton which displays the current time in the form’s title bar when clicked.

// file : secondform.cs
// compile : csc /t:winexe secondform.cs

using System;
using System.Windows.Forms;

namespace MyForms {

 public class SecondForm : Form {

 public static void Main() {
 // create form and start Windows message loop...
 Application.Run(new SecondForm());
 }

 public SecondForm() {

 // set up the form...
 Width = 250; // form width
 Height = 100; // form height
 CenterToScreen(); // display form center screen

 Listing 7.2 Adding a button control

Figure 7.1

Displaying a basic form
BEGINNING WINDOWS FORMS DEVELOPMENT 205

 // set up the button...
 Button b = new Button(); // create button
 b.Text = "Show Time"; // set button text
 b.Width = 100; // set button width
 b.Top = 20; // set top coordinate
 b.Left = 30; // set left coordinate

 // set up click event handler...
 b.Click += new EventHandler(clickHandler);

 // add the control to the form...
 Controls.Add(b);
 }

 private void clickHandler(object sender, EventArgs e) {
 // user has clicked button, so...
 // display current time...
 Text = String.Format("Click Time: {0:T}", DateTime.Now);
 }
 }
}

This time, we create a button, set its text and
width, and specify its top and left coordinates rela-
tive to the top, left corner of its containing form.
We set up a handler for button clicks using the
System.EventHandler delegate and we pass
the name of our event handler, clickHandler as
its constructor argument. The clickHandler

event must have the signature shown. Its first parameter identifies the object that
fired the event, while the second EventArgs parameter, which is unused here, is
sometimes used by other event types to pass additional information about the event.
Clicking the button causes the current time to be displayed in the form’s title bar, as
shown in figure 7.2.

Most control events use the generic EventHandler delegate and EventArgs
class. However, some events, such as the mouse events, use their own classes which
inherit from the EventHandler and EventArgs classes. For example, the
MouseDown event uses the MouseEventHandler delegate and MouseEvent-
Args class:

 public class MouseForm : Form {

 ...

 public MouseForm() {
 Text = "My Mouse Form";
 Width = 400;
 MouseDown += new MouseEventHandler(mouseDownHandler);
 }

Figure 7.2

Responding to button clicks
206 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 private void mouseDownHandler(object sender, MouseEventArgs e) {
 Text = String.Format("Mouse Click: X={0}, Y={1}", e.X, e.Y);
 }

In this example, we see that the MouseEventArgs class provides public X and Y
properties to provide the x and y coordinates associated with the MouseDown event.
We’ll look at a further example when we use CancelEventArgs to cancel an event
in the WinPok application.

Note that the order in which we set a control’s properties and add it to the form’s
Controls collection is unimportant. For example, the following two alternatives are
both acceptable:

 Button b = new Button(); // create button
 b.Text = "Click Me"; // set text property
 b.Width = 100; // and width property
 Controls.Add(b); // finally, add to form

and:

 Button b = new Button(); // create button
 Controls.Add(b); // add to form now
 b.Text = "Click Me"; // then, set text property
 b.Width = 100; // and width property

In both cases, Windows Forms ensures that the underlying generated code is valid.

7.1.3 Anchoring and docking controls

Controls can be anchored to the edges of their containers. For example, the following
code anchors a button to all four edges of the form:

 Button b = new Button();
 b.Anchor = AnchorStyles.Top |
 AnchorStyles.Bottom |
 AnchorStyles.Left |
 AnchorStyles.Right;

The result is a button that stretches and shrinks in all four directions as the form is
resized.

Likewise, a control can be docked to the edge of a container so that it remains in
contact with that edge when the container is resized. The following example docks the
button against the bottom edge of the form:

 b.Dock = DockStyle.Bottom;

7.1.4 Handling form events

You have two choices when deciding how to handle form events. You can use a dele-
gate like we used in the button example. For example, we could handle a form’s
Resize event, as follows:
BEGINNING WINDOWS FORMS DEVELOPMENT 207

 public class ResizeForm1 : Form {

 ...

 public ResizeForm1() {
 Resize += new EventHandler(resizeHandler);
 }

 private void resizeHandler(object sender, EventArgs e) {

 Text = String.Format(
 "Resize Handler Fired at {0:T}",
 DateTime.Now);
 }
 }

Alternatively, since we derive our form from the Form class, we can override the vir-
tual OnResize method to achieve the same result:

 public class ResizeForm2 : Form {

 ...

 // override OnResize...
 protected override void OnResize(EventArgs e) {
 base.OnResize(e); // call any other registered delegates
 Text = String.Format(
 "OnResize Method Executed at {0:T}",
 DateTime.Now);
 }
 }

Both techniques give identical results. In general, the Form class provides protected
virtual methods corresponding to the different events: OnClick method for the
Click event, OnActivated method for the Activated event, OnResize
method for the Resize event, and so on. Using the provided methods is the pre-
ferred way to handle form events. It also saves coding. However, remember to call the
corresponding base method, such as base.OnResize(e) in the above example, to
ensure that any other registered delegates are invoked.

7.2 UNDERSTANDING THE WINDOWS FORMS
PROGRAMMING MODEL

THE WINDOWS FORMS PROGRAMMING MODEL

The Form class is the starting point for creating a variety of visible windows includ-
ing tool, borderless, and floating windows, and modal dialog boxes. If you consult the
SDK Help documentation, you’ll see that the Form class derives from the hierarchy
of classes shown in figure 7.3.

A form inherits additional functionality at each level of the inheritance tree. As you
might expect, a Form is an object. It is also a MarshalByRefObject object which
makes it a suitable candidate for remoting. Let’s take a brief look at the other classes
in the inheritance chain which contribute to a form’s personality.
208 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

7.2.1 The Component class

A Form is also a component. The Component class extends MarshalByRefOb-
ject by adding some new properties, methods, and events. These members support
containment and cleanup and enable the sharing of components between applica-
tions. Components are invisible. (Controls, which we look at next, are essentially
components with visual representation.) We show the most important, but not all,
component members below:

• Container—A public instance property that returns a reference to an ICon-
tainer interface representing the Container that contains the component.

• Site—A public instance property that returns a reference to an ISite inter-
face representing the Site object which binds the component to its container
and enables communication between the two.

• Dispose—Disposes of the resources used by the component.

• DesignMode—A protected instance property that indicates whether the com-
ponent is currently in design mode, such as when it is being used by the Visual
Studio .NET designer.

The System.Windows.Forms.Timer and System.Windows.Forms.Tool-
Tip classes are examples of Windows Forms components. The Timer class is used to
raise timed events at defined intervals. It is optimized for use in a Windows Forms applica-
tion and must be used in a window. The ToolTip class can be used to display brief help
text when a user hovers over a control. However, neither is a visible form element and so
both are implemented as components rather than as (visible) controls.

Listing 7.3 provides an example of a simple form which uses a Timer and a Tool-
Tip to illustrate how components should be created, managed, and destroyed.

Figure 7.3 The Form class and its ancestors
THE WINDOWS FORMS PROGRAMMING MODEL 209

// file : timerform.cs
// compile : csc /t:winexe timerform.cs

using System;
using System.Windows.Forms;
using System.ComponentModel;

namespace MyForms {

 public class TimerForm : Form {

 public static void Main() {
 // create form and start Windows message loop...
 Application.Run(new TimerForm());
 }

 public TimerForm() {

 // set up form...
 Text = "TimerForm"; // title bar text
 Width = 400; // form width
 Height = 100; // form height
 CenterToScreen(); // display center screen

 // create container for components...
 components = new Container();

 // create timer and add to container...
 timer = new Timer(components);

 // set the clock...
 timer.Interval = 1000; // tick every second

 // register the tick handler...
 timer.Tick += new EventHandler(timerHandler);

 // start the clock...
 timer.Start();

 // create tooltip and add to container...
 tooltip = new ToolTip(components);

 // set tooltip target and text...
 tooltip.SetToolTip(this, "This is a Windows Form.");
 }

 private void timerHandler(object o, EventArgs e) {
 Text = String.Format("Time: {0:T}", DateTime.Now); // tick
 }

 protected override void Dispose(bool disposing) {
 if (disposing)
 if (components != null)
 components.Dispose(); // dispose of components
 base.Dispose(disposing);
 }

 Listing 7.3 Coding with Windows Forms components
210 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 private Timer timer; // a component
 private ToolTip tooltip; // also a component
 private Container components; // contains components
 }
}

This example displays a ticking clock in the form’s title bar. It also displays a ToolTip
message when the mouse hovers over the form, as shown in figure 7.4.

This example illustrates the typical approach to managing components in your code.
The form contains a Timer component, a ToolTip component, and a Con-
tainer called components to contain them. We create each component by using
the form of the constructor that accepts a Container as an argument. For example,
we create the timer, as follows:

 timer = new Timer(components);

In general, a component is not subject to garbage collection even when it goes out of
scope. Therefore, we typically add components to a container and override the form’s
Dispose method to dispose of the container and the components it contains. This
ensures the release of any resources, used by your components, when the application
is closed:

 protected override void Dispose(bool disposing) {
 if (disposing)
 if (components != null)
 components.Dispose(); // dispose of components
 base.Dispose(disposing);
 }

When you create a Windows Form using the Visual Studio .NET wizards, you’ll auto-
matically be provided with a container for your components and an overridden Dis-
pose method.

7.2.2 The Control class

A control is a component that is visibly represented in a window and typically
responds to user input in the form of keyboard events and mouse clicks. Being visible
means that a control has a specified position and size. Examples include buttons,
labels, check boxes, and list boxes. The Control class extends Component with
more than 300 new properties, methods, and events. Some of the more commonly
used members are shown in table 7.1.

Figure 7.4

Using the Timer and

ToolTip components
THE WINDOWS FORMS PROGRAMMING MODEL 211

Table 7.1 Control members

Member Description

Anchor A public instance property which specifies which edges of the control, if any, are
anchored to the edges of its container

BackColor A public instance property which specifies the background color of the control

Click A public instance event which is fired when the control is clicked

DesignMode A protected instance property which indicates whether the control is currently in
design mode

Dispose() Disposes of the resources used by the control

Dock A public instance property which specifies which edge of its container, if any, the
control is docked to

DoubleClick A public instance event which is fired when the control is double-clicked

Enabled A public instance property which specifies whether the control is enabled or
disabled

Focus() A public instance method which sets the input focus on the control

Font A public instance property which specifies the control’s font

ForeColor A public instance property which specifies the foreground color of the control

GotFocus A public instance event which is fired when the control receives the input focus

Height A public instance property which specifies the height of the control in pixels

Hide() A public instance method which sets the Visible property of the control to
false

KeyDown A public instance event which is fired when a key is pressed while the control has
the input focus

KeyPress A public instance event which is fired when a key is pressed and released while
the control has the input focus

KeyUp A public instance event which is fired when a pressed key is released while the
control has the input focus

Left A public instance property which specifies the x-coordinate of a control’s left edge
in pixels

Location A public instance property which specifies the top-left corner of the control relative
to the top-left corner of its container

LostFocus A public instance event which is fired when the control loses the input focus

MouseDown A public instance event which is fired when the mouse button is clicked on the
control

MouseEnter A public instance event which is fired when the mouse pointer enters the control

MouseHover A public instance event which is fired when the mouse pointer hovers over the
control

MouseLeave A public instance event which is fired when the mouse pointer leaves the control

Show() A public instance method which sets the Visible property of the control to true

continued on next page
212 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

These are just a few of the many properties, methods, and events associated with con-
trols, and inherited by forms. The good news is that you often need to use just a
handful of these members to get the job done. For example, with a form, you may
only need to set its Location and Size properties. For more complex controls,
you may want to handle mouse activity, drag-drop events, keyboard entries, enabling,
disabling, hiding, and showing the control, and so forth. The .NET SDK comes with
extensive help documentation where you can find the full list of more than 300 prop-
erties, methods, and events associated with Windows Forms controls.

7.2.3 The ScrollableControl class

Returning to figure 7.3, we see that next in the inheritance hierarchy comes Scrol-
lableControl. Unlike buttons and list boxes, a form is a scrollable control which
means that it supports auto scrolling. The ScrollableControl class contains the
public instance boolean AutoScroll property which determines whether the con-
tainer will allow the user to scroll to controls placed outside its visible boundary. List-
ing 7.4 illustrates.

// file : scrollform.cs
// compile : csc /t:winexe scrollform.cs

using System;
using System.Drawing;
using System.Windows.Forms;

namespace MyForms {

 public class ScrollForm : Form {

 public static void Main(string[] args) {

 ScrollForm f = new ScrollForm();

Size A public instance property which specifies the width and height of the control

TabIndex A public instance property which specifies the tab order of the control within its
container

TabStop A public instance property which specifies whether the user can give the input
focus to the control using the TAB key

Text A public instance property which specifies the text displayed on the control

Top A public instance property which specifies the y-coordinate of a control’s top edge
in pixels

WndProc() A protected instance method which can be overridden to process native Windows
messages, (see example later in this chapter)

Table 7.1 Control members (continued)

Member Description

 Listing 7.4 Coding a scrollable form
THE WINDOWS FORMS PROGRAMMING MODEL 213

 f.AutoScroll = false; // switch off AutoScroll
 f.Text = "AutoScroll Off";

 if (args.Length > 0)
 if (args[0].ToLower() == "/autoscroll") {
 f.AutoScroll = true; // switch on AutoScroll
 f.Text = "AutoScroll On";
 }
 Application.Run(f);

 }

 public ScrollForm() {

 Width = 200;
 Height = 200;

 Button b = new Button();
 b.Location = new Point(10, 10);
 b.Size = new Size(300, 30);
 b.Text = "My Button";
 Controls.Add(b);
 }
 }
}

In this example, we make the button deliberately too wide
for the form. If we run the program with the /auto-
scroll switch, the form automatically displays a hori-
zontal scroll bar, as shown in figure 7.5.

7.2.4 The ContainerControl class

Finally, a form is a ContainerControl. This means
that a form can act as a container for other controls.
Because of this, a form can manage the input focus for
contained controls by capturing the TAB key and moving
the focus to the next control in the collection. It can

retrieve and set its active control using the ContainerControl.ActiveCon-
trol property.

7.2.5 The Form class

As we’ve seen, a form inherits additional functionality at each level of the inheritance
tree shown in figure 7.3. In addition, the Form class itself adds further form-specific
members. These include properties, methods, and events that manage a main menu,
support Multiple Document Interface (MDI) forms, position the form on the screen,
set an icon for the form, and so forth. We’ll use many of these members in the follow-
ing sections.

Figure 7.5

A scrollable form
214 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

Let’s further explore Windows Forms by implementing a comprehensive GUI for
our poker application. In doing so, we’ll see a practical example of a moderately com-
plex Windows Forms application.

7.3 WINPOK: THE WINDOWS FORMS-BASED
POKER GAME

WINPOK: THE WINDOWS FORMS-BASED POKER GAME

We return to our case study now and create a fully functional GUI for our poker
game. This will be the first version that can honestly be called video poker. The GUI
will approximately resemble a casino poker machine and allow the user to interact
with the game using buttons, check boxes, and menus. We’ll also use a set of 52 GIF
images to display the cards.

7.3.1 The WinPok program structure

Listing 7.5 presents an outline of the structure of the WinPok application. The com-
pleted program will run to almost 600 lines of code, so we won’t be able to show the
full listing here. (Refer to appendix C for the full listing.) Luckily, we have our pre-
built poker.dll to provide the brain for the game. So our task is confined to creating
the required code to build the Windows Forms GUI. In the process, you should get a
good grounding in the techniques of Windows Forms-based programming.

// file : WinPok.cs
// compile : csc /r:poker.dll
// /t:winexe
// /win32icon:poker.ico
// winpok.cs

namespace Poker {

 using System;
 using System.Windows.Forms;
 using System.Threading;
 using System.Drawing;
 using System.ComponentModel;
 using System.Runtime.InteropServices; // for API MessageBeep

 public class WinPokForm : Form {

 public static void Main() {
 // start the Windows message loop...
 Application.Run(new WinPokForm());
 }

 public WinPokForm() {
 initUI(); // create GUI controls
 newGame(); // init poker machine, user credits, etc.
 }

 private void initUI() {

 Listing 7.5 The WinPok program outline
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 215

 initForm();
 initMenu();
 initStartOverButton();
 initCredits();
 initMessage();
 initBet();
 initHoldCheckBoxes();
 initDealDrawButton();
 initPayoutTable();
 initMachineStats();
 initStatusBar();
 initCards();
 }

 ...
 ...

 // private form variables...
 private Machine machine; // the poker machine
 private int uiCredits; // amount of player credits
 private int uiBet; // amount of player's bet
 private Hand dealHand; // hand dealt
 private Hand drawHand; // hand drawn
 private Button dealDrawButton; // click to deal/draw
 private Button startOverButton; // click to start over
 private Label messageLabel; // informational message
 private Label creditsLabel; // display credits remaining
 private Label machineStatsLabel; // display mechine stats
 private TextBox betTextBox; // input player bet

 // start over menu item...
 private MenuItem startOverMenuItem;

 // display card images...
 private PictureBox card1, card2, card3, card4, card5;

 // display checkbox underneath each card...
 private CheckBox hold1, hold2, hold3, hold4, hold5;

 // status bar display...
 private StatusBarPanel statusBarPanel;

 [DllImportAttribute("user32.dll")]
 public static extern int MessageBeep(int type); // error beep

 }
}

In listing 7.5, the important action is contained in the initUI routine where we call
various methods to build the GUI. These methods, such as initForm and init-
Menu, correspond to the areas of the WinPok form shown in figure 7.6. Building a
complex GUI can involve a lot of code, so breaking up the task in this way makes it
easier to keep track of where we are. In addition to the GUI-related code in
216 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

listing 7.5, we’ll have a private newGame method to start play, and deal and draw
methods for interacting with the game. At the bottom of the listing we declare private
fields to store references to controls which will be active during play. We don’t bother
to hold on to references to controls which remain static during play, such as the label
which displays the (unchanging) payout table.

Now that we’ve designed our form, let’s lay out its different functional areas. We
begin with the initForm method.

7.3.2 Setting up the form

The initForm method is shown in listing 7.6.

 private void initForm() {
 // initialize the form...

 // set title bar...
 Text = ".NET Video Poker - The Windows Forms Version";

Figure 7.6 Setting up the WinPok GUI

 Listing 7.6 The initForm method
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 217

 // set form height and width...
 Height = 510;
 Width= 445;

 // center form and disallow resizing...
 CenterToScreen();
 MaximizeBox = false;
 FormBorderStyle = FormBorderStyle.FixedDialog;

 // set the form icon...
 Icon = getIcon("poker");
 }

In initForm we set the usual form properties including the title bar text and the
form’s width and height. We don’t want the form to be resized, so we specify a
fixed dialog-type border and disable the maximize box. The getIcon method call
loads the form icon, poker.ico. You can see the icon in the top, left corner of the
form in figure 7.6. To specify an application icon for the Windows desktop use the
/win32icon:poker.ico compiler switch.

7.3.3 Creating the menu

We want our form to have a main menu with File and Help submenus, as seen in
figure 7.6. The File menu will contain two menu items, Start Over and Quit,
while the Help menu will contain an About menu item. Selecting the Start Over
item from the File menu will be functionally identical to clicking the Start Over
button seen at the top of figure 7.6. (They’ll share the same event handler, as we’ll see
shortly.) The initMenu method is shown in listing 7.7.

 private void initMenu() {
 // initialize the menu...

 // create the form's main menu...
 Menu = new MainMenu();

 // create the File menu...
 MenuItem fileMenuItem = Menu.MenuItems.Add("&File");

 startOverMenuItem = new MenuItem(
 "&Start Over",
 new EventHandler(startOverHandler),
 Shortcut.CtrlS);
 fileMenuItem.MenuItems.Add(startOverMenuItem);

 MenuItem quitMenuItem = new MenuItem(
 "&Quit",
 new EventHandler(quitHandler),
 Shortcut.CtrlQ);
 fileMenuItem.MenuItems.Add(quitMenuItem);

 Listing 7.7 The initMenu Method
218 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 // create the Help menu...
 MenuItem helpMenuItem = Menu.MenuItems.Add("&Help");

 MenuItem aboutMenuItem = new MenuItem(
 "&About",
 new EventHandler(aboutHandler),
 Shortcut.CtrlA);
 helpMenuItem.MenuItems.Add(aboutMenuItem);
 }

To attach a menu to a form, we need to create the menu and store its reference in the
form’s public Menu property, as we do at the start of the initMenu method. Next,
we create the individual submenus, starting with File, and attach them to the main
menu. Finally, to each submenu, we attach individual menu items which represent
application commands such as Start Over and Quit. We use the 3-argument ver-
sion of the MenuItem constructor:

 MenuItem(string, EventHandler, Shortcut)

We provide the item text, the event handler associated with the command, and the
shortcut key which invokes the command, as constructor arguments. The ampersand
in the menu item text causes the following letter to be underlined when displayed.
We create a new event handler and pass it as the second argument. For example, we
specify that the aboutHandler method should be invoked when the Help |
About menu item is selected:

 new EventHandler(aboutHandler)

Since aboutHandler just displays a message box, we show its handler here:

 private void aboutHandler(object sender, EventArgs e) {
 // user selected "About" from the Help menu...
 string msg = ".NET Video Poker - Windows Forms Version\n";
 msg += "by Fergal Grimes\n";
 MessageBox.Show(
 msg,
 ".NET Video Poker",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 }

Being an event handler, our aboutHandler
takes two arguments. The first is a reference to
the object that sent the event, while the second
is a reference to an EventArgs class poten-
tially containing additional event-related data.
We use neither in this example. Instead, we
simply call MessageBox.Show passing the
message, the message box title bar text, the

Figure 7.7 Selecting Help | About

from the menu
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 219

buttons we need, and the icon to display, as arguments. This displays the message box
in figure 7.7.

The quitHandler method closes the form and ends the application:

 private void quitHandler(object sender, EventArgs e) {
 // user selected "Quit" from the File menu...
 Close(); // close this form
 }

The System.Windows.Forms menu classes, MainMenu, Menu, and MenuItem,
contain everything you need to create and manipulate menus including drop-down
and pop-up menus. Our WinPok example is rather simple, but you can dynamically
create and switch menus at run time, check, enable and disable individual menu
items, and so forth. For more information, you should explore the Windows Forms
samples in the .NET SDK. In the meantime, we move on to buttons.

7.3.4 Creating buttons

If you play a casino poker machine long enough, you’ll eventually run out of money.
In contrast, our version of the game will allow a player to start over by restoring the
amount of credits on hand. To do this, the player clicks the Start Over button
shown at the top of figure 7.6. So we need to set up this button and create an event
handler to deal with button clicks. Listing 7.8 shows how we do this.

 private void initStartOverButton() {
 startOverButton = new Button();
 startOverButton.Location = new Point(8, 8);
 startOverButton.Size = new Size(424, 24);
 startOverButton.Text = "&Start Over";
 startOverButton.Font =
 new Font("Verdana", 10f, FontStyle.Bold);
 startOverButton.Click +=
 new EventHandler(startOverHandler);
 Controls.Add(startOverButton);
 }

Since a button is a visible GUI control, it inherits the properties of the Control
class, which include Location, Size, Text, and Font, and also the control’s
Click event. Therefore, whether it is a button, a label, a text box, or a check box,
you’ll typically need to set these properties and any required event handlers, as we do
here. The Location property specifies the upper-left corner of the control relative
to the upper-left corner of its container. In this case, the container is the form, but
we’ll see an example of a GroupBox container in a moment. We place text on the
button by setting its Text property and we set its font using the Font property.
Then we register a new event handler for its Click event. We use the same event
handler for both the Start Over menu item and Start Over button:

 Listing 7.8 The initStartOverButton method
220 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 private void startOverHandler(object sender, EventArgs e) {
 // user selected "Start Over" from the File menu...
 newGame();
 }

This calls the newGame method which restarts the game. This is the same method
which is invoked from the WinPokForm constructor when the program is first
launched, as shown in listing 7.5.

The initDealDrawButton method is almost identical, except that it registers
the dealDrawHandler event handler which looks like:

 private void dealDrawHandler(object sender, EventArgs e) {
 if (dealDrawButton.Text == "&DEAL")
 deal();
 else
 draw();
 }

The dealDrawHandler just checks the button caption to see if it should call deal
or draw.

7.3.5 Creating labels

In the top-left corner of figure 7.6, you’ll find the credits display which consists of the
static "CREDITS" label with a label underneath which provides a real-time display
of the amount of player credits remaining. The player must bet to play. So each time
the player clicks DEAL, the current bet is deducted from the remaining credits. When
player credits are zero, the game is over. In listing 7.9 we set up the labels for the cred-
its display.

 private void initCredits() {
 // display how many credits remaining...

 Label l = new Label();
 l.Location = new Point(8, 40);
 l.Text = "CREDITS";
 l.Size = new Size(88, 24);
 l.Font = new Font("Verdana", 10f, FontStyle.Bold);
 l.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(l);

 creditsLabel = new Label();
 creditsLabel.Location = new Point(8, 64);
 creditsLabel.Size = new Size(88, 24);
 creditsLabel.Font = new Font("Verdana", 10f, FontStyle.Bold);
 creditsLabel.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(creditsLabel);
 }

 Listing 7.9 The initCredits method
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 221

For the “CREDITS” label, we set the Location, Text, Size, and Font, as usual.
We also set the label’s TextAlign property to System.Drawing.Content-
Alignment.MiddleCenter to center the text in the middle of the label. The label
underneath this will change text to reflect the number of credits as the game progresses.
We set it up similarly, but we store a reference to it in the private creditsLabel.

Setting up the message labels in the top center of figure 7.6 is done by initMes-
sage and is almost identical. We retain a reference to the dynamic message label in
messageLabel and we use the following helper method to display messages:

 private void showMessage(string s) {
 messageLabel.Text = s;
 }

In the bottom left of figure 7.6, we display the poker machine’s payout table. This
gives the score for every winning hand and these values never change. The code to set
up this table is shown in listing 7.10.

 private void initPayoutTable() {

 // frame the payout table...
 GroupBox g = new GroupBox();
 g.Location = new Point(8, 272);
 g.Size = new Size(200, 168);
 Controls.Add(g);

 Label l = new Label();
 l.Location = new Point(5, 10);
 l.Text = Machine.PayoutTable; // payout text never changes
 l.Size = new Size(180, 150);
 l.Font =
 new Font(FontFamily.GenericMonospace, 8f, FontStyle.Bold);
 g.Controls.Add(l);
 }

We create a GroupBox, to place a frame around the payout information, as you can
see in figure 7.6. This acts as a container with its own Controls collection to which
we add the label:

 g.Controls.Add(l);

The payout table is implemented as a static property of the Machine class. There-
fore, we don’t have to create a new instance. Instead we can retrieve the payout table
text, as follows:

 l.Text = Machine.PayoutTable; // payout text never changes

 Listing 7.10 The initPayoutTable method
222 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

Once again, the initMachineStats method is similar, so we don’t show it here.
One difference is that the machine statistics change as play progresses, so we’ll have to
update the label text throughout. We’ll do that at the end of every hand.

7.3.6 Creating text boxes

The bet data, shown in the top right of figure 7.6, consists of a literal “BET” label
with a text box underneath to display the amount of the player’s current bet. The
code to set this up is shown in listing 7.11.

 private void initBet() {

 Label l = new Label();
 l.Text = "BET";
 l.Location = new Point(344, 40);
 l.Size = new Size(88, 24);
 l.Font = new Font("Verdana",10f, FontStyle.Bold);
 l.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(l);

 betTextBox = new TextBox();
 betTextBox.Location = new Point(368, 64);
 betTextBox.MaxLength = 1;
 betTextBox.Font = new Font("Verdana",10f, FontStyle.Bold);
 betTextBox.Size = new Size(32, 22);
 betTextBox.TextAlign = HorizontalAlignment.Center;
 betTextBox.TabStop = false;
 betTextBox.TextChanged += new EventHandler(betChangedHandler);
 Controls.Add(betTextBox);
 }

Setting up the label is straightforward. For the text box, betTextBox, we set the
usual Location, Font, Size, and TextAlign properties. However, we also have
two properties which we haven’t seen before:

• MaxLength—The maximum number of characters allowed in the text box

• TabStop—Indicates whether the user can give the focus to this control using
the TAB key

We also register a TextChanged handler, betChangedHandler, for this control.
This handler will fire when the amount of the bet is changed. We’ll use it to ensure
that the user does not attempt to bet less than the minimum bet, more than the max-
imum bet, or more than the available credits:

 private void betChangedHandler(object sender, EventArgs e) {

 int newBet;
 try {

 Listing 7.11 The initBet method
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 223

 newBet = Int32.Parse(betTextBox.Text);
 }
 catch (Exception) {
 // use previous bet...
 beep(); // alert player
 showStatus("Error: Illegal bet!");
 newBet = uiBet;
 }

 betTextBox.Text = getBet(newBet).ToString();
 }

 private int getBet(int newBet) {
 Bet bet =
 new Bet(newBet,uiCredits, machine.MinBet, machine.MaxBet);
 if (bet.Amount != newBet) {
 beep(); // alert player
 string s =
 "Error: Minimum bet is " +
 machine.MinBet.ToString() +
 ". Maximum bet is " +
 machine.MaxBet.ToString() + ".";
 showStatus(s);
 }
 return bet.Amount;
 }

We first must check that we have a valid integer. If not, an exception is raised, we
sound an audible beep, and we revert to the previous standing bet, uiBet. We’re not
done however, because the player may have insufficient credits to make the bet.
Therefore, we call getBet to make any necessary adjustment to the amount of the
bet. It does so by creating an instance of the Bet class, which we coded in chapter 4,
and reading its Amount property to check for any adjustment.

Coding a method to create an audible beep provides us with an excuse to explore
how to get our .NET programs to interact with the Win32 API. We’ll get back to it
when we finish setting up the GUI.

7.3.7 Creating check boxes

We’ve got five check boxes laid out left to right across the form. The player checks a
box to indicate that the card above should be held when cards are drawn. Listing 7.12
sets up these check boxes.

 private void initHoldCheckBoxes() {
 // init hold CheckBoxes...

 hold1 = new CheckBox();
 hold1.Location = new Point(12, 208);

 hold2 = new CheckBox();
 hold2.Location = new Point(100, 208);

 Listing 7.12 The initHoldCheckBoxes method
224 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 hold3 = new CheckBox();
 hold3.Location = new Point(188, 208);

 hold4 = new CheckBox();
 hold4.Location = new Point(276, 208);

 hold5 = new CheckBox();
 hold5.Location = new Point(364, 208);

 // set common HOLD checkbox attributes...
 hold1.Text = hold2.Text = hold3.Text =
 hold4.Text = hold5.Text = "HOLD";
 hold1.Font = hold2.Font = hold3.Font =
 hold4.Font = hold5.Font =
 new Font("Verdana", 11f, FontStyle.Bold);
 hold1.Size = hold2.Size = hold3.Size =
 hold4.Size = hold5.Size = new Size(80, 24);
 hold1.TextAlign = hold2.TextAlign = hold3.TextAlign =
 hold4.TextAlign = hold5.TextAlign =
 ContentAlignment.MiddleLeft;

 // add the HOLD checkboxes to the UI...
 Controls.Add(hold1);
 Controls.Add(hold2);
 Controls.Add(hold3);
 Controls.Add(hold4);
 Controls.Add(hold5);

 }

We could use an array of check boxes but, for just 5 check boxes, it is hardly worth it.
Instead, we lay out 5 individual check boxes and set their Location, Text, Font,
Size, and TextAlign properties. Then we add each to the form’s Controls col-
lection. Note that we don’t create any event handler to respond to checking, or
unchecking, the boxes. Instead, when the user clicks DRAW, we’ll look to see which
boxes are checked and we’ll hold the corresponding cards.

7.3.8 Displaying a status bar

At the bottom of figure 7.6, you’ll see that the form has a status bar which displays
“Click DEAL to Start.” A status bar is a good place to display information about the
application’s status, or helpful hints as a user mouses over a control. We’ll use it to dis-
play the score at the end of each hand. The code to set up the status bar is shown in
listing 7.13.

 private void initStatusBar() {

 statusBarPanel = new StatusBarPanel();
 statusBarPanel.BorderStyle =
 StatusBarPanelBorderStyle.Sunken;

 Listing 7.13 The initStatusBar method
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 225

 statusBarPanel.AutoSize = StatusBarPanelAutoSize.Spring;
 statusBarPanel.Alignment = HorizontalAlignment.Center;

 StatusBar s = new StatusBar();
 s.ShowPanels = true;
 s.Font = new Font("Verdana", 8f, FontStyle.Bold);
 s.Panels.AddRange(new StatusBarPanel[]{statusBarPanel});
 Controls.Add(s);
 }

A status bar can contain one or more panels. To create a status bar, you create an array
of panels and add them to the status bar. In this case, we create just one Status-
BarPanel called statusBarPanel and set its BorderStyle to StatusBar-
PanelBorderStyle.Sunken. We also set its AutoSize property to
StatusBarPanelAutoSize.Spring to enable it to share space with other pan-
els, although we have just one here, and we set the Alignment property to center
the panel in the status bar.

Next, we create the status bar, s, and add the panel to it. We set the status bar’s
ShowPanels property to true to enable panel display. Then we call s.Pan-
els.AddRange and pass an array of panels to be displayed. In this case the array con-
tains just one panel.

Note that we hold on to a reference to the status bar panel in the private sta-
tusBarPanel field. This will allow other methods to update the message displayed
there. We’ll use the following helper method to display status information:

 private void showStatus(string s) {
 statusBarPanel.Text = s;
 }

7.3.9 Creating picture boxes

All that remains is to set up the cards display. In listing 7.14 we show how to do this
using picture boxes.

 private void initCards() {

 card1 = new PictureBox();
 card1.Location = new Point(8, 104);
 card1.Size = new Size(72, 96);
 Controls.Add(card1);

 card2 = new PictureBox();
 card2.Location = new Point(96, 104);
 card2.Size = new Size(72, 96);
 Controls.Add(card2);

 card3 = new PictureBox();
 card3.Location = new Point(184, 104);

 Listing 7.14 The initCards method
226 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 card3.Size = new Size(72, 96);
 Controls.Add(card3);

 card4 = new PictureBox();
 card4.Location = new Point(272, 104);
 card4.Size = new Size(72, 96);
 Controls.Add(card4);

 card5 = new PictureBox();

 card5.Location = new Point(360, 104);
 card5.Size = new Size(72, 96);
 Controls.Add(card5);
 }

You can download the card images, along with all of the code for this book, from
http://www.manning.com/grimes. To display a hand of cards during play, we’ll need
to set the Image property for each picture box. The following helper function will
do that for us:

 private void showCards(Hand h) {
 card1.Image = getImage(h.CardName(1)); pause();
 card2.Image = getImage(h.CardName(2)); pause();
 card3.Image = getImage(h.CardName(3)); pause();
 card4.Image = getImage(h.CardName(4)); pause();
 card5.Image = getImage(h.CardName(5)); pause();
 }

The getImage helper method simply retrieves a GIF file from disk and returns an
Image reference:

 private Image getImage(string imgName) {
 string fileName = @"..\images\" + imgName + ".GIF";
 try {
 return Image.FromFile(fileName);
 } catch (Exception e) {
 MessageBox.Show(
 "Error loading card image file: " + e.Message,
 "Error!",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 return null;
 }
 }

If the image file is missing, an error message box will be displayed. If you dismiss it,
you’ll be able to continue playing, but you won’t be able to see the cards!

We pause as each card is displayed to add suspense. This is implemented as:

 private void pause() {
 pause(200);
 }

 private void pause(int n) {
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 227

 Application.DoEvents();
 Thread.Sleep(n);
 }

The default pause is 200 milliseconds. Visual Basic programmers will be familiar with
the DoEvents call which allows event processing to proceed before putting the
thread to sleep.

To hide a hand of cards, we’ll display a GIF image of the card back, cb.gif, in each
picture box. We’ll use the following two helper methods:

 private void hideCards() {
 // display the backs of the cards...
 card1.Image = card2.Image = card3.Image =
 card4.Image = card5.Image = getImage("CB");
 Application.DoEvents();
 }

 private void hideCard(PictureBox card) {
 card.Image = getImage("CB");
 }

7.3.10 Starting play

Now that we’ve looked at the code to set up the user interface and handle events, we
take a look at how play begins. Recall that the form’s constructor in listing 7.5 calls
newGame immediately after the user interface is initialized. The newGame method is
shown in listing 7.15.

 private void newGame() {
 // start (again) with full credits...
 initPokerMachine();
 hideCards();
 clearHoldCheckBoxes();
 disableHoldCheckBoxes();
 unfreezeBet();
 showMachineStatistics();
 showMoney();
 enableCommand("&DEAL");
 focusCommand();
 showMessage("Click DEAL to Start");
 showStatus("Click DEAL to Start");
 }

The newGame method can also be called by startOverHandler as we saw earlier.
The first thing newGame does is to initialize the poker machine:

 private void initPokerMachine() {
 // initialize the poker machine...
 machine = Machine.Instance;

 Listing 7.15 Starting a new game
228 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 uiBet = machine.MinBet;
 uiCredits = machine.StartCredits;
 }

Next, it hides (displays the backs of) the playing cards. Then it clears and disables the
HOLD check boxes. This involves setting the Checked and Enabled properties:

 private void clearHoldCheckBoxes() {
 hold1.Checked = hold2.Checked = hold3.Checked =
 hold4.Checked = hold5.Checked = false;
 }

 private void disableHoldCheckBoxes() {
 hold1.Enabled = hold2.Enabled = hold3.Enabled =
 hold4.Enabled = hold5.Enabled = false;
 }

The player must bet at the start of each hand, before cards are dealt. Therefore new-
Game enables betting by calling unfreezeBet:

 private void unfreezeBet() {
 betTextBox.ReadOnly = false;
 }

Setting the ReadOnly property to false allows the player to change the text in the
bet check box. A corresponding freezeBet method disables betting.

Next, the newGame method calls showMachineStatistics to display the
current profit and performance statistics for the poker machine:

 private void showMachineStatistics() {
 machineStatsLabel.Text = machine.Stats;
 }

These statistics come from SQL Server and reflect the historical performance of the
machine, in addition to the current and any concurrent games. In contrast, show-
Money shows the game from the player’s perspective:

 private void showMoney() {
 showCredits();
 showBet();
 }

 private void showCredits() {
 creditsLabel.Text = uiCredits.ToString();
 }

 private void showBet() {
 betTextBox.Text = uiBet.ToString();
 }

Next, the newGame method calls enableCommand("&DEAL") to enable the
DEAL command. The caption of this button will flip from “DEAL” to “DRAW” as
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 229

cards are dealt and drawn. It will also be disabled and enabled depending on the state
of the game:

 private void enableCommand(string s) {
 dealDrawButton.Text = s;
 dealDrawButton.Enabled = true;
 startOverButton.Enabled = true;
 }

 private void disableCommand(string s) {
 dealDrawButton.Enabled = false;
 dealDrawButton.Text = s;
 if (s.Equals("Game Over")) {
 startOverButton.Enabled = true;
 startOverMenuItem.Enabled = true;
 }
 else {
 startOverButton.Enabled = false;
 startOverMenuItem.Enabled = false;
 }
 }

Both the Start Over and DEAL/DRAW buttons will generally be disabled while new
cards are being displayed, and both then immediately enabled. The DEAL/DRAW but-
ton will be given a “DEAL” or “DRAW” caption, as appropriate. However, in the spe-
cial case where the game is over, the DEAL/DRAW button is disabled and the Start
Over button enabled to allow a new game to be started.

The focusCommand method simply places the Windows focus on the DEAL/
DRAW button:

 private void focusCommand() {
 dealDrawButton.Focus();
 }

That completes application initialization. Note that we broke the task into two dis-
crete sub-tasks:

• initUI—Adds controls to the form and sets static properties such as unchang-
ing label text and menu items

• newGame—Sets dynamic controls to default values and initialize player variables

This partitioning enables us to call newGame to restart play without unnecessarily re-
executing code to set up the GUI again. All that remains is to code the deal and
draw methods.

7.3.11 Dealing cards

When the user clicks DEAL, dealDrawHandler calls the deal method. Figure 7.8
shows how the game looks when cards have been dealt. Just as we did in our ConPok
program, we use the poker machine’s Deal and Draw methods to handle the dealing
and drawing of cards. Listing 7.16 presents the deal method.
230 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 private void deal() {

 disableCommand("Dealing...");
 setBet();
 freezeBet();
 hideCards();

 // deal a hand...
 dealHand = machine.Deal();
 showCards(dealHand);

 // clear and enable the HOLD checkboxes...
 clearHoldCheckBoxes();
 enableHoldCheckBoxes();

 // tell player what to do...
 showMessage("Hold and Draw");
 showStatus("Hold cards and click the DRAW button.");
 enableCommand("&DRAW");
 }

 private void setBet() {
 int newBet = Int32.Parse(betTextBox.Text);

Figure 7.8

Getting ready to draw cards

 Listing 7.16 Dealing cards
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 231

 Bet bet =
 new Bet(newBet,uiCredits, machine.MinBet, machine.MaxBet);
 uiBet = bet.Amount;
 uiCredits = bet.Credits;
 showMoney();
 }

The setBet method is similar to getBet. However, since the player has clicked
DEAL, we commit the bet by adjusting the player’s bet amount and credits on hand.
Then we freeze the bet so it cannot be altered during the hand, deal the hand, display
it, clear and enable the HOLD check boxes, update the message and status areas, and
enable the DRAW command, as seen in figure 7.8.

7.3.12 Drawing cards

Drawing cards is a bit more involved. Before we draw, we have to examine the HOLD
check boxes to see which cards to hold. Then we draw cards, calculate winnings if
any, update the user interface, and check if the game is over. Listing 7.17 illustrates.

 private void draw() {

 disableHoldCheckBoxes();
 disableCommand("Drawing...");

 // hold cards...
 string holdString = "";
 if (hold1.Checked) holdString += "1";
 if (hold2.Checked) holdString += "2";
 if (hold3.Checked) holdString += "3";
 if (hold4.Checked) holdString += "4";

 if (hold5.Checked) holdString += "5";

 drawHand = machine.Draw(dealHand, holdString, uiBet);

 // hide cards which have not been held...
 if (!hold1.Checked) hideCard(card1);
 if (!hold2.Checked) hideCard(card2);
 if (!hold3.Checked) hideCard(card3);
 if (!hold4.Checked) hideCard(card4);
 if (!hold5.Checked) hideCard(card5);
 pause(); // let the player see the backs of the cards

 showCards(drawHand);

 // update UI...
 int won = drawHand.Score * uiBet;
 uiCredits += won;
 showMoney();
 showMachineStatistics();
 showMessage(drawHand.Title);

 Listing 7.17 Drawing cards
232 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

 showStatus(drawHand.Title + " - Scores " + drawHand.Score);
 checkGameOver();
 }

 private void checkGameOver() {
 // check if player has enough money to go on...
 if (machine.MinBet > uiCredits) {
 disableCommand("Game Over");
 showStatus("Game over!");

 freezeBet();
 beep(); // alert player
 } else {
 enableCommand("&DEAL");
 focusCommand();
 unfreezeBet();
 }
 }

The game is over when the player does not have enough credits to meet the mini-
mum machine bet.

7.3.13 Accessing the Win32 API

You may have noticed the following declaration at the bottom of listing 7.5:

 [DllImportAttribute("user32.dll")]
 public static extern int MessageBeep(int type); // error beep

The System.Runtime.InteropServices.DllImportAttribute class is
used to import an external DLL for use within a .NET program. We import user32.dll
to gain access to the MessageBeep function which can be used to play sounds
which are normally associated with Windows events such as a critical stop or an excla-
mation. Then we use the following method to sound the default beep when the user
enters an illegal bet:

 private void beep() {
 MessageBeep(0);
 }

This approach is often better than displaying an annoying message box. We simply
sound a beep, focus on the associated text box, and highlight the erroneous text.
More importantly, this simple example illustrates how to make Win32 API calls.

The .NET SDK samples include many examples of the use of DllImport to make
Win32 API calls to get the system time, display Win32 message boxes, get and set the
current directory, get the disk drive type, search paths, load type libraries, create pro-
cesses, get window text, get file attributes, and many more useful tasks.

7.3.14 Ending the application

Execution of our Windows Forms application can terminate in one of several ways:
WINPOK: THE WINDOWS FORMS-BASED POKER GAME 233

• The user may select Quit from the menu

• The user may close the application window (the Windows form)

• Windows may send a message to the application to close, such as when the sys-
tem is closing down, or when the user selects End Process from the Windows
Task Manager

In the first case, quitHandler explicitly calls the base Close method to close the
form, as we saw earlier. In all cases, you can override the OnClosing method to
handle the Closing event, as we do below to confirm that the player wants to quit:

 protected override void OnClosing(CancelEventArgs e) {
 base.OnClosing(e);
 // make sure the player really wants to quit...
 DialogResult r = MessageBox.Show(
 "Quit?",
 "Closing",
 MessageBoxButtons.YesNo, MessageBoxIcon.Question);
 if (r != DialogResult.Yes) e.Cancel = true;
 }

The OnClosing method accepts a System.ComponentModel.Cancel-
EventArgs reference as an argument. This class, which is derived from Event-
Args, contains a public instance Cancel property which you can set to true to
cancel the event. In this case, we use a message box to confirm that the user wants to
quit. If the answer is not yes, we cancel the Closing event.

That completes our WinPok program. While a Windows Forms GUI takes some
time to set up, the user interface is more usable and typically worth the extra effort.
For example, the WinPok version of our poker machine is clearly more user-friendly
than its ConPok cousin. Refer to appendix C for the complete WinPok listing.

7.4 CREATING WINDOWS FORMS APPLICATIONS
USING VISUAL STUDIO .NET

WINDOWS FORMS APPLICATIONS & VISUAL STUDIO .NET

Now let’s explore the easy way to build Windows Forms applications. We’ll use Visual
Studio .NET to create a bare-bones GUI for the poker game using the drag-and-drop
forms designer. To keep it short, we won’t bother with credits, betting, or machine
statistics. Instead, we’ll just display the cards and a DEAL/DRAW button.

7.4.1 Creating a Visual Studio .NET project

Launch Visual Studio .NET and select File | New | Project from the main
menu. You should be presented with a dialog box which lists the available project
templates. Select Visual C# Projects in the left pane, and select Windows
Application in the right. Call the project VsWinPok. See figure 7.9.

Click OK to create the project. You should see a screen similar to that shown in
figure 7.10.
234 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

Figure 7.9 Creating a Visual Studio .NET project

Figure 7.10 The Visual Studio .NET IDE
WINDOWS FORMS APPLICATIONS & VISUAL STUDIO .NET 235

7.4.2 Designing a form

Figure 7.10 shows the default IDE layout which you can customize to your own pref-
erences. It shows the Forms Designer window in the center. To its left is the toolbox
containing controls which you can drag onto the form. The Solution Explorer, top
right, lists the files and references in the project, while the properties of the currently
selected control are shown in the Properties window at bottom right. By default, the
new form is called Form1. You can change this by clicking the form to select it and
changing its Name in the Properties window. We’ll just accept the default control
names as we work through the example.

To build our simplified poker GUI, we just need 5 cards, 5 hold check boxes, and
a DEAL/DRAW button. In the toolbox, click the PictureBox control. Then click
the form. This should place a PictureBox on the form. Repeat this procedure four
more times to create 5 PictureBox controls to display the cards. Lay them out left-
to-right across the form. For each PictureBox, select its Image property from the
properties windows, open the File Dialog box and select cb.gif to display the back of
a playing card in the PictureBox.

Next, select the CheckBox from the toolbox and drop it on the form. From the
Properties window, change its Text to HOLD. Repeat this procedure to place a HOLD
check box under each card. Finally, select a Button control from the toolbox and place
it at the bottom of the form. Using the Properties window, change its text to DEAL.
By now, the forms designer window should be similar to that shown in Figure 7.11.

Figure 7.11 Designing the poker GUI
236 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

7.4.3 Adding code to the form

Now it is time to attach the logic to the GUI. First,
we need to add the poker.dll assembly to the project.
To do this, right-click References in the Solu-
tion Explorer window, and select Add Reference.
Click Browse to open the file dialog, select
poker.dll from wherever it resides, and click OK. The
Solution Explorer window should now look like fig-
ure 7.12.

To add the DEAL logic, double-click the DEAL
button on the form. This drops you into the code
editor at the button1_Click method. Now add
the code for this method. See figure 7.13.

At this point, you can begin coding the game’s logic. For example, as we saw in Win-
Pok, you need to check if the game should DEAL or DRAW, as follows:

 private void button1_Click(object sender, System.EventArgs e)
 if (button1.Text == "DEAL")
 deal();

Figure 7.12

The Solution Explorer

Figure 7.13 Inserting code
WINDOWS FORMS APPLICATIONS & VISUAL STUDIO .NET 237

 else
 draw();
 }

Next, insert the code for the deal() and draw() methods. Remember to insert
member variables for the poker machine and the hands. Since we won’t support bet-
ting, you can use the SimpleMachine version of the poker machine:

 private SimpleMachine machine; // the poker machine
 private Hand dealHand; // hand dealt
 private Hand drawHand; // hand drawn

Completing this version of the game is left as an exercise, as it is mostly a matter of
cutting and pasting code from WinPok. When you’re done, hit F5 to compile and
run the program.

As you can see, Visual Studio makes developing a Windows Forms GUI a snap.
The Forms Designer provides a simple drag-drop interface for creating forms and lay-
ing out controls. The Solution Explorer enables you to easily add and remove project
references, while the Properties window enables you to point-and-click to select con-
trol properties.

7.5 OVERRIDING WNDPROC
OVERRIDING WNDPROC

Before we leave Windows Forms, readers who have programmed in C with the origi-
nal Windows SDK, may be wondering if Windows Forms provides access to underly-
ing Windows messages. The answer is yes. For example, you may be familiar with C/
SDK idiom for processing Windows messages:

LRESULT CALLBACK WndProc (HWND hwnd,
 UINT msg,
 WPARAM wParam,
 LPARAM lParam) {
 ...

 switch (msg) {

 case WM_NCLBUTTONDOWN:
 ...

 case WM_NCLBUTTONUP:
 ...

 case WM_NCLBUTTONDBLCLK:
 ...
 }

 ...
}

Typically WndProc contained a long switch statement to identify and process indi-
vidual messages. Of course, with Windows Forms, this type of low-level processing is
238 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

typically unnecessary. However, for certain tasks, such as painting the nonclient areas
(title bar and border) of a Window for example, it can be useful.

Let’s look at a simple example of this technique. Listing 7.18 is a short program
which overrides WndProc to process mouse messages associated with the nonclient
area of the form.

// file : wndprocform.cs
// compile : csc /t:winexe wndprocform.cs

using System;
using System.Windows.Forms;

namespace CustForms {

 public class WndProcForm : Form {

 public static void Main() {
 Application.Run(new WndProcForm());
 }

 public WndProcForm() {
 Height = 100;
 CenterToScreen();
 Text = "Title Bar Inactive - Alt-F4 to Close";
 }

 protected override void WndProc(ref Message m) {
 if (m.Msg >= WM_NCLBUTTONDOWN &&
 m.Msg <= WM_NCMBUTTONDBLCLK)
 return; // disable non-client clicks
 base.WndProc(ref m); // allow other messages to proceed
 }

 private int WM_NCLBUTTONDOWN = 0x00A1;
 private int WM_NCMBUTTONDBLCLK = 0x00A9;
 }
}

In this simple example, WndProc checks for nonclient area mouse messages, in the
range 0x00A1 to 0x00A9 hexadecimal, and disables them by returning immedi-
ately. Otherwise, the routine calls base.WndProc(ref m) to allow the base class
WndProc to process them in the ordinary way.

When you execute this program (figure 7.14) you get a window which cannot be
resized, moved, or closed using mouse clicks. You’ll have to press ALT+F4 to close it,
or use the Windows Task Manager.

 Listing 7.18 Overriding WndProc
OVERRIDING WNDPROC 239

For more involved processing, the System.Windows.Forms.Message
structure contains members similar to the traditional arguments passed to a C/SDK
WndProc:

• HWnd—The window handle of the message

• Msg—The message number

• WParam—Extra message-specific parameters such as flags

• LParam—More message-specific parameter data

To make sense of the Message structure you’ll need a knowledge of traditional Win-
dows C/SDK programming. Also, remember that since the Form class is part of the
language-neutral .NET Framework, this type of low-level interaction with the operat-
ing system is now possible using other .NET languages. This is a major improvement.
On the other hand, beware that any future non-Windows implementation of Win-
dows Forms may not support such techniques.

7.6 SUMMARY
SUMMARY

That completes our look at Windows Forms. We started with some simple forms and
explored components and controls. We looked at anchoring and docking controls
and handling control events. We also developed a full-scale GUI for our poker game
and saw how to make Win32 API calls. We explored Visual Studio .NET and used the
Forms Designer to quickly create a simple GUI for our poker machine. We finished
by exploring WndProc.

Next, in our final chapter, we explore ASP.NET.

Figure 7.14

Disabling nonclient mouse messages
240 CHAPTER 7 CREATING THE WINDOWS FORMS USER INTERFACE

C H A P T E R 8

Creating the Web Forms
user interface

8.1 Comparing ASP.NET to ASP 242
8.2 The System.Web.UI.Page

class 245
8.3 Working with Web Forms

and server controls 248
8.4 Creating user controls 258
8.5 Validating user input 261
8.6 Configuring and customizing

ASP.NET applications 265
8.7 Tracing ASP.NET

applications 269

8.8 Managing application and
session state 272

8.9 Creating Web Forms using Visual
Studio .NET 275

8.10 Manually creating code-behind
Web Forms 278

8.11 WebPok: the Web Forms-based
poker machine 279

8.12 MobPok: the mobile Internet-based
poker machine 286

8.13 Summary 288
In this, the final chapter, we explore ASP.NET, Microsoft’s successor to the popular
ASP platform for Web-based applications. In order to get the most out of this chapter,
you should be familiar with HTML and Web development, including posting forms
and processing them using a tool such as CGI, or ASP.

Since ASP.NET subsumes ASP, we’ll start with a look at legacy ASP development
and progress to discuss the new features added by ASP.NET. We’ll develop an
ASP.NET version of the poker game that hosts the poker.dll assembly and presents an
attractive Web-based version of the game. In doing so, we’ll acquaint ourselves with
the new server-side controls, which make developing a Web application as intuitive as
developing a regular desktop application. We’ll close with a final version of video
poker developed using the Mobile Internet Toolkit to run on a handheld device.
241

8.1 COMPARING ASP.NET TO ASP

We begin by examining an ASP application and comparing it to its ASP.NET equiva-
lent. ASP applications will still run under ASP.NET and an ASP application can be
converted to ASP.NET by simply changing its file extension from .asp to .aspx. So let’s
take a look at the similarities and differences.

8.1.1 A simple ASP application

There’s a good chance that you have already dabbled with ASP. With a simple pro-
gramming model and just a handful of objects, such as Request and Response,
ASP unleashed a new wave of Windows-based Web development. Its use of VBScript
for back-end scripting meant that Visual Basic programmers migrated easily to the
platform. Listing 8.1 shows how to code an ASP page.

<!-- hello.asp -->
<script language="VBScript" runat="server">

function buildForm()

 firstName = Trim(Request.Form("firstName"))
 s = ""

 if firstName = "" then ' need a name...
 s = s & "What's Your First Name? "
 s = s & "<input type='text' name='firstName' />"
 s = s & "<input type='submit' />"
 else ' we know the user's name...
 s = s & "Hello, " & firstName & "!"
 end if
 buildForm = s
end function
</script>

<html><head><title>Hello ASP App</title></head>
 <body>
 <h1>Hello ASP Application</h1>
 <form action='hello.asp' method='POST'>
 <%=buildForm()%>
 </form>
 </body>
</html>

A typical ASP page is usually a mixture of back-end scripting and client-side HTML/
JavaScript. In this example, the scripting is contained within the <script> tags at

 Listing 8.1 Hello from ASP
242 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

the start of the page. The HTML follows directly below it. This page displays a simple
form that asks for the user’s first name, as seen in figure 8.1.

When the user clicks the SUBMIT button, the form is submitted and the application
responds by displaying a greeting, as shown in figure 8.2. Therefore, this ASP applica-
tion is really two separate Web pages. The script block just contains a single VBScript
function that checks if the form has been filled in by the user. If not, the input form
is displayed. Otherwise, the greeting is displayed.

If you examine the HTML in listing 8.1, you’ll see the following line sandwiched
between the <form> tags:

 <%=buildForm()%>

The delimiters, <% and %>, are used to mark the beginning and end of a scripting
block. In this case, this causes the VBScript buildForm() function to be evaluated
and the result inserted into the form. In turn, the buildForm() function checks if
the user’s first name has been entered:

 firstName = Trim(Request.Form("firstName"))

The Request object is one of the built-in ASP objects, and Request.Form is a
collection of the field values in the submitted form keyed by their name attribute. In
this case, we’re interested in the value of the text input field called firstName. If

Figure 8.1

A simple form

Figure 8.2

Response to the sub-

mitted form
COMPARING ASP.NET TO ASP 243

the form has not yet been displayed, this string will be blank. If the form has already
been displayed, but the user submitted it without entering a name, the string will also
be blank. In both cases, the buildForm() function creates a string containing the
input form elements and returns it. On the other hand, if the name is not blank,
buildForm() builds and returns a greeting string.

8.1.2 A simple ASP.NET application

Listing 8.2 presents an ASP.NET version of our “Hello” example. ASP.NET applica-
tions are typically stored in files with an .aspx extension. We won’t bother to show you
what it looks like in the browser, since its output is identical to that shown in figures
8.1 and 8.2.

<!-- hello.aspx -->

<%@ Page Language="C#"%>
<%@ Import Namespace="System.Web.UI"%>

<script runat="server">

private string buildForm() {

 string firstName = this.Request.Form["firstName"];
 if (firstName == null) firstName = "";

 string s = "";
 if (firstName.Trim() == "") { // need a name...
 s += "What's Your First Name? ";
 s += "<input type='text' name='firstName' />";
 s += "<input type='submit' />";
 } else { // we know the user's name...
 s += "Hello, " + this.Request.Form["firstName"] + "!";
 }
 return s;
}
</script>

<html><head><title>Hello ASP.NET App</title></head>
 <body>
 <h1>Hello ASP.NET Application</h1>
 <form action='hello.aspx' method='POST'>
 <%=buildForm()%>
 </form>
 </body>
</html>

As you can see, the ASP.NET version of this simple application is very similar. (As I
mentioned, you can turn an ASP page into an ASP.NET page by simply changing its file
extension from .asp to .aspx.) However, there are two important differences to note:

 Listing 8.2 Hello from ASP.NET
244 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

1 This time, the page logic is coded in C#. ASP.NET is a first-class citizen of the
.NET world and ASP.NET applications can be coded in C# or any other .NET
language. Code is fully compiled when the page is requested and is cached for
reuse. In other words, server-side VBScript is obsolete.

2 Note the <%@ Import Namespace="..."%> directive at the top of the file.
This is similar to C#’s using statement. It allows you to import .NET
namespaces and use the full power of the .NET Framework in your ASP.NET
applications.

These two features alone make ASP.NET potentially much more powerful than its
predecessor. However, there’s more.

8.2 THE SYSTEM.WEB.UI.PAGE CLASS

You probably noticed the following line of code in listing 8.2:

 string firstName = this.Request.Form["firstName"];

You may be wondering just exactly what this refers to in the context of an ASP.NET
page. Our page is, in fact, an instance of the System.Web.UI.Page class, thus
giving us an object-oriented model of an ASP.NET page in keeping with the rest of
the .NET Framework.

8.2.1 The Page.Request and Page.Response properties

The ubiquitous Request and Response objects of legacy ASP are now properties
of the Page class. Listing 8.3 illustrates.

<!-- dumpprops.aspx -->

<%@ Page Language="C#" Debug="true"%>

<script runat="server">

private void dumpProps() {

 // get Request and Response objects...
 HttpRequest req = this.Request;
 HttpResponse resp = this.Response;

 // and use them...
 resp.Write("Request.FilePath: " +
 req.FilePath + "
");
 resp.Write("Request.PhysicalApplicationPath: " +
 req.PhysicalApplicationPath + "
");
 resp.Write("Request.HttpMethod: " +
 req.HttpMethod + "
");
 resp.Write("Request.UserAgent: " +
 req.UserAgent + "
");
 resp.Write("Request.UserHostAddress: " +

 Listing 8.3 Using the Page.Request and Page.Response properties
THE SYSTEM.WEB.UI.PAGE CLASS 245

 req.UserHostAddress + "
");
}
</script>

<html><head><title>Dump Page Properties</title></head>
 <body>
 <h1>Page Properties</h1>
 <% dumpProps(); %>
 </body>

</html>

Here we grab references to the Request and Response objects, as follows:

 HttpRequest req = this.Request;
 HttpResponse resp = this.Response;

We use them to dump some of the Request properties to the browser, as seen in fig-
ure 8.3.

8.2.2 The Page lifecycle

When an HTTP request is received, ASP.NET responds by creating and returning the
requested page. This process causes several page events to occur and the Page class
contains protected instance methods, inherited from the System.Web.UI.Con-
trol, which you can override to handle these events:

• OnInit—Override to handle the Init event and perform any necessary initial-
ization required to create and set up the page instance. At this stage in the page’s
lifecycle, viewstate (which we’ll discuss shortly) has not yet been populated.

• OnLoad—Override to handle the Load event and perform any actions com-
mon to each HTTP request for the page. For example, this would be a good

Figure 8.3 Displaying Request properties
246 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

place to set up a database query whose results will be used in building the page.
At this stage, the page’s viewstate has been populated.

• OnPreRender—Override to handle the PreRender event and perform any
necessary steps before the page is rendered.

• OnUnload—Override to handle the Unload event and perform cleanup, such
as closing database connections.

Listing 8.4 illustrates the discussion with a short application that displays the page
events in the order they occur.

<!-- pageevents.aspx -->

<%@ Page Language="C#" Debug="true" %>

<script runat="server">

protected override void OnInit(EventArgs e) { base.OnInit(e); p("Init"); }
protected override void OnLoad(EventArgs e) { base.OnLoad(e); p("Load"); }
protected override void OnPreRender(EventArgs e)
 {base.OnPreRender(e); p("PreRender");}

private void p(string s) {
 Message.InnerHtml += s + "
";
}
</script>

<html><head><title>Hello Web Page</title></head>
<body>
<h1>Page Events...</h1>
<form action='pageevents.aspx' method='POST'>

 <p>
 <input type="submit" />
 </p>
</form>
</body>
</html>

In this example, we override the page’s Init, Load, and PreRender events and
display a message in the browser. Note that we don’t handle the Unload event since
it occurs after the page has been rendered. If you run this example, you should see the
output shown in figure 8.4.

You may be wondering about the runat="server" attribute of the
tag. This enables the page element to be processed by server-side code, as we’ll see next.

 Listing 8.4 Handling page events
THE SYSTEM.WEB.UI.PAGE CLASS 247

8.3 WORKING WITH WEB FORMS
AND SERVER CONTROLS

ASP.NET introduces some new terms to the ASP developer’s vocabulary: Web Forms
and server controls. A Web Form is a form with a runat="server" attribute that
causes it to be processed on the server. A server control is a control which also con-
tains a runat="server" attribute. It too is processed on the server and generates
HTML/JavaScript to be rendered in the browser. To the developer, server controls
appear similar to the Windows Forms controls we saw in the previous chapter.
Indeed, using Visual Studio .NET, you can design Web Forms using the built-in drag-
and-drop forms designer. Server controls expose properties, methods, and events as
do Windows Forms controls.

8.3.1 The anatomy of the Web Form

Listing 8.5 presents a new version of our “Hello” application that uses a Web Form
and server controls.

<!-- helloform.aspx -->

<%@ Page Language="C#" Debug="true" %>

<script runat="server">

 // greet the user...
 private void greetHandler(object sender, EventArgs e) {

 firstNameTextBox.Text = firstNameTextBox.Text.Trim();
 if (firstNameTextBox.Text == "") {
 // no name, so no greeting...
 greetingLabel.Text = "";
 } else {
 // greet the user...

Figure 8.4

Displaying page events

 Listing 8.5 The Hello Web Form
248 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 greetingLabel.Text =
 "Hello, " + firstNameTextBox.Text + "!";
 }
 }
</script>

<html><head><title>Hello Web Form</title></head>

<body>

 <h1>Hello Web Form</h1>
 <form action='helloform.aspx' method='POST' runat='server'>

 <asp:label text="What's Your First Name?" runat="server"/>
 <asp:textbox id="firstNameTextBox" runat="server"/>
 <asp:button
 id="greetButton"
 text="Greet"
 OnClick="greetHandler"
 runat="server"/>
 <p>
 <asp:label id="greetingLabel" runat="server"/>
 </p>

 </form>
</body>
</html>

Note the form declaration, <form ... runat="server"/> that identifies this
example as a Web Form. Also, instead of using HTML tags for the labels, text box,
and button, we use markup of the form:

 <asp:control-type ... runat="server"/>

These are server controls. They expose properties, methods, and events that can be
programmed by server-side code. When they are sent to the browser, they are trans-
lated into HTML for display. For example, if you select View | Source from your
browser menu, you should see the generated HTML shown in listing 8.6.

<!-- helloform.aspx -->

<html><head><title>Hello Web Form</title></head>
 <body>
 <h1>Hello Web Form</h1>
 <form
 name="ctrl0"
 method="POST"
 action="helloform.aspx"
 id="ctrl0">
 <input
 type="hidden"

 Listing 8.6 Viewing the HelloForm HTML source
WORKING WITH WEB FORMS AND SERVER CONTROLS 249

 name="__VIEWSTATE" value="dDwt ... j47Pg==" />
 What's Your First Name?
 <input
 name="firstNameTextBox"
 type="text"
 id="firstNameTextBox" />
 <input
 type="submit"
 name="greetButton"
 value="Greet"
 id="greetButton" />
 <p>

 </p>
 </form>
 </body>
</html>

ASP.NET generates plain HTML that is easily digested by down-level browsers. In
fact, using ASP.NET server controls is a good way to produce pages that are compati-
ble across the different browsers.

If you launch your browser and open the application, you should see the page
shown in figure 8.5.

This is identical to the previous examples. Now, enter your name and click the
Greet button to be presented with the page shown in figure 8.6.

This time, we’ve done things a little differently. When we display the greeting, we
also display the form again above it. Note that the text in the text box (“Joe”) is pre-
served across the server roundtrip. By default, server controls are “sticky,” meaning
that they preserve their values across HTTP requests. This is achieved by preserving
control properties in a hidden form variable called __VIEWSTATE. You can confirm
this by viewing the HTML source in the browser. See listing 8.6. The __VIEWSTATE
field looks something like:

<input type="hidden" name="__VIEWSTATE" value="dDwt ... j47Pg==" />

Figure 8.5

Displaying the Hello Web Form
250 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

The value of __VIEWSTATE is a base-64 encoded string containing the viewable
state of the controls. If you decode the field using the Base64Service presented in
chapter 5, you’ll find the text property of the text box in there somewhere:

 encoded : dDwt ... j47Pg==
 decoded : ... Hello, Joe! ...

A control’s viewstate is the sum of its property values, and it makes it easy to preserve
the contents of a text box, the checked state of a check box, the currently selected
item in a list box, and so forth, across HTTP requests.

Returning to listing 8.5, note the code:

 <asp:button
 id="greetButton"
 text="Greet"
 OnClick="greetHandler"
 runat="server"/>

The OnClick attribute associates a server-side button click handler with the button’s
click event. Therefore, while the button is clicked in the client, the associated event is
fired, and handled, on the server, causing an HTTP roundtrip to occur.

The event handler has an identical signature to its Windows Forms equivalent:

 private void greetHandler(object sender, EventArgs e) {

 ...

 }

Instead of specifying an OnClick attribute, you can, if you prefer, assign an event
handler by overriding the OnLoad method and using the delegate approach seen in
our Windows Forms examples:

 protected override void OnLoad(EventArgs e) {
 base.OnLoad(e);
 // use delegate...
 greetButton.Click += new EventHandler(greetHandler);
 }

Figure 8.6

Greeting the user
WORKING WITH WEB FORMS AND SERVER CONTROLS 251

8.3.2 The System.Web.UI.WebControls and

System.Web.UI.HtmlControls namespaces

Server controls consist of HtmlControls and WebControls. Those controls that we have
seen in our examples so far, <asp:label>, <asp:textbox>, <asp:button>,
and so forth, are examples of Web (server) controls. Web controls are abstract,
strongly typed objects, which do not necessarily reflect HTML syntax. For example,
using a simple <asp:calendar> control in your page can automatically generate
almost 150 lines of HTML for display in the browser. This can be a major time saver
when developing complex pages. There are about 30 Web controls in the Sys-
tem.Web.UI.WebControls namespace so we won’t list them all here. Table 8.1
lists a few that are worth knowing about. We’ll take a closer look at some of these
controls in the course of this chapter.

Table 8.1 The System.Web.UI.WebControls namespace

WebControl Use

Button Provides a command button. Use its OnClick attribute to specify a click event
handler, or wire up an event handler in the page’s OnLoad method.

Calendar Displays a calendar that allows the user to select a date.

CheckBox Can be used to allow the user to enter boolean (true/false) data. If selected, its
Checked property is true. The CheckBox control can trigger postback to the
server if its AutoPostBack property is true.

CheckBoxList Provides a multiple-selection checked list with an Items collection containing the
members in the list. To determine if an item is checked, you can test its boolean
Selected property.

DataGrid Provides a convenient way to generate a tabular display of data from a data
source. The data can optionally be selected, sorted, paged, and so forth. By
default, field names are displayed in the grid’s column headers and values dis-
played as text labels.

DataList Displays data in a list according to a template.

DropDownList Provides a single-selection drop-down list.

Label Displays text in a specific location on the page. Use its Text property to set the
text to be displayed.

ListBox Provides a single- or multiple-selection list.

Panel Provides a container for other controls.

RadioButton Can be used to allow the user to enter boolean (true/false) data. If selected, its
Checked property is true. Only one radio button in a group can be checked. A
radio button’s group can be assigned using its GroupName property.

RadioButton-
List

Provides a single-selection checked list with an Items collection containing the
members in the list. To determine which item is selected, you can test the boolean
Selected property of the items.

Table, Table-
Row, TableCell

The Table control can be used to programmatically build a table by adding
TableRow controls to the Rows collection of the table, TableCell controls to the
Cells collection of any row, and controls to the Controls collection of any cell.

TextBox Allows the user to enter text. Set its TextMode to MultiLine to enable multiple
lines of text, or to Password to hide password characters.
252 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

Unlike WebControls, HtmlControls such as HtmlAnchor and HtmlTable, typi-
cally have a one-to-one correspondence with an equivalent HTML tag. However, they
offer a convenient model that allows you to manipulate them programmatically on
the server side. The SDK documentation provides a complete list and, since they map
so closely to the HTML elements they represent, we won’t list them here. Instead,
we’ll explore an example of using the HtmlTable control to build a table later in
this chapter. But first, we explore examples which use the Calendar and Data-
Grid Web server controls.

8.3.3 Using the Calendar Web control

Listing 8.7 provides an example that uses the Calendar Web control to allow the
user to select a date.

<!-- calform.aspx -->

<%@ Page Language="C#" Debug="true" %>

<script runat=server>

 private void dateHandler(object sender, EventArgs e) {
 myMessage.Text =
 "You selected " + myCalendar.SelectedDate.ToShortDateString();
 }
</script>

<html><head><title>Calendar ASP.NET App</title></head>
 <body>
 <h1>Calendar ASP.NET Application</h1>
 <form runat="server">
 <asp:calendar
 id="myCalendar"
 onSelectionChanged="dateHandler"
 Font-Name="Verdana"
 Font-Size="8pt"
 Font-Bold="true"
 BorderColor="black"
 BackColor="Gainsboro"
 runat="server" />
 <p>
 <asp:Label
 id="myMessage"
 Font-Name="Verdana"
 Font-Size="8pt"
 Font-Bold="true"
 runat="server" />
 </p>
 </form>
 </body>
</html>

 Listing 8.7 Using the Calendar Web control
WORKING WITH WEB FORMS AND SERVER CONTROLS 253

By now, you’re probably getting the hang of server controls, so this example doesn’t
need much explanation. We use the onSelectionChanged property of the con-
trol to specify a server-side handler to execute when the user selects a date. This
causes a postback roundtrip to display the selected date in the message label. If you
examine the generated HTML source in the browser, you’ll see that this is achieved by
using links for the dates combined with autogenerated JavaScript:

 ...

In fact, using this simple calendar control automatically generates almost 150 lines of
combined HTML and JavaScript, thus saving valuable time and effort.

Browsing the application, and selecting a date, produces the page shown in figure 8.7.

8.3.4 Using the DataGrid Web control

Listing 8.8 provides an example that uses the DataGrid Web control. This example
uses the games table in the poker database as the data source for a simple report.

<!-- dataform.aspx -->

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

<script runat="server">

protected override void OnLoad(EventArgs e) {

 base.OnLoad(e);

Figure 8.7

Browsing the calendar

application

 Listing 8.8 Using the DataGrid Web control
254 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 SqlConnection con =
 new SqlConnection(
 @"server=(local)\NetSDK;database=poker;trusted_connection=yes");

 SqlDataAdapter com =
 new SqlDataAdapter("select * from games", con);

 DataSet ds = new DataSet();
 com.Fill(ds, "games");

 gamesGrid.DataSource=ds.Tables["games"].DefaultView;
 gamesGrid.DataBind();
}
</script>

<html><head><title>DataGrid ASP.NET App</title></head>
 <body>
 <h1>DataGrid ASP.NET Application</h1>
 <form runat="server">
 <asp:dataGrid
 id="gamesGrid"
 BackColor="Gainsboro"
 BorderColor="black"
 CellPadding="10"
 CellSpacing="0"
 Font-Name="Verdana"
 Font-Size="8pt"
 Font-Bold="true"
 HeaderStyle-BackColor="lightGreen"
 EnableViewState="false"
 runat="server" />
 </form>
 </body>
</html>

We use the <asp:dataGrid ... /> tag to place the DataGrid on the form.
Then, in the page’s OnLoad method, we load the games table from the poker database
into gamesGrid. We do so by setting its DataSource property and calling the
DataBind method. The result is a page such as that shown in figure 8.8.

The DataGrid supports paging so that you can page forward and back through
the data source. Use the PageSize property to specify the number of rows to be dis-
played on a page, and then set AllowPaging to true to display Previous and
Next buttons on the page.
WORKING WITH WEB FORMS AND SERVER CONTROLS 255

8.3.5 Using the HtmlTable control

The HtmlTable control is an HTML control that maps directly to the HTML table.
You can use it to programmatically build an HTML table for display in the browser, as
shown in listing 8.9. This example allows the user to highlight a cell in the table, caus-
ing a roundtrip to the server where the table is rebuilt and the selected cell highlighted.

<!-- tableform.aspx -->

<%@ Page Language="C#" Debug="true" %>
<%@ Import Namespace="System"%>
<%@ Import Namespace="System.Web.UI"%>

<script runat="server">

protected override void OnLoad(EventArgs e) {

 base.OnLoad(e);

 int cellNum = 0;
 if (IsPostBack) {
 try {
 cellNum = Int32.Parse(cellTextBox.Text);
 } catch (Exception) {
 cellNum = 0; // don't highlight any cell
 }
 }

 int rows = 3, cols = 3, num = 0;
 for (int i = 0; i < rows; i++) {
 HtmlTableRow htmlRow = new HtmlTableRow();

Figure 8.8

Using the DataGrid Web

control to display poker

games

 Listing 8.9 Building an HTML table using the HtmlTable control
256 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 for (int j = 0; j < cols; j++) {
 num++;
 HtmlTableCell htmlCell = new HtmlTableCell();
 htmlCell.Controls.Add(new LiteralControl(num.ToString()));
 if (num == cellNum)
 htmlCell.BgColor="Yellow";
 htmlRow.Cells.Add(htmlCell);
 }
 myTable.Rows.Add(htmlRow);
 }
}
</script>

<html><head><title>HtmlTable Example</title></head>
<body>
 <h1>HtmlTable Example</h1>

 <form runat="server">

 <table
 id="myTable"
 border="1"
 cellPadding="10"
 cellSpacing="1"
 runat="server" />

 <p>
 Cell#
 <asp:textbox
 id="cellTextBox"
 columns="1"
 maxLength="1"
 runat="server"/>

 <input
 type="submit"
 value="Highlight Cell"
 runat="server">
 </p>

 </form>
</body>
</html>

Note the test:

 if (IsPostBack) {

 ...
 }

When a user first requests a Web form, its page’s IsPostBack property will be false.
This indicates that the form is being loaded for the first time, so the form will not yet
contain any viewstate information. In this example, we test the IsPostBack
WORKING WITH WEB FORMS AND SERVER CONTROLS 257

property before attempting to retrieve the cell number to highlight. Then we attempt
to parse the integer from the text box, create the table, and highlight the cell.

The HtmlTableCell object has its own controls collection to which we add a
new literal control containing the string representation of the cell number. ASP.NET
compiles any HTML elements and text, which do not require server-side processing,
into instances of the LiteralControl class.

Running this example produces the page shown in figure 8.9.

8.4 CREATING USER CONTROLS

A user control allows you to capture one or more commonly used UI elements into a
single reusable control. You can reuse your Web Forms by turning them into user
controls. Doing so involves making a few modifications to the form, after which it is
no longer usable as a stand-alone Web Form. User controls provide a convenient way
to build Web Forms by assembling customized reusable components.

The first step in converting a Web Form to a user control is to save the form as a new
file with an .ascx extension. Since a user control will be embedded in a Web Form, you
also need to remove any <html>, <head>, <title>, <body>, or <form> tags.
Typically, it will contain just a script block followed by some Web server, or HTML,
controls. Listing 8.10 presents usercolor.ascx, a user control to allow a user to select colors.

<!-- usercolor.ascx -->

<script language="C#" runat="server">

 public string Color {

Figure 8.9

The table generated by the

HtmlTable control

 Listing 8.10 A user control to pick colors
258 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 get {
 if (colorTextBox.Text == "") return "white";
 return colorTextBox.Text;
 }
 }

 public bool Visible {
 get {
 return colorPanel.Visible;

 }
 set {
 colorPanel.Visible = value;
 }
 }
</script>

<asp:panel id="colorPanel" visible="false" runat="server">
 <asp:label
 Font-Name="Verdana"
 Font-Size="7pt"
 text="Color : "
 runat="server"/>
 <asp:textbox
 Font-Name="Verdana"
 Font-Size="7pt"
 columns="10"
 id="colorTextBox"
 runat="server"/>
</asp:panel>

This example contains just a label control and a text box control for the user to enter
the name of a color. Both are contained within a panel control. In the script block, we
define two public properties: Color returns the entered color, while Visible
allows the caller to set the visibility of this user control. Placing the two controls on
the same panel allows us to conveniently hide them both by setting the panel’s Vis-
ible property. Also, notice that our user control does not participate in any page
processing, such as handling page events, or setting page properties. Instead, we
implement a nice clean interface to the control by implementing public properties.

To place this control on a Web Form, we first need to declare it at the top of our
form, as follows:

<%@ Register
 TagPrefix="userColors"
 TagName="userColor"
 Src="usercolor.ascx" %>

We set the TagPrefix and TagName properties to enable us to refer to the control
as <userColors:userColor> when we use it on the form. We also specify the
CREATING USER CONTROLS 259

location of the source code, usercolor.ascx. Once declared, we can place the control on
the form using regular Web Forms syntax:

 <userColors:userColor id="userColorControl" runat="server"/>

Listing 8.11 illustrates with a Web Form, colorform.aspx, which uses the control.

<!-- colorform.aspx -->

<%@ Page Language="C#" Debug="true" %>
<%@ Register
 TagPrefix="userColors"
 TagName="userColor"
 Src="usercolor.ascx" %>

<script runat="server">
 protected override void OnLoad(EventArgs e) {
 base.OnLoad(e);
 body.Attributes["bgcolor"] = userColorControl.Color;
 userColorControl.Visible = !userColorControl.Visible;
 }
</script>

<html><head><title>The UserColor Control</title></head>
 <body id="body" runat="server">
 <h1>The UserColor Control</h1>
 <form runat='server'>
 <userColors:userColor id="userColorControl" runat="server"/>
 <p>
 This form uses the UserColor user control.
 When you submit the form the selected color
 will be used to set the page's background color.
 </p>
 <asp:button
 text="Submit"
 Font-Name="Verdana"
 Font-Size="7pt"
 BorderColor="black"
 type="submit"
 runat="server"/>
 </form>
 </body>
</html>

In the OnLoad method, the application sets the background color of the form to the
control’s Color property. Also, to demonstrate showing and hiding the control, it
flips the control’s Visible property on each roundtrip. See figure 8.10.

If you’ve found yourself constantly reinventing the wheel when developing ASP
applications in the past, then user controls are for you. With a well-stocked library of

 Listing 8.11 Using the UserColor control
260 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

user controls, common functionality can more easily be shared across projects, and
productivity can be substantially enhanced.

8.5 VALIDATING USER INPUT

The Web Forms infrastructure provides a selection of validation controls that you can
use to validate user input, and display error messages to the user. Common validation
scenarios are supported including requiring that a field contains data, ensuring that
an entry is within a specified range, matching an entry against a pattern, and so forth.
You can attach one or more validation controls to an input control.

The built-in validation controls include:

• RequiredFieldValidator—Requires an entry in a field

• CompareValidator—Compares an entry with a value or a property of
another control

• RangeValidator—Requires an entry to be between specified lower and
upper bounds

• RegularExpressionValidator—Requires an entry to match a pattern
specified by a regular expression

• CustomValidator—Requires an entry to pass a validation test that you
code yourself

• ValidationSummary—Displays a summary of validation errors for all the
validation controls on a page

Listing 8.12 presents a simple Web Form that asks for a user’s age. It uses the
RequiredFieldValidator, RegularExpressionValidator, and Range-
Validator controls to validate the user’s input.

Figure 8.10

Reusing the UserColor user control
VALIDATING USER INPUT 261

<!-- ageform.aspx -->
<%@ Page Language="C#" Debug="true" %>

<script runat="server">
 private void ageHandler(object sender, EventArgs e) {
 if (IsValid)
 ageLabel.Text = "You are " + ageTextBox.Text + " years old.";
 else
 ageLabel.Text = "Please Enter Your Age.";
 }
</script>

<html><head><title>Validating a User's Age</title></head><body>
 <form runat='server'>

 <h1>Validating a User's Age</h1>
 <asp:label text="Age : " runat="server"/>
 <asp:textbox
 id="ageTextBox"
 columns="3"
 maxLength = "3"
 runat="server"/>
 <asp:button
 id="submitButton"
 text="Submit"
 onClick="ageHandler"
 runat="server"/>
 <p>
 <asp:label
 id="ageLabel"
 text="Please Enter Your Age."
 runat="server"/>
 </p>

 <!-- require an entry... -->
 <asp:requiredFieldValidator
 controlToValidate="ageTextBox"
 errorMessage="Age required"
 enableClientScript="true"
 display="static"
 runat=server />

 <!-- must be an integer... -->
 <asp:regularExpressionValidator
 controlToValidate="ageTextBox"
 errorMessage="Age must be an integer"
 enableClientScript="true"
 display="static"
 validationExpression="^\d{1,3}$"
 runat="server" />

 Listing 8.12 Validating a user’s age
262 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 <!-- must be aged between 1 and 120 years... -->
 <asp:rangeValidator
 controlToValidate="ageTextBox"
 errorMessage="Age must be between 1 and 120 years"
 enableClientScript="true"
 display="static"
 type="Integer"
 minimumValue="1"

 maximumValue="120"
 runat="server" />

 <hr/>

 </form>
</body></html>

In this example, we have redundancy for illustration purposes. We use the
RequiredFieldValidator to ensure that the user makes an entry in the age-
TextBox, while the RegularExpressionValidator requires the entry to con-
sist of 1 to 3 digits:

 validationExpression="^\d{1,3}$"

Finally, we use a RangeValidator to ensure that the user be between 1 and 120
years of age:

 type="Integer"
 minimumValue="1"
 maximumValue="120"

Note that the following properties are common to all three controls:

• controlToValidate—Specifies the control to be validated. That’s age-
TextBox in this example.

• errorMessage—The error text to be displayed if validation fails.

• enableClientScript—If you set this property to true, the control will
attempt to generate client-side JavaScript to perform the validation, if the
browser supports it. This saves a roundtrip to the server.

• display—Validation controls are invisible by default. They are displayed
only if an error occurs, in which case they may cause other page elements to
move on the page. Specify static to create space for the error display whether
it is visible or not.

Note the test in the ageHandler:

 if (IsValid)
 ...
 else
 ...
VALIDATING USER INPUT 263

If a validation control triggers an error, it sets the page’s IsValid property to
false. If there are multiple validation controls on the form, the IsValid property
provides a convenient way to check for any input errors.

If you run this example, and submit the form without making an entry in the age
field, you should see the result shown in figure 8.11.

Entering an age outside of the permissible range results in the error message shown in
figure 8.12.

Note that the ValidationSummary control provides a means of displaying error
messages in summary form in a single location, such as the top or bottom of a form:

Figure 8.11

Using RequiredFieldValidator control

Figure 8.12

Using the RangeValidator control
264 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 <!-- summarize errors... -->
 <asp:validationSummary
 displayMode="BulletList"
 HeaderText="Error Summary:"
 runat="server"/>

8.6 CONFIGURING AND CUSTOMIZING
ASP.NET APPLICATIONS

In chapter 5, we took a brief look at the Web.config file when we configured
RemoteEncoder.Base64Service and deployed it on IIS. ASP.NET provides a
hierarchical configuration system that allows an administrator to define configuration
data at the application, site, or machine level. This file is called Web.config and, to
configure an application, it is typically placed in the application root directory. Its
format is the same as the <appname>.exe.config file used with desktop .NET applica-
tions. Since it is a regular text file, it can be copied together with the application files
to a new sever, thus obviating the need for duplicating registry configuration settings,
and the like.

ASP.NET supports separate configuration files in application subdirectories. Each
applies its settings to the directory in which it is located and any virtual directories
beneath. Settings in child directories can override or modify settings inherited from
the parent directory.

The ASP.NET configuration system is part of .NET’s machinewide configuration
infrastructure. Therefore, the configuration settings for http://server/app/dir/page.aspx
are computed by applying the settings in the following files, in the following order:

1 C:\WINNT\Microsoft.NET\Framework\<version>\CONFIG\machine.config:
The base configuration settings for the machine

2 C:\inetpub\wwwroot\web.config: The base configuration settings for the root
Web site

3 C:\app\web.config: Application-specific settings

4 C:\app\dir\web.config: Subdirectory-specific settings

While the structure of the XML-based Web.config file is the same as the configuration
files we explored in chapter 5, the number and variety of possible configuration set-
tings is a bit intimidating. Scenarios covered include the installation of custom ISAPI-
like HTTP handlers, implementing custom security and logging, specifying session
timeout, supporting alternate locales, configuring application tracing and debugging,
and so forth. However, the good news is that the default settings may be sufficient for
your application’s needs, in which case you don’t need a Web.config file at all.

You can also store application parameters in the Web.config file and retrieve them
using the technique used in the Bank class in chapter 4. (However, you might want
to use the global.asax file for application parameters, as we’ll see in a moment.)
CONFIGURING AND CUSTOMIZING ASP.NET APPLICATIONS 265

ASP.NET caches configuration files and reloads them in the event of a change. There-
fore, you don’t need to stop and restart the server for configuration settings to take
effect. Also, by default, ASP.NET prevents access to configuration files by unautho-
rized users of your application.

We’ll look at some examples of ASP.NET application configuration and customi-
zation in the sections that follow. This will include the development, installation, and
use of a custom HTTP module, configuring tracing and debugging, and managing
application and session state.

8.6.1 Creating a custom HTTP module

HTTP requests can be processed by one or more HTTP modules to implement
authentication, logging, error handling, or some specialized custom handling as
required by the application. You can create your own custom module to handle
HTTP requests and install it by including it in the httpModules section of the
Web.config file. Listing 8.13 presents a simple example.

// file : custhttpmodules.cs
// compile : csc /t:library custhttpmodules.cs

using System;
using System.Web;
using System.Web.SessionState;

namespace CustHttpModules {

 public class RequestCounterModule : IHttpModule {

 public void Init(HttpApplication ha) {
 ha.AcquireRequestState += new EventHandler(gotState);

 }

 public void Dispose() {
 // perform any necessary cleanup here
 }

 private void gotState(object sender, EventArgs e) {

 HttpApplication ha = (HttpApplication)sender;
 HttpSessionState s = ha.Session;

 if (s["numRequests"] == null) {
 s["numRequests"] = 1;
 } else {
 int numRequests = (int)s["numRequests"];
 s["numRequests"] = ++numRequests;
 }
 }
 }
}

 Listing 8.13 A custom HTTP module to count HTTP requests
266 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

The purpose of this module is to count HTTP requests for the current session. To
code the custom HttpModule we need to create a class that implements the
IHttpModule interface and provides Init and Dispose methods. The Init
method takes an HttpApplication object as an argument. This object exposes
several events, such as BeginRequest, AcquireRequestState, and
EndRequest, which are fired in the process of handling the HTTP request. In this
example, we add an event handler for the AcquireRequestState event. This
event is fired at the point in processing where session state has been established,
enabling us to store the request count in Session["numRequests"]. If, instead,
we override BeginRequest, we won’t be able to read and write session data.

In order to install the module, we need to add an entry to the <httpModules>
section of the Web.config file, as shown in listing 8.14.

<configuration>
 <system.web>
 <httpModules>
 <add
 name="Request Counter Module"
 type="CustHttpModules.RequestCounterModule,custhttpmodules" />
 </httpModules>
 </system.web>
</configuration>

In order for ASP.NET to find our module, we must compile it and place it in the bin
subdirectory of the application directory. Once the module has been installed, our
ASP.NET application will have access to the number of HTTP requests received during
the current session. Listing 8.15 presents a simple .aspx page which uses the counter.

<!-- dumpreqs.aspx -->

<%@ Page Language="C#" Debug="true"%>

<script runat="server">
 private void dumpReqs() {
 string s = "Number of Requests: " + Session["numRequests"];
 Response.Write(s);
 }
</script>

<html><head><title>HTTP Request Count</title></head>
 <body>
 <h1>HTTP Request Count</h1>
 <% dumpReqs(); %>
 </body>
</html>

 Listing 8.14 Installing an HTTP module

 Listing 8.15 Using the HTTP request counter
CONFIGURING AND CUSTOMIZING ASP.NET APPLICATIONS 267

If you run the application and refresh the page in your browser a few times, you
should see an incrementing count of HTTP requests.

Installing a custom HTTP module provides an elegant way to preprocess requests
before they reach your ASP.NET pages. You can use this approach to implement your
own custom authentication or logging, or to set defaults or load user preferences, or
any number of useful tasks that might better be performed before your ASP.NET pages
are invoked.

8.6.2 Creating a custom HTTP handler

The HTTP handler is similar to an HTTP module, in that it provides custom process-
ing of incoming HTTP requests. However, the HTTP handler is designed to process
the request completely, and return a result to the browser. Therefore, if the Web
Forms infrastructure is not essential to the handling of the HTTP request, you can
implement an HTTP handler instead. Listing 8.16 provides a simple example.

// file : custhttphandlers.cs
// compile : csc /t:library custhttphandlers.cs

using System.Web;

namespace CustomHttpHandlers {

 public class HelloHandler : IHttpHandler {

 public void ProcessRequest(HttpContext hc) {
 hc.Response.Write("Hello, World!");
 }

 public bool IsReusable {
 get {
 return true;
 }
 }
 }
}

Installing an HttpHandler intercepts requests before they are processed by the page
framework. This example returns a plain text greeting to the browser and can be
installed using the following configuration file entries shown in listing 8.17.

<httpHandlers>
 <add
 verb="*"
 path="hellohandler.aspx"

 Listing 8.16 A custom HTTP handler

 Listing 8.17 Installing a custom HTTP handler
268 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 type="CustomHttpHandlers.HelloHandler, custhttphandlers" />
</httpHandlers>

The configuration entry specifies that all requests for hellohandler.aspx should be
routed to our HelloHandler handler. To run this example, remember to place the
compiled handler DLL in the application’s bin subdirectory.

8.7 TRACING ASP.NET APPLICATIONS

ASP.NET provides a new tracing feature to aid the developer in testing applications
and isolating problems. This enables you to trace through the execution of your
application and write trace data to the browser. You can also leave your trace state-
ments in the application and simply switch them off in production. Tracing can be
enabled at two levels:

• Page-level tracing

• Application-level tracing

To enable page-level tracing, you need to switch it on in the Page directive at the
start of the ASP.NET file:

 <%@ Page Language="C#" Trace="true"%>

Doing so appends trace information to the output sent to the browser. You can also
insert your own trace information into the output using Trace.Write and
Trace.Warn statements. Listing 8.18 is a reworking of the helloform.aspx applica-
tion seen earlier. This version enables tracing and inserts some custom output into
the trace.

<!-- traceform.aspx -->

<%@ Page Language="C#" Trace="True" %>

<script runat="server">

 // greet the user...
 private void greetHandler(object sender, EventArgs e) {

 Trace.Warn("*** Entering greetHandler ***");

 firstNameTextBox.Text = firstNameTextBox.Text.Trim();

 Trace.Warn("*** First Name = '" +
 firstNameTextBox.Text + "' ***");

 if (firstNameTextBox.Text == "") {
 // no name, so no greeting...
 greetingLabel.Text = "";
 Trace.Warn("*** No greeting ***");

 Listing 8.18 Tracing an ASP.NET application
TRACING ASP.NET APPLICATIONS 269

 } else {
 // greet the user...
 greetingLabel.Text =
 "Hello, " + firstNameTextBox.Text + "!";
 }
 Trace.Warn("*** Greeting = '" + greetingLabel.Text + "' ***");
 }
</script>

<html><head><title>Hello Web Form</title></head>

<body>
 <h1>Hello Web Form</h1>
 <form action='helloform.aspx' method='POST' runat='server'>

 <asp:label text="What's Your First Name?" runat="server"/>
 <asp:textbox id="firstNameTextBox" runat="server"/>
 <asp:button
 id="greetButton"
 text="Greet"
 OnClick="greetHandler"
 runat="server"/>
 <p>
 <asp:label id="greetingLabel" runat="server"/>
 </p>

 </form>
</body>
</html>

Note the use of Trace.Warn to write out trace data. Executing this application,
entering your name, and submitting the form produces the output shown in
figure 8.13.

As you can see there is a lot of information in the trace including events processed
and their duration. If you scroll downward, you’ll also see information about controls
and the size in bytes of their viewstate data, any session objects and their values, cook-
ies if any, HTTP headers, and server variables. Typically more useful, however, is the
custom trace information that we created ourselves. This is included in the Trace Infor-
mation section.

When the application is debugged, we can simply leave our trace statements in
place, and switch off tracing at the top of the file:

 <%@ Page Language="C#" Trace="false"%>

You can also turn on tracing at the application level using a configuration file entry:

<configuration>
 <system.web>
 <trace
 enabled="true"
270 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 localOnly="true"
 pageOutput="false"
 requestLimit="10"
 traceMode="SortByTime"
 />
 </system.web>
</configuration>

Switching on application-level tracing switches on tracing for every page in the appli-
cation. You can control application-level tracing using the following attributes:

• enabled—Set to true to switch on tracing

• localOnly—Set to true to enable tracing on localhost only

• pageOutput—Set to true to append trace information to the end of each page

Figure 8.13 Displaying trace information
TRACING ASP.NET APPLICATIONS 271

• requestLimit—The maximum number of trace requests to store on the
server, (the default is 10)

• traceMode—Set to SortByTime or SortByCategory

Note that, if pageOutput is false, the trace data can be viewed by browsing the
trace.axd file in the browser. For example, to access trace information for the hello
application on the localhost, you would go to http://localhost/hello/trace.axd.

8.8 MANAGING APPLICATION
AND SESSION STATE

We’ve already seen examples of the use of session variables both in our ASP.NET appli-
cations and XML Web services. We’ve also explored how Web Forms implement a
viewstate mechanism to store the state of a form and its controls between server
roundtrips. In addition, ASP.NET provides an application state store which we
explore next. We also look at the different options for managing state information in
a flexible and scalable way.

8.8.1 Application state and the Global.Asax file

Unlike session objects, application objects are shared by all sessions and live for the
duration of an application. ASP.NET application objects are typically created and ini-
tialized in the global.asax file. Listing 8.19 provides an example in which we code an
Application_Start method to extract the allowed minimum and maximum
bets from the poker database.

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

<script language="C#" runat="server">

 // global.asax methods...

private void Application_Start(object sender, EventArgs e) {

 SqlConnection con =
 new SqlConnection(
 @"server=(local)\NetSDK;database=poker;trusted_connection=yes");

 string sql;
 SqlDataAdapter com;
 DataSet ds = new DataSet();

 sql = "SELECT value From Integers WHERE name = 'MaxBet'";
 com = new SqlDataAdapter(sql, con);
 com.Fill(ds, "MaxBet");
 Application["MaxBet"] = ds.Tables["MaxBet"].Rows[0][0];

 sql = "SELECT value From Integers WHERE name = 'MinBet'";

 Listing 8.19 Creating application-based objects in the Global.Asax file
272 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 com = new SqlDataAdapter(sql, con);
 com.Fill(ds, "MinBet");
 Application["MinBet"] = ds.Tables["MinBet"].Rows[0][0];
}
</script>

The Application_Start method is executed when the application starts. Typi-
cally, this is when our site receives its first visitor causing the first HTTP request to be
generated. Listing 8.20 shows how we can retrieve application objects in an ASP.NET
page.

<!-- dumpbets.aspx -->
<%@ Page Language="C#" Debug="true"%>

<script runat="server">
 private void dumpBets() {
 string s = "Minimum Bet: " + Application["MinBet"] + "
";
 s += "Maximum Bet: " + Application["MaxBet"];
 Response.Write(s);
 }
</script>

<html><head><title>Application State</title></head>
 <body>
 <h1>Application State</h1>
 <% dumpBets(); %>
 </body>
</html>

Here we access Application["MaxBet"] and write it to the response stream.
The advantage of using application-based objects is that, once the first application
request occurs, all subsequent requests have immediate access to the application
object. In this example, that means that the SQL statements are executed just once.
Therefore, the application store is a good place to store data that doesn’t change, or
changes only infrequently, during the application’s lifetime. (The poker machine
parameters are good candidates, while the machine statistics are not.)

Since application objects can be concurrently accessed by different sessions, chang-
ing application data requires locking the application object and this results in a perfor-
mance penalty as several threads compete for the same resource. Therefore, if you must
change an application object, you’ll need to use the following approach in your pages:

 Application.Lock();
 Application["someVar"] = someVal;
 Application.UnLock();

 Listing 8.20 Accessing application-based objects
MANAGING APPLICATION AND SESSION STATE 273

8.8.2 Managing session state

We looked at session-based storage in chapter 6 when we explored Web services.
Session is a public instance property of both System.Web.UI.Page and Sys-
tem.Web.Services.WebService. Typically, we store and retrieve session-based
data, as follows:

 int numRequests = (int)Session["numRequests"];

 ...

 Session["numRequests"] = ++numRequests;

In ASP.NET terms, a session begins when a user first visits our application and ends
when the session expires. Expiration occurs when there has been no activity for a
period of time, unless we provide an explicit mechanism, such as a logout feature,
which allows us to end the session with Session.Abandon. The expiration time,
and other session parameters, can be set in the configuration file, as follows:

<configuration>
 <system.web>
 <sessionState
 mode="InProc"
 cookieless="true"
 timeout="20"
 stateConnectionString=" ... "
 sqlConnectionString=" ... " />
 </system.web>
</configuration>

The meanings of these attributes are:

• mode—Specify Off to switch off sessions, InProc to store session state data
locally in the same process that processes the request, StateServer to store
remotely, or SqlServer to store in SQL Server. If you specify StateServer,
ASP.NET will store session data in an external process, which can be on another
machine. In that case, you’ll also need to set the stateConnectionString
attribute.

• cookieless—Specify true for sessions without cookies, false otherwise.
If you set to true, ASP.NET tracks a session by adding a session identifier to the
URL.

• timeout—Specify the number of minutes a session must be idle before it is
abandoned.

• stateConnectionString—If mode is StateServer, specify the server
name and port for the remote server, such as 127.0.0.1:42424. By default,
the state service listens on port 42424.

• sqlConnectionString—If mode is SqlServer, specify the SQL Server
connection string here.
274 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

Perhaps the most important attribute is mode, which enables you to separate session
state management from the application and place it in a separate process, or on a dif-
ferent machine, or even in SQL Server. This insulates state data from application
crashes or IIS restarts. It also allows an application to be partitioned across multiple
processes or multiple machines. Each process can communicate separately with the
state service.

8.9 CREATING WEB FORMS USING
VISUAL STUDIO .NET

So far, we’ve done things the hard way and hand-coded all our ASP.NET examples.
While this is the best way to learn, you’ll eventually want to take advantage of some
of the powerful features of Visual Studio .NET to ease the burden and reduce the
tedium. So let’s see what Visual Studio .NET can do for us. We’ll create a base 64
encoding form similar to the remote service we developed in chapter 5.

8.9.1 Creating a Web application

using Visual Studio .NET

Launch Visual Studio .NET, select File | New | Project... from the menu.
Then, in the left pane, select Visual C# Projects, and, in the right pane, select
ASP.NET Web Application. Call your new project Base64App and click OK to
create it. See figure 8.14.

If everything works properly, Visual Studio .NET should create a new Web Forms
project, and the solution explorer should display the contents of the project. You’ll
notice that the project workspace looks very similar to that seen in the previous chapter
when we created a Windows Forms project. If you launch Internet Services Manager,

Figure 8.14 Creating a Web application using Visual Studio .NET
CREATING WEB FORMS USING VISUAL STUDIO .NET 275

you’ll find that Visual Studio .NET has created a new virtual directory on the server
and placed the project files there. By default, the files will be placed in the physical
C:\inetpub\wwwroot\Base64App directory.

So, as you can see, Visual Studio .NET automatically creates the project, generates
the project files, and puts them in their proper places. Also, you’ll note that we’ve got
an AssemblyInfo.cs file, a Global.asax file, a DISCO file called Base64App.vsdisco, a
Web.config file, and, of course, a new Web Form file, WebForm1.aspx, and finally a file
called WebForm1.aspx.cs. Visual Studio .NET separates the Web Form itself, and the
code behind the form, into the latter two files. If, for example, you examine the .aspx
file, you’ll see the following directive at the top:

<%@ Page
 language="c#"
 Codebehind="WebForm1.aspx.cs"
 AutoEventWireup="false"
 Inherits="Base64App.Base64Form" %>

Visual Studio .NET uses the value of the Codebehind attribute to locate the pro-
gramming code associated with the page. We’ll look more closely at the code-behind
model in the next section.

8.9.2 Using the toolbox to design a Web Form

Visual Studio .NET supports a drag-and-drop approach to Web Forms design. Our
base 64 encoding application is shown in figure 8.15.

To use the application, enter some plain text in the text box and click Encode. The
encoded result is shown below the text entered. You can paste the encoded result back
into the text box and click the Decode button, in which case the encoded text is
decoded and also displayed at the bottom of the form.

We begin by dragging the appropriate controls from the toolbox to create the UI.
See figure 8.16.

Figure 8.15 Using the Base 64 encoding application
276 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

At this point, double-click both the encodeButton and decodeButton and
enter the code shown in figure 8.17.

Figure 8.16 Designing the Base 64 user interface

Figure 8.17 Coding the Encode and Decode button handlers
CREATING WEB FORMS USING VISUAL STUDIO .NET 277

Finally, press F5 to execute the application. If you’ve followed each step, Visual Stu-
dio .NET should compile the application, and launch Internet Explorer so that you
can browse the result, as seen in figure 8.15. Depending on your setup, you may get
an error saying that the System.Text or some other namespace is missing, in
which case you should edit the WebForm1.aspx.cs file and add the appropriate
using statement.

That’s all there is to it. In just a couple of minutes, we’ve used Visual Studio to cre-
ate and deploy a fully functional ASP.NET application.

8.10 MANUALLY CREATING
CODE-BEHIND WEB FORMS

You need to do things a little differently to manually create a code-behind applica-
tion. To illustrate, let’s create a code-behind version of the helloform.aspx application
that we explored earlier. We place the presentation markup in behindform.aspx and
the C# code in behindform.cs. Listing 8.21 presents behindform.aspx.

<!-- behindform.aspx -->

<%@ Page Language="C#" Inherits="BehindForm" Src="behindform.cs" %>

<html><head><title>Hello Web Form</title></head>

<body>
 <h1>Hello Web Form (Code-Behind Version)</h1>
 <form action='behindform.aspx' method='POST' runat='server'>

 <asp:label text="What's Your First Name?" runat="server"/>
 <asp:textbox id="firstNameTextBox" runat="server"/>

 <asp:button
 id="greetButton"
 text="Greet"
 OnClick="greetHandler"
 runat="server"/>
 <p>
 <asp:label id="greetingLabel" runat="server"/>
 </p>

 </form>
</body>
</html>

The important line is:

 <%@ Page Language="C#" Inherits="BehindForm" Src="behindform.cs" %>

 Listing 8.21 ASP.NET markup for code-behind Hello application
278 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

This tells us that the page is derived from the BehindForm class located in the file,
behindform.cs. Note that we don’t use a CodeBehind attribute. It is used by Visual
Studio .NET to help locate the files involved, and is unnecessary here.

We’ve also deleted the script code from the file and moved it to behindform.cs,
shown in listing 8.22.

// file : behindform.cs

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class BehindForm : Page {

 protected TextBox firstNameTextBox;
 protected Label greetingLabel;

 // greet the user...
 protected void greetHandler(object sender, EventArgs e) {

 firstNameTextBox.Text = firstNameTextBox.Text.Trim();
 if (firstNameTextBox.Text == "") {
 // no name, so no greeting...
 greetingLabel.Text = "";
 } else {
 // greet the user...
 greetingLabel.Text =
 "Hello, " + firstNameTextBox.Text + "!";
 }
 }
}

Since this is a regular C# class, we use the using statement to identify the
namespaces used. Note that, the class derives from Page and declares protected
members for the text box and label. The greetHandler method is also marked
protected. Recall that the .aspx file itself defines a class that inherits from our code-
behind class. Therefore, the page will inherit these members. If you place both files
into a new virtual IIS directory and use your browser to test the application, you
should get results identical to those we saw earlier.

8.11 WEBPOK: THE WEB FORMS-BASED
POKER MACHINE

Now, we return to our case study and build a Web Forms-based user interface to the
poker.dll assembly. We’ll just code a simple version of the game that deals and draws
cards, and scores hands. Figure 8.18 shows what the game looks like in the browser.

 Listing 8.22 C# code for code-behind Hello application
WEBPOK: THE WEB FORMS-BASED POKER MACHINE 279

The user interface consists of a table, 5 rows long, and 5 columns wide, and is laid
out as follows:

• Row 1—A static <asp:label> which reads “.NET Video Poker”

• Row 2—A dynamic <asp:label> to display game messages and the score

• Row 3—Five <asp:image> controls to display the cards

• Row 4—Five <asp:checkbox> controls to allow the user to hold cards

• Row 5—An <asp:button> control for dealing and drawing cards

We’ll use the code-behind approach. Listing 8.23 presents webpok.aspx which con-
tains the user interface markup.

<!-- WebPok.aspx -->
<%@ Page Language="C#" Inherits="Poker.WebPok" Src="WebPok.cs" %>

<html>
<head>
 <title>
 .NET Video Poker - The WebForms Version
 </title>
</head>
<body>
<center>
<form runat="server">

<asp:table
 border="1"
 cellSpacing="0"

Figure 8.18

Playing WebPok

 Listing 8.23 The WebPok Web Form
280 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 cellPadding="5"
 runat="server">

 <asp:tablerow runat="server">
 <asp:tableCell
 columnSpan="5"
 horizontalAlign="center"
 runat="server">
 <asp:label

 text=".NET Video Poker"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>
 </asp:tablerow>

 <asp:tablerow runat="server">
 <asp:tableCell
 columnSpan="5"
 horizontalAlign="center"
 runat="server">
 <asp:label
 id="messageLabel"
 text="Click DEAL to Start"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>
 </asp:tablerow>

 <asp:tablerow runat="server">

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:image
 id="card1"
 ImageUrl="images/cb.gif"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:image
 id="card2"
 ImageUrl="images/cb.gif"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"
WEBPOK: THE WEB FORMS-BASED POKER MACHINE 281

 runat="server">
 <asp:image
 id="card3"
 ImageUrl="images/cb.gif"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"

 runat="server">
 <asp:image
 id="card4"
 ImageUrl="images/cb.gif"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:image
 id="card5"
 ImageUrl="images/cb.gif"
 runat="server"/>
 </asp:tableCell>

 </asp:tablerow>

 <asp:tablerow runat="server">

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:checkBox
 id="hold1"
 text="HOLD"
 enabled="false"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:checkBox
 id="hold2"
 text="HOLD"
 enabled="false"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>
282 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:checkBox
 id="hold3"
 text="HOLD"
 enabled="false"
 Font-Name="Verdana"

 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:checkBox
 id="hold4"
 text="HOLD"
 enabled="false"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>

 <asp:tableCell
 horizontalAlign="center"
 runat="server">
 <asp:checkBox
 id="hold5"
 text="HOLD"
 enabled="false"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 runat="server"/>
 </asp:tableCell>

 </asp:tablerow>

 <asp:tablerow runat="server">
 <asp:tableCell
 columnSpan="5"
 horizontalAlign="center"
 runat="server">
 <asp:button
 id="dealDrawButton"
 text="DEAL"
 Font-Name="Verdana"
 Font-Size="12pt"
 Font-Bold="true"
 OnClick="dealDrawHandler"
WEBPOK: THE WEB FORMS-BASED POKER MACHINE 283

 runat="server"/>
 </asp:tableCell>
 </asp:tablerow>

</asp:table>

<asp:label id="handLabel" visible="false" runat="server"/>
</form>
<center>

</body>
</html>

As you can see, the markup is very simple. When the page is first loaded, we display
the backs of the cards and tell the user “Click DEAL to Start.” Also, we have just one
event handler in the page, which deals and draws cards:

 <asp:button
 id="dealDrawButton"
 ...
 OnClick="dealDrawHandler"
 .../>

The dealDrawHandler is contained in the code behind the form, shown in
listing 8.24.

// file : WebPok.cs
// This is the codebehind logic for WebPok.aspx.

namespace Poker {

 using System;
 using System.Web.UI;
 using System.Web.UI.WebControls;

 public class WebPok : System.Web.UI.Page {

 protected void dealDrawHandler(object Source, EventArgs e) {
 Hand h;
 if (dealDrawButton.Text == "DEAL") {

 // deal...
 h = new SimpleMachine().Deal();
 handLabel.Text = h.Text;
 card1.ImageUrl="images/" + h.CardName(1) + ".gif";
 card2.ImageUrl="images/" + h.CardName(2) + ".gif";
 card3.ImageUrl="images/" + h.CardName(3) + ".gif";
 card4.ImageUrl="images/" + h.CardName(4) + ".gif";
 card5.ImageUrl="images/" + h.CardName(5) + ".gif";
 enableCheckBoxes(true);
 clearCheckBoxes();
 dealDrawButton.Text = "DRAW";
 messageLabel.Text = "Hold Cards and Click DRAW";

 Listing 8.24 The WebPok Web Form code
284 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

 return;
 }

 // draw...
 string holdCards = "";
 if (hold1.Checked) holdCards += "1";
 if (hold2.Checked) holdCards += "2";
 if (hold3.Checked) holdCards += "3";
 if (hold4.Checked) holdCards += "4";

 if (hold5.Checked) holdCards += "5";
 h = new SimpleMachine().Draw(handLabel.Text, holdCards);
 card1.ImageUrl="images/" + h.CardName(1) + ".gif";
 card2.ImageUrl="images/" + h.CardName(2) + ".gif";
 card3.ImageUrl="images/" + h.CardName(3) + ".gif";
 card4.ImageUrl="images/" + h.CardName(4) + ".gif";
 card5.ImageUrl="images/" + h.CardName(5) + ".gif";
 dealDrawButton.Text = "DEAL";
 enableCheckBoxes(false);
 messageLabel.Text = h.Title + " (Scores " + h.Score + ")";
 }

 private void enableCheckBoxes(bool flag) {
 hold1.Enabled = hold2.Enabled = hold3.Enabled =
 hold4.Enabled = hold5.Enabled = flag;
 }

 private void clearCheckBoxes() {
 hold1.Checked = hold2.Checked = hold3.Checked =
 hold4.Checked = hold5.Checked = false;
 }

 protected Button dealDrawButton;
 protected Label handLabel,messageLabel;
 protected Image card1, card2, card3, card4, card5;
 protected CheckBox hold1, hold2, hold3, hold4, hold5;
 }
}

The WebPok class consists of the dealDrawHandler method and a couple of util-
ity methods for clearing and enabling/disabling the check boxes. Since we don’t allow
betting, we use the Poker.SimpleMachine class which supports dealing and
drawing only. The dealDrawHandler method checks the caption of the button. If
it is DEAL, it deals cards. Otherwise cards are drawn.
WEBPOK: THE WEB FORMS-BASED POKER MACHINE 285

8.12 MOBPOK: THE MOBILE
INTERNET-BASED POKER MACHINE

At the time of writing, Microsoft was providing the
Mobile Internet Toolkit for .NET as a separate down-
load. The toolkit consists of a set of classes in the Sys-
tem.Web.Mobile and System.Web.UI.Mo-
bileControls namespaces, deployed in the Sys-
tem.Web.Mobile.dll assembly. A mobile Web Form is a
specialized type of ASP.NET Web Form containing
mobile server controls. Like regular Web Forms,
mobile Web Forms are stored as .aspx pages. The chief
advantage of the mobile Web Forms infrastructure is
that it can detect supported mobile devices and render
a page to suit a device’s capabilities.

We’re going to develop a simple mobile interface to
the poker game. Figure 8.19 shows the game in play
using the UP.Simulator from Openwave Systems. (See
http://developer.openwave.com.)

To hold cards, we’ll use the approach used in Con-
Pok, so that the user can hold cards by entering card
numbers using the numeric phone keypad. Listing 8.25
presents the mobile markup for the UI.

<!-- MobPok.aspx -->

<%@ Page
 Language="C#"
 Inherits="Poker.MobPok"
 Src="MobPok.cs" %>

<%@ Register TagPrefix="mobile"
 Namespace="System.Web.UI.MobileControls"
 Assembly="System.Web.Mobile" %>

<mobile:Form runat="server">
<mobile:label runat="server" text=".NET Video Poker"/>
<mobile:label runat="server" id="messageLabel" text="Click DEAL"/>

Figure 8.19 Playing MobPok

 Listing 8.25 The MobPok Web Form
286 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

<mobile:label runat="server" id="handLabel"/>
<mobile:textbox
 runat="server"
 id="holdTextBox"
 numeric="true"
 maxLength="5"
 size="5"
 visible="false"/>

<mobile:command
 runat="server"
 id="dealDrawCommand"
 text="DEAL"
 OnClick="dealDrawHandler"/>
</mobile:form>

As you can see, the markup is very simple. We start by registering the mobile tag
prefix to tell ASP.NET the names of the namespace and assembly where the mobile
controls reside. Then, we use just three labels, a text box, and a command button to
present the user interface. The code behind the page is shown in Listing 8.26.

// file : MobPok.cs
// This is the codebehind logic for MobPok.aspx.

namespace Poker {

 using System;
 using System.Web.UI.MobileControls;

 public class MobPok : System.Web.UI.MobileControls.MobilePage {

 protected void dealDrawHandler(object Source, EventArgs e) {

 Hand h;
 if (dealDrawCommand.Text == "DEAL") {

 // deal...
 h = new SimpleMachine().Deal();
 handLabel.Text = h.Text;
 dealDrawCommand.Text = "DRAW";
 holdTextBox.Visible = true;
 holdTextBox.Text = " ";
 messageLabel.Text = "Hold and Draw";
 return;
 }

 // draw...
 string holdCards = holdTextBox.Text;
 h = new SimpleMachine().Draw(handLabel.Text, holdCards);
 handLabel.Text = h.Text;
 dealDrawCommand.Text = "DEAL";
 holdTextBox.Visible = false;

 Listing 8.26 The MobPok Web Form code
MOBPOK: THE MOBILE INTERNET-BASED POKER MACHINE 287

 messageLabel.Text = h.Title;
 }

 protected Label handLabel,messageLabel;
 protected TextBox holdTextBox;
 protected Command dealDrawCommand;
 }
}

8.13 SUMMARY

In this chapter, we explored ASP.NET and the Web Forms programming model. We
compared ASP.NET to ASP and examined the System.Web.UI.Page class. We
looked at Web Forms and server controls, built a reusable user control of our own,
and saw how to validate user input.

We learned about configuring ASP.NET applications, tracing execution, and the
management of session and application state. We took a brief look at Visual Studio
.NET and the code-behind programming model, and we also saw how to manually
create code-behind applications. Finally, we developed two new versions of the poker
game using regular Web Forms and the Mobile Internet Toolkit.

If you are new to the platform, I hope this book has helped you to understand how
all the pieces of .NET hang together. For Windows developers, it is no longer enough
to be a VB virtuoso, a C++ connoisseur, an MFC master, a Win32 wizard, or an ASP
authority. Instead, the key to making the most of .NET is a grasp of the underlying
concepts, familiarity with the Framework, and effective programming skills in the lan-
guage of your choice.

Please visit http://www.manning.com/grimes where you can share your comments
or criticism and download updated examples.
288 CHAPTER 8 CREATING THE WEB FORMS USER INTERFACE

A P P E N D I X A

Introduction to C#

C# is the latest in an evolutionary line of C-based programming languages which
includes C, C++, and Java. It was used by Microsoft to develop much of the code for
the .NET Framework and is considered by many to be the language of choice for
.NET development. This appendix provides an introduction to the C# language.

Since C# was created with .NET in mind, many features of this language reflect
underlying features of the .NET platform. One example is the boxing mechanism,
which we explore in detail in chapter 2. It can be difficult to separate C# from .NET
when discussing such features. In general, I have tried to cover .NET-specific topics
in the main body of this book, while exploring the C# language in this appendix.
However, neither can be discussed in isolation. Therefore, you’ll find the following
related material in the main body of the book:

• Compiling and executing a first C# program—See chapter 1

• An overview of important namespaces—See chapter 1

• C# types—See chapter 2

• Value versus reference types—See chapter 2

• Boxing and unboxing—See chapter 2

• The object type (System.Object)—See chapter 2

• Finalizing and disposing objects—See chapter 2

• Assemblies—See chapter 2

• Reflection—See chapter 2
289

In addition, you’ll find almost 100 C# sample programs throughout the text, together
with a complete case study. These support a learn-by-example approach to supple-
ment the material in this appendix.

This appendix does not provide complete coverage of the C# language. To do so
would require a further book. Instead, the intention is to introduce the important fea-
tures of the language and equip the reader with the information necessary to under-
stand the main text. At the end of this appendix, I have provided a list of resources
where you can find further C# tutorials and reference material.

A.1 C# LANGUAGE OVERVIEW

The C# language is an evolution of C and C++, and also has much in common with
the Java programming language. Therefore, readers familiar with one or more of these
languages will immediately feel comfortable with many features of the C# language,
including C# statements, expressions, and operators. C# introduces several modern
improvements over C++ in the areas of type safety, versioning, events, and garbage
collection. C# also provides full access to operating system and COM APIs, and sup-
ports an unsafe mode, which enables the use of C-style pointers to manipulate
memory. Therefore, C# offers a simpler and safer programming language without
sacrificing much of the power and flexibility of C++.

A.1.1 Structure of a C# program

A C# program consists of one or more files, each of which can contain one or more
namespaces, which in turn contain types. Examples of types include classes,
structs, interfaces, enumerations, and delegates. Listing A.1 illustrates the structure
of a C# program.

namespace N1 {

 class C1 {
 // ...
 }

 struct S1 {
 // ...
 }

 interface I1 {
 // ...
 }

 delegate int D1();

 enum E1 {
 // ...
 }
}

 Listing A.1 The structure of a C# program
290 APPENDIX A INTRODUCTION TO C#

namespace N2 {

 class C2 {

 public static void Main(string[] args) {
 // execution starts here
 }
 }
}

If no namespace is declared, then a default global namespace is assumed. Note that an
executable C# program must include a class containing a Main function member, or
method, which represents the program entry point where execution begins. Any com-
mand-line arguments are passed as parameters to the Main method in the form of a
zero-based array of strings.

To access and use a type, you can use its fully qualified name, which includes its
containing namespace name and type name. For example, the following example
invokes the WriteLine method of the Console class, which is contained in the
System namespace:

 System.Console.WriteLine(...);

Alternatively, you can use the using statement to reference the namespace. Thereaf-
ter, you can omit the namespace name when referring to the type:

 using System;
 ...
 Console.WriteLine(...);

Finally, note the comments in listing A.1. C# uses C-style comments. Therefore, //
marks the beginning of a comment which runs to the end of the current line. Multi-
line comments can be enclosed between /* and */.

Refer to chapter 1 for more about coding, compiling, and executing a simple
C# program.

A.2 IDENTIFIERS, VARIABLES, AND CONSTANTS

The rules for creating C# identifiers to name program elements are straightforward.
We take a look at identifiers and at the declaration of variables and constants next.

A.2.1 Identifiers

Identifiers are used to give names to program elements such as variables, constants,
and methods. An identifier must start with a letter or underscore and consist of Uni-
code characters. Typically, an identifier will consist of letters, underscores, and deci-
mal digits. C# identifiers are case sensitive.

You cannot use a C# keyword as an identifier. However, you may prefix an iden-
tifier with the @ character to distinguish it from a keyword:
IDENTIFIERS, VARIABLES, AND CONSTANTS 291

 object @this; // prevent clash with "this" keyword

Although C# identifiers are case sensitive, you should generally not distinguish public
members by case alone. Apart from encouraging confusion, the cross language nature
of .NET means that your types may be reused by a case insensitive language such as
Visual Basic.

A.2.2 Variables

A C# variable represents a location in memory where an instance of some type is
stored. The C# type system is really just a layer on top of .NET’s language-
independent type system, which we explore in detail in chapter 2. In particular, we
explore the differences between value and reference types, so we won’t repeat that dis-
cussion here. Briefly, value types are the simple types such as int, long, and char,
which are common to most programming languages. You can also create your own
value types. Objects, strings, and arrays are examples of reference types.

Value types can be directly declared and initialized:

 bool bln = true;
 byte byt1 = 22;
 char ch1 = 'x', ch2 = '\u0066';
 decimal dec1 = 1.23M;
 double dbl1 = 1.23, dbl2 = 1.23D;
 short sh = 22;
 int i = 22;
 long lng1 = 22, lng2 = 22L;
 sbyte sb = 22;
 float f = 1.23F;
 ushort us1 = 22;
 uint ui1 = 22, ui2 = 22U;
 ulong ul1 = 22, ul2 = 22U, ul3 = 22L, ul4 = 2UL;

Note that you can explicitly specify the type of a literal value by appending a suffix
such as U for unsigned, or L for long. You can also specify a character value using a
Unicode escape sequence. For example, '\u0061' is the letter a.

Normally, reference types are created using the new keyword:

 object o = new System.Object();

However, although the string type is a reference type, it can be directly initialized:

 string s = "Hello!";

C# supports C-style escape sequences in strings:

 string s1 = "Hello\n"; // ends with newline character
 string s2 = "Hello\tthere!"; // contains embedded tab character

Escape sequences begin with a \ (backslash) character. Therefore, if your string other-
wise contains a \, you’ll need to double it:

 string s3 = "C:\\WINNT";
292 APPENDIX A INTRODUCTION TO C#

C# also provides the verbatim string for this purpose. To create a verbatim string lit-
eral, include the @ character before the opening quote:

 string s4 = @"C:\WINNT";

This causes any escape sequences within the string to be ignored.
In C# both the string and char types use 2-byte Unicode characters.
There are no global variables in C#. Therefore, all variables are either member vari-

ables of a class or struct, or they are local variables created within the scope of a method.

A.2.3 Constants

C# provides the const modifier which can be used in front of a declaration to create
program constants:

 const int min = 1;
 const int max = 100;
 const int range = max - min;

Constants are typically initialized with a literal value. They can also be given the value
of an expression, as we do with the range constant above, provided that the com-
piler can evaluate the expression at compile time. Therefore, the following would
generate a compiler error because the value of the expression assigned to i cannot be
known until run time:

 System.Random r = new System.Random();
 const int i = r.Next(1, 7); // error - compiler cannot evaluate

A.3 ARRAYS

Arrays in C# are zero-based and, for the most part, work like they do in other com-
mon programming languages. The array type is a reference type:

string[] a;

This declares an array of strings, a, but does not allocate space for any elements. The
array name serves as a reference to the array. This is similar to C/C++ where the array
name is a pointer to the first array element. Note that the type of a, in this example,
is string[]. In other words, unlike C-style arrays, the square brackets are part of
the type declaration.

To create an array and allocate space for array elements use:

string[] a = new string[100];

This defines an array of strings, a, and allocates space for 100 string elements. The
index of the first element is zero while the last index is 99.

Arrays can be directly initialized:

string[] a1 = {"cat", "dog", "mouse", "horse"};
int[] a2 = {1, 2, 3};
ARRAYS 293

The first line creates an array with four string elements and initializes their values
with the strings in curly braces. The second line creates and initializes a three-element
array of integers.

We can have multi-dimensional arrays:

string[,] ar = {
 {"cat", "rabbit"},
 {"dog", "fox"},
 {"mouse", "horse"}
 };

This declares a two-dimensional (3 x 2) array and initializes it. (C/C++ programmers
will find C#’s multi-dimensional array syntax a little different.) We can also have
arrays of arrays:

int[][] matrix;

Array elements must be of the same type. However, we can declare an array of type
object and put anything in it:

object[] ar = {3, "cat", 2.45};

This may not be particularly useful since you may need to cast to the correct type
when accessing an element:

string animal = (string)ar[1];

A.4 EXPRESSIONS AND OPERATORS

A C# expression consists of a sequence of operators and their operands. If you are a
C or C++ programmer you’ll be pleased to find that most C# operators look familiar
and retain their original C-like meanings. In this section, we explore the full list of
C# operators.

A.4.1 Arithmetic operators

C# provides all the usual arithmetic operators for addition, subtraction, multiplica-
tion, division, and so forth, as seen in table A.1.

Table A.1 C# arithmetic operators

Operator Description Examples

+ Unary Plus +a

– Unary Minus –a

++ Increment ++a or a++

–– Decrement ––a or a––

+ Addition a + b

continued on next page
294 APPENDIX A INTRODUCTION TO C#

For non-C programmers, the increment (++) and decrement (--) operators may be
new. Each comes in pre and post forms. Where a pre-increment operator appears
inside an expression, the increment operation takes place before the expression is eval-
uated. With a post-increment operator, the expression is evaluated first. The same
rules apply to both forms of the decrement operator. Table A.2 shows some examples.

A.4.2 Relational operators

The C# relational operators are the same as those found in C and C++.

Visual Basic programmers should note that C# uses a double equals, ==, to test for
equality and a single equals, =, for assignment. Also, inequality is denoted by !=
instead of <>.

– Subtraction a – b

* Multiplication a * b

/ Division a / b

% Remainder a % b

Table A.2 Using the increment operators

i Before Assignment Expression j After i After

3 j = ++i; 4 4

3 j = i++; 3 4

3 j = ––i; 2 2

3 j = i––; 3 2

Table A.1 C# arithmetic operators (continued)

Operator Description Examples

Table A.3 C# relational operators

Operator Description Example

== Equality a == b

!= Inequality a != b

< Less Than a < b

<= Less Than or Equal To a <= b

> Greater Than a > b

>= Greater Than or Equal To a >= b
EXPRESSIONS AND OPERATORS 295

A.4.3 Logical operators

The logical operators also owe their heritage to C/C++.

A.4.4 Bit-shifting operators

The << and >> operators perform left and right bitwise shifts on integral arguments:

 int i1 = 32;
 int i2 = i1 << 2; // i2 == 128
 int i3 = i1 >> 3; // i3 == 4

A.4.5 Assignment in C#

Table A.5 presents the C# assignment operators. Like C/C++, C# provides com-
pound assignment operators of the form a op= b. In general, a op= b, where op is
an arithmetic operator, is just a convenient shorthand for a = a op b.

A.4.6 Miscellaneous operators

C# also includes the conditional, ?, operator found in C/C++:

Table A.4 C# logical operators

Operator Description Example

! Negation !a

& Bitwise And a & b

| Bitwise Or a | b

^ Exclusive Or (XOR) a ^ b

~ Bitwise Complement ~ a

&& Logical And a && b

|| Logical Or a || b

Table A.5 C# assignment operators

Operator Expression Expression Value (a==3 and b==7)

= a = b 7

+= a += b 10

-= a -= b -4

*= a *= b 21

/= a /= b 0

%= a %= b 3

&= a &= b 3

|= a |= b 7

>>= a >>= b 0

<<= a <<= b 384
296 APPENDIX A INTRODUCTION TO C#

min = a < b ? a : b;

This is just shorthand for the if-else statement:

if (a < b)
 min = a;
else
 min = b;

In addition to operators already described, C# includes the following miscella-
neous operators:

• . (Dot)—For member access as in args.Length

• () (Cast)—For type conversion

• [] (Indexing)—For indexing arrays, pointers, properties, and attributes

• new—For creating new objects

• typeof—For obtaining the runtime type of an object

• is—For comparing the runtime type of two objects

• sizeof—For obtaining the size of a type in bytes

• checked, unchecked— For checking arithmetic overflow at runtime

• * (Pointer Indirection)—For obtaining the variable to which a pointer points

• -> (Pointer Member Access)—p->m is the same as (*p).m

• & (Address Of)—Returns the address of its operand

A.4.7 A note about operator precedence and associativity

Operator precedence determines the order in which individual operators are evalu-
ated. For example, a+b*c is evaluated as a+(b*c) because the * operator has
higher precedence than the + operator.

When an operand occurs between two operators with the same precedence, the
associativity of the operators controls the order in which the operations are performed.
Except for the assignment operators, all binary operators are left-associative, meaning
that operations are performed from left to right. The assignment operators and the
conditional operator are right-associative.

For the most part, operator precedence and associativity in C# follow the C/C++
tradition. (You’ll find a complete list in the .NET SDK and Visual Studio .NET doc-
umentation.) Since few programmers can remember the rules anyway, it is best to use
parentheses to explicitly convey your intentions. For example, a+b*c first multiplies
b by c and then adds the result to a, but (a+b)*c first adds a to b and then mul-
tiplies the result by c.
EXPRESSIONS AND OPERATORS 297

A.5 C# STATEMENTS

C# statements can span more than one line, and are terminated by a semicolon. In
addition, statements can be grouped into statement blocks, where a block is a
sequence of statements enclosed in curly braces ({ and }). You can use a statement
block wherever a single statement is valid:

 int i, j;

 // a single statement...
 i = 1;

 // a statement block...
 {
 j = 2;
 i = i + j;
 }

A.5.1 if

The if statement is used to branch based on some condition:

if (i < 5)
 System.Console.WriteLine("i < 5");

This example displays a message if i is less than 5. An if statement can include an
else clause which will be executed if the test condition is false:

if (i < 5)
 System.Console.WriteLine("i < 5");
else
 System.Console.WriteLine("i >= 5");

Note that, where there are two or more statements governed by the if or else con-
dition, the statements must be enclosed in curly braces to form a statement block:

if (i < 5) {
 System.Console.WriteLine("i < 5");
 System.Console.WriteLine("i is smaller");
} else {
 System.Console.WriteLine("i >= 5");
 System.Console.WriteLine("i is not smaller");
}

This is a case of the general rule, mentioned earlier, that you can use a statement
block wherever a single statement is valid.

A.5.2 do

The do statement is used for repetition:

int i = 1;
do
 System.Console.WriteLine(i++);
while(i <= 5);
298 APPENDIX A INTRODUCTION TO C#

This example displays the digits 1 to 5. Since the loop condition is tested at the bot-
tom of the loop, a do loop is always executed at least once.

A.5.3 while

The while statement is also used for repetition:

int i = 1;
while(i <= 5)
 System.Console.WriteLine(i++);

This example also displays the digits 1 to 5. In this case, the loop condition is tested
at the top of the loop.

A.5.4 for

The for statement is also used for repetition and will be familiar to C/C++ program-
mers. Unlike while and do, it is typically used when the number of iterations is
known at the start of the loop:

for (int i = 1; i <= 5; i++)
 System.Console.WriteLine(i);

This example also displays the digits 1 to 5. The for loop contains three expressions
separated by semicolons and enclosed in parentheses. The first is the initializing expres-
sion which is executed once before looping begins. In this case, it declares an integer, i,
and initializes it to 1. The second expression contains the looping condition. In this
example, it checks if i is less than or equal to 5. The loop terminates when this condi-
tion becomes false. The third expression is known as the iterator expression and is eval-
uated after each iteration. In this case, it increments the variable, i.

Note that you can code an infinite loop by omitting the loop expressions:

 for (;;) {

 // infinite loop
 ...
 }

You can also insert multiple expressions in place of the initializing and iterator expres-
sions:

 for (int i=1, j=2; i <= 5; i++, j+=2) {
 System.Console.WriteLine("i=" + i + ", j=" + j);
 }

This example initializes the integers i and j and also updates them at the end of each
iteration.

A.5.5 continue

The continue statement is used within a loop to skip the remainder of the current
iteration and begin the next:
C# STATEMENTS 299

for (int i = 1; i <= 5; i++) {
 if (i == 3)
 continue;
 System.Console.WriteLine(i);
}

This loop displays the digits 1, 2, 4, and 5. The digit 3 is skipped.

A.5.6 break

The break statement is used to break out of a loop:

for (int i = 1; i <= 5; i++) {
 if (i == 3)
 break;
 System.Console.WriteLine(i);
}

This example displays the digits 1 and 2. The remaining loop iterations are skipped.

A.5.7 switch

The switch statement is slightly different from its C/C++ counterpart:

uint i = 2;
switch(i) {
 case 0:
 goto case 2;
 case 1:
 goto case 2;
 case 2:
 System.Console.WriteLine("i < 3");
 break;
 case 3:
 System.Console.WriteLine("i == 3");
 break;

 default:
 System.Console.WriteLine("i > 3");
 break;
}

This example displays the message: i < 3. The switch statement evaluates the
expression in parentheses and uses the result to select from among several cases. In
this example, the result is 2 and the statement following case 2 is executed. Note
that the break statements are required since C#, unlike C/C++, does not allow fall
through from one case to the next. Instead, C# provides the goto case (as seen in
the example) and goto default, to allow multiple cases to execute the same state-
ment block. Omitting the break statements causes a compiler error.

The default case, which is executed when no other case matches, is not required,
although it is good practice to include it.
300 APPENDIX A INTRODUCTION TO C#

A.5.8 foreach

The foreach statement provides a convenient way to iterate over an array or collection:

int[] arr = {2, 4, 6, 8};
foreach (int i in arr)
 System.Console.WriteLine(i);

This example displays the integers 2, 4, 6, and 8.

A.5.9 return

The return statement terminates execution of the current method and returns
control to the caller. It can optionally return a value to the caller. The following
example illustrates:

class Add {

 public static void Main() {
 System.Console.WriteLine("2+3=" + add(2, 3));
 }

 private static int add(int i, int j) {
 return i + j;
 }
}

This short program contains a method called add which accepts two integer argu-
ments, adds them, and returns the result.

A.5.10 goto

The goto statement transfers control to a statement marked with a label:

using System;
public class SomeClass {
 public static void Main (string[] args) {
 if (args.Length == 0) {
 Console.WriteLine("No args provided... aborting!");
 goto end;
 }
 Console.WriteLine("First arg is " + args[0]);
 end: return;
 }
}

This example uses goto to jump to the end of the program if no arguments are pro-
vided on the command line. The target of the goto is the return statement pre-
fixed with an end label. We can choose any name for a label, as long as it is not a C#
keyword.
C# STATEMENTS 301

A.5.11 throw

The throw statement throws an exception. It is typically used to signal an error or
abnormal condition:

 if (val > max)
 throw new Exception("value exceeds maximum");

We’ll look more closely at exceptions later in this appendix.

A.6 CLASSES AND STRUCTS

While early versions of C++ were implemented by bolting a preprocessor onto the C
compiler, C# is designed from the ground up to be a modern, object-oriented lan-
guage. The fundamental building block of a C# application is the class.

A.6.1 Programming with classes

Listing A.2 presents a short program in which we use a class to define a new type
called Person.

using System;

class Person {

 // fields...
 string firstName, lastName;
 int age;

 // constructor method...
 public Person(string firstName, string lastName, int age) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 }

 // method...
 public void DisplayName() {
 Console.WriteLine(firstName + " " + lastName);
 }

 // property...
 public int Age {
 get { return age; } // get age
 set { age = value; } // set age field
 }

 // property...
 public string LastName {
 get { return lastName; } // get lastName
 }
}

 Listing A.2 The Person class
302 APPENDIX A INTRODUCTION TO C#

class Test {

 public static void Main() {

 // create an instance of the Person class...
 // this causes the Person constructor to execute...
 Person p = new Person("Joe", "Bloggs", 33);

 // call the DisplayName method...

 p.DisplayName(); // displays "Joe Bloggs"

 // display the age property...
 Console.WriteLine("Age is " + p.Age); // displays "Age is 33"

 // display the LastName property...
 Console.WriteLine("Last name is " + p.LastName);

 // set the age property...
 p.Age = 34;

 // display the updated age property...
 Console.WriteLine("Age is " + p.Age); // displays "Age is 34"
 }
}

We define a class using the class keyword followed by the name of the class and
then the class body contained in curly braces. In this example, the Person class body
contains fields, methods, and properties. These are collectively known as class mem-
bers. Fields, also called data members, are regular variables. Methods, also known as
function members, contain executable code.

The Test class in listing A.2 is used to execute the program and create an instance
of the Person class:

 Person p = new Person("Joe", "Bloggs", 33);

This creates a reference p to an instance of the Person class. Creating a class
instance causes a special method, known as a constructor, to be executed. A construc-
tor method always has the same name as the class itself and no return type. It is exe-
cuted automatically when an instance of the class is created at run time. In this case,
the constructor takes three arguments representing the first name, last name, and age
of the person. These values are used by the constructor to initialize the fields in the
class instance, as in:

 this.firstName = firstName;

The this keyword is used within a method to reference the current class instance.
The DisplayName method is used here to display the firstName and last-

Name fields. The method is called using the ref.MethodName(...) syntax:

 p.DisplayName();
CLASSES AND STRUCTS 303

In C#, the dot operator is typically used for member access. C# also supports C-style
pointers and pointer member access (p->m) when operating in an unsafe context,
denoted by the use of the unsafe modifier in a type or member declaration.

Note that all methods, except the constructor, must declare a return type. If a
method does not return a value, then it should declare a void return type, as
DisplayName does in listing A.2.

It is generally considered poor programming practice to allow calling code to
reach into a class instance and change field values. Instead, C# provides properties for
this purpose:

 public int Age {
 get { return age; } // get age
 set { age = value; } // set age field
 }

A property may have a get and/or set accessor associated with it. In this example,
the get accessor returns the value of the age field. The set accessor is used to set
the value of the age field. Within a set accessor block, C# automatically provides a
variable called value which holds the new value to which the property can be set,
as follows:

 p.Age = 34;

Note that the methods and properties of the Person class are marked with the access
modifier public. (We look at the full list of access modifiers later in this appendix.)
This makes them publicly accessible to calling code through a reference to the class
instance, as in p.Age. Members which omit an access modifier, such as the fields in
the Person class, are private by default. This means that they are inaccessible out-
side the class. Therefore the following attempt to access the firstName field will
generate a compiler error:

 Console.WriteLine("First name is " + p.firstName); // error!

The recommended naming convention is that private member names should begin
with a lowercase letter while other member names should begin with an uppercase
letter. However, this is not a rule.

A class can include static members which can be accessed without first creating an
instance of the class. For example, the following snippet defines a static MinimumAge
field in the Person class:

class Person {

 public static int MinimumAge = 18;

 ...
}

We can access the static MinimumAge field directly using the class name, as follows:

 int age = Person.MinimumAge;
304 APPENDIX A INTRODUCTION TO C#

Since C# does not provide global variables, static fields are often used to store glo-
bal values.

Finally, classes can be nested:

class C1 {

 int i, j;
 string s;

 void m() {
 // ...
 }

 class c2 {
 // ...
 }
}

The class is at the heart of object-oriented programming in C#. We’ll return to this
topic when we consider inheritance.

A.6.2 Programming with structs

C# provides the ability to create a lightweight class using a struct. Structs are value
types and are created on the stack at run time. (Refer to chapter 2 for a complete dis-
cussion of value and reference types.) This removes the overhead of using references
and obviates the need for garbage collection. The following example uses a struct
to create a type that stores the x and y coordinates of a point:

struct Point {

 public int X, Y;

 public Point(int x, int y) {
 X = x;
 Y = y;
 }
}

Although a struct can contain methods, typically structs are used for types that con-
tain just a few data members. Like classes, structs can also be nested. However, unlike
a class, a struct may not inherit from another class or struct, nor may it serve as a
base class for inheritance purposes.

A.7 INHERITANCE

C# allows us to design a class by using inheritance to embrace and extend an existing
class. Unlike C++, which supports multiple inheritance, C# supports only single
inheritance. However, like Java, C# also supports implementation inheritance using
interfaces which provide some of the advantages of multiple inheritance. We’ll
explore interfaces later in this appendix.

Many application domains contain hierarchies that are naturally modeled by inher-
itance. Object-oriented GUI libraries often use this technique. For example,
INHERITANCE 305

depending on the implementation, a check box may be a special type of button, and
a button is a control, and a control is a type of component, and a component is an
object. In such cases we might implement this as an inheritance hierarchy. The check
box would extend the button class by adding a checked property, and so forth. A
class that inherits from another is sometimes referred to as a derived class.

A.7.1 Simple inheritance

Let’s return to our Person class. Listing A.3 provides a new implementation of the
Person class, together with a class called Man which derives from Person.

using System;

class Person {

 protected string firstName, lastName;

 // constructor method...
 public Person(string firstName, string lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 // method...
 public void Greet() {
 Console.WriteLine("Hello " + firstName + " " + lastName + "!");
 }
}

// Man derives from Person class...
class Man : Person {

 // create a Man by calling base Person constructor...
 public Man(string fName, string lName) : base(fName, lName) {}

 // replace base Greet method with a new implementation...
 public new void Greet() {
 Console.WriteLine("Hello Mr. " + lastName + "!");
 }
}

class Test {

 public static void Main() {

 Person p = new Person("Joe", "Bloggs");
 p.Greet(); // displays "Hello Joe Bloggs!"

 Man m = new Man("Joe", "Bloggs");
 m.Greet(); // displays "Hello Mr. Bloggs!"
 }
}

 Listing A.3 Simple inheritance
306 APPENDIX A INTRODUCTION TO C#

Inheritance is used to model an is-a relationship. (A man is a person). In this exam-
ple, we’ve changed the accessibility of the firstName and lastName fields of the
Person class to protected, thus making them accessible to any derived class. We
specify that Man derives from Person, as follows:

 // Man derives from Person class...
 class Man : Person {
 ...
 }

The only difference between the Man and Person classes is the greeting displayed.
Therefore, we leverage the base Person class constructor to build an instance of
Man, as follows:

 // create a Man by calling base Person constructor...
 public Man(string fName, string lName) : base(fName, lName) {}

The base keyword is used to refer to the parent object. In this example, the body of
the Man constructor is empty. Instead the Person constructor is called to construct
the object.

In the derived Man class, we reimplement the Greet method using the new key-
word to make clear to the compiler that we are not inadvertently hiding the parent’s
Greet method.

A.7.2 Using virtual methods

One of the advantages of inheritance is the ability to use a base class reference to refer
to an instance of a derived class. This allows us to write code without caring whether
the reference is to a parent or derived class, as follows:

 Person p = new Man("Joe", "Bloggs");
 p.Greet(); // problem? calls base class Greet method

Here, we create a reference p to a Person object, but store in it a reference to a Man
object. This is fine, but calling p.Greet() calls the base class Greet method, which
is probably not what we intended. The solution lies in virtual methods. See listing A.4.

using System;

class Person {

 protected string firstName, lastName;

 // constructor method...
 public Person(string firstName, string lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 // Greet method is now marked virtual...
 public virtual void Greet() {
 Console.WriteLine("Hello " + firstName + " " + lastName + "!");

 Listing A.4 Overriding the Greet method
INHERITANCE 307

 }
}

// Man derives from Person class...
class Man : Person {

 // create a Man by calling base Person constructor...
 public Man(string fName, string lName) : base(fName, lName) {}

 // override base Greet method with a new implementation...
 public override void Greet() {
 Console.WriteLine("Hello Mr. " + lastName + "!");
 }
}

class Test {

 public static void Main() {

 Person p1 = new Person("Joe", "Bloggs");
 p1.Greet(); // displays "Hello Joe Bloggs!"

 Person p2 = new Man("John", "Doe");
 p2.Greet(); // displays "Hello Mr. Doe!"

 }
}

Placing the virtual modifier in front of the base class’s method definition causes
the compiler to generate code to look up a data structure, known as a virtual dis-
patch table, at run time to find the correct method. A corresponding override
modifier is required in front of the derived class’s method in order for virtual dis-
patching to locate the correct method. So virtual dispatching allows an object to
assume different forms, Man or Person in this example, as necessary. This is some-
times referred to as polymorphism.

A.7.3 Abstract classes

Let’s assume that we are interested in modeling men and women, but not persons per
se. In other words, while both are persons, we don’t want to allow the creation of Per-
son objects directly. Instead, we only allow the creation of Man and Woman objects
directly. However, we want both to inherit from, and share the implementation of, the
Person class. We can do this using an abstract Person class, as seen in listing A.5.

using System;

abstract class Person {

 protected string firstName, lastName;

 // constructor method...
 public Person(string firstName, string lastName) {

 Listing A.5 Using an abstract Person class
308 APPENDIX A INTRODUCTION TO C#

 this.firstName = firstName;
 this.lastName = lastName;
 }

 // force derived classes to implement the Greet method by...
 // marking it abstract...
 abstract public void Greet();
}

class Man : Person {

 public Man(string fName, string lName) : base(fName, lName) {}

 public override void Greet() {
 Console.WriteLine("Hello Mr. " + lastName + "!");
 }
}

class Woman : Person {

 public Woman(string fName, string lName) : base(fName, lName) {}

 public override void Greet() {
 Console.WriteLine("Hello Ms. " + lastName + "!");
 }
}

class Test {

 public static void Main() {

 Man m = new Man("Joe", "Bloggs");
 m.Greet(); // displays "Hello Mr. Bloggs!"

 Woman w = new Woman("Jane", "Doe");
 w.Greet(); // displays "Hello Ms. Doe!"
 }
}

We use the abstract modifier in front of the Person class definition to prevent
the class being instantiated. Attempting to instantiate the Person class causes a
compiler error. We also declare the Greet method to be abstract, thus requiring all
derived classes to override this method. In other words, the Person class specifies a
template, or contract, for classes which derive from it.

A.7.4 Sealed classes

You can disable further inheritance by marking a class sealed:

// prevent derivation...
sealed class Person {

 ...

}

INHERITANCE 309

Any attempt to use a sealed class as a base class for inheritance purposes will result in
a compiler error. Use the sealed modifier to prevent unintended derivation.

A.8 MORE ABOUT METHODS

As we’ve seen, a method may accept parameters and return a result. The following
example takes two integer parameters and returns an integer result containing the
sum of the two:

 int Add(int x, int y) {
 return x + y;
 }

The combination of the method name, and the number and type of its parameters, is
known as the method’s signature. The signature of a method does not include its
return type.

A.8.1 Using ref and out parameters

Value types, such as the integer parameters in the previous example, are passed by value
to a method. In other words, the method receives a copy of the value type. Therefore,
the following example leaves i unchanged following the call to Increment:

 void Increment(int i) {
 i++;
 }

 ...

 int i = 0;
 Increment(i); // i unaffected

In contrast, a reference type passed as a parameter contains the original object refer-
ence and can be used to directly modify the object.

C# provides ref and out parameters to enable value types to be passed by reference.
Use the ref keyword to specify that an initialized value should be passed by reference:

 void Increment(ref int i) {
 i++;
 }

 ...

 int i = 0; // initialized
 Increment(ref i); // now i==1

Note that the ref keyword must be used both in the call and in the method signa-
ture. Also, i must first be initialized before being passed as a parameter to Incre-
ment. The ref keyword is used to allow the modification, by a method, of an
existing initialized variable. If, instead, the method assigns the initial value to the vari-
able, you should use the out keyword:
310 APPENDIX A INTRODUCTION TO C#

 void Init(out int i) {
 i=1;
 }

 ...

 int i; // uninitialized
 Init(out i); // now i==1

A.8.2 Passing a variable-length parameter list

C# provides the params keyword to facilitate the passing of a variable-length
parameter list to a method. The following example illustrates the passing of an array
of integers:

class Adder {

 int Add(params int[] ints) {
 int sum = 0;
 foreach (int i in ints)
 sum += i;
 return sum;
 }

 public static void Main() {
 Adder a = new Adder();
 int sum = a.Add(1, 2, 3, 4, 5);
 System.Console.WriteLine(sum); // displays "15"
 }
}

In this case, we pass an array of integers. However, the parameters in the list may not
all be the same type, in which case we need to use an array of objects:

 void ProcessParameters(params object[] objs) {
 ...
 }

When objects are used, value types are automatically boxed. Boxing and unboxing are
discussed in chapter 2.

A.8.3 Overloading methods

C# supports method overloading, which allows a class, struct, or interface to declare
multiple methods with the same name, provided the signatures of the methods are all
different. Constructor methods can be overloaded too:

class Person {

 string firstName, midName, lastName;

 public Person(string firstName, string lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public Person(string firstName, string midName, string lastName) {
MORE ABOUT METHODS 311

 this.firstName = firstName;
 this.midName = midName;
 this.lastName = lastName;
 }
}

In this example, we overload the constructor method so that we can create Person
objects with or without a middle name:

 Person p1 = new Person("Joe", "Bloggs");
 Person p2 = new Person("John", "Joe", "Bloggs");

A.9 ACCESS MODIFIERS

Access modifiers control the visibility of class members. We have seen examples of
the use of public and protected modifiers already. The full list follows:

• private—Only code within the same containing class has access to a private
member. In other words, a private member is not part of the class’s public inter-
face. This is the default access level if none is specified.

• public—A public member is visible to all users of the class. It is part of the
class’s public interface.

• protected—Code within the same containing class and any derived classes
can access a protected member.

• internal—An internal member can be accessed only by code within the
same assembly. (We look at assemblies in detail in chapter 2.)

• protected internal—Permits both protected and internal access.

The visibility of a member can never exceed that of its containing class. So, for exam-
ple, if a class has internal visibility the visibility of its public members is down-
graded to internal.

A.10 EXCEPTIONS

Using exceptions is the recommended way to handle unexpected errors in C#. In
fact, support for exceptions is provided in the underlying .NET runtime. Let’s revisit
our Person class to explore an example. Listing A.6 illustrates.

using System;

class Person {

 string firstName, lastName;
 int age;

 public Person(string firstName, string lastName, int age) {

 this.firstName = firstName;
 this.lastName = lastName;

 Listing A.6 Using exceptions
312 APPENDIX A INTRODUCTION TO C#

 if (age < 18)
 throw new Exception("ERROR: Person is underage.");
 this.age = age;
 }
}

class Test {

 public static void Main() {
 try {
 Person p = new Person("Joe", "Bloggs", 16);
 }
 catch (Exception e) {
 // displays "ERROR: Person is underage." ...
 Console.WriteLine(e.Message);
 }
 }
}

In this case, we require persons to be at least 18 years of age. If not, the constructor
throws an exception:

 if (age < 18)
 throw new Exception("ERROR: Person is underage.");

To catch an exception, the code that throws it must be enclosed in a try ... catch
block. Otherwise, the program will terminate:

 try {
 Person p = new Person("Joe", "Bloggs", 16);
 }
 catch (Exception e) {
 // displays "ERROR: Person is underage." ...
 Console.WriteLine(e.Message);
 }

When the exception is thrown, the catch code is executed. In this example, it just
displays the Message property of the exception, which was specified when the
exception was thrown.

You can also include a finally block which will always execute, whether an
exception occurs, or not:

 try {
 ...
 }
 catch {
 ...
 }
 finally {
 ...
 }
EXCEPTIONS 313

If, for example, you obtain resources in the try block, you may want to include a
finally block to ensure those resources are released regardless of whether an excep-
tion occurs. You can have multiple catch blocks to catch different exceptions.
Examples of built-in exceptions include ArgumentException and FileNot-
FoundException, and you can create your own custom exception classes. If an
exception is not caught, it bubbles upwards to the next innermost matching catch
block or, if none exists, the program terminates.

A.11 ENUMS

C# provides the enum keyword, which you can use to define an ordered set of inte-
gral types known as an enumeration:

enum Suit {
 Clubs=1, Diamonds, Hearts, Spades
}

class Enums {
 public static void Main() {
 Suit s = Suit.Clubs;
 System.Console.WriteLine(s); // displays "Clubs"
 }
}

By default, enum elements are given a zero-based index. In this example, we override
the default and set the index of the first element to one. Using an enum is preferable
to using integer constants when the values represented belong to an ordered set.

A.12 DELEGATES AND EVENTS

A delegate is a type-safe reference to a method. Its purpose is similar to that of a func-
tion pointer in C++. Delegates are typically used to implement event handlers and
callbacks. We look at both delegates and events in this section.

A.12.1 Using delegates

When you declare a delegate, you specify its signature. Thereafter, the delegate can
store references to methods that match that signature. So a delegate is equivalent to a
type-safe function pointer. Listing A.7 provides an example of using a delegate to
indirectly call a method.

using System;

public delegate void Callback(string name);

public class DelgHello {

 public static void Main(string[] args) {

 string name = "Stranger";

 Listing A.7 Using delegates
314 APPENDIX A INTRODUCTION TO C#

 if (args.Length > 0) name = args[0];

 // create reference to sayHello method...
 Callback cb = new Callback(sayHello);
 // use delegate to call sayHello method...
 cb(name);
 }

 private static void sayHello(string name) {

 Console.WriteLine("Hello, {0}!", name);
 }
}

In this case, we declare a delegate, Callback, which takes a string as its only param-
eter. In the Main routine, we create an instance of the delegate passing the name of
the sayHello method. The delegate now references the sayHello method. In the
next line, we use the delegate reference to indirectly call sayHello.

Clearly, in this example, we could have called the sayHello method directly. A
delegate is best used when a program needs to dynamically set the method to be called
at run time, such as when setting an event handler.

A.12.2 Handling events

Support for events is at the heart of every modern GUI-based operating environment.
Events occur when applications are launched, when buttons are clicked, when keys
are pressed, when network responses arrive, when windows are resized, and so forth.
Many events can be safely ignored but others need to be captured and handled in
some way.

An event is typically handled using an event handler delegate. You can create your
own custom event handler delegate or use one provided by the Framework. The stan-
dard System.EventHandler delegate looks like:

 public delegate void EventHandler(
 object sender,
 EventArgs e
);

Listing A.8 presents a program which uses the System.Timers.Timer class and
the System.Timers.ElapsedEventHandler delegate to implement a tick-
ing clock.

using System;
using System.Threading;
using System.Timers;

public class Clock {

 public Clock(int interval) {

 Listing A.8 Handling events
DELEGATES AND EVENTS 315

 this.interval = interval;
 System.Timers.Timer timer = new System.Timers.Timer();
 ElapsedEventHandler tickHandler = new ElapsedEventHandler(Tick);
 timer.Elapsed += tickHandler;
 timer.Interval = interval * 1000; // milliseconds
 timer.Enabled = true;
 }

 public void Tick(object source, ElapsedEventArgs e) {

 Console.WriteLine("{0}: {1} second tick", source, interval);
 }

 private int interval;
}

public class MyClock {

 public static void Main() {
 Clock c1 = new Clock(7); // tick every 7 secs
 Clock c2 = new Clock(11); // tick every 11 secs
 Console.WriteLine("clocks ticking... press Ctrl-c to end");
 while (true) Thread.Sleep(500); // sleep and loop forever
 }
}

The Clock class constructor creates a System.Timers.Timer object and regis-
ters an event handler for the Timer.Elapsed event:

 ElapsedEventHandler tickHandler = new ElapsedEventHandler(Tick);
 timer.Elapsed += tickHandler;

Note the use of the += operator to add an instance of the delegate to the event. You
can add multiple event handler delegates, if appropriate. This is because the
ElapsedEventHandler is a type of delegate known as a multicast delegate.

Adding the delegate instance causes the Clock.Tick method to be executed after
the timer interval elapses. Once the delegate is added, we set the interval and enable
the timer.

A.13 INTERFACES

C# supports an interface type, which provides a means of specifying a contract similar
to the contract imposed by an abstract class on derived classes. Any class or struct that
implements an interface must adhere to its contract. However, while C# does not
support multiple inheritance, a C# class or struct can implement multiple interfaces.
Interfaces can contain methods, properties, and events, but not fields. The following
example illustrates:

interface IGreet {
 void Greet();
}

316 APPENDIX A INTRODUCTION TO C#

class Person : IGreet {

 protected string firstName, lastName;

 // constructor method...
 public Person(string firstName, string lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public void Greet() {
 Console.WriteLine("Hello " + firstName + " " + lastName + "!");
 }
}

Here, we declare the IGreet interface containing a single method called Greet.
Then we code a new version of the Person class which implements the interface:

class Person : IGreet {
 ...
}

Note that we use the same syntax when implementing an interface, as we do when
deriving from a class. Once we declare that we are implementing the interface, the
compiler will complain if the Person class does not implement the Greet method.

Interfaces are used heavily throughout the .NET Framework classes. Examples
include IComparable which a type can implement to support type-specific compar-
ison, and IEnumerable which supports iteration over collection types. You’ll find
numerous examples of the use of interfaces in the SDK and Visual Studio .NET samples.

The as operator is often used with interfaces. For example, if multiple types
implement a particular interface, we can reference them through their common inter-
face type:

 Person p = new Person("Joe", "Bloggs");
 IGreet greeter = p as IGreet; // convert to interface type
 greeter.Greet();

A.14 PREPROCESSOR DIRECTIVES

C# compilation does not include a separate preprocessing stage, so there are no C-
style preprocessor macros. However, C# does retain many familiar preprocessor-type
directives:

• #define—Defines a symbol (for use with #if)

• #undef—Undefines a symbol (for use with #if)

• #if-#elif-#else-#endif—Tests a symbol and evaluates code accordingly

• #warning—Generates a warning from a location in the code

• #error—Generates an error from a location in the code

• #line—Modifies the compiler’s line number
PREPROCESSOR DIRECTIVES 317

• #region—Used with Visual Studio .NET to mark the beginning of a code
region

• #endregion—Used with Visual Studio .NET to mark the end of a code
region

The #define and #if directives are often used to compile extra code into the pro-
gram for debugging purposes. The following example illustrates:

class PreProc {

 public static void Main() {

 System.Console.Write("Hello. What's your name? ");
 string nm = System.Console.ReadLine();

 #if DEBUG
 System.Console.WriteLine("user entered " + nm);
 #endif

 if (nm.Equals(""))
 nm = "Stranger";

 System.Console.WriteLine("Hello, " + nm + "!");
 }
}

If the DEBUG symbol is defined, the line of code between #if and #endif is com-
piled into the program, otherwise it is omitted. This is different from a regular if
statement which is evaluated at run time. We could include #define DEBUG directly
in the program, but a better approach is to define this at compile-time, as follows:

csc /define:DEBUG preproc.cs

To remove the extra debug code, we simply compile the release version without the
/define:DEBUG option.

A.15 ATTRIBUTES

C# provides a mechanism to specify extra declarative information for various pro-
gram entities through the use of attributes. This information can be retrieved and
used at run time. There are many built-in attributes provided in the .NET Frame-
work, and we make use of many throughout this book. Examples are the Assem-
blyVersion attribute for specifying the version of an assembly, the
Serializable attribute to declare that a type is serializable, RunInstallerAt-
tribute to denote an installable type, and the WebService and WebMethod
attributes for Web services.

Attributes can be applied to almost all application elements including assemblies,
types, methods, parameters. The information declared is stored with the compiled
code. At run time it can be extracted using a technique called reflection. (We examine
reflection in Chapter 2.)
318 APPENDIX A INTRODUCTION TO C#

The following example illustrates the use of the Conditional attribute to
achieve the same effect as the #if directive:

using System;
using System.Diagnostics;

class Go {

 public static void Main() {

 Console.Write("Hello. What's your name? ");
 string nm = Console.ReadLine();

 debug("user entered " + nm);

 if (nm.Equals(""))
 nm = "Stranger";

 Console.WriteLine("Hello, " + nm + "!");
 }

 [Conditional("DEBUG")]
 private static void debug(string msg) {
 Console.WriteLine("DEBUG: " + msg);
 }
}

In this case, we include a debug method which is prefixed with the conditional
attribute, [Conditional("DEBUG")]. This causes the debug method, and any
calls to it, to be compiled into the program only if DEBUG is defined.

You can create custom attribute classes to support the insertion and use of special-
ized declarative information in your own applications.

A.16 THREADING

Using multiple threads in a program creates the effect of several tasks executing at the
same time. C# supports the use of threads and provides several types to support the
creation of multi-threaded applications. Listing A.9 provides another example of a
ticking clock. This example uses a separate thread for the clock.

using System;
using System.Threading;

public class ThreadClock {

 public static void Main() {

 // create thread start delegate...
 ThreadStart clockThread = new ThreadStart(startClock);
 // create thread...
 Thread t = new Thread(clockThread);
 Console.WriteLine("starting new thread...");
 // start the thread...
 t.Start();

 Listing A.9 Using threads
THREADING 319

 // wait for thread to finish...
 t.Join();
 Console.WriteLine("thread stopped.");
 }

 private static void startClock() {
 Console.WriteLine("running on new thread...");
 for (int i = 0; i < 5; i++) {
 Thread.Sleep(1000); // tick every second
 Console.WriteLine("Tick!");
 }
 }
}

Note the use of the delegate, ThreadStart, to provide a reference to the method to
be run by the thread. To start the thread, we call its Start method, while a call to its
Join method causes the program to wait for the thread to complete.

A.17 FURTHER RESOURCES

In this appendix, we explored the C# programming language. In addition to the
material presented here, you’ll find supplementary discussion and many more sample
programs throughout the book, as well as a complete case study. You’ll also find a
complete C# reference and several tutorials in the help documentation provided with
both Visual Studio .NET and the .NET SDK, as seen in figure A.1.

You’ll also find many helpful tutorials and samples at the Microsoft sites:
http://msdn.microsoft.com/net, and at http://www.gotdotnet.com.

Figure A.1 .NET SDK C# programmer’s reference
320 APPENDIX A INTRODUCTION TO C#

A P P E N D I X B

The poker engine listings

All the different versions of the video poker machine case study use a common game
"engine" implemented as the assembly, poker.dll. This appendix contains the source
code for the engine classes, together with a makefile to build the assembly.

B.1 THE MAKEFILE

Run nmake from the command line to run the makefile.

poker.dll: bank.cs \

 bet.cs \
 card.cs \
 hand.cs \
 machine.cs \
 msglog.cs \
 simplemachine.cs
 csc /t:library /out:poker.dll \
 bank.cs \
 bet.cs \
 card.cs \
 hand.cs \
 machine.cs \
 msglog.cs \
 simplemachine.cs
321

B.2 THE BANK CLASS

The Bank class is discussed in chapter 4, Working with ADO.NET and databases.

namespace Poker {

 using System;
 using System.Configuration;
 using System.IO;
 using System.Data;
 using System.Data.SqlClient;

 public class Bank {

 public Bank() {
 setConnectString();
 TargetMargin = GetParm("TargetMargin", 25);
 refresh();
 }

 public readonly int TargetMargin;

 public int TakenIn { get { return takenIn; } }
 public int PaidOut { get { return paidOut; } }
 public int Profit { get { return profit; } }

 public double HouseMargin { get {
 if (takenIn == 0) return TargetMargin;
 return (double) profit * 100.0 / takenIn;
 } }

 public double Delta { get {
 return HouseMargin - TargetMargin;
 } }

 public int Bias { get {
 if (Delta >= 0.0) return 0;
 int bias = (int) Math.Round(Math.Abs(Delta));
 if (bias > 10) return 10;
 return bias;
 } }

 public string Status { get {
 return status;
 } }

 public string Text { get {
 return "\n" +
 status + "\n" +
 "===========================\n" +
 "Taken In : " + takenIn + "\n" +
 "Paid Out : " + paidOut + "\n" +
 "Profit : " + profit + "\n" +
 "House Margin % : " +
 String.Format("{0:00.00}", HouseMargin) + "\n" +
 "Target Margin % : " +
322 APPENDIX B THE POKER ENGINE LISTINGS

 String.Format("{0:00.00}", TargetMargin) + "\n" +
 "Delta : " +
 String.Format("{0:00.00}", Delta) + "\n" +
 "Bias : " + Bias + "\n";
 } }

 public override string ToString() {
 return Text;
 }

 public void SaveGame(string hand, int score, int bet) {

 if (connectString == "") return;

 SqlConnection conn = null;
 try {
 conn = new SqlConnection(connectString);
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot create SqlConnection",
 e.Message));
 return;
 }

 string sql =
 "INSERT INTO games(hand, score, bet) VALUES " +
 "('" + hand + "'," + score + "," + bet + ")";
 SqlCommand comm = null;
 try {
 comm = new SqlCommand(sql, conn);
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot create SqlCommand",
 e.Message));
 return;
 }

 try {
 conn.Open();
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot open SqlConnection",
 e.Message));
 return;
 }

 try {
 comm.ExecuteNonQuery();
 } catch (Exception e) {
 new MsgLog(String.Format("Bank.SaveGame(): {0} - {1}",
 "Cannot execute SqlCommand",
 e.Message));
 return;
 }
 finally {
THE BANK CLASS 323

 if (conn.State == ConnectionState.Open) conn.Close();
 }

 refresh();
 }

 public int GetParm(string parmName, int defaultValue) {

 int parmValue = defaultValue;

 if (connectString == "") return parmValue;

 string sql =
 "SELECT value FROM integers WHERE name='" + parmName + "'";
 DataSet ds = new DataSet("PokerParm");
 SqlDataAdapter sda = new SqlDataAdapter(sql, connectString);

 try {
 sda.Fill(ds, "result");
 parmValue = (int) ds.Tables["result"].Rows[0][0];
 } catch (Exception e) {
 connectString = "";
 new MsgLog(
 String.Format("Bank.GetParm(): {0}", e.Message));
 }
 return parmValue;
 }

 private void setConnectString() {
 connectString = ConfigurationSettings.AppSettings["dsn"];
 if (connectString == null) connectString = "";
 if (connectString == "")
 connectString =
 @"server=(local)\NetSDK;" +
 @"database=poker;trusted_connection=yes";
 }

 private void refresh() {

 if (connectString == "") return;

 string sql =
 "SELECT " +
 "SUM(bet) AS taken_in, " +
 "SUM(score * bet) AS paid_out, " +
 "SUM(bet) - SUM(score * bet) as profit " +
 "FROM games";

 SqlDataAdapter sda = null;
 try {
 sda = new SqlDataAdapter(sql, connectString);
 DataSet ds = new DataSet("PokerProfit");
 sda.Fill(ds, "stats");
 DataRow dr = ds.Tables[0].Rows[0];
 takenIn = (int) dr[0];
 paidOut = (int) dr[1];
324 APPENDIX B THE POKER ENGINE LISTINGS

 profit = (int) dr[2];
 status = "Machine Stats (All Players)";
 } catch (Exception e) {
 new MsgLog(
 String.Format("Bank.refresh(): {0}", e.Message));
 }
 }

 // private static Bank bank = null;

 private string connectString = "";
 private string status = "Machine Stats Unavailable";
 private int takenIn = 0;
 private int paidOut = 0;
 private int profit = 0;
 }
}

B.3 THE BET CLASS

The Bet class is discussed in chapter 4, Working with ADO.NET and databases.

using System;
namespace Poker {
 public class Bet {
 public Bet(int bet, int credits, int minBet, int maxBet) {
 if (credits < minBet) {
 Message =
 "You don't have enough credits to bet... Game over!";
 Amount = 0;
 return;
 }
 if (bet < minBet) {
 Message = String.Format(
 "You must bet the minimum... betting {0}.", minBet);

 Amount = minBet;
 Credits = credits - Amount;
 return;
 }
 maxBet = credits < maxBet ? credits : maxBet;
 if (bet > maxBet) {
 Message = String.Format(
 "You can only bet {0}... betting {0}.", maxBet);
 Amount = maxBet;
 Credits = credits - Amount;
 return;
 }
 Message = "";
 Amount = bet;
 Credits = credits - Amount;
 }
 public readonly int Amount;
 public readonly int Credits;
THE BET CLASS 325

 public readonly string Message;
 }
}

B.4 THE CARD CLASS

The Card class is discussed in chapter 3, Case study: a video poker machine.

using System.Reflection;
[assembly:AssemblyVersion("1.0.0.0")]

namespace Poker {

 using System;

 internal class Card {

 public Card() : this(new Random()) {}

 public Card(Random r) {
 Number = r.Next(2, 15);
 Suit = r.Next(1, 5);
 Name = numberArray[Number - 2] + suitArray[Suit - 1];
 }

 public Card(string name) {
 string n = name.Substring(0, 1);
 string s = name.Substring(1, 1);
 Number = numberString.IndexOf(n) + 2;
 Suit = suitString.IndexOf(s) + 1;
 Name = name;
 }

 public readonly int Number;
 public readonly int Suit;
 public readonly string Name;

 public override string ToString() {
 return Name;
 }

 public override bool Equals(object o) {
 try {
 Card c = (Card)o;
 return c.Number == Number && c.Suit == Suit;
 } catch (Exception) {
 return false;
 }
 }

 public override int GetHashCode() {
 return (Suit<<4) + Number;
 }

 // private fields...
 private static string[] numberArray
 = {"2","3","4","5","6","7","8","9","T","J","Q","K","A"};
326 APPENDIX B THE POKER ENGINE LISTINGS

 private static string[] suitArray = {"C","D","H","S"};
 private static string numberString = "23456789TJQKA";
 private static string suitString = "CDHS";
 }
}

B.5 THE HAND CLASS

The Hand class is discussed in chapter 3, Case study: a video poker machine.

namespace Poker {

 using System;

 public class Hand {

 public Hand() {
 Random r = new Random();
 for (int i = 0; i < 5; i++) {
 while (true) {
 cards[i] = new Card(r);
 if (containsCard(cards[i], cards, i)) continue;
 break;
 }
 }
 }

 public Hand(string handText) {
 cardsFromString(handText);
 }

 public Hand(string handText, string holdString) {
 cardsFromString(handText);
 holdCards(holdString);
 draw();

 }

 public Hand(Hand hand, string holdString) {
 this.cards = hand.cards;
 holdCards(holdString);
 draw();
 }

 public int Score { get {
 if (score < 0) calcScore();
 return score;
 } }

 public string Title { get {
 return titles[Score];
 } }

 public string CardName(int cardNum) {
 return cards[cardNum - 1].Name;
 }
THE HAND CLASS 327

 public string Text { get {
 return CardName(1) + " " +
 CardName(2) + " " +
 CardName(3) + " " +
 CardName(4) + " " +
 CardName(5);
 } }

 public override string ToString() {

 return Text;
 }

 private void cardsFromString(string handText) {
 char[] delims = {' '};
 string[] cardStrings = handText.Split(delims);
 for (int i = 0; i < cardStrings.Length; i++)
 cards[i] = new Card(cardStrings[i]);
 }

 private void holdCards(string holdString) {
 for (int i = 0; i < 6; i++) {
 int cardNum = i + 1;
 if (holdString.IndexOf(cardNum.ToString()) >= 0)
 isHold[cardNum - 1] = true;
 }
 }

 private void draw() {

 // remember which cards player has seen...
 Card[] seen = new Card[10];
 for (int i = 0; i < 5; i++) {
 seen[i] = cards[i];
 }

 int numSeen = 5;
 Random r = new Random();
 for (int i = 0; i < 5; i++) {
 if (!isHold[i]) {
 while (true) {
 cards[i] = new Card(r);
 if (containsCard(cards[i], seen, numSeen)) continue;
 break;
 }
 seen[numSeen++] = cards[i];
 }
 }
 }

 private bool containsCard(Card c, Card[] cs, int count) {
 for (int i = 0; i < count; i++)
 if (c.Equals(cs[i]))
 return true;
 return false;
 }
328 APPENDIX B THE POKER ENGINE LISTINGS

 private void calcScore() {

 // are cards all of the same suit?
 bool isFlush = true;
 int s = cards[0].Suit;
 for (int i = 1; i < 5; i++) {
 if (s != cards[i].Suit) {
 isFlush = false;
 break;

 }
 }

 // sort card values...
 int[] sortedValues = new int[5];
 for (int i = 0; i < 5; i++)
 sortedValues[i] = cards[i].Number;
 Array.Sort(sortedValues);

 // do we have a straight?
 bool isStraight = true;
 for (int i = 0; i < 4; i++) {
 if (sortedValues[i] + 1 != sortedValues[i+1]) {
 isStraight = false;
 break;
 }
 }
 // is it a straight to the ace?
 bool isTopStraight = (isStraight && sortedValues[4] == 14);

 // maybe it is a straight from the ace (i.e. A, 2, 3, 4, 5)
 if (! isStraight)
 if (sortedValues[0] == 2 &&
 sortedValues[1] == 3 &&
 sortedValues[2] == 4 &&
 sortedValues[3] == 5 &&
 sortedValues[4] == 14) // ace on top
 isStraight = true;

 // now calculate score...

 // royal flush...
 if (isTopStraight && isFlush) {
 score = 10;
 return;
 }

 // straight flush...
 if (isStraight && isFlush) {
 score = 9;
 return;
 }

 // four of a kind...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[1] == sortedValues[2] &&
THE HAND CLASS 329

 sortedValues[2] == sortedValues[3]) {
 score = 8;
 return;
 }
 if (sortedValues[1] == sortedValues[2] &&
 sortedValues[2] == sortedValues[3] &&
 sortedValues[3] == sortedValues[4]) {
 score = 8;

 return;
 }

 // full house...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[1] == sortedValues[2] &&
 sortedValues[3] == sortedValues[4]) {
 score = 7;
 return;
 }
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[2] == sortedValues[3] &&
 sortedValues[3] == sortedValues[4]) {
 score = 7;
 return;
 }

 // flush...
 if (isFlush) {
 score = 6;
 return;
 }

 // straight...
 if (isStraight) {
 score = 5;
 return;
 }

 // three of a kind...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[1] == sortedValues[2]) {
 score = 4;
 return;
 }
 if (sortedValues[1] == sortedValues[2] &&
 sortedValues[2] == sortedValues[3]) {
 score = 4;
 return;
 }
 if (sortedValues[2] == sortedValues[3] &&
 sortedValues[3] == sortedValues[4]) {
 score = 4;
 return;
 }
330 APPENDIX B THE POKER ENGINE LISTINGS

 // two pair...
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[2] == sortedValues[3]) {
 score = 3;
 return;
 }
 if (sortedValues[0] == sortedValues[1] &&
 sortedValues[3] == sortedValues[4]) {

 score = 3;
 return;
 }
 if (sortedValues[1] == sortedValues[2] &&
 sortedValues[3] == sortedValues[4]) {
 score = 3;
 return;
 }

 // jacks or better...
 if (sortedValues[0] > 10 &&
 sortedValues[0] == sortedValues[1]) {
 score = 2;
 return;
 }
 if (sortedValues[1] > 10 &&
 sortedValues[1] == sortedValues[2]) {
 score = 2;
 return;
 }
 if (sortedValues[2] > 10 &&
 sortedValues[2] == sortedValues[3]) {
 score = 2;
 return;
 }
 if (sortedValues[3] > 10 &&
 sortedValues[3] == sortedValues[4]) {
 score = 2;
 return;
 }
 score = 0;
 return;
 }

 private Card[] cards = new Card[5];
 private bool[] isHold = {false, false, false, false, false};

 private static string[] titles = {
 "No Score",
 "",
 "Jacks or Better",
 "Two Pair",
 "Three of a Kind",
 "Straight",
 "Flush",
THE HAND CLASS 331

 "Full House",
 "Four of a Kind",
 "Straight Flush",
 "Royal Flush",
 };

 private int score = -1;
 }
}

B.6 THE MACHINE CLASS

The Machine class is discussed in chapter 4, Working with ADO.NET and databases.

namespace Poker {

 using System;

 public class Machine {

 public readonly int MinBet;
 public readonly int MaxBet;
 public readonly int StartCredits;
 public readonly int Bias;

 // private constructor...
 private Machine() {
 bank = new Bank();
 MinBet = bank.GetParm("MinBet", 1);
 MaxBet = bank.GetParm("MaxBet", 5);
 StartCredits = bank.GetParm("StartCredits", 100);
 Bias = bank.Bias;
 }

 public static Machine Instance {
 get {

 // allow just one instance...
 if (machine == null) machine = new Machine();
 return machine;
 }
 }

 public Hand Deal() {
 Hand hand = new Hand();
 int bias = Bias;
 while (hand.Score > 0 && bias-- > 0)
 hand = new Hand();
 return hand;
 }

 public Hand Draw(Hand oldHand, string holdCards, int bet) {
 int bias = Bias;
 Hand newHand = new Hand(oldHand, holdCards);
 while (newHand.Score > 0 && bias-- > 0)
 newHand = new Hand(oldHand, holdCards);
332 APPENDIX B THE POKER ENGINE LISTINGS

 bank.SaveGame(newHand.ToString(), newHand.Score, bet);
 return newHand;
 }

 public Hand Draw(string handString, string holdCards, int bet) {
 return Draw(new Hand(handString), holdCards, bet);
 }

 public string Stats { get {

 return bank.Text;
 } }

 public static string PayoutTable { get {
 return "\n" +
 "Payout Table\n" +
 "============\n" +
 "Royal Flush : 10\n" +
 "Straight Flush : 9\n" +
 "Four of a Kind : 8\n" +
 "Full House : 7\n" +
 "Flush : 6\n" +
 "Straight : 5\n" +
 "Three of a Kind : 4\n" +
 "Two Pair : 3\n" +
 "Jacks or Better : 2\n";
 } }

 private static Machine machine = null;
 private Bank bank = null;
 }
}

B.7 THE MSGLOG CLASS

The MsgLog class is discussed in chapter 4, Working with ADO.NET and databases.

using System;
using System.Diagnostics;
namespace Poker {
 public class MsgLog {
 public MsgLog(string errMsg) {
 DateTime now = DateTime.Now;
 errMsg = String.Format("{0} : {1}", now, errMsg);
 EventLog log = new EventLog("Application", ".", "Poker");
 log.WriteEntry(errMsg, EventLogEntryType.Error);
 }
 }
}

THE MSGLOG CLASS 333

B.8 THE SIMPLEMACHINE CLASS

The SimpleMachine class is discussed in chapter 3, Case study: a video poker machine.

namespace Poker {
 public class SimpleMachine {
 public Hand Deal() {
 return new Hand();
 }
 public Hand Draw(Hand oldHand, string holdCards) {
 return new Hand(oldHand, holdCards);
 }
 public Hand Draw(string oldHand, string holdCards) {
 return new Hand(oldHand, holdCards);
 }
 }
}

334 APPENDIX B THE POKER ENGINE LISTINGS

A P P E N D I X C

The WinPok.cs listing

// file : WinPok.cs
// compile : csc /r:poker.dll
// /t:winexe
// /win32icon:poker.ico
// winpok.cs

namespace Poker {

 using System;
 using System.Runtime.InteropServices; // for API MessageBeep
 using System.Windows.Forms;
 using System.Threading;
 using System.Drawing;
 using System.ComponentModel;

 public class WinPokForm : Form {

 public static void Main() {
 // start the Windows message loop...
 Application.Run(new WinPokForm());
 }

 public WinPokForm() {
 initUI(); // create GUI controls
 newGame(); // init poker machine, user credits, etc.
 }

 private void initUI() {
 initForm();
 initMenu();
 initStartOverButton();
 initCredits();
335

 initMessage();
 initBet();
 initHoldCheckBoxes();
 initDealDrawButton();
 initPayoutTable();
 initMachineStats();
 initStatusBar();
 initCards();

 }

 private void initForm() {
 // initialize the form...

 // set title bar...
 Text = ".NET Video Poker - The Windows Forms Version";

 // set form height and width...
 Height = 510;
 Width= 445;

 // center form and disallow resizing...
 CenterToScreen();
 MaximizeBox = false;
 FormBorderStyle = FormBorderStyle.FixedDialog;

 // set the form icon...
 Icon = getIcon("poker");
 }

 private void initMenu() {
 // initialize the menu...

 // create the form's main menu...
 Menu = new MainMenu();

 // create the File menu...
 MenuItem fileMenuItem = Menu.MenuItems.Add("&File");

 startOverMenuItem = new MenuItem(
 "&Start Over",
 new EventHandler(startOverHandler),
 Shortcut.CtrlS);
 fileMenuItem.MenuItems.Add(startOverMenuItem);

 MenuItem quitMenuItem = new MenuItem(
 "&Quit",
 new EventHandler(quitHandler),
 Shortcut.CtrlQ);
 fileMenuItem.MenuItems.Add(quitMenuItem);

 // create the Help menu...
 MenuItem helpMenuItem = Menu.MenuItems.Add("&Help");

 MenuItem aboutMenuItem = new MenuItem(
 "&About",
 new EventHandler(aboutHandler),
 Shortcut.CtrlA);
336 APPENDIX C THE WINPOK.CS LISTING

 helpMenuItem.MenuItems.Add(aboutMenuItem);
 }

 private void initStartOverButton() {
 startOverButton = new Button();
 startOverButton.Location = new Point(8, 8);
 startOverButton.Size = new Size(424, 24);
 startOverButton.Text = "&Start Over";
 startOverButton.Font =

 new Font("Verdana", 10f, FontStyle.Bold);
 startOverButton.Click +=
 new EventHandler(startOverHandler);
 Controls.Add(startOverButton);
 }

 private void initCredits() {
 // display how many credits remaining...

 Label l = new Label();
 l.Location = new Point(8, 40);
 l.Text = "CREDITS";
 l.Size = new Size(88, 24);
 l.Font = new Font("Verdana", 10f, FontStyle.Bold);
 l.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(l);

 creditsLabel = new Label();
 creditsLabel.Location = new Point(18, 64);
 creditsLabel.Size = new Size(60, 24);
 creditsLabel.Font = new Font("Verdana", 10f, FontStyle.Bold);
 creditsLabel.BorderStyle =
 System.Windows.Forms.BorderStyle.Fixed3D;
 creditsLabel.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(creditsLabel);
 }

 private void initMessage() {

 Label l = new Label();
 l.Text = ".NET Video Poker";
 l.Font = new Font("Verdana", 10f, FontStyle.Bold);
 l.Location = new Point(104, 40);
 l.Size = new Size(232, 24);
 l.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(l);

 // message to the player...
 messageLabel = new Label();
 messageLabel.Font = new Font("Verdana",10f, FontStyle.Bold);
 messageLabel.Location = new Point(104, 64);
 messageLabel.Size = new Size(232, 24);
 messageLabel.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(messageLabel);
 }
337

 private void initBet() {

 Label l = new Label();
 l.Text = "BET";
 l.Location = new Point(344, 40);
 l.Size = new Size(88, 24);
 l.Font = new Font("Verdana",10f, FontStyle.Bold);
 l.TextAlign = ContentAlignment.MiddleCenter;
 Controls.Add(l);

 betTextBox = new TextBox();
 betTextBox.Location = new Point(368, 64);
 betTextBox.MaxLength = 1;
 betTextBox.Font = new Font("Verdana",10f, FontStyle.Bold);
 betTextBox.Size = new Size(32, 22);
 betTextBox.TextAlign = HorizontalAlignment.Center;
 betTextBox.TabStop = false;
 betTextBox.TextChanged += new EventHandler(betChangedHandler);
 Controls.Add(betTextBox);
 }

 private void initCards() {

 card1 = new PictureBox();
 card1.Location = new Point(8, 104);
 card1.Size = new Size(72, 96);
 Controls.Add(card1);

 card2 = new PictureBox();
 card2.Location = new Point(96, 104);
 card2.Size = new Size(72, 96);
 Controls.Add(card2);

 card3 = new PictureBox();
 card3.Location = new Point(184, 104);
 card3.Size = new Size(72, 96);
 Controls.Add(card3);

 card4 = new PictureBox();
 card4.Location = new Point(272, 104);
 card4.Size = new Size(72, 96);
 Controls.Add(card4);

 card5 = new PictureBox();
 card5.Location = new Point(360, 104);
 card5.Size = new Size(72, 96);
 Controls.Add(card5);
 }

 private void initHoldCheckBoxes() {
 // init hold CheckBoxes...

 hold1 = new CheckBox();
 hold1.Location = new Point(12, 208);

 hold2 = new CheckBox();
338 APPENDIX C THE WINPOK.CS LISTING

 hold2.Location = new Point(100, 208);

 hold3 = new CheckBox();
 hold3.Location = new Point(188, 208);

 hold4 = new CheckBox();
 hold4.Location = new Point(276, 208);

 hold5 = new CheckBox();

 hold5.Location = new Point(364, 208);

 // set common HOLD checkbox attributes...
 hold1.Text = hold2.Text = hold3.Text =
 hold4.Text = hold5.Text = "HOLD";
 hold1.Font = hold2.Font = hold3.Font =
 hold4.Font = hold5.Font =
 new Font("Verdana", 11f, FontStyle.Bold);
 hold1.Size = hold2.Size = hold3.Size =
 hold4.Size = hold5.Size = new Size(80, 24);
 hold1.TextAlign = hold2.TextAlign = hold3.TextAlign =
 hold4.TextAlign = hold5.TextAlign =
 ContentAlignment.MiddleLeft;

 // add the HOLD checkboxes to the UI...
 Controls.Add(hold1);
 Controls.Add(hold2);
 Controls.Add(hold3);
 Controls.Add(hold4);
 Controls.Add(hold5);

 }

 private void initDealDrawButton() {
 dealDrawButton = new Button();
 dealDrawButton.Location = new Point(168, 240);
 dealDrawButton.Size = new Size(104, 24);
 dealDrawButton.Font =
 new Font("Verdana",10f, FontStyle.Bold);
 dealDrawButton.Click +=
 new EventHandler(dealDrawHandler);
 Controls.Add(dealDrawButton);
 }

 private void initPayoutTable() {

 // frame the payout table...
 GroupBox g = new GroupBox();
 g.Location = new Point(8, 272);
 g.Size = new Size(200, 168);
 Controls.Add(g);

 Label l = new Label();
 l.Location = new Point(5, 10);
 l.Text = Machine.PayoutTable; // payout text never changes
 l.Size = new Size(180, 150);
 l.Font =
339

 new Font(FontFamily.GenericMonospace, 8f, FontStyle.Bold);
 g.Controls.Add(l);
 }

 private void initMachineStats() {

 GroupBox g = new GroupBox();
 g.Location = new Point(216, 272);
 g.Size = new Size(216, 168);

 Controls.Add(g);

 machineStatsLabel = new Label();
 machineStatsLabel.Location = new Point(5, 10);
 machineStatsLabel.Size = new Size(190, 150);
 machineStatsLabel.Font =
 new Font(FontFamily.GenericMonospace, 8f, FontStyle.Bold);
 g.Controls.Add(machineStatsLabel);
 }

 private void initStatusBar() {

 statusBarPanel = new StatusBarPanel();
 statusBarPanel.BorderStyle =
 StatusBarPanelBorderStyle.Sunken;
 statusBarPanel.AutoSize = StatusBarPanelAutoSize.Spring;
 statusBarPanel.Alignment = HorizontalAlignment.Center;

 StatusBar s = new StatusBar();
 s.ShowPanels = true;
 s.Font = new Font("Verdana", 8f, FontStyle.Bold);
 s.Panels.AddRange(new StatusBarPanel[]{statusBarPanel});
 Controls.Add(s);
 }

 private void initPokerMachine() {
 // initialize the poker machine...
 machine = Machine.Instance;
 uiBet = machine.MinBet;
 uiCredits = machine.StartCredits;
 }

 protected override void OnClosing(CancelEventArgs e) {
 base.OnClosing(e);
 // make sure the player really wants to quit...
 DialogResult r = MessageBox.Show(
 "Quit?",
 "Closing",
 MessageBoxButtons.YesNo, MessageBoxIcon.Question);
 if (r != DialogResult.Yes) e.Cancel = true;
 }

 private void startOverHandler(object sender, EventArgs e) {
 // user selected "Start Over" from the File menu...
 newGame();
 }
340 APPENDIX C THE WINPOK.CS LISTING

 private void quitHandler(object sender, EventArgs e) {
 // user selected "Quit" from the File menu...
 Close(); // close this form
 }

 private void aboutHandler(object sender, EventArgs e) {
 // user selected "About" from the Help menu...
 string msg = ".NET Video Poker - Windows Forms Version\n";
 msg += "by Fergal Grimes\n";

 MessageBox.Show(
 msg,
 ".NET Video Poker",
 MessageBoxButtons.OK,
 MessageBoxIcon.Exclamation);
 }

 private void dealDrawHandler(object sender, EventArgs e) {
 if (dealDrawButton.Text == "&DEAL")
 deal();
 else
 draw();
 }

 private void betChangedHandler(object sender, EventArgs e) {

 int newBet;
 try {
 newBet = Int32.Parse(betTextBox.Text);
 }
 catch (Exception) {
 // use previous bet...
 beep(); // alert player
 showStatus("Error: Illegal bet!");
 newBet = uiBet;
 }
 betTextBox.Text = getBet(newBet).ToString();
 }

 private int getBet(int newBet) {
 Bet bet =
 new Bet(newBet,uiCredits, machine.MinBet, machine.MaxBet);
 if (bet.Amount != newBet) {
 beep(); // alert player
 string s =
 "Error: Minimum bet is " +
 machine.MinBet.ToString() +
 ". Maximum bet is " +
 machine.MaxBet.ToString() + ".";
 showStatus(s);
 }
 return bet.Amount;
 }

 private void deal() {
341

 disableCommand("Dealing...");
 setBet();
 freezeBet();
 hideCards();

 // deal a hand...
 dealHand = machine.Deal();
 showCards(dealHand);

 // clear and enable the HOLD checkboxes...
 clearHoldCheckBoxes();
 enableHoldCheckBoxes();

 // tell player what to do...
 showMessage("Hold and Draw");
 showStatus("Hold cards and click the DRAW button.");
 enableCommand("&DRAW");
 }

 private void setBet() {
 int newBet = Int32.Parse(betTextBox.Text);
 Bet bet =
 new Bet(newBet,uiCredits, machine.MinBet, machine.MaxBet);
 uiBet = bet.Amount;
 uiCredits = bet.Credits;
 showMoney();
 }

 private void draw() {

 disableHoldCheckBoxes();
 disableCommand("Drawing...");

 // hold cards...
 string holdString = "";
 if (hold1.Checked) holdString += "1";
 if (hold2.Checked) holdString += "2";
 if (hold3.Checked) holdString += "3";
 if (hold4.Checked) holdString += "4";
 if (hold5.Checked) holdString += "5";

 drawHand = machine.Draw(dealHand, holdString, uiBet);

 // hide cards which have not been held...
 if (!hold1.Checked) hideCard(card1);
 if (!hold2.Checked) hideCard(card2);
 if (!hold3.Checked) hideCard(card3);
 if (!hold4.Checked) hideCard(card4);
 if (!hold5.Checked) hideCard(card5);
 pause(); // let the player see the backs of the cards

 showCards(drawHand);

 // update UI...
 int won = drawHand.Score * uiBet;
342 APPENDIX C THE WINPOK.CS LISTING

 uiCredits += won;
 showMoney();
 showMachineStatistics();
 showMessage(drawHand.Title);
 showStatus(drawHand.Title + " - Scores " + drawHand.Score);
 checkGameOver();
 }

 private void checkGameOver() {

 // check if player has enough money to go on...
 if (machine.MinBet > uiCredits) {
 disableCommand("Game Over");
 showStatus("Game over!");
 freezeBet();
 beep(); // alert player
 } else {
 enableCommand("&DEAL");
 focusCommand();
 unfreezeBet();
 }
 }

 private void newGame() {
 // start (again) with full credits...
 initPokerMachine();
 hideCards();
 clearHoldCheckBoxes();
 disableHoldCheckBoxes();
 unfreezeBet();
 showMachineStatistics();
 showMoney();
 enableCommand("&DEAL");
 focusCommand();
 showMessage("Click DEAL to Start");
 showStatus("Place Your Bet and Click DEAL to Start");
 }

 private void enableCommand(string s) {
 dealDrawButton.Text = s;
 dealDrawButton.Enabled = true;
 startOverButton.Enabled = true;
 }

 private void disableCommand(string s) {
 dealDrawButton.Enabled = false;
 dealDrawButton.Text = s;
 if (s.Equals("Game Over")) {
 startOverButton.Enabled = true;
 startOverMenuItem.Enabled = true;
 }
 else {
 startOverButton.Enabled = false;
 startOverMenuItem.Enabled = false;
343

 }
 }

 private void showMessage(string s) {
 messageLabel.Text = s;
 }

 private void showStatus(string s) {
 statusBarPanel.Text = s;

 }

 private void freezeBet() {
 betTextBox.ReadOnly = true;
 }

 private void unfreezeBet() {
 betTextBox.ReadOnly = false;
 }

 private void hideCards() {
 // display the backs of the cards...
 card1.Image = card2.Image = card3.Image =
 card4.Image = card5.Image = getImage("CB");
 Application.DoEvents();
 }

 private void hideCard(PictureBox card) {
 card.Image = getImage("CB");
 }

 private void showCards(Hand h) {
 card1.Image = getImage(h.CardName(1)); pause();
 card2.Image = getImage(h.CardName(2)); pause();
 card3.Image = getImage(h.CardName(3)); pause();
 card4.Image = getImage(h.CardName(4)); pause();
 card5.Image = getImage(h.CardName(5)); pause();
 }

 private void showMoney() {
 showCredits();
 showBet();
 }

 private void showCredits() {
 creditsLabel.Text = uiCredits.ToString();
 }

 private void showBet() {
 betTextBox.Text = uiBet.ToString();
 }

 private void showMachineStatistics() {
 machineStatsLabel.Text = machine.Stats;
 }

 private void clearHoldCheckBoxes() {
 hold1.Checked = hold2.Checked = hold3.Checked =
344 APPENDIX C THE WINPOK.CS LISTING

 hold4.Checked = hold5.Checked = false;
 }

 private void enableHoldCheckBoxes() {
 hold1.Enabled = hold2.Enabled = hold3.Enabled =
 hold4.Enabled = hold5.Enabled = true;
 hold1.Focus();
 }

 private void disableHoldCheckBoxes() {
 hold1.Enabled = hold2.Enabled = hold3.Enabled =
 hold4.Enabled = hold5.Enabled = false;
 }

 private void focusCommand() {
 dealDrawButton.Focus();
 }

 private Image getImage(string imgName) {
 string fileName = @"..\images\" + imgName + ".GIF";
 try {
 return Image.FromFile(fileName);
 } catch (Exception e) {
 MessageBox.Show(
 "Error loading card image file: " + e.Message,
 "Error!",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 return null;
 }
 }

 private Icon getIcon(string iconName) {
 string fileName = iconName + ".ICO";
 try {
 return new Icon(fileName);
 } catch (Exception e) {
 MessageBox.Show(
 "Error loading icon file: " + e.Message,
 "Error!",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 return null;
 }
 }

 private void pause() {
 pause(200);
 }

 private void pause(int n) {
 Application.DoEvents();
 Thread.Sleep(n);
 }

 private void beep() {
 MessageBeep(0);
345

 }

 // private form variables...
 private Machine machine; // the poker machine
 private int uiCredits; // amount of player credits
 private int uiBet; // amount of player's bet
 private Hand dealHand; // hand dealt
 private Hand drawHand; // hand drawn
 private Button dealDrawButton; // click to deal/draw

 private Button startOverButton; // click to start over
 private Label messageLabel; // informational message
 private Label creditsLabel; // display credits remaining
 private Label machineStatsLabel; // display mechine stats
 private TextBox betTextBox; // input player bet

 // start over menu item...
 private MenuItem startOverMenuItem;

 // display card images...
 private PictureBox card1, card2, card3, card4, card5;

 // display checkbox underneath each card...
 private CheckBox hold1, hold2, hold3, hold4, hold5;

 // status bar display...
 private StatusBarPanel statusBarPanel;

 [DllImportAttribute("user32.dll")]
 public static extern int MessageBeep(int type); // error beep
 }
}

346 APPENDIX C THE WINPOK.CS LISTING

index
Symbols

-- decrement operator 294
– subtraction operator 295
– unary minus operator 294
! negation operator 296
!= inequality operator 295
#define directive 317
#elif directive 317
#else directive 317
#endif directive 317
#endregion directive 318
#error directive 317
#if directive 317
#line directive 317
#region directive 318
#undef directive 317
#warning directive 317
% remainder operator 295
& address of operator 297
& bitwise operator 297
&& logical operator 296
() cast operator 297
* multiplication operator 295
* pointer indirection operator 297
+ addition operator 294
+ unary plus operator 294
++ increment operator 294
. dot operator 297
< less than operator 295
<= less than or equal to operator 295

== equality operator 295
> greater than operator 295
-> pointer member access operator 297
>= greater than or equal to operator 295
? conditional operator 296
[] indexing operator 297
[] pointer index operator 297
^ exclusive or (XOR) operator 296
| bitwise operator 296
|| logical operator 296
~ bitwise complement operator 296
⁄ division operator 295

A

abstract keyword 309
AcceptChanges method 85–87
access modifiers 312
accessing the Win32 API 233
AcquireRequestState event 267
activation modes 121
Activator.CreateInstance 43, 148
Activator.GetObject 121, 123, 142, 148
Active Server Pages. See ASP
ActiveX Data Objects. See ADO
AddRange method 226
ADO 10, 78
ADO.NET 2, 10–11, 56, 77

connection string 82
databases 78–116
DataSet 80
347

ADO.NET (continued)
DataTable 80
namespaces 79
Poker.Bank class 89

AL 44
add statement 45
compiler 47, 54
print statement 45–46
reset statement 45
sub statement 45
translating to IL 45

alc.exe 45
AlcAsm 46, 48
AlcCls 46, 48
AlcMod 46, 48
Alignment property 226
AllowPaging property 255
anchoring controls 207
APL 2
Application class 190, 205
application configuration file 33
application domains 118
Application.DoEvents 205
Application.Exit 205
Application.Run 205
Application_Start 272–273
ArgumentException 314
arithmetic language. See AL
arrays 18, 293
as operator 317
ASP 10, 241–244
.asp files 242
ASP.NET 10, 165–166, 241, 244–246

application-level storage 189
and HTML 250

.aspx files 242
assemblies 15, 26, 118

downloading 35, 73
versions 30–31

assembly 27, 46
assembly download cache 37
AssemblyBuilder class 47
AssemblyBuilderAccess.Save 48
AssemblyInfo.cs file 276
AssemblyName class 48

AssemblyVersion attribute 318
assignment in C# 19, 296
asynchronous method invocation 178
attributes 318
AutoScroll property 213

B

Bank class. See Poker.Bank class
bank loan system example 11
Base 64 encoding 140–142, 251
BeginEdit method 85
BeginRequest event 267
Bet class. See Poker.Bet class
bias 58, 95, 110
bit-shifting operators 296
bool type 292
BorderStyle attribute 226
boxing 15, 20, 38–39, 311
break statement 300
build number 30
BusinessList class 198
Button, ASP.NET control 252
Button, Windows Forms control 220
byte type 292

C

C programming language 7, 18
C# programming language 11–12, 16–17,

289–320
C++ programming language 18–19

destructor 23
C⁄ SDK 203, 238
Calendar, ASP.NET control 252
CallingConventions.Standard 48
Cancel property 234
CancelEventArgs class 207
Card class. See Poker.Card class
catch keyword 313
CGI 241
ChannelServices.RegisterChannel 121
char type 18, 292
CheckBox, ASP.NET control 252
CheckBox, Windows Forms control 224–225, 236
CheckBoxList, Windows Forms control 252
348 INDEX

checked operator 297
classes 17, 290, 302–303
Click event 220
client activation 130
client/server 11, 14, 56
client-activated objects 131
Close method 26
CLR 2, 6, 10–11, 34, 44
CLS 6, 11, 17
CLSCompliant attribute 6, 17
COBOL 2
<codeBase> configuration tag 37
CodeBehind attribute 165, 276, 278–279
COM 3–4, 56, 70–72

COM-based poker game 70–77
COM+ 72, 119
Common Language Runtime. See CLR
Common Language Specification. See CLS
Common Type System. See CTS
CompareValidator, ASP.NET control 261
ComPok 70–77
Component class 209, 211
components, .NET 4
Conditional attribute 319
configuration file 33, 145
ConPok 77, 114–115
Console.WriteLine 23
const keyword 293
constants 291, 293
Container property 209, 211
ContainerControl class 214
ContainerControl.ActiveControl 214
Context property 166
continue statement 299
Control class 211
Controls property 222
controls, ASP.NET 248
controls, Windows Forms 205
controlToValidate property 263
CookieContainer class 185
cookieless 274
cookies 188
CORBA 4, 13, 164–165
CreateInstance method 43, 148

cross-language
compatibility 11
inheritance 6, 11
interoperability 6

csc.exe 5, 318
CTS 2, 17
CurrentLeaseTime property 132
CurrentState property 132
CustomValidator, ASP.NET control 261

D

DAO 78
database management system (DBMS) 80
DataGrid, ASP.NET control 252, 254–255
DataList, ASP.NET control 252
DataReader class 79, 88
DataRelation class 87
DataRow class 82, 86
DataRowState enumeration 86
DataSet 79–80, 86–87

and XML 83
creating 81–82
GetXml method 84
Tables collection 80
updating a database 85

DataSource property 255
DataTable class 82, 86–87
DB2 11
DCOM 13, 164–165
debugging 3
decimal type 17, 292
DefaultWsdlHelpGenerator 167
delegates 290, 314
Delete method 87
delta 94
deployment 4
DesignMode property 209
destructor 21
disassembling 28, 39
DISCO 190–192, 194
DiscoveryDocument class 194
display property 263
Dispose method 24–26, 209, 211
DLL 3, 16, 26, 69
INDEX 349

DllImport attribute 233
do statement 298
docking 207
DoEvents method 228
double type 292
DropDownList, ASP.NET control 252
dynamic linking 10

E

Echo, remote services example 136–137
Eiffel 2
ElapsedEventHandler delegate 316
Emit method 50
enableClientScript property 263
EnableSession property 184
EndEdit method 85
EndRequest event 267
enum keyword 314
enumerations 290
Equals method 21–23, 60
errorMessage property 263
Event Viewer 92
EventArgs class 206, 219, 234
EventHandler delegate 206
events 18, 315–316
exceptions 312
executables (.exe) 26, 28
expressions 294

F

fields 18
FileNotFoundException 314
Fill method 82
finalization 23–24
Finalize method 21, 23
finally keyword 313–314
float type 17, 292
Font property 220, 222–223
for statement 299
foreach statement 301
Forms Designer 236
forms, Web. See Web Forms
forms, Windows. See Windows Forms
FORTH 38
Framework class library 5

G

gacutil.exe utility 32, 36
GameResult struct 145, 200
garbage collection 3, 6, 19, 23, 290
GC.SuppressFinalize 25
get accessor 304
GetHashCode method 21–23, 60
GetLifetimeService method 132
GetObject method 121, 123, 142, 148
GetType method 21
GetXml method 83–84, 102
GetXmlSchema method 83–84, 102
GIF image 26, 74, 227–228
global assembly cache 32–33
Global.Asax file 272, 276
goto statement 301
Graphical Device Interface. See GDI
GroupBox, Windows Forms control 220, 222
GUI 10–11, 205

H

Hand class. See Poker.Hand class
hand-held PCs 13
heap. See managed heap
HtmlAnchor, ASP.NET control 253
HtmlTable, ASP.NET control 253, 256
HtmlTableCell, ASP.NET control 258
HTTP 164–165, 250

and TCP 127
channel 117, 135, 144, 146, 148
handler 268
module 266–268
request 246

HTTP GET request 168–169
HttpApplication class 267
HttpGet protocol 171
HttpPost protocol 171

I

IBM 164, 170, 195
IComparable interface 317
identifiers 291
IDL 4
IEnumerable interface 317
350 INDEX

IEPok 73, 77
coding the application 74

if statement 298
IIS 140, 142–143, 165
IL 2, 16–17

boxing in 38–39
coding programs in 39
inspecting generated 37
programming in 37
stack-based nature of 38
translating from AL to 45
unboxing in 38–39

ilasm.exe assembler 39
ildasm.exe disassembler 28, 37–38
ILease.Register 133
ILGenerator class 47, 49
Import Namespace directive 245
Informix 11–12
inheritance 20, 305–307
INI file 34
Init event 247
InitializeLifetimeService method 133
InitialLeaseTime property 133
installutil.exe utility 153, 155
int type 18, 292
Interface Definition Language. See IDL
interfaces 290, 305, 316–317
internal keyword 60, 312
Internet Explorer 56, 73–74, 103

poker game 77
Internet Information Server. See IIS
Internet Services Manager 73, 275
InvalidCastException 20
is operator 297
ISAPI 265
ISerializable interface 118
ISO 3166 Geographic Taxonomy 196
ISponsor interface 133–134
IsPostBack property 256
IsValid property 264

J

Jet 78
JIT compiler 44
JScript .NET 2
Just-In-Time. See JIT

L

Label, ASP.NET control 252
Label, Windows Forms control 221
late binding 43
leasing 130–131
libraries 28
ListBox, ASP.NET control 252
LiteralControl, ASP.NET control 258
Load event 247
LocalBuilder class 49
localOnly attribute 271
Location property 213, 220, 222–223
logging errors 91
logical operators 296
long type 18, 292
LParam 240

M

Machine class. See Poker.Machine class
Main method 4, 291
MainMenu class 220
makefile 69, 115
managed applications 3
managed heap 18–19, 39
manifest 26–28
MarshalByRefObject class 121, 132–133, 138,

208–209
marshaling 118

by reference 118
by value 118

MaxLength property 223
MDI 214
member access 304
members 20
MemberwiseClone 21
Menu class 218–220
MenuItem class 219–220
message queues. See MSMQ
MessageBeep function 233
MessageBox class 219
metadata 2, 4, 10, 26
method signature 310
methods 18, 20, 310, 316
MFC 203
Microsoft Data Engine. See MSDE
INDEX 351

Microsoft Developer Network 5
Microsoft Foundation Classes. See MFC
Microsoft Intermediate Language. See IL
Microsoft Message Queuing. See MSMQ
Microsoft.Uddi 198
Mobile Internet Toolkit 13, 56, 76, 241
MobPok 77, 286–288
mode attribute 274
ModuleBuilder class 47
modules 26–27
MouseDown event 207
MouseEventArgs class 206–207
MouseEventHandler delegate 206
mscorlib.dll 9, 38, 40
MSDE 197
MsgLog class. See Poker.MsgLog class
MSMQ 56, 155, 157
multi-dimensional arrays 294
Multiple Document Interface. See MDI

N

NAICS codes 196
namespaces 7, 9, 290
native code 44
native images 41
.NET SDK 5, 103, 175
new operator 18, 20, 297
NewRow method 87
ngen.exe utility 41
NT service. See Windows services
null keyword 19

O

objects 18
ODBC 78
OLE DB 79
OleDbCommand class 79
OleDbConnection class 79
OleDbDataAdapter class 79
OleDbDataReader class 79
OnClick attribute 251
OnClosing method 234
OnContinue method 150
OnInit method 246

OnLoad method 246, 260
OnPause method 150
OnPreRender method 247
onSelectionChanged attribute 254
OnShutdown method 150
OnStart method 150
OnStop method 150
OnUnload method 247
OpCodes class 49
operands 294
operator associativity 297
operator precedence 297
operators 294
Oracle 11
osql utility 90
out keyword 310
overloading methods 311
override keyword 308

P

Page class 245
page lifecycle 246
Page.Request 245
Page.Response 245
pageOutput attribute 271
PageSize property 255
Panel class 252
params keyword 311
pass by reference 310
pass by value 310
payout control algorithm 58, 90, 110
PDA 13, 76–77
PE format 3, 45
Perl 2
PictureBox, Windows Forms control 226, 236
pokdb.sql database creation script 89–90
poker assembly 60, 73–74, 112, 199, 241

building 113
registering as a COM object 70

poker DLL. See poker assembly
Poker.Bank class 89–101, 106, 113

creating 92
testing 99

Poker.Bank class 101
Poker.Bet class 112–113
352 INDEX

Poker.Card class 58, 77, 113
coding 59
designing 58

Poker.Hand class 61, 63, 77, 113, 156
coding 61
designing 61

Poker.Machine class 77, 93, 109, 113
Poker.MsgLog class 76, 91, 99, 113
Poker.SimpleMachine class 68, 71–73, 113,

159, 285
portable executable format. See PE format
pre-JITting 41
preprocessor directives 317
PreRender event 247
private assemblies 16, 29, 35
private keyword 312
private queues message 156
process 118
ProcessStartInfo class 108
profiling 3
profit 58
properties 18, 316
protected keyword 307, 312
proxy 119
public key encryption 30
public keyword 304, 312
public queues message 155
pubs database 81
Python 2

Q

QuePok 77, 155, 159–160

R

RadioButton, ASP.NET control 252
RadioButtonList, ASP.NET control 252
random number generation 60
RangeValidator, ASP.NET control 261, 263
RDO 78
ReadXml method 85
ReadXmlSchema method 85
ref keyword 310
reference types 15, 19–20
ReferenceEquals method 22

reflection 16, 41
regasm.exe utility 70, 72
regsvcs.exe utility 72
regular expressions 43
RegularExpressionValidator, ASP.NET

control 261, 263
RejectChanges method 86
relational operators 295
remote events 136
remoting 56, 76, 117–119
remoting configuration files 124
RemotingConfiguration.Configure method 126
RemotingConfiguration.RegisterWellKnown-

ServiceType method 121
RemotingException 132
RemPok 77, 144, 146, 148
Renewal method 133–134
RenewOnCallTime property 132–133
requestLimit attribute 272
RequiredFieldValidator, ASP.NET control 261,

263
requiredRuntime configuration tag 34
Resize event 207
return statement 301
revision number 30
Rows collection 80
RowState property 86–87
RunInstallerAttribute 151, 318

S

sbyte type 292
ScrollableControl class 213
sealed classes 309–310
Serializable attribute 118
server controls 248
server-activated remote objects 123
ServiceBase.Run 151
ServiceProcessInstaller class 151
session state 166, 272, 274
Session.Abandon 274
set accessor 304
shared assemblies 16, 29, 35

installing 32
versioning 29

short type 292
INDEX 353

ShowPanels property 226
SIC codes 195
signature 310
signing assemblies 30
Simple Object Access Protocol. See SOAP
SimpleMachine class. See Poker.SimpleMachine

class
SimPok 68–69, 77
Single type 17
SingleCall 123–124, 127, 181
Singleton 110, 121–127, 143–144, 148
Site property 209
Size property 213, 220, 222–223
sizeof operator 297
skeleton program, IL 39
SMTP 179
SmtpMail.Send 180
sn.exe utility 30
SOAP 135, 165, 171, 173
Solution Explorer 236
SQL 93

COMMIT TRANSACTION statement 86
DELETE statement 85, 87
INSERT statement 85, 87
SELECT statement 82
UPDATE statement 85, 87

SQL Server 79, 89, 100–101
pubs database 81

SqlCommand class 79
SqlCommand.ExecuteNonQuery 88
SqlConnection class 79, 82, 88
sqlConnectionString attribute 274
SqlDataAdapter class 79, 82
SqlDataReader class 79
stack 18, 44
Start method 320
stateConnectionString attribute 274
stateful client 184
stateful Web service 181
statusBarPanel 225–226
StatusBarPanelAutoSize.Spring 226
StatusBarPanelBorderStyle.Sunken 226
string type 18
strong names utility 30
structs 19, 290, 302, 305

SvcPok 77, 149, 151, 153–154
switch statement 238, 300
synchronous method invocation 178
System namespace 4, 40

Console class 12
EventHandler delegate 206, 315
IDisposable interface 24–25
MarshalByRefObject class 119
Object class 18–19, 21–23

System.ComponentModel namespace
CancelEventArgs class 234

System.Configuration.Install namespace
Installer class 151

System.Data namespace 10
System.Data.OleDb namespace 79
System.Data.SqlClient namespace 10, 79
System.Data.SqlTypes namespace 10
System.Drawing namespace 222
System.Messaging namespace

MessageQueue class 156
System.Net namespace

WebException class 178
WebRequest class 169
WebResponse class 169

System.Reflection namespace 37, 41
System.Reflection.Emit namespace 16–17,

43–44, 46
System.Runtime.InteropServices namespace

DllImportAttribute class 233
System.Runtime.Remoting.Channels.Http

namespace 126
System.ServiceProcess namespace

ServiceBase class 150
System.Text namespace 278
System.Timers namespace

ElapsedEventHandler delegate 315
Timer class 315–316

System.Web namespace 10
System.Web.Mail namespace

MailMessage class 180
System.Web.Mobile class 286
System.Web.Services namespace

WebService class 166, 175, 274
System.Web.Services.Discovery namespace

DiscoveryDocument class 192
354 INDEX

System.Web.Services.Protocols namespace
SoapHttpClientProtocol class 175–176

System.Web.UI namespace 10
Control class 246
Page class 245, 274

System.Web.UI.HtmlControls namespace 252
System.Web.UI.MobileControls namespace 286
System.Web.UI.WebControls namespace 252
System.Windows.Forms namespace 10, 220

Form class 205
Message structure 240
Timer class 209
ToolTip class 209

System.Xml.Serialization namespace 102
System.Xml.XPath namespace

XPathDocument class 105

T

Table, ASP.NET control 252
TableCell, ASP.NET control 252
TableRow, ASP.NET control 252
TabStop property 223
TagName attribute 259
TagPrefix attribute 259
TCP 117, 121, 144, 146

and HTTP 127
channel 148

telnet 76
Text property 220, 222
TextAlign property 222–223
TextBox, ASP.NET control 252
TextBox, Windows Forms control 223
TextChanged event 223
TextMode property 252
TextWriter class 103, 105
this keyword 303
threading 319
ThreadStart delegate 320
throw statement 302
timeout attribute 274
Timer component 211
TimeSpan structure 133
ToolTip component 211
ToString method 22–23, 60
Trace.Warn 269

Trace.Write 269
traceMode attribute 272
tracing ASP.NET applications 269
Transform method 105
try statement 313
Type.GetType 43
TypeBuilder class 47
typeof operator 297
types 15–16

U

UDDI 164–165, 170, 191, 194, 198
API 198
registry 195–196
SDK 196–197

uint type 292
ulong type 292
unboxing 20, 38–39, 311
unchecked operator 297
Unicode 292
Uniform Resource Identifier. See URI
UNIX 12, 76
unmanaged applications 3
unsafe code 290
UNSPSC 196
Update method 85, 87
URI 119, 121, 124
URL 119, 148, 168, 173
URN 119
ushort type 292
using keyword 4, 245, 291

V

ValidationSummary, ASP.NET control 261, 264
value types 15, 18–19, 292, 310
variable-length parameter list 311
variables 291–292
VBScript 11, 242–243

and COM 71
poker game 71

verbatim string 293
version number 29
viewstate 141, 250
virtual methods 308
INDEX 355

Visual Basic 11–12, 203, 228, 242, 295
Visual Basic .NET 5, 11–12, 16–17
Visual C++ 2, 11, 203
Visual Studio .NET 175, 211, 234, 248, 275–276
void return type 304

W

web controls 252
Web Forms 35, 56, 141, 248, 286
Web Service Description Language. See WSDL
Web service discovery. See DISCO
Web services. See XML Web services
Web.config file 265–267, 276
WebMailService example 179
WebMethod attribute 184, 318
WebPok 77, 279
WebService attribute 166, 200, 318
while statement 299
Win32 API 3

MessageBeep function 233
Win32 applications 118
Windows event log 76
Windows Forms 10, 77, 203–204, 208
Windows SDK 238
Windows services 56, 117, 149
Windows Services Manager 100
WinPok 215–234

WndProc method 205, 238–239
WriteXml method 84
WriteXmlSchema method 84
WSDL 2, 165, 169–170, 173, 191, 194

bindings 172
contract 192
messages 171
portTypes 172
services 173
types 170

wsdl.exe utility 175, 185, 200
WSPok 77, 199–200

X

XCOPY command 29
XML 85, 101, 104

and DataSets 83
schema 84
serialization 101–102, 106

XML Web services 56, 76, 164–165, 175
XmlElementAttribute 103
XmlRep program 106
XmlRootAttribute 103
XmlSerializer class 103
XPathDocument class 105
XSL 85
XSLT 102–106, 108
356 INDEX

	Microsoft .NET for Programmers
	contents
	preface
	acknowledgments
	author online
	about the cover illustration
	Chapter 1 Introduction
	1.1 Developing for the .NET platform
	1.1.1 A language-independent platform
	1.1.2 .NET and managed code

	1.2 A first .NET program
	1.2.1 Compiling the C# Hello program
	1.2.2 A Visual Basic .NET Hello program

	1.3 The platform vs. the programming language
	1.4 Exploring the .NET Framework class library
	1.4.1 An overview of important namespaces
	1.4.2 Programming with the .NET Framework classes
	1.4.3 What happened to ASP and ADO?

	1.5 Putting .NET to work
	1.6 Summary

	Chapter 2 Understanding types and assemblies
	2.1 Introducing types
	2.2 Value vs. reference types
	2.2.1 The C# struct
	2.2.2 Boxing and unboxing

	2.3 Exploring System.Object
	2.3.1 Overriding System.Object methods

	2.4 Understanding finalization
	2.4.1 Coding a finalizer
	2.4.2 Finalization and the Dispose method

	2.5 Introducing assemblies
	2.5.1 Creating a multifile assembly
	2.5.2 Disassembling with ILDASM

	2.6 Private vs. shared assemblies
	2.6.1 Shared assemblies and versioning
	2.6.2 Generating a strong name for a shared assembly
	2.6.3 Installing shared assemblies into the global assembly cache
	2.6.4 Creating an application configuration file

	2.7 Downloading assemblies
	2.7.1 Downloading the Person assembly from the Web

	2.8 Programming in IL
	2.8.1 Inspecting generated IL
	2.8.2 Boxing and unboxing in IL
	2.8.3 Coding IL programs
	2.8.4 Generating native images

	2.9 Types, assemblies, and reflection
	2.9.1 An example of reflection
	2.9.2 The System.Reflection.Emit namespace

	2.10 Building a simple compiler
	2.10.1 The AL language
	2.10.2 Translating AL to IL
	2.10.3 Dynamically generating an assembly
	2.10.4 Coding the AL compiler
	2.10.5 Building and testing the AL compiler

	2.11 Summary

	Chapter 3 Case study: a video poker machine
	3.1 Playing video poker
	3.1.1 Winning poker hands
	3.1.2 A profitable video poker machine

	3.2 The Poker.Card class
	3.2.1 Designing the Card class
	3.2.2 Coding the Card class

	3.3 The Poker.Hand class
	3.3.1 Designing the Hand class
	3.3.2 Coding the Hand class

	3.4 SimPok: a simple poker game
	3.4.1 The Poker.SimpleMachine class
	3.4.2 The SimPok console interface

	3.5 ComPok: a COM-based poker game
	3.5.1 Registering the poker assembly as a COM object
	3.5.2 Console poker using COM and VBScript
	3.5.3 RegAsm and the registry

	3.6 IEPok: an Internet Explorer poker game
	3.6.1 Downloading assemblies using Internet Explorer
	3.6.2 Coding the IEPok application

	3.7 Designing a complete game
	3.7.1 Video poker: the poker engine and its interfaces

	3.8 Summary

	Chapter 4 Working with ADO.NET and databases
	4.1 The ADO.NET namespaces
	4.1.1 The OLE DB and SQL Server managed providers

	4.2 The ADO.NET DataSet
	4.2.1 Creating and using a DataSet
	4.2.2 A simple example

	4.3 DataSets and XML
	4.3.1 The DataSet’s GetXml and GetXmlSchema methods

	4.4 Updating the database using a DataSet
	4.4.1 Committing changes

	4.5 Updating the database directly
	4.6 The DataReader
	4.7 The Poker.Bank class
	4.7.1 Logging errors and warnings
	4.7.2 Creating the Poker.Bank class
	4.7.3 Testing the Bank class

	4.8 Using XML serialization to create a report
	4.8.1 Serializing an object to an XML document
	4.8.2 Performing an XSL transformation
	4.8.3 The XmlRep program

	4.9 The Poker.Machine class
	4.10 The Poker.Bet class
	4.11 Building the poker DLL
	4.12 ConPok: 3-tier client/server poker
	4.13 Summary

	Chapter 5 Developing remote services
	5.1 Introduction to remoting
	5.1.1 Remoting and application domains
	5.1.2 Marshaling objects
	5.1.3 Hosting remote objects
	5.1.4 Creating a remote service
	5.1.5 Creating the client
	5.1.6 Testing the service

	5.2 Implementing server-activated remote objects
	5.2.1 Coding a SingleCall HelloService
	5.2.2 Testing the SingleCall HelloService

	5.3 Configuring remoting
	5.3.1 Using remoting configuration files
	5.3.2 Coding HelloService
	5.3.3 Coding the new client

	5.4 Implementing client-activated remote objects
	5.4.1 Configuring the service for client activation
	5.4.2 Configuring the client for client activation
	5.4.3 Coding the new client
	5.4.4 Testing the client-activated service

	5.5 Client activation and leasing
	5.5.1 Understanding leasing
	5.5.2 Amending the lease
	5.5.3 Using a sponsor to amend lease duration

	5.6 Handling remote events
	5.6.1 The EchoObj class
	5.6.2 The EchoService class
	5.6.3 The EchoClient class
	5.6.4 Testing the EchoService

	5.7 Hosting objects in Internet Information Server
	5.7.1 Providing a public interface for a remote service
	5.7.2 Coding the RemoteEncoder.Base64Service class
	5.7.3 Coding the client
	5.7.4 Compiling the Base64 string encoding application
	5.7.5 Deploying the StringEncoder service on IIS
	5.7.6 Testing the IIS-hosted encoder

	5.8 RemPok: a remote poker game
	5.8.1 Developing the remote poker service
	5.8.2 The remote poker machine configuration file
	5.8.3 The RemPok poker client
	5.8.4 Testing the remote poker machine

	5.9 SvcPok: a remote poker game as a Windows service
	5.9.1 Coding the poker Windows service
	5.9.2 Installing the poker Windows service
	5.9.3 Creating the client

	5.10 QuePok: a message queue-based poker game
	5.10.1 Designing an MSMQ-based poker service
	5.10.2 Creating the PokMsg and PokerQueue classes
	5.10.3 Creating the QuePokService service
	5.10.4 Creating the QuePok client
	5.10.5 Compiling and testing the QuePok service

	5.11 Summary

	Chapter 6 Developing XML Web services
	6.1 Introduction to XML Web services
	6.2 Creating a first Web service
	6.2.1 Creating the service
	6.2.2 Testing the service

	6.3 Creating an HTTP GET client
	6.4 Using WSDL to describe a Web service
	6.4.1 WSDL types
	6.4.2 WSDL messages
	6.4.3 WSDL portTypes
	6.4.4 WSDL bindings
	6.4.5 WSDL services

	6.5 Coding a SOAP client
	6.5.1 Generating the Web service proxy
	6.5.2 Coding the client
	6.5.3 Compiling and executing the client
	6.5.4 Creating an asynchronous client

	6.6 The WebMailService example
	6.7 Managing service state
	6.7.1 Creating a stateful Web service
	6.7.2 Creating the stateful client
	6.7.3 Testing the stateful service
	6.7.4 Example: logging into a Web service
	6.7.5 Maintaining state without cookies
	6.7.6 Emulating singleton activation

	6.8 Enabling Web service discovery
	6.8.1 Generating a DISCO document
	6.8.2 Creating a default.disco file
	6.8.3 Processing a default.disco file

	6.9 Using UDDI to advertise a Web service
	6.9.1 Searching the UDDI registry
	6.9.2 Installing the UDDI SDK and test registry
	6.9.3 Creating a simple inquiry client using the UDDI SDK
	6.9.4 More on UDDI

	6.10 WSPok: the Web service-based poker game
	6.10.1 Creating the WSPokService poker Web service
	6.10.2 Creating the WSPok client
	6.10.3 Testing the poker Web service

	6.11 Summary

	Chapter 7 Creating the Windows Forms user interface
	7.1 Beginning Windows Forms development
	7.1.1 Creating a simple form
	7.1.2 Adding controls to a form
	7.1.3 Anchoring and docking controls
	7.1.4 Handling form events

	7.2 Understanding the Windows Forms programming model
	7.2.1 The Component class
	7.2.2 The Control class
	7.2.3 The ScrollableControl class
	7.2.4 The ContainerControl class
	7.2.5 The Form class

	7.3 WinPok: the Windows Forms-based poker game
	7.3.1 The WinPok program structure
	7.3.2 Setting up the form
	7.3.3 Creating the menu
	7.3.4 Creating buttons
	7.3.5 Creating labels
	7.3.6 Creating text boxes
	7.3.7 Creating check boxes
	7.3.8 Displaying a status bar
	7.3.9 Creating picture boxes
	7.3.10 Starting play
	7.3.11 Dealing cards
	7.3.12 Drawing cards
	7.3.13 Accessing the Win32 API
	7.3.14 Ending the application

	7.4 Creating Windows Forms applications using Visual Studio .NET
	7.4.1 Creating a Visual Studio .NET project
	7.4.2 Designing a form
	7.4.3 Adding code to the form

	7.5 Overriding WndProc
	7.6 Summary

	Chapter 8 Creating the Web Forms user interface
	8.1 Comparing ASP.NET to ASP
	8.1.1 A simple ASP application
	8.1.2 A simple ASP.NET application

	8.2 The System.Web.UI.Page class
	8.2.1 The Page.Request and Page.Response properties
	8.2.2 The Page lifecycle

	8.3 Working with Web Forms and server controls
	8.3.1 The anatomy of the Web Form
	8.3.2 The System.Web.UI.WebControls and System.Web.UI.HtmlControls namespaces
	8.3.3 Using the Calendar Web control
	8.3.4 Using the DataGrid Web control
	8.3.5 Using the HtmlTable control

	8.4 Creating user controls
	8.5 Validating user input
	8.6 Configuring and customizing ASP.NET applications
	8.6.1 Creating a custom HTTP module
	8.6.2 Creating a custom HTTP handler

	8.7 Tracing ASP.NET applications
	8.8 Managing application and session state
	8.8.1 Application state and the Global.Asax file
	8.8.2 Managing session state

	8.9 Creating Web Forms using Visual Studio .NET
	8.9.1 Creating a Web application using Visual Studio .NET
	8.9.2 Using the toolbox to design a Web Form

	8.10 Manually creating code-behind Web Forms
	8.11 WebPok: the Web Forms-based poker machine
	8.12 MobPok: the mobile Internet-based poker machine
	8.13 Summary

	Appendix A Introduction to C#
	A.1 C# language overview
	A.1.1 Structure of a C# program

	A.2 Identifiers, variables, and constants
	A.2.1 Identifiers
	A.2.2 Variables
	A.2.3 Constants

	A.3 Arrays
	A.4 Expressions and operators
	A.4.1 Arithmetic operators
	A.4.2 Relational operators
	A.4.3 Logical operators
	A.4.4 Bit-shifting operators
	A.4.5 Assignment in C#
	A.4.6 Miscellaneous operators
	A.4.7 A note about operator precedence and associativity

	A.5 C# statements
	A.5.1 if
	A.5.2 do
	A.5.3 while
	A.5.4 for
	A.5.5 continue
	A.5.6 break
	A.5.7 switch
	A.5.8 foreach
	A.5.9 return
	A.5.10 goto
	A.5.11 throw

	A.6 Classes and structs
	A.6.1 Programming with classes
	A.6.2 Programming with structs

	A.7 Inheritance
	A.7.1 Simple inheritance
	A.7.2 Using virtual methods
	A.7.3 Abstract classes
	A.7.4 Sealed classes

	A.8 More about methods
	A.8.1 Using ref and out parameters
	A.8.2 Passing a variable-length parameter list
	A.8.3 Overloading methods

	A.9 Access modifiers
	A.10 Exceptions
	A.11 Enums
	A.12 Delegates and events
	A.12.1 Using delegates
	A.12.2 Handling events

	A.13 Interfaces
	A.14 Preprocessor directives
	A.15 Attributes
	A.16 Threading
	A.17 Further resources

	Appendix B The poker engine listings
	B.1 The makefile
	B.2 The Bank class
	B.3 The Bet class
	B.4 The Card class
	B.5 The Hand class
	B.6 The Machine class
	B.7 The MsgLog class
	B.8 The SimpleMachine class

	Appendix C The WinPok.cs listing
	index

