
Enterprise Solution Patterns
Using Microsoft .NET

Version 2.0

Foreword by Ward Cunningham

Enterprise Solution Patterns
Using Microsoft .NET

Version 2.0

David Trowbridge, Microsoft Prescriptive Architecture Guidance

Dave Mancini, Microsoft Core Infrastructure Solutions

Dave Quick, Microsoft Core Infrastructure Solutions

Gregor Hohpe, ThoughtWorks, Inc.

James Newkirk, ThoughtWorks, Inc.

David Lavigne, SBI and Company

pat ter ns & pract ices

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, BizTalk, IntelliSense,
MSDN, Visual Basic, Visual C#, Visual C++, and Visual Studio are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

© 2003 Microsoft Corporation. All rights reserved.

Version 2.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name, email
address, logo, person, places, or events is intended or should be inferred.

Contents

Foreword xiii

Preface xv
Who Should Read This Book . xv
How This Book Is Organized. xvi
Documentation Conventions . xvii
Community . xviii
Feedback and Support . xviii
Acknowledgments . xix

Chapter 1
Patterns for Building Enterprise Solutions 1

Patterns Document Simple Mechanisms . 2
Patterns as Problem-Solution Pairs . 3
Patterns at Different Levels . 4
Simple Refinement . 9

Common Vocabulary . 13
Concise Solution Description . 14

Summary . 14

Chapter 2
Organizing Patterns 15

Pattern of Patterns . 16
Pattern Clusters . 17
Different Levels of Abstraction . 19

Architecture Patterns . 20
Design Patterns . 20
Implementation Patterns . 20

Viewpoints . 21
The Pattern Frame . 23
Constraints . 23
Pattlets . 26
Pattern Language for Solutions . 26
Summary . 28

Contentsiv

Chapter 3
Web Presentation Patterns 29

Complexity and Redundancy . 30
Patterns Overview . 30

More Powerful Controllers . 32
Filters and Caching . 32

Web Presentation Patterns . 33
Model-View-Controller . 34

Context . 34
Problem . 34
Forces . 34
Solution . 35
Example . 39
Testing Considerations . 39
Resulting Context . 39
Variants . 40
Related Patterns . 40
Acknowledgments . 40

Implementing Model-View-Controller in ASP.NET . 41
Context . 41
Implementation Strategy . 41
Tests . 49
Resulting Context . 50
Related Patterns . 50
Acknowledgments . 50

Page Controller . 51
Context . 51
Problem . 51
Forces . 51
Solution . 52
Example . 55
Resulting Context . 55
Testing Considerations . 56
Related Patterns . 57
Acknowledgments . 57

Implementing Page Controller in ASP.NET . 58
Context . 58
Implementation Strategy . 58
Testing Considerations . 67
Resulting Context . 67
Related Patterns . 68
Acknowledgments . 68

Contants v

Front Controller . 69
Context . 69
Problem . 69
Forces . 69
Solution . 70
Example . 72
Resulting Context . 72
Testing Considerations . 72
Related Patterns . 73
Acknowledgments . 73

Implementing Front Controller in ASP.NET Using HTTPHandler 74
Context . 74
Background . 74
Implementation Strategy . 77
Testing Considerations . 88
Resulting Context . 89
Related Patterns . 91
Acknowledgments . 91

Intercepting Filter . 92
Context . 92
Problem . 92
Forces . 92
Solution . 93
Variations . 98
Example . 100
Resulting Context . 101
Related Patterns . 102
Acknowledgments . 103

Implementing Intercepting Filter in ASP.NET Using HTTP Module 104
Context . 104
Implementation Strategy . 104
Examples . 106
Testing Considerations . 107
Resulting Context . 108
Related Patterns . 108
Acknowledgments . 108

Page Cache . 109
Context . 109
Problem . 109
Forces . 109
Solution . 110
Resulting Context . 115
Related Patterns . 116

Contentsvi

Implementing Page Cache in ASP.NET Using Absolute Expiration 117
Context . 117
Implementation Strategy . 117
Testing Considerations . 118
Resulting Context . 118
Variants . 120
Related Patterns . 120

Observer . 121
Context . 121
Problem . 121
Forces . 121
Solution . 122
Example . 129
Resulting Context . 129
Related Patterns . 130
Acknowledgments . 130

Implementing Observer in .NET . 131
Context . 131
Background . 131
Implementation Strategy . 134
Testing Considerations . 143
Resulting Context . 144
Related Patterns . 145
Acknowledgments . 145

Chapter 4
Deployment Patterns 147

Bringing Teams Together . 147
Patterns Overview . 148

Application Patterns . 149
Infrastructure Patterns . 150
Bringing Applications and Infrastructure Together . 151

Deployment Patterns . 151
Layered Application . 152

Context . 152
Problem . 152
Forces . 152
Solution . 153
Example . 159
Resulting Context . 159
Acknowledgments . 160

Contants vii

Three-Layered Services Application . 161
Context . 161
Problem . 161
Forces . 161
Solution . 161
Resulting Context . 166
Acknowledgments . 166

Tiered Distribution . 167
Context . 167
Problem . 167
Forces . 167
Solution . 168
Example . 169
Resulting Context . 175
Related Patterns . 176
Acknowledgments . 176

Three-Tiered Distribution . 177
Context . 177
Problem . 177
Forces . 177
Solution . 178
Resulting Context . 181
Related Patterns . 182
Acknowledgments . 182

Deployment Plan . 183
Context . 183
Problem . 183
Forces . 184
Solution . 185
Resulting Context . 189

Chapter 5
Distributed Systems Patterns 191

Instance-Based vs. Service-Based Collaboration . 191
Near Links vs. Far Links . 192
Distributed Computing Challenges . 193
Using Layered Application . 194
Patterns Overview . 194

Remote Invocation . 194
Local Copy . 195
Client-Activated Objects . 196
Coarse-Grained Interfaces . 197
Data Transfer Object . 197

Distributed Systems Patterns . 198

Contentsviii

Broker . 199
Context . 199
Problem . 199
Forces . 199
Solution . 200
Example . 207
Resulting Context . 207
Security Considerations . 208
Related Patterns . 208
Acknowledgments . 208

Implementing Broker with .NET Remoting Using Server-Activated Objects 209
Context . 209
Background on .NET Remoting . 209
Implementation Strategy . 210
Deployment Considerations . 216
Tests . 217
Resulting Context . 218
Security Considerations . 219
Operational Considerations . 219
Related Patterns . 219
Acknowledgments . 219

Implementing Broker with .NET Remoting Using Client-Activated Objects 220
Context . 220
Implementation Strategy . 220
Resulting Context . 227
Security Considerations . 228
Operational Considerations . 228
Related Patterns . 228
Acknowledgments . 228

Data Transfer Object . 229
Context . 229
Problem . 229
Forces . 229
Solution . 230
Example . 234
Testing Considerations . 234
Security Considerations . 235
Resulting Context . 235
Related Patterns . 236
Acknowledgments . 236

Contants ix

Implementing Data Transfer Object in .NET with a DataSet . 237
Context . 237
Background . 237
Implementation Strategy . 239
Tests . 242
Resulting Context . 243
Related Patterns . 245
Acknowledgments . 245

Implementing Data Transfer Object in .NET with a Typed DataSet 246
Context . 246
Background . 246
Implementation Strategy . 248
Tests . 253
Resulting Context . 254
Related Patterns . 256
Acknowledgments . 256

Singleton . 257
Context . 257
Problem . 257
Forces . 257
Solution . 257
Example . 258
Resulting Context . 258
Related Patterns . 259
Acknowledgments . 259

Implementing Singleton in C# . 260
Context . 260
Implementation Strategy . 260
Resulting Context . 263
Acknowledgments . 264

Chapter 6
Services Patterns 265

Collaboration Concepts . 266
Service-Based Collaboration . 266
Service-Oriented Architecture . 267
Service Contracts . 267

Web Services . 268
Communication Contract . 269
Interoperability . 272

Patterns Overview . 273
Services Patterns . 274

Contentsx

Service Interface . 275
Context . 275
Problem . 275
Forces . 275
Solution . 276
Example . 278
Testing Considerations . 278
Resulting Context . 278
Related Patterns . 279
Acknowledgments . 279

Implementing Service Interface in .NET . 280
Context . 280
Background . 280
Implementation Strategy . 280
Tests . 288
Resulting Context . 292
Related Patterns . 292
Acknowledgments . 292

Service Gateway . 293
Context . 293
Problem . 293
Forces . 293
Solution . 294
Example . 295
Testing Considerations . 295
Resulting Context . 296
Related Patterns . 297
Acknowledgments . 297

Implementing Service Gateway in .NET . 298
Context . 298
Implementation Strategy . 298
Tests . 308
Resulting Context . 308
Related Patterns . 309
Acknowledgments . 309

Chapter 7
Performance and Reliability Patterns 311

Meeting Operational Requirements . 311
Scalability . 311
Availability . 312

Patterns Overview . 312
Load-Balanced Cluster . 313
Failover Cluster . 313

Contants xi

Performance and Reliability Patterns . 314
Server Clustering . 315

Context . 315
Problem . 315
Forces . 315
Solution . 315
Example . 318
Resulting Context . 318
Related Patterns . 319
Acknowledgments . 319

Load-Balanced Cluster . 320
Context . 320
Problem . 320
Forces . 320
Solution . 320
Example . 326
Resulting Context . 329
Related Patterns . 329
Acknowledgments . 329

Failover Cluster . 330
Context . 330
Problem . 330
Forces . 330
Solution . 330
Example . 333
Resulting Context . 336
Related Patterns . 336

Appendix A
Pattlets 337

Bibliography 341

Additional Resources 343

Foreword

This is a collection of patterns that will help you use Microsoft .NET, which contains
many objects that follow patterns we’ve found useful. These objects are brought to
life by the common language runtime which makes for strongly-patterned objects.
An easy way to think about this is that the runtime takes care of so many aspects
of an object that just the pattern parts are left. Patterns were important before the
common language runtime, but now they are even more important.

You will find here a collection of patterns that you will see in most every transaction-
processing Web application. These sorts of applications are really important to
enterprise developers who are important to this book’s authors. This is an important
focus in the here and now. Of all the pattern books that could have been written about
.NET, this is the most likely to be important to you today. Thank you, authors.

I could go on about Web applications but I wanted to point out an even more
interesting thing about this collection. Whenever we pull patterns together our
choices say something important about how we work. Our philosophy of work
runs through our selections. For example, in the Design Patterns book, [Gamma, et. al,
Addison-Wesley], the philosophy was to make programs flexible. This is important,
of course, and some of those patterns are included here. But there are two other
philosophies present in this volume worth mentioning.

One philosophy is that in a continuously evolving environment like the enterprise,
every complexity has a cost. You’ll find a variety of patterns here that at first seem
contradictory. That’s because the authors know that successful enterprise applications
start simple and grow over time. Something simple works for a while then it needs
to be replaced. You’ll find patterns here for both the simple and its replacement.
This isn’t the same as doing it wrong and then making it right. Both patterns are
right, just not at the same time on a given project.

Another philosophy that runs through these patterns is that different people in the
enterprise use different patterns for different purposes. Some patterns are more
about the user experience than anything else. We can say that these patterns, and
the people that apply them, are working in service of the user. The more these folks
understand their users, the better they will be able to apply these patterns and the
better their programs will be for their effort. Contrast this to classic concerns of the
enterprise: efficiency, security, reliability, and so on. This collection includes patterns
about these problems, too. When you apply them you will be working in service
of the enterprise. It is also likely that you personally won’t apply all the patterns in
this book. That doesn’t mean that you can’t read them and understand more about
how at least some of your colleagues think.

Forewordxiv

Many of the patterns are backed up by specific objects already available in .NET.
For these, you will find implementations that tell you how to use these objects rather
than telling you how to make these objects from scratch. Traditionally, implementation
examples have been included as just one section of a pattern. These are just examples
meant to be understood and emulated. The implementation “patterns” included in
this volume are much more. They describe the practical experience the authors have
had with using specific capabilities of .NET and, as such, amount to their best advice
on how to proceed.

When you find a pattern that you need and follow it to the implementation in .NET,
you are using this volume as an index into the .NET libraries. The authors have
organized all the patterns on a grid that categorizes the patterns according to levels
of abstraction and viewpoints. Use this grid to find patterns that should be familiar.
From there, you can find .NET capabilities that apply to the work you already do.
You can also look around at patterns in neighboring parts of the grid. If these are
familiar, move a little further. Soon you’ll find the unfamiliar and can start benefiting
from the experience of others. This works even if you know more about .NET than
you do about patterns. Find the patterns that talk about sections of .NET that you
use, find them on the grid, and then look around.

This work is very much about helping you use the technology built into .NET. There
is a temptation to enumerate the features of .NET in a work like this. The authors have
worked hard to avoid this. When they did slip into a little bit of proud boasting, the
reviewers, myself included, insisted that the patterns be rewritten to be the simplest
advice you can use.

I’ll close by mentioning two more ways this work is important. The pattern commu-
nity has invested a decade finding, writing, and reviewing patterns in what would
have to be called an academic tradition of impartiality. This work is different. It is
clearly in the sponsor’s interest to have .NET well understood and this volume
has that goal. However, that the sponsor would invest effort writing patterns is
their acknowledgment that the decade of work has merit. The pattern community
should be proud and should respond by reading, reviewing, debating, and enlarging
this work.

Finally, enterprise developers and administrators should study these and other
patterns not just because they offer advice that can be applied immediately, but
because they provide a vocabulary to talk about intellectual property independent
of that property. Consider this work a first step in a new conversation with a company
that wants to succeed by serving you. Your participation in a public dialog represents
a sweet-spot for interacting with a vendor that lies somewhere between focus groups
and the traditional code release cycle. It is a new way for a big corporation to listen.

Ward Cunningham of Cunningham & Cunningham, Inc.

January, 2003

Preface

Welcome to Enterprise Solution Patterns Using Microsoft .NET. This guide briefly
introduces patterns and describes a new organizational approach that categorizes
them according to various viewpoints and relationships. The guide then presents
32 patterns that span several of these viewpoints, and explains how they can be
integrated into an enterprise solution.

Increasingly, software design professionals are using patterns to efficiently share the
important architectural tradeoffs and design decisions they make while architecting
and building enterprise solutions. Christopher Alexander first used patterns to
describe architecture and design in his book, The Timeless Way of Building; however,
his patterns were for towns, buildings, and rooms. Software design professionals
soon recognized the value of patterns as a language for sharing design experiences.

Over the past decade, the burgeoning patterns community has discovered patterns
in many areas of system architecture and software development. This book em-
braces the continuing work of the patterns community and extends it by showing
how to apply patterns to building software-intensive systems that use Microsoft®
.NET. Early on, customer, partner, and internal feedback indicated that a single book
should revisit established patterns as well as Microsoft-specific patterns. Therefore,
that is what this book does.

The book includes established architecture and design patterns that are platform
independent, and augments them with implementation patterns that apply specifi-
cally to Microsoft .NET. Early feedback from .NET developers and system architects
has confirmed that patterns are invaluable tools for sharing expertise in .NET.
Patterns give developers and architects a common language to help bridge the gap
between their two disciplines. The authors hope they prove useful to you and that
you will contribute to the growing patterns community for .NET. There is much
more work to be done.

Who Should Read This Book
Most readers of this book should fall into one of three categories:
� Architects, designers, and developers who are new to patterns
� Architects and designers who already use patterns to build enterprise solutions
� System architects and system engineers who architect or design systems infra-

structure

Prefacexvi

For those in the first group, the first two chapters are very important to understand-
ing why and how you should use patterns. These chapters are essential in under-
standing the last four chapters, which collectively form a pattern catalog. You are
likely to discover that you have implemented some of these patterns before without
knowing that they were patterns.

Readers in the second group are familiar with most of the content in Chapter 1,
“Patterns for Building Enterprise Solutions.” Chapter 2, “Organizing Patterns,”
introduces new material on how Microsoft is organizing its pattern repository. Most
of the patterns in Chapters 3 through 7 will be familiar to you; however, the imple-
mentation examples provided should help you apply them to .NET.

The last group should read the first two chapters and pay special attention to Chap-
ter 4, “Deployment Patterns” and Chapter 7, “Performance and Reliability Patterns.”
These chapters focus on the patterns that are directly applicable to the infrastructure.

How This Book Is Organized
Chapter 1, “Patterns for Building Enterprise Solutions,” introduces the notion of a
pattern, explains how a pattern documents simple, proven mechanisms, and shows
how collections of patterns provide a common language for developers and archi-
tects. To illustrate these concepts, this chapter applies abbreviated versions of actual
patterns to real-life development situations.

Chapter 2, “Organizing Patterns,” explains how patterns emerge at different levels
of abstraction and across a variety of domains. This chapter explores pattern levels
in detail and outlines an organizing frame that helps you find relevant patterns
quickly. The chapter then demonstrates how patterns provide a vocabulary to
efficiently describe complex solutions without sacrificing detail.

Chapters 3 through 6 present a catalog of 27 patterns, which are grouped into
clusters. Each chapter starts by describing how the patterns in a particular cluster
are related and then gives direction on when to use the patterns. For implementation
patterns, code examples are written in C# and are for example purposes only. The
example code is not meant to be used in production.

Chapter 3, “Web Presentation Patterns,” describes design and implementation
patterns related to constructing dynamic Web applications. Depending on the size
and the complexity of the application, different design tradeoffs have to be made.
The Web Presentation patterns cluster offers a number of pattern alternatives that
illustrate the varied types of applications and their resulting tradeoffs.

Chapter 4, “Deployment Patterns,” helps reduce the tension between application
development and system infrastructure teams by offering guidance on how to
optimally structure your applications and technical infrastructure to efficiently fulfill
your solution requirements. The patterns discuss such topics as organizing your

Preface xvii

application into logical layers, refining layers to provide and consume services,
organizing hardware into physical tiers, and allocating processes to processors with
a deployment plan.

Chapter 5, “Distributed Systems Patterns,” introduces concepts relevant to both
the Distributed Systems and Services patterns clusters, including the distinction
between interface-based and service-based collaboration and the concept of near
versus far links. Distributed Systems patterns, as defined here, focus on instance-
based collaboration and near links.

Chapter 6, “Services Patterns,” briefly revisits collaboration concepts introduced in
the previous chapter before presenting patterns that focus on collaboration between
applications and external services. In contrast with Distributed Systems, Services
patterns are primarily concerned with systems connected by far links using service-
based collaboration.

Chapter 7, “Performance and Reliability Patterns,” discusses how enterprise solu-
tions must reliably meet the needs of an unpredictable number of users, and often
must operate 24 hours a day, seven days a week. Although there are many ways to
increase performance and improve reliability, this patterns cluster focuses how to
combine multiple systems that serve any number of applications or users for greater
scalability and improved availability.

Appendix A, “Pattlets,” presents a list of patterns that this guide mentions, but that
it does not discuss in detail. These patterns are named pattlets to distinguish them
from the rest of the patterns in the catalog. For more information about why pattlets
are used, see Chapter 2, “Organizing Patterns.”

Documentation Conventions
This guide uses the following style conventions and terminology.

Table 1: Style Conventions Table

Element Meaning

Bold font Objects, classes, methods, predefined functions, and events.

Italic font Names of patterns and pattlets referenced in this guide. New terminology
also appears in italic on first use.

Monospace font Code examples.

Note Alerts you to supplementary information. Community

Prefacexviii

Community
The patterns in this guide are part of a new Patterns community on GotDotNet.
GotDotNet is a Microsoft .NET Framework Community Web site that uses
workspaces in an online collaborative development environment where .NET
developers can create, host, and manage projects throughout the project life cycle.
You can also use this Patterns community to post questions, provide feedback, or
connect with other users for sharing ideas.

Access to the Patterns community is available from the following Web site:

http://gotdotnet.com/team/architecture/patterns

Feedback and Support
The authors would appreciate your feedback on this material. In particular, they
would be grateful for any guidance on the following topics:
� Is the information that is presented in this guide useful for you?
� Is this information presented in the correct sequence and with the appropriate

level of detail?
� Are the chapters readable and interesting?
� Overall, how do you rate the material?

Send your feedback to the following e-mail address: pnppatfb@microsoft.com.
Please be aware that this is not a technical support alias; to obtain technical support
for Microsoft products and technologies, visit http://support.microsoft.com.

The patterns documented here are designed to jump-start the architecture and
design of enterprise applications. Patterns are simple mechanisms that are meant to
be applied to the problem at hand and are usually combined with other patterns.
They are not meant to be plugged into an application. Example code is provided
“as is” and is not intended for production use. It is only intended to illustrate the
pattern, and therefore does not include extra code such as exception handling,
logging, security, and validation. Although this deliverable has undergone testing
and review by industry luminaries, it is not supported like a traditional Microsoft
product.

Preface xix

Acknowledgments
Many thanks to the following advisors who provided invaluable assistance:
� Ward Cunningham, Cunningham & Cunningham, Inc.
� Martin Fowler, ThoughtWorks, Inc.
� Ralph Johnson, University of Illinois at Urbana-Champaign
� Robert C. Martin, Object Mentor

Thanks also to the many contributors who assisted us in the production of this book,
in particular:
� Mohammad Al-Sabt, Microsoft Prescriptive Architecture Guidance
� Chris Colleran, Colleran.net, LLC
� Matt Evans, Microsoft Prescriptive Architecture Guidance
� Xiao Guo, ThoughtWorks, Inc.
� Steve Kirk, MSDN
� Rick McUmber, RDA
� Vijay Srinivasan, Satyam Computer Services
� Jonathan Wanagel, Microsoft Prescriptive Architecture Guidance

Finally, thanks to the companies that agreed to participate in our user experience test:
� Atmedica USA, LLC, a MediMedia USA company
� Safeco Insurance Company
� SBI and Company
� ThoughtWorks, Inc.

1
Patterns for Building
Enterprise Solutions

“A complex system that works is invariably found to have evolved from a simple
system that worked…A complex system designed from scratch never works and
cannot be patched up to make it work. You have to start over with a working
simple system.” — John Gall in Systemantics: How Systems Really Work and How
They Fail

Enterprise class business solutions, the kind that companies bet their business on,
are often extremely complex and must perform well against high expectations.
Not only must they be highly available and scalable in the face of unpredictable
usage, they must also be malleable and predictable in response to rapidly changing
business requirements.

The best solutions are those composed of a set of smaller, simple mechanisms that
solve simple problems reliably and effectively. During the process of building
larger and more complex systems, these simple mechanisms combine to evolve
the larger system.

Knowledge of these simple mechanisms does not come easy. It usually resides in the
minds of experienced developers and architects and is an important part of the tacit
knowledge they bring to projects.

This guide captures the knowledge of seasoned developers and presents it in the
form of a patterns catalog. Each pattern contains a simple, proven mechanism that
solves a small problem effectively. Although you can understand and apply each
pattern individually, you often combine these patterns to build complex systems.

Patterns are useful to developers and architects because they:
� Document simple mechanisms that work.
� Provide a common vocabulary and taxonomy for developers and architects.
� Enable solutions to be described concisely as combinations of patterns.
� Enable reuse of architecture, design, and implementation decisions.

Enterprise Solution Patterns Using Microsoft .NET2

This chapter introduces the notion of a pattern, explains how a pattern documents
simple, proven mechanisms, and shows how collections of patterns provide a
common language for developers and architects. To illustrate these concepts, this
chapter applies abbreviated versions of actual patterns to real-life development
situations.

Patterns Document Simple Mechanisms
A pattern describes a recurring problem that occurs in a given context and, based
on a set of guiding forces, recommends a solution. The solution is usually a simple
mechanism, a collaboration between two or more classes, objects, services, processes,
threads, components, or nodes that work together to resolve the problem identified
in the pattern.

Note: Although the underlying mechanisms described in these patterns are conceptually simple,
in practice their implementation can become quite complex. The implementation requires skill
and judgment to tailor general patterns to fit specific circumstances. In addition, the pattern
examples in this chapter are highly abbreviated for the purpose of introduction; the actual
patterns in subsequent chapters are much more detailed.

Consider the following example:
You are building a quote application, which contains a class that is responsible
for managing all of the quotes in the system. It is important that all quotes inter-
act with one and only one instance of this class. How do you structure your
design so that only one instance of this class is accessible within the application?

A simple solution to this problem is to create a QuoteManager class with a private
constructor so that no other class can instantiate it. This class contains a static instance
of QuoteManager that is returned with a static method named GetInstance(). The
code looks something like this:

public class QuoteManager
{
 //NOTE: For single threaded applications only
 private static QuoteManager _Instance = null;
 private QuoteManager() {}
 public static QuoteManager GetInstance()
 {
 if (_Instance==null)
 {
 _Instance = new QuoteManager ();
 }
 return _Instance;
 }

 //... functions provided by QuoteManager
}

Chapter 1: Patterns for Building Enterprise Solutions 3

It is likely that you have solved problems like this in a similar manner, as many other
developers have. In fact, pattern writers on the lookout for recurring problems and
solutions have observed this kind of implementation frequently, distilled the common
solution, and documented the problem-solution pair as the Singleton pattern
[Gamma95].

Patterns as Problem-Solution Pairs
Notice that the Singleton pattern does not mention a Quote or QuoteManager class.
Instead, the pattern looks something like the following abbreviated example.

SingleInstance:Singleton

Singleton

Context

Control access to a class by controlling its instantiation process

Problem

An application contains a certain type of data that needs to be globally

accessed and maintained. At the same time, this type of data is often unique

in the system. How do you provide an accessible interface to a class, but

control the number of instances within the system?

Solution

The class itself is responsible for creating a single instance and providing

global access to that instance. Create a class that contains a static instance of

the Singleton that is returned with a static method named getinstance().

+GetInstance()

Singleton

-SingleInstance

Figure 1.1
Singleton pattern, abbreviated

Enterprise Solution Patterns Using Microsoft .NET4

Comparing the abbreviated pattern example in Figure 1.1 with the QuoteManager
source code illustrates the difference between the pattern, which is a generalized
problem-solution pair, and the application of the pattern, which is a very specific
solution to a very specific problem. The solution, at a pattern level, is a simple,
yet elegant, collaboration between several classes. The general collaboration in the
pattern applies specifically to the QuoteManager class, which provides the mecha-
nism that controls instantiations in the quote application. Clearly, you can apply
the same pattern to countless applications by modifying the pattern slightly to suit
specific local requirements.

Written patterns provide an effective way to document simple and proven mecha-
nisms. Patterns are written in a specific format, which is useful as a container for
complex ideas. These patterns exist in the minds of developers, and their code, long
before they are documented and given pattern names. At some point, pattern writers
discover these patterns from actual implementations and generalize them so they
can be applied to other applications.

Although pattern writers usually provide implementation code examples within
these generalized patterns, it is important to understand that there are many other
correct ways to implement these patterns. The key here is to understand the guidance
within the pattern and then customize it to your particular situation. For example,
if you are familiar with the Singleton pattern, you probably noticed that the code
example is based on the [Gamma95] implementation. This implementation is used
here because it is the most popular example and requires the least explanation for the
purposes of this introduction to patterns. However, an implementation of Singleton
optimized for the C# language would look quite different, and while these two
implementations differ significantly, both would be correct.

Patterns at Different Levels
Patterns exist at many different levels of abstraction. Consider another example,
this time at a higher level of abstraction than the level of source code:

You are designing a Web-based quote application containing a great deal of
business and presentation logic, which, in turn, depends on numerous platform
software components to provide a suitable execution environment. How do you
organize your system at a high level to be flexible, loosely coupled, and yet
highly cohesive?

Chapter 1: Patterns for Building Enterprise Solutions 5

One solution to this problem involves organizing your system into a series of layers,
with each layer containing elements at roughly the same level of abstraction. You
then identify the dependencies in each layer and decide on either a strict or a relaxed
layering strategy. Next, you decide if you are going to create a custom layering scheme
or adopt a layering scheme previously documented by others. In this case, let’s say
you decide to use a well-known layering strategy: one layer each for presentation,
business logic, and data access. Figure 1.2 shows how your layering scheme might
look.

Quote Presentation Layer

Quote
Web Pages

Inventory
Web Pages

Customer
Web Pages

Quote Business Layer

QuoteManagement PricingEngine CustomerManagement

Quote Data Access Layer

Utility ADO.NET QuoteDataAccess

Figure 1.2
Quote application layers

If you always design systems this way, then you employ this pattern already,
independent of any generalized pattern. Even so, there are many reasons why you
might want to understand the patterns that underpin this design approach. You may
be curious about why systems frequently are built this way, or you may be looking

Enterprise Solution Patterns Using Microsoft .NET6

for more optimal approaches to problems that this pattern does not quite resolve.
In either case, it is worth examining the patterns and mechanisms at work here.

Using layers as a high-level organizing approach is a well-established pattern
described in the Layers pattern [Buschmann96]. Figure 1.3 shows an abbreviated
version of this pattern.

Layers

Context

You are working with a large, complex system and you want to manage

complexity by decomposition

Problem

How do you structure an application to support such operational requirements

as maintainability, reusability, extensibility, scalability, robustness, and

security?

Solution

Compose the solution into a set of layers. Each layer should be cohesive and

at roughly the same level of abstraction. Each layer should be loosely coupled

to the layers underneath ….

<<Layer>>
Layer 1

<<subsystem>>
Subsystem 1

<<subsystem>>
Subsystem 2

<<Layer>>
Layer 2

<<subsystem>>
Subsystem 3

Figure 1.3
Layers pattern, abbreviated

Chapter 1: Patterns for Building Enterprise Solutions 7

This simple strategy for organizing applications helps to solve two challenges in
software development: the management of dependencies and the need for exchange-
able components. Building applications without a well-considered strategy for
dependency management leads to brittle and fragile components, which are difficult
and expensive to maintain, extend, and substitute.

The mechanisms at work inside the Layers pattern are more subtle than those of the
Singleton. For Layers, the first collaboration is at design time between classes, because
the layered organization localizes the effects of source code changes and prevents
the changes from rippling throughout the entire system. The second collaboration
is at runtime, when relatively independent components within a layer become
exchangeable with other components, again isolating the rest of the system from
impact.

Although the Layers pattern is general enough to apply to areas such as network
protocols, platform software, and virtual machines, it does not resolve certain specific
forces that are present in enterprise-class business solutions. For example, in addition
to managing complexity by decomposition (the essential problem solved by Layers),
business solution developers also need to organize for effective reuse of business
logic and conserve valuable connections to expensive resources such as databases.
One way to solve this problem is by using the Three-Layered Application pattern.
Figure 1.4 on the next page shows the abbreviated description of this pattern.

Enterprise Solution Patterns Using Microsoft .NET8

Three-Layered Application

Context

You are building a business solution using layers to organize your application

Problem

How do you organize your application to reuse business logic, provide

deployment flexibility and conserve valuable resource connections?

Solution Solution

Create three layers: presentation,

business logic (domain), and data

access. Place all components

responsible for the view in the

presentation layer. Encapsulate all

business logic in domain layer

components that implement well-

known component interfaces.

Locate all database-related code,

including database client access

and utility components, in the data

access layer. Require the data

access layer to be responsible for

connection pooling when accessing

resources. Make sure you eliminate

the dependencies between data

access components and business

layer components. Either eliminate

dependencies between the

business layer and the presentation

layer or manage the dependencies

here using the Observer pattern.

Data Access Layer

Data Access Components

Presentation Layer

PresentationComponents

Domain Layer

Business Logic Components

Figure 1.4
Three-Layered Application, abbreviated

Chapter 1: Patterns for Building Enterprise Solutions 9

Again, there is a difference between the pattern (Three-Layered Application) and
the application of the pattern (quote application layering model). The pattern is
a generalized problem-solution pair on the topic of application organization. In
contrast, the application of the pattern solves a very specific problem by creating
specific layers, each layer resolving very specific requirements.

Simple Refinement
Notice that Three-Layered Application is really a simple refinement of Layers; the
context, forces, and solution identified in Layers still apply to Three-Layered Application,
but not the other way around. That is, the Layers pattern constrains Three-Layered
Application, and the Three-Layered Application pattern refines the Layers pattern.
This pattern relationship is useful to manage complexity. After you understand one
pattern, you must only understand the incremental differences between the initial
pattern and patterns that refine it. Another example, this time in the area of Web
services, should help to illustrate the concept of refinement:

You built a quote application for a successful enterprise that is rapidly expanding. Now
you want to extend the application by exposing your quote engine to business partners and
integrating additional partner services (such as shipping) into the quote application. How
do you structure your business application to provide and consume services?

One solution to this problem is to extend Three-Layered Application by adding
additional service-related responsibilities to each layer. The business layer adds
the responsibility for providing a simplified set of operations to client applications
through Service Interfaces. The responsibilities of the data access layer broaden beyond
database and host integration to include communication with other service providers.
This additional functionality in the data access layer is encapsulated in Service
Gateway components, which are responsible for connecting to services (both
synchronously and asynchronously), managing basic conversational state with
the service, and notifying business process components of significant service-
related events.

The Three-Layered Services Application (Figure 1.5, on the next page) captures this
problem-solution pair.

Enterprise Solution Patterns Using Microsoft .NET10

Presentation Layer

Three-Layered Services Application

Context

You are building a business solution that uses presentation, business, and

data access layers to organize your application. You want to expose some of

the core functionality of your application as services that other applications

can consume and enable your application to consume other services.

Problem

How do you organize your application to provide and consume granular data

and logical elements from highly variable sources?

Solution

Decompose your application logic into a collaborating set of services that

provide parts of the overall system functionality. Next, in the domain layer,

identify a Service Interface for each service that is independent of the

underlying implementation. Finally, extend the data access layer to use Service

Gateways to communicate with other service providers. If application navigation

logic is sufficiently complex, consider user interface process components as

part of the presentation layer to encapsulate and reuse this logic.

User Interface
Component

Service
Interface

Service
Interface

Service
Interface

Business
Component

Business
Component

Data Access
Component

Service
Gateways

Service
Gateways

Business
Component

Business Layer

Data Layer

User Interface
Process

Component

User Interface
Component

User Interface
Component

Figure 1.5
Three-Layered Services Application, abbreviated

Chapter 1: Patterns for Building Enterprise Solutions 11

Applying the Three-Layered Services Application pattern to the quote application
example results in the following model.

Quote Presentation Layer

Quote
Web Pages

Inventory
Web Pages

Customer
Web Pages

Quote Business Layer

Service
Interface

QuoteManagement PricingEngine CustomerManagement

Quote Data Access Layer

Utility ADO.NET QuoteDataAccess
Shipping

Service Gateways

Figure 1.6
Three-Layered Services Application applied to the quote application

Notice the relationships between these patterns (see Figure 1.7, on the next page).
Layers introduces a fundamental strategy for organizing a software application.
Three-Layered Application refines this idea and constrains it to business systems that
require business logic reuse, flexible deployment, and efficient use of connections.
Three-Layered Services Application refines Three-Layered Application and extends the
design to provide and consume granular elements of data and logic from highly
variable sources.

Enterprise Solution Patterns Using Microsoft .NET12

Three-Layered
Services Application

Layers

<< refines >>

<< refines >>

Three-Layered
Application

Figure 1.7
Refinement of related patterns

Adding additional types of components to specific layers is not the only way to
manage this growing complexity. As complexity warrants, designers often create
additional layers within the application to handle this responsibility. For example,
some designers move Service Interfaces into a separate layer. Other designers separate
the business layer into a domain layer and an application layer. In any case, you
sometimes see these three layers expanded to four, five, or even six layers as designers
use this pattern in response to complex requirements. Conversely, the Layers pattern
was also used in the relatively simpler days of client-server applications, when
two-layered applications were the standard.

When grouped together, these Layers variations form a cluster of patterns (see
Figure 1.8) that visually represents common approaches to application layering.
Clustering, used in this context, simply means a logical grouping of some set of
similar patterns. This notion of a cluster is quite useful for expanding the view
of patterns to encompass an entire solution, and for identifying clusters of patterns
that address similar concerns in the solution space. Chapter 2, “Organizing Patterns,”
discusses clusters in more detail.

Chapter 1: Patterns for Building Enterprise Solutions 13

Client Server
Application

Three-Layered
Application

Layered Services
Application

Four-Layered
Application

Five-Layered
Application

Layers

Figure 1.8
A cluster of patterns

Common Vocabulary
While considering the Singleton, Layers, Three-Layered Application, and Layered Services
Application patterns, you probably noticed that patterns also provide a powerful
vocabulary for communicating software architecture and design ideas. Understanding
a pattern not only communicates the knowledge and experience embedded within
the pattern but also provides a unique, and hopefully evocative, name that serves
as shorthand for evaluating and describing software design choices.

For example, when designing an application a developer might say, “I think the
pricing engine should be implemented as a Singleton and exposed through a Service
Interface.” If another developer understands these patterns, he or she would have a
very detailed idea of the design implications under discussion. If the developer did
not understand the patterns, he or she could look them up in a catalog and learn
the mechanisms, and perhaps even learn some additional patterns along the way.

Patterns have a natural taxonomy. If you look at enough patterns and their relation-
ships, you begin to see sets of ordered groups and categories at different levels
of abstraction. For example, the Singleton pattern example was at a lower level of
abstraction than the Layers pattern, but the Layers pattern had a set of related patterns
that refined it in one way or another. Chapter 2 further expands and refines this
taxonomy.

Enterprise Solution Patterns Using Microsoft .NET14

Over time, developers discover and describe new patterns, thus extending the
community body of knowledge in this area. In addition, as you start to understand
patterns and the relationships between patterns, you can describe entire solutions
in terms of patterns.

Concise Solution Description
In this guide, the term solution has two very distinct meanings: first, to indicate part
of a pattern itself, as in a problem-solution pair contained within a context; second,
to indicate a business solution. When the term business solution is used, it refers to
a software-intensive system that is designed to meet a specific set of functional and
operational business requirements. A software-intensive system implies that you are
not just concerned with software; you must deploy this software onto hardware
processing nodes to provide a holistic technology solution. Further, the software
under consideration includes both custom-developed software and purchased
software infrastructure and platform components, all of which you integrate
together.

Summary
This chapter introduced the concept of a pattern, explained how patterns document
simple, proven mechanisms, and showed how patterns provide a common language
for developers and architects. Chapter 2 explains how to organize your thinking
about patterns, and how to use patterns to describe entire solutions concisely.

2
Organizing Patterns

“Each pattern then depends both on the smaller patterns it contains, and on
the larger patterns within which it is contained.” — Christopher Alexander
in The Timeless Way of Building

An innovation in one area of technology often fuels a breakthrough in another area.
Radar technology turned into a cooking device: the microwave oven. The Internet
itself was originally designed as a military communications network with resilience
against single points of attack and has since turned into the world’s largest reposi-
tory of knowledge. Similarly, patterns, originally applied to building and town
architecture, were quickly embraced by the software development community as
a means to describe complex software systems.

Today there are dozens of patterns related to software with more emerging daily.
This abundance of patterns creates a new set of challenges. How can a developer
identify those patterns that are most relevant to the task at hand? Is the collection
of patterns sufficient to describe complete solutions?

This chapter answers some of these questions by demonstrating how to:
� Identify relationships between patterns.
� Group patterns into clusters.
� Identify patterns at various levels of abstraction.
� Apply patterns to multiple aspects of a solution.
� Organize patterns into a frame.
� Use patterns to describe solutions concisely.

Enterprise Solution Patterns Using Microsoft .NET16

Pattern of Patterns
One reason the object-oriented programming community embraced patterns so
emphatically is because patterns describe relationships. The base element of object-
oriented programming is a class. However, a single class is not very meaningful
apart from its relationship to other classes that make up the solution. Each pattern
typically describes a cluster of classes, highlighting the relationships and interac-
tions between them. Thus, patterns turn the sea of classes into a much more manage-
able collection of patterns.

Now that the number of available patterns easily exceeds the number of classes in
an average application, you may suddenly find yourself in a sea of patterns. How
can you make sense out of all these patterns? Again, the relationships between items
appear to be the key. It is easy to see that some patterns are closely related to other
patterns. For example, some patterns are refinements of others. Three-Tiered Distribu-
tion is a specific application of the concept of Tiered Distribution. Observer is fre-
quently used to implement a part of the Model-View-Controller pattern. Page Controller
describes the controller portion of Model-View-Controller in more detail. Implementing
Page Controller in ASP.NET is an implementation of the Page Controller pattern using
Microsoft® ASP.NET.

To begin organizing patterns according to relationship, visualize a set of patterns as
small circles (see Figure 2.1):

Figure 2.1
A set of patterns

Chapter 2: Organizing Patterns 17

If you draw a line between each pair of patterns that share some relationship, you
get a picture like this:

Figure 2.2
Pattern relationships represented as lines

The somewhat random collection of circles becomes a connected web of patterns.
When you look at a pattern, you can now identify closely related patterns and
review those as well. You can also identify “neighborhoods” of closely related
patterns and see how they are related to other, more remote patterns.

Pattern Clusters
Charting the relationships between patterns helps you navigate from one pattern to
a set of related patterns. However, it does not yet tell you where to start. If you are
building a Web application, should you read the Model-View-Controller pattern first
or should you look at Page Cache instead? Should you look at a Broker as well?

Pattern clusters are groupings of patterns that relate to a specific subject area. For
example, you can start with the Web Presentation cluster to find the patterns that are
relevant to creating the front end of a Web application. Likewise, the Distributed
Systems cluster contains patterns that are helpful in communicating with remote
objects. Dividing the collection of patterns into clusters enables you to examine a
group of patterns together. Although the pattern graph shows that two patterns are
related, the cluster overview describes, in much more detail, how to combine the
patterns to build actual solutions. Each cluster takes the reader on a guided tour

Enterprise Solution Patterns Using Microsoft .NET18

through all the patterns within the cluster. Taking some inspiration from Christo-
pher Alexander’s world of town and building architecture, you can draw an analogy
between a cluster and a city neighborhood. To stretch this analogy a little bit further,
you can consider the cluster overview a neighborhood tour offered by the local
tourism office.

Cluster

Cluster
Figure 2.3
Pattern clusters

This initial release of Enterprise Solution Patterns Using Microsoft .NET (ESP) identifies
the five clusters shown in Table 2.1.

Table 2.1: Enterprise Solution Patterns Clusters

Cluster Problem

Web Presentation How do you create dynamic Web applications?

Deployment How do you divide an application into layers and then deploy
them onto a multi-tiered hardware infrastructure?

Distributed Systems How do you communicate with objects that reside in different
processes or different computers?

Performance and Reliability How do you create a systems infrastructure that can meet critical
operational requirements?

Services How do you access services provided by other applications?
How do you expose your application functionality as services
to other applications?

Chapters 3 through 7 describe these clusters in detail.

Chapter 2: Organizing Patterns 19

Different Levels of Abstraction
Dividing patterns into clusters makes them more manageable. If you are building
the front end of a Web application, start with the Web Presentation cluster, take the
quick tour, and see what other patterns are related to this cluster. Keep in mind,
though, that different people may be interested in different aspects of building a
Web application, depending on the role they are playing or the stage of the project.
A developer may be most interested in the most efficient implementation of the Page
Controller pattern on the Microsoft .NET Framework, while an architect may be more
interested in deciding whether to use a three-tiered or a four-tiered application
architecture.

Level of abstraction, therefore, is a useful way to categorize patterns so that different
user groups can find the patterns that correspond most closely to their area of
interest. Dividing the patterns from general to more specific detail also helps you
decide which patterns to consider first. You may want to think about how many
tiers your application should have before you consider the intricacies of ASP.NET
caching directives described in the Implementing Page Cache with ASP.NET pattern.

One way categorize the patterns is to divide the pattern graph into the three levels
shown in Figure 2.4.

Design

Implementation

Architecture

Figure 2.4
Levels of abstraction

Enterprise Solution Patterns Using Microsoft .NET20

This division largely coincides with the terminology used in some of the most
influential books about software patterns.

Architecture Patterns
“An architectural pattern expresses a fundamental structural organization
schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organizing
the relationships between them.” [Buschmann96]

ESP follows the Buschmann, et al. definition of architecture patterns. These patterns
describe how to structure an application at the highest level. For example, the
Layered Application pattern is an architecture pattern.

Design Patterns
“A design pattern provides a scheme for refining the subsystems or components
of a software system, or the relationships between them. It describes a commonly
recurring structure of communicating components that solves a general design
problem within a particular context.” [Gamma95]

Design patterns provide the next level of refinement, as described in the seminal
work by Gamma, et al. Many of the iconic patterns, such as Model-View-Controller or
Singleton, are in this layer.

Implementation Patterns
The patterns community refers to more detailed, programming-language-specific
patterns as idioms. This definition works well for software patterns. However, the
scope of this guide is not just software, but software-intensive systems, including the
deployment of the software onto hardware processing nodes to provide a holistic
business solution. Therefore, ESP modifies the definition of an idiom given in
Pattern-Oriented Software Architecture (POSA) [Buschmann96] to reflect the broader
scope and relabels these patterns as implementation patterns:

An implementation pattern is a low-level pattern specific to a particular platform.
An implementation pattern describes how to implement particular aspects of
components or the relationships between them, using the features of a given
platform.

The ESP implementation patterns demonstrate how to implement design concepts
using the.NET Framework. In some cases, the framework already incorporates the
bulk of the work, making the developer’s task easier.

Chapter 2: Organizing Patterns 21

Note: Even though POSA [Buschmann96] defines idioms as patterns and The Timeless Way of
Building [Alexander79] includes implementation patterns in his original pattern work, there is a
debate among some members of the pattern community as to whether implementation
patterns are true patterns. Regardless of how they can be classified, they are very helpful
when thinking about patterns, and are therefore included in this guide.

Dividing the collection of patterns into three levels of abstraction makes it easier for
different user groups to identify patterns that relate to their fields of interest and
expertise. The resulting model flows from high-level organization, through progres-
sive refinement of subsystems and components, down to the implementation of
these patterns using platform-specific technology.

Viewpoints
Although the levels of abstractions help to address different user groups, they do
not reflect the fact that a software solution encompasses much more than code
components. A holistic view of building an enterprise solution includes custom-
developed software, platform software, hardware infrastructure, and the deploy-
ment of software onto hardware. Because of the stark differences between these
areas, it makes sense to align the patterns with this nomenclature.

Keep in mind that these four areas describe different viewpoints of the same solu-
tion. Therefore, unlike the levels of refinement, these viewpoints do not describe a
hierarchy, but simply provide four different ways of looking at the same thing. You
can compare these viewpoints to different types of maps. One map of a region may
depict traffic networks such as roads and freeways, while another map of the same
area shows the topography. Still another map may show state and county borders.
Each map has its own vocabulary. For example, lines in the topographical map
represent elevations, while lines in the traffic map represent streets. Nevertheless, all
maps describe the same subject: a specific geographic region.

Each viewpoint itself can also focus on different levels of abstraction. Therefore, ESP
depicts the following viewpoints as vertical slices across the pattern graph: database,
application, and infrastructure. There is often a significant gap between the applica-
tion and infrastructure viewpoints. Concepts, abstractions, and skill sets are suffi-
ciently different to warrant the insertion of a buffer between the two that helps to
bridge the divide. This viewpoint is called the deployment viewpoint.

Enterprise Solution Patterns Using Microsoft .NET22

This line of reasoning results in the four viewpoints shown in Table 2.2.

Table 2.2: Enterprise Solution Patterns Viewpoints

Viewpoint Description

Database The database view describes the persistent layer of the application. This
view looks at such things as logical and physical schemas, database tables,
relationships, and transactions.

Application The application view focuses on the executable aspect of the solution.
It includes such things as domain models, class diagrams, assemblies,
and processes.

Deployment The deployment view explicitly maps application concerns to infrastructure
concerns (for example, processes to processors).

Infrastructure The infrastructure view incorporates all of the hardware and networking
equipment that is required to run the solution.

Figure 2.5 overlays these viewpoints as vertical lines over the pattern graph and the
levels of abstraction.

Design

Implementation

Architecture

Database Application Deployment Infrastructure

Figure 2.5
Adding viewpoints

For the sake of simplicity, Figure 2.5 does not show the cluster boundaries. However,
the clusters, the layers of abstraction, and the viewpoints exist in parallel. They
represent different ways to access the same set of patterns.

Chapter 2: Organizing Patterns 23

The Pattern Frame
The combination of three levels of refinement on the vertical axis and the four
viewpoints on the horizontal axis results in a grid-like organization of the pattern
graph. This arrangement, called the Pattern Frame, is shown in Figure 2.6.

Design

Implementation

Architecture

Database Application Deployment Infrastructure

Figure 2.6
The Pattern Frame

The Pattern Frame is included with each individual pattern description as a point of
reference and as a navigational aid.

Constraints
The Pattern Frame organizes the collection of patterns into meaningful subcatego-
ries. For example, you can now focus on the design patterns of the Database view or
on the implementation patterns of the Application view.

However, software takes many forms. Today, software operates embedded systems
such as pacemakers and telecommunications equipment, real-time systems such as
antilock brakes, or in data warehousing systems constructed to analyze consumer

Enterprise Solution Patterns Using Microsoft .NET24

buying behavior. Trying to address patterns related to all these flavors of software
solutions would quickly enlarge the scope of any single book or pattern repository.
ESP, therefore, constrains the patterns to enterprise business solutions. Because this
term is somewhat nebulous, ESP identifies a small set of specific top-level architec-
tural patterns, or root patterns, within the pattern graph. All other patterns in this
collection adhere to the following constraints:
� Online transaction processing (OLTP)
� Object-oriented
� Layered application
� Tiered distribution systems

OLTP systems are database subsystems that manage the processing of transactions.
These subsystems ensure that each transaction is atomic, consistent, isolated, and
durable (the so-called ACID properties). In practice, these applications often ma-
nipulate one or more relational databases that maintain the business state of the
enterprise. In other words, these are the databases that keep track of the customers,
orders, accounting, and so on. By identifying OLTP as a top-level constraint in the
Pattern Frame, ESP excludes online analytical processing (OLAP) or simple flat file
systems that do not support transactions. The online aspect of OLTP implies that
these systems are reading or updating the database immediately in response to a
change in business state, which excludes offline batch processing from consideration.

From the application viewpoint, the Pattern Frame is constrained by two patterns:
Object-Oriented Application and Layered Application. Most, if not all, of the application
viewpoint patterns depend on object-oriented concepts such as encapsulation,
polymorphism, and inheritance to successfully resolve their forces. Therefore, the
Pattern Frame addresses only object-oriented applications and specifically does not
address procedural applications.

Interesting enterprise applications are usually composed of a large number of
objects and services that must collaborate to provide something of value to the
business. To manage these collaborations, there must exist some high-level organiza-
tion of the system. Most enterprise class systems use a layered approach to manage
this complexity. As a result, the Pattern Frame addresses only applications that are
designed as a set of layers and specifically excludes monolithic applications with
little or no internal structure.

From the infrastructure viewpoint, the model is constrained to a hardware infra-
structure that supports distributing an application over a number of servers ar-
ranged into tiers. The tiered approach is commonly used for enterprise applications,
because it has a relatively low startup cost and it supports a scaling out strategy
where inexpensive servers can be added to the infrastructure to add incremental

Chapter 2: Organizing Patterns 25

capability. Excluded from the model are solutions based on deploying applications
to a single mainframe or large multiprocessor computer.

The deployment perspective is concerned with bridging the gap across the applica-
tions and infrastructure viewpoints. As a consequence, it does not have any con-
straints of its own, but operates within the constraints set by the application and
infrastructure viewpoints. In other words, the highest-level deployment pattern is
about mapping layered applications to a tiered distribution infrastructure and does
not impose any additional constraints of its own.

Taken as a group, these four high-level constraints, or root constraints, help to
narrow the patterns that are in scope for the remainder of this guide. Figure 2.7
shows the root constraints along the top of the Pattern Frame.

OLTP Layered
Application

Tiered
Distribution

Design

Implementation

Architecture

Database Application Deployment Infrastructure

Object-Oriented
Application

Figure 2.7
Root constraints of the Pattern Frame

Reducing the scope of the Pattern Frame makes it possible to focus on specific
patterns and the relationships between them in more relevant detail.

Enterprise Solution Patterns Using Microsoft .NET26

Pattlets
The use of root constraints reduces the number of patterns to a manageable order of
magnitude. Nevertheless, elaborating on all patterns in the grid takes a significant
amount of effort. Developing all patterns in isolation and then publishing “the
ultimate patterns guide” would counteract many benefits realized by the patterns
communities. Patterns need to evolve as the collective understanding of them
evolves. Patterns are not created by a single author, but are harvested from actual
use in the software development community. Recognizing the evolutionary nature of
patterns, the authors of this guide have published the subset of patterns included
here to obtain feedback and start building a community.

Deferring patterns until later, however, leaves holes in the pattern graph, which
could result in related patterns suddenly becoming disconnected. To preserve the
integrity of the relationships inside the pattern graph, this guide includes the pat-
terns that were not included in the first release as pattlets. Pattlets are actual patterns
that have not yet been documented in detail. A pattlet describes a solution to a
problem, but does not contain a detailed description of the context, problem, or
forces that may impact the solution.

The concept of pattlets is also useful for referencing prior pattern works. The pat-
terns community has been discovering and documenting software patterns for over
a decade. It would be foolish to try to replicate these efforts. It would also be foolish,
however, to require readers to purchase several other books as context for these
patterns. Therefore, this guide includes a pattlet whenever it references a pattern
that is described in an existing book about patterns. The pattlet includes the refer-
ence to the original work for those readers who would like to look at the complete
pattern in more detail.

For a detailed list of all pattlets, see Appendix A.

Pattern Language for Solutions
The constrained Pattern Frame and the patterns it contains provide enough data
points to begin using patterns to describe entire solutions. In fact, the quoting
example from Chapter 1 can be described in terms of patterns. Recall that the re-
quirements specified a Web-based quote application. Someone describing the archi-
tecture of the solution might say something like this:

Let’s start by looking at the quote application at the architecture level of abstrac-
tion. From the application viewpoint, the quote application is an Object-Oriented
Application that is logically structured as a Three-Layered Services Application. From
the database viewpoint, the application is based on the OLTP processing model.
From the infrastructure viewpoint, the hardware and network architecture are
based on Four-Tiered Distribution, which calls for separate physical tiers for Web

Chapter 2: Organizing Patterns 27

server and application server functionality. And finally, from the deployment
viewpoint, the team has created a Deployment Plan to map components to servers,
based on a Complex Web Application.

This concisely describes the architecture of the solution across all four of the view-
points to anyone familiar with the referenced patterns. Continuing down one level
of abstraction, you can see how someone might describe the design of the system:

From the application viewpoint, let’s consider each layer of our Three-Layered
Services Application separately.
The presentation layer is structured around a Web presentation framework based
on Model-View-Controller (MVC). Although MVC provides a level of separation
between business and presentation logic, each page contains a great deal of
common logic. To eliminate this redundancy, we use a Page Controller to render
common headers and footers and set a friendly display name for the user.
The business layer holds the Customer, Quote, Order, Line Item, and Inventory
domain objects. The domain objects are realized using Table Module [Fowler03]
because speed of development is a key requirement. The Complex Web Applica-
tion Deployment Model calls for separate Web and application tiers. Therefore, the
two tiers communicate through a Broker. Business entities, acting in the role of
Data Transfer Objects [Fowler03], are used to encapsulate the information traveling
between the two tiers.
The data layer uses a Data Table Gateway [Fowler03] to access the OLTP database
subsystem and a number of data access components to support the persistence
requirements of the domain objects.
From the infrastructure viewpoint: to meet the operational requirements of the
business, we build on the basic Four-Tiered Distribution model by adding Load
Balanced Cluster and Failover Cluster. Responding to a requirement calling for a
high level of concurrent users, we added load balancing to our Web tier. To meet
availability requirements, we added clustering to our database tier.

The description could continue on to describe the data and deployment viewpoints
at the same level of abstraction. To continue, instead, down one more level of
abstraction, you can see how someone might describe the implementation of the
solution:

Let’s look at the solution from the application viewpoint. The solution is built
using Microsoft .NET technology. The presentation layer is based on the Web
presentation framework that is built into ASP.NET. ASP.NET simplifies the
implementation of Model-View-Controller with the built-in code-behind page
feature. We use the built-in Page Controller mechanism in ASP.NET to implement
our presentation logic. The domain objects in the business layer are managed
.NET objects. Because the presentation layer and business layer are deployed on
separate tiers, we use Implementing Broker with .NET Remoting Using Server-
Activated Objects. Finally, the data layer is based on the ADO.NET classes within

Enterprise Solution Patterns Using Microsoft .NET28

the .NET Framework to provide database access. The Table Modules and business
entities are constructed using the DataSet component of ADO.NET. The remain-
der of the Data Access Components are provided by the Microsoft Application
Blocks for .NET building block.
From the infrastructure viewpoint: Microsoft SQL Server®, running in a failover
cluster, is used for the OLTP database subsystem. Microsoft Network Load
Balancing clusters provide load balancing between Web servers.

All of these conversations make frequent references to patterns. This can be daunt-
ing at first, but when you understand the patterns used, you realize that even this
brief description gives you a detailed understanding about how the system works.
Notice that you gained this understanding without having to wade through reams
of documentation or step through endless lines of code. The communication benefits
of patterns become clear if you imagine how much more work would be involved in
describing the solution without using patterns.

Summary
This chapter demonstrated how patterns provide a vocabulary to efficiently describe
complex solutions without sacrificing detail. Effectively, the patterns form a new
language with which architects and designers can communicate their thinking.

Because of the large number of patterns involved in building enterprise solutions, it
can seem difficult to learn this new language. This guide structures the patterns into
smaller, more closely related sets of patterns. This allows you to get started by using
a smaller set of patterns, depending on your specific interest or the stage of the
project.

This chapter introduced four mechanisms to help you navigate the patterns:
� Relationships. Relationships between patterns help you to identify patterns that

are closely associated to the pattern you are using (for example, Page Controller
focuses on the controller aspect of Model-View-Controller).

� Clusters. Clusters group patterns that belong to a common subject area (for
example, Web Presentation).

� Levels of abstraction. Levels of abstraction allow you to describe concepts in a
manner that is consistent with the level of detail of your discussion (for example,
an architectural conversation).

� Viewpoints. Viewpoints help you select the vocabulary that is relevant to a
team’s particular role (for example, the infrastructure team).

These mechanisms are not meant to constrain your thinking, but instead are in-
tended to make looking at complex systems easier. With practice, you will naturally
switch between these mechanisms as you switch between roles, subject areas, and
levels of detail.

3
Web Presentation Patterns

“An architect’s first work is apt to be spare and clean. He knows he doesn’t
know what he is doing, so he does it carefully and with great restraint. As he
designs the first work, frill after frill and embellishment after embellishment
occur to him. These get stored away to be used ‘next time’…This second system
is the most dangerous system a man ever designs…The general tendency is to
over-design the second system using all the ideas and frills that were cautiously
sidetracked on the first one.” — Frederick P. Brooks, Jr. in The Mythical Man
Month, 19721

The first systems on the Web were simply linked static HTML pages that enabled
document sharing between distributed teams. As user adoption increased, dynamic
Web pages that responded to user input became common. Early dynamic pages were
typically written as Common Gateway Interface (CGI) scripts. These CGI scripts not
only contained the business logic for deciding what to display in response to user
input, they also generated the presentation HTML. As demand for more complex
logic increased, so did the demand for richer and more engaging presentations.
This increased complexity strained the CGI programming model.

Soon page-based development (for example, ASP and JSP) emerged. This allowed
developers to embed script directly into HTML pages, thus simplifying the program-
ming model. As these embedded script applications became more complex, devel-
opers wanted to separate out business logic from presentation logic at the page level.
In response, tag libraries with helper objects and code-behind page strategies
emerged. Elaborate frameworks appeared, which offered dynamically configurable
site navigation and command dispatchers, all at the cost of additional complexity.
Given the wide range of Web presentation options now available, how do you
choose the appropriate Web presentation design strategy for your application?

1. This quotation is intended to emphasize the dangers of adding unnecessary complexity to a system. By
using Brooks’ original words, the authors of this guide are not advocating his particular choice of pronouns.

Enterprise Solution Patterns Using Microsoft .NET30

Complexity and Redundancy
Unfortunately, there is no single design strategy that is right for all situations. This
is due to the competing needs in software design to eliminate excessive redundancy
and excessive complexity.

You can start with a simple page that contains embedded script, and soon the
business logic is repeated across files, making the system difficult to maintain and
extend. You can move this logic into a set of collaborating components to eliminate
redundancy, but doing so adds complexity to the solution. Instead, you can start off
with a framework that offers tag libraries, dynamic configuration, and command
dispatchers, but although this eliminates redundant code, it adds a great deal of
complexity to the system, often unnecessarily.

Adding complexity obscures your intentions, making the system more difficult
for other developers to understand. The added complexity also makes the system
harder to maintain and extend, thereby increasing the total cost of ownership. If this
added complexity is carefully considered and reserved for meeting current require-
ments, it can be worthwhile. Extra complexity is sometimes added based on
speculation that it might be needed someday, rather than based on current require-
ments. This can clutter code with unnecessary abstractions that impede under-
standing and your ability to deliver a working system today.

So, again, how do you wade through the choices to arrive at an appropriate Web
presentation design strategy for your application?

First, it is important to understand the key Web application design issues, possible
solutions, and the associated tradeoffs. This chapter gives developers a strong head
start down that path. In the process, you will become familiar with options, assess
tradeoffs, and then pick the least complex solution that meets the application’s
requirements. Think carefully before choosing a more complex solution that supports
possible future change scenarios over a simpler solution that meets today’s
requirements. Sometimes the extra cost is justified, but quite often it is not.

Patterns Overview
This patterns cluster starts off simply with Model-View-Controller (MVC), a long-
standing pattern that has stood the test of time when it comes to separating business
logic from presentation logic. Although this pattern is not new [Buschmann96],
this collection presents it in a simplified form that is tailored for building business
solutions, not for building user interface frameworks for rich clients. The pattern
is written first at the design level, and is then mapped to a platform implementation
named Implementing Model-View-Controller in ASP.NET. Figure 3.1 shows the Web
Presentation patterns cluster.

Chapter 3: Web Presentation Patterns 31

Design

Page Cache

Implementing
Page Cache
 in ASP.NET

Page Controller

Implementing
Page Controller

 in ASP.NET

MVC

Implementing
MVC

in ASP.NET

Front Controller

Implementing
Front Controller

 in ASP.NET

Intercepting
 Filter

Implementing
Intercepting Filter

 in ASP.NET

Implementation

Figure 3.1
Web Presentation patterns cluster

The implementation of MVC with Microsoft® ASP.NET starts with an example of
a simple system, written on a single page, with application logic embedded in the
presentation elements. As complexity grows, the code-behind feature of ASP.NET
is used to separate the presentation code (view) from the model-controller code.
This works well, until requirements drive you to consider reusing the model code,
without the controller, to avoid redundancy within your application. At this point,
independent models are created to abstract the business logic, and the code-behind
feature is used to adapt the model to the view code. The implementation then
finishes off with a discussion about the testing implications of this MVC approach.

So far, the use of the Model-View-Controller pattern has focused on the model and
the view; the controller plays a relatively minor role. In fact, the controller at work
in this pattern is really the implicit controller in ASP.NET. It is responsible for sensing
user events (requests and postbacks) and wiring those events to the appropriate
system response, which in this case is the events in the code-behind page.

In dynamic Web-based applications, many common tasks are repeated during each
page request, such as user authentication, validation, request parameter extraction,
and presentation-related database lookups. Left unmanaged, these tasks can quickly
lead to unnecessary code duplication. Because these tasks have everything to do
with sensing user events and determining the proper system response, the logical
place to put this behavior is in the controller.

Enterprise Solution Patterns Using Microsoft .NET32

More Powerful Controllers
The next pattern in this cluster is Page Controller, which is a refinement of Model-
View-Controller and is appropriate for the next level of complexity. This pattern
uses a controller at the page scope, accepts input from the page request, invokes
the requested actions on the model, and then determines the correct view to use
for the resulting page. Duplicate logic, such as validation, is moved into a base
controller class.

Implementing Page Controller with ASP.NET illustrates the power of the ASP.NET
built-in page controller functionality with a common look-and-feel example. The
implementation also uses the Template Method [Gamma95] pattern, in conjunction
with Page Controller, to define the skeleton of an algorithm in an operation, deferring
some of those steps to subclasses.

As more complexity is added to the application, eventually the page controller
accumulates a great deal of logic in the base class, a problem which is often solved
by deepening the page controller inheritance hierarchy. Given enough complexity,
both of these factors lead to code that is hard to maintain and extend. Also, certain
applications need dynamic configuration of navigation maps, which would poten-
tially span multiple page controllers. When this level of complexity occurs, it is time
to consider Front Controller.

Front Controller, the next pattern in this catalog, is also a refinement of Model-View-
Controller. In a front controller, all of the requests are channeled through a single,
usually, two-part controller. The first part of the controller is the handler, and the
second part is a hierarchy of Commands [Gamma95]. The commands themselves
are part of the controller and represent specific actions that the controller triggers.
After the action has executed, the command chooses which view to use to render
the page. Usually, this controller framework is built to use a configuration file that
maps requests to actions, and is therefore easy to change after it is built. The
tradeoff, of course, is in the level of complexity inherent in this design.

Filters and Caching
The last two patterns in this cluster involve filters and caching.

Intercepting Filter offers a solution to the problem of how to implement common
preprocessing and post-processing of the HTTP request. An Intercepting Filter is an
ideal place to perform common tasks that are not application-specific, such as security
checks, logging, compression, encoding, and decoding. Intercepting filters are
typically concerned with performing one particular task. If multiple tasks execute
against the HTTP request, multiple filters are chained together. Implementing
Intercepting Filter in ASP.NET Using HTTP Module highlights the ease with which
you can implement this pattern in ASP.NET.

Chapter 3: Web Presentation Patterns 33

Page Cache deals with increasing the scalability and performance of Web applications
by keeping a copy of often-used dynamic Web pages that are expensive to create.
After the page is initially created, the copy is sent in response to future requests.
Page Cache also discusses several key cache design factors such as cache refresh,
data freshness, and cache granularity. Implementing Page Cache in ASP.NET Using
Absolute Expiration demonstrates the built-in page cache functionality of ASP.NET.

Web Presentation Patterns
The following table lists the patterns included in the Web Presentation patterns
cluster. The patterns are arranged so that later patterns build on earlier patterns.
This implies a progression from more general patterns (such as Model-View-
Controller) to more specific patterns (such as Intercepting Filter).

Table 3.1: Web Presentation Patterns

Pattern Problem Associated implementations

Model-View-Controller How do you modularize the user Implementing Model-View-
interface functionality of a Web Controller in ASP.NET
application so that you can easily
modify the individual parts?

Page Controller How do you best structure the Implementing Page Controller
controller for moderately complex in ASP.NET
Web applications so that you can
achieve reuse and flexibility while
avoiding code duplication?

Front Controller How do you best structure the Implementing Front Controller
controller for very complex Web in ASP.NET Using HTTP Handler
applications so that you can achieve
reuse and flexibility while avoiding
code duplication?

Intercepting Filter How do you implement common Implementing Intercepting Filter
pre- and post-processing steps in ASP.NET Using HTTP Module
around Web page requests?

Page Cache How do you improve the response Implementing Page Cache
time of dynamically generated Web in ASP.NET Using Absolute
pages that are requested frequently Expiration
but consume a large amount of
system resources to construct?

Observer How can an object notify other Implementing Observer in .NET
objects of state changes without
being dependent on their classes?

Enterprise Solution Patterns Using Microsoft .NET34

Model-View-Controller

Context
The purpose of many computer systems is to retrieve data from a data store and
display it for the user. After the user changes the data, the system stores the updates
in the data store. Because the key flow of information is between the data store and
the user interface, you might be inclined to tie these two pieces together to reduce
the amount of coding and to improve application performance. However, this
seemingly natural approach has some significant problems. One problem is that the
user interface tends to change much more frequently than the data storage system.
Another problem with coupling the data and user interface pieces is that business
applications tend to incorporate business logic that goes far beyond data transmission.

Problem
How do you modularize the user interface functionality of a Web application
so that you can easily modify the individual parts?

Forces
The following forces act on a system within this context and must be reconciled
as you consider a solution to the problem:
� User interface logic tends to change more frequently than business logic, especially

in Web-based applications. For example, new user interface pages may be added,
or existing page layouts may be shuffled around. After all, one of the advantages
of a Web-based thin-client application is the fact that you can change the user
interface at any time without having to redistribute the application. If presentation
code and business logic are combined in a single object, you have to modify an
object containing business logic every time you change the user interface. This
is likely to introduce errors and require the retesting of all business logic after
every minimal user interface change.

� In some cases, the application displays the same data in different ways. For
example, when an analyst prefers a spreadsheet view of data whereas management
prefers a pie chart of the same data. In some rich-client user interfaces, multiple
views of the same data are shown at the same time. If the user changes data in
one view, the system must update all other views of the data automatically.

Chapter 3: Web Presentation Patterns 35

� Designing visually appealing and efficient HTML pages generally requires a
different skill set than does developing complex business logic. Rarely does a
person have both skill sets. Therefore, it is desirable to separate the development
effort of these two parts.

� User interface activity generally consists of two parts: presentation and update.
The presentation part retrieves data from a data source and formats the data for
display. When the user performs an action based on the data, the update part
passes control back to the business logic to update the data.

� In Web applications, a single page request combines the processing of the action
associated with the link that the user selected with the rendering of the target
page. In many cases, the target page may not be directly related to the action.
For example, imagine a simple Web application that shows a list of items. The
user returns to the main list page after either adding an item to the list or deleting
an item from the list. Therefore, the application must render the same page (the
list) after executing two quite different commands (adding or deleting)—all
within the same HTTP request.

� User interface code tends to be more device-dependent than business logic. If
you want to migrate the application from a browser-based application to support
personal digital assistants (PDAs) or Web-enabled cell phones, you must replace
much of the user interface code, whereas the business logic may be unaffected.
A clean separation of these two parts accelerates the migration and minimizes
the risk of introducing errors into the business logic.

� Creating automated tests for user interfaces is generally more difficult and time-
consuming than for business logic. Therefore, reducing the amount of code that
is directly tied to the user interface enhances the testability of the application.

Solution
The Model-View-Controller (MVC) pattern separates the modeling of the domain,
the presentation, and the actions based on user input into three separate classes
[Burbeck92]:
� Model. The model manages the behavior and data of the application domain,

responds to requests for information about its state (usually from the view),
and responds to instructions to change state (usually from the controller).

� View. The view manages the display of information.
� Controller. The controller interprets the mouse and keyboard inputs from

the user, informing the model and/or the view to change as appropriate.

Enterprise Solution Patterns Using Microsoft .NET36

Figure 3.2 depicts the structural relationship between the three objects.

Controller

Model

View

Figure 3.2
MVC class structure

It is important to note that both the view and the controller depend on the model.
However, the model depends on neither the view nor the controller. This is one
the key benefits of the separation. This separation allows the model to be built and
tested independent of the visual presentation. The separation between view and
controller is secondary in many rich-client applications, and, in fact, many user
interface frameworks implement the roles as one object. In Web applications, on the
other hand, the separation between view (the browser) and controller (the server-side
components handling the HTTP request) is very well defined.

Model-View-Controller is a fundamental design pattern for the separation of user
interface logic from business logic. Unfortunately, the popularity of the pattern has
resulted in a number of faulty descriptions. In particular, the term “controller” has
been used to mean different things in different contexts. Fortunately, the advent of
Web applications has helped resolve some of the ambiguity because the separation
between the view and the controller is so apparent.

Variations
In Application Programming in Smalltalk-80: How to use Model-View-Controller (MVC)
[Burbeck92], Steve Burbeck describes two variations of MVC: a passive model and
an active model.

The passive model is employed when one controller manipulates the model
exclusively. The controller modifies the model and then informs the view that the
model has changed and should be refreshed (see Figure 3.3). The model in this sce-
nario is completely independent of the view and the controller, which means that
there is no means for the model to report changes in its state. The HTTP protocol is
an example of this. There is no simple way in the browser to get asynchronous
updates from the server. The browser displays the view and responds to user input,
but it does not detect changes in the data on the server. Only when the user explic-
itly requests a refresh is the server interrogated for changes.

Chapter 3: Web Presentation Patterns 37

:Controller

handleEvent

service

:Model :View

update

getData

Figure 3.3
Behavior of the passive model

The active model is used when the model changes state without the controller ’s
involvement. This can happen when other sources are changing the data and the
changes must be reflected in the views. Consider a stock-ticker display. You receive
stock data from an external source and want to update the views (for example,
a ticker band and an alert window) when the stock data changes. Because only the
model detects changes to its internal state when they occur, the model must notify
the views to refresh the display.

However, one of the motivations of using the MVC pattern is to make the model
independent from of the views. If the model had to notify the views of changes,
you would reintroduce the dependency you were looking to avoid. Fortunately,
the Observer pattern [Gamma95] provides a mechanism to alert other objects of state
changes without introducing dependencies on them. The individual views imple-
ment the Observer interface and register with the model. The model tracks the list
of all observers that subscribe to changes. When a model changes, the model iterates
through all registered observers and notifies them of the change. This approach is
often called “publish-subscribe.” The model never requires specific information
about any views. In fact, in scenarios where the controller needs to be informed of
model changes (for example, to enable or disable menu options), all the controller
has to do is implement the Observer interface and subscribe to the model changes.
In situations where there are many views, it makes sense to define multiple subjects,
each of which describes a specific type of model change. Each view can then subscribe
only to types of changes that are relevant to the view.

Enterprise Solution Patterns Using Microsoft .NET38

Figure 3.4 shows the structure of the active MVC using Observer and how the
observer isolates the model from referencing views directly.

Controller

Model *
<<interface>>

Observer

+update()

View

Figure 3.4
Using Observer to decouple the model from the view in the active model

Figure 3.5 illustrates how the Observer notifies the views when the model changes.
Unfortunately, there is no good way to demonstrate the separation of model and
view in a Unified Modeling Language (UML) sequence diagram, because the diagram
represents instances of objects rather than classes and interfaces.

handleEvent

:Model :View

update

getData

Data

Notify

Figure 3.5
Behavior of the active model

Chapter 3: Web Presentation Patterns 39

Example
See Implementing Model-View-Controller in ASP.NET.

Testing Considerations
Testability is greatly enhanced when you employ employing Model-View-Controller.
Testing components becomes difficult when they are highly interdependent, especially
with user interface components. These types of components often require a complex
setup just to test a simple function. Worse, when an error occurs, it is hard to isolate
the problem to a specific component. This is the reason why separation of concerns
is such an important architectural driver. MVC separates the concern of storing,
displaying, and updating data into three components that can be tested individually.

Apart from the problems posed by interdependencies, user interface frameworks
are inherently difficult to test. Testing user interfaces either requires tedious (and
error-prone) manual testing or testing scripts that simulate user actions. These scripts
tend to be time-consuming to develop and brittle. MVC does not eliminate the need
for user interface testing, but separating the model from the presentation logic allows
the model to be tested independent of the presentation and reduces the number of
user interface test cases.

Resulting Context
Architecting the presentation layer around the MVC pattern results in the following
benefits and liabilities:

Benefits
� Supports multiple views. Because the view is separated from the model and

there is no direct dependency from the model to the view, the user interface can
display multiple views of the same data at the same time. For example, multiple
pages in a Web application may use the same model objects. Another example
is a Web application that allows the user to change the appearance of the pages.
These pages display the same data from the shared model, but show it in a
different way.

� Accommodates change. User interface requirements tend to change more rapidly
than business rules. Users may prefer different colors, fonts, screen layouts, and
levels of support for new devices such as cell phones or PDAs. Because the model
does not depend on the views, adding new types of views to the system generally
does not affect the model. As a result, the scope of change is confined to the view.
This pattern lays the foundation for further specializations of this pattern such
as Page Controller and Front Controller.

Enterprise Solution Patterns Using Microsoft .NET40

Liabilities
� Complexity. The MVC pattern introduces new levels of indirection and therefore

increases the complexity of the solution slightly. It also increases the event-driven
nature of the user-interface code, which can become more difficult to debug.

� Cost of frequent updates. Decoupling the model from the view does not mean
that developers of the model can ignore the nature of the views. For example,
if the model undergoes frequent changes, it could flood the views with update
requests. Some views, such as graphical displays, may take some time to render.
As a result, the view may fall behind update requests. Therefore, it is important
to keep the view in mind when coding the model. For example, the model could
batch multiple updates into a single notification to the view.

Variants
The Document-View variant recognizes all three roles of Model-View-Controller but
merges the controller into the view. The document corresponds to the model role in
MVC. This variant is present in many existing GUI platforms. An excellent example
of Document-View is the Microsoft® Foundation Class Library (MFC) in the Microsoft
Visual C++® environment. The tradeoff of using this variant is that the view and
the controller are more tightly coupled.

Related Patterns
For more information, see the following related patterns:
� Observer. This pattern is often mentioned in conjunction with MVC due to the

need to keep the views and the associated model synchronized.
� Page Controller and Front Controller describe implementation strategies for the

controller portion of the MVC pattern.

Acknowledgments
Model-View-Controller began as a framework developed by Trygve Reenskaug for
the Smalltalk platform in the late 1970s [Fowler03]. The version you have just read
references the following works:

[Burbeck92] Burbeck, Steve. “Application Programming in Smalltalk-80: How to use
Model-View-Controller (MVC).” University of Illinois in Urbana-Champaign (UIUC)
Smalltalk Archive. Available at http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

Chapter 3: Web Presentation Patterns 41

Implementing Model-View-Controller in ASP.NET

Context
You are building a Web application in Microsoft® ASP.NET, and, based on the
complexity of your application, you need to separate different aspects of the program
to reduce code duplication and to limit the propagation of change.

Implementation Strategy
To explain how to implement the Model-View-Controller pattern in ASP.NET and the
value provided by separating the model, view, and controller roles in software, the
following example refactors a single-page solution, which does not separate all three
roles, into a solution that separates the roles. The example application is a single Web
page (shown in Figure 3.6) with a drop-down list, which displays recordings that are
stored in a database.

Figure 3.6
Example Web page

The user selects a specific recording from the drop-down list and then clicks the
Submit button. The application then retrieves the list of all tracks from this recording
from the database and displays the results in a table. All three solutions described in
this pattern implement the exact same functionality.

Enterprise Solution Patterns Using Microsoft .NET42

Single ASP.NET Page
There are many ways to implement this page in ASP.NET. The simplest and most
straightforward is to put everything in one file called “Solution.aspx,” as in the
following code example:

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<html>
 <head>
 <title>start</title>
 <script language="c#" runat="server">
 void Page_Load(object sender, System.EventArgs e)
 {
 String selectCmd = "select * from Recording";

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd,
 myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Recording");

 recordingSelect.DataSource = ds;
 recordingSelect.DataTextField = "title";
 recordingSelect.DataValueField = "id";
 recordingSelect.DataBind();
 }

 void SubmitBtn_Click(Object sender, EventArgs e)
 {
 String selectCmd =
 String.Format(
 "select * from Track where recordingId = {0} order by id",
 (string)recordingSelect.SelectedItem.Value);

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");

 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd,
 myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Track");

 MyDataGrid.DataSource = ds;
 MyDataGrid.DataBind();
 }
 </script>
 </head>

Chapter 3: Web Presentation Patterns 43

 <body>
 <form id="start" method="post" runat="server">
 <h3>Recordings</h3>
 Select a Recording:

 <asp:dropdownlist id="recordingSelect" runat="server" />
 <asp:button runat="server" text="Submit" OnClick="SubmitBtn_Click" />
 <p/>
 <asp:datagrid id="MyDataGrid" runat="server" width="700"
 backcolor="#ccccff" bordercolor="black" showfooter="false"
 cellpadding="3" cellspacing="0" font-name="Verdana"
 font-size="8pt" headerstyle-backcolor="#aaaadd"
 enableviewstate="false" />
 </form>
 </body>
</html>

This file implements all three roles from the pattern but does not separate them into
different files or classes. The view role is represented by the HTML-specific rendering
code. This page uses an implementation of Bound Data Control to display the DataSet
object that is returned from the database. The model role is implemented in the
Page_Load and SubmitBtn_Click functions. The controller role is not represented
directly, but it is implicit in ASP.NET; see Page Controller. The page updates when
the user makes a request. Model-View-Controller describes this as a passive controller.
ASP.NET implements the controller role, but the programmer is responsible for
connecting the actions to the events to which the controller will respond. In this
example, the controller calls the Page_Load function before the page loads. The
controller calls the SubmitBtn_Click function when the user clicks the Submit button.

This page is very straightforward and self-contained. The implementation is useful,
and is an excellent starting point when the application is small and does not change
very often. You should consider changing this approach, however, if one of more of
the following situations occurs in your development effort:
� You want to increase parallelism and reduce potential for errors. You may want

different people working on the view code and the model code to increase the
amount of parallelism and limit the potential for introducing errors. For example,
if all of the code is in one page, a developer could change the formatting of the
DataGrid and inadvertently change some of the source code that accesses the
database. You would not discover this error until the page was viewed again,
because the page is not compiled until it is viewed.

� You want to reuse the database access code on multiple pages. In this current
implementation, there is no way to reuse any of the code in other pages without
duplicating it. Duplicate code is difficult to maintain, because if a change occurs
in the database code, you have to modify all the pages that access the database.

To address some of these issues, the implementers of ASP.NET introduced the code-
behind feature.

Enterprise Solution Patterns Using Microsoft .NET44

Code-Behind Refactoring
The code-behind feature of the Microsoft Visual Studio® .NET development system
makes it easy to separate the presentation (view) code from the model-controller
code. Each ASP.NET page has a mechanism that allows methods that are called from
the page to be implemented in a separate class. This mechanism is facilitated by
Visual Studio .NET and it has many advantages, such as Microsoft IntelliSense®
technology. When you use the code-behind feature to implement your pages, you
can use IntelliSense to show a list of available methods of the objects that you are
using in the code behind the page. IntelliSense does not work in .aspx pages.

The following is the same example, this time using the code-behind feature
to implement ASP.NET.

View

The presentation code is now in a separate file called Solution.aspx:

<%@ Page language="c#" Codebehind="Solution.aspx.cs"
 AutoEventWireup="false" Inherits="Solution" %>
<html>
 <head>
 <title>Solution</title>
 </head>
 <body>
 <form id="Solution" method="post" runat="server">
 <h3>Recordings</h3>
 Select a Recording:

 <asp:dropdownlist id="recordingSelect" runat="server" />
 <asp:button id="submit" runat="server" text="Submit"
 enableviewstate="False" />
 <p/>
 <asp:datagrid id="MyDataGrid" runat="server" width="700"
 backcolor="#ccccff" bordercolor="black" showfooter="false"
 cellpadding="3" cellspacing="0" font-name="Verdana" font-size="8pt"
 headerstyle-backcolor="#aaaadd" enableviewstate="false" />
 </form>
 </body>
</html>

Most of this code is similar to the code used in the first implementation. The main
difference is the first line:

<%@ Page language="c#" Codebehind="Solution.aspx.cs"
 AutoEventWireup="false" Inherits="Solution" %>

This line indicates to the ASP.NET environment that a code-behind class implements
methods that are referenced in this page. Because the page is free of any code that
accesses the database, there is no longer any need to modify this page if the database
access code changes. Someone who is familiar with the design of the user interface
can modify this code without introducing any errors to the database access code.

Chapter 3: Web Presentation Patterns 45

Model-Controller

The second part of the solution is the following code-behind page:

using System;
using System.Data;
using System.Data.SqlClient;

public class Solution : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.Button submit;
 protected System.Web.UI.WebControls.DataGrid MyDataGrid;
 protected System.Web.UI.WebControls.DropDownList recordingSelect;

 private void Page_Load(object sender, System.EventArgs e)
 {
 if(!IsPostBack)
 {
 String selectCmd = "select * from Recording";

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Recording");

 recordingSelect.DataSource = ds;
 recordingSelect.DataTextField = "title";
 recordingSelect.DataValueField = "id";
 recordingSelect.DataBind();
 }
 }

 void SubmitBtn_Click(Object sender, EventArgs e)
 {
 String selectCmd =
 String.Format(
 "select * from Track where recordingId = {0} order by id",
 (string)recordingSelect.SelectedItem.Value);

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Track");

 MyDataGrid.DataSource = ds;
 MyDataGrid.DataBind();
 }

Enterprise Solution Patterns Using Microsoft .NET46

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.submit.Click += new System.EventHandler(this.SubmitBtn_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
}

This code has been moved from the single ASP.NET page into its own file. A few
syntactic changes are required to link the two entities together. The member variables
defined in the class share the same name as the ones referenced in the Solution.aspx
file. The other aspect that must be explicitly defined is how the controller links the
events that occur to the actions that must be performed. The InitializeComponent
method links the two events in this example. The first is the Load event, which is
linked to the Page_Load function. The second is the Click event, which triggers
the SubmitBtn_Click function to run when the Submit button is clicked.

The code-behind feature is an elegant mechanism for separating the view role from
the model and controller roles. It may become insufficient when you need to reuse
the code that is present in the code-behind class for another page. It is technically
possible to reuse the code from the code-behind page, but highly undesirable, due
to the increase in coupling of all the pages that share the code-behind class.

Model-View-Controller Refactoring
To resolve the last issue, you need to further separate the model code from the
controller. The view code is identical to the code used in the previous implementation.

Model

The following code example describes the model and is dependent on the data-
base only; it does not contain any view-dependent code (code with ASP.NET
dependencies):

Chapter 3: Web Presentation Patterns 47

using System;
using System.Collections;
using System.Data;
using System.Data.SqlClient;

public class DatabaseGateway
{
 public static DataSet GetRecordings()
 {
 String selectCmd = "select * from Recording";

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Recording");
 return ds;
 }

 public static DataSet GetTracks(string recordingId)
 {
 String selectCmd =
 String.Format(
 "select * from Track where recordingId = {0} order by id",
 recordingId);

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Track");
 return ds;
 }
}

This is now the only file that depends on the database. This class is an excellent
example of a Table Data Gateway. A Table Data Gateway holds all the SQL code for
accessing a single table or view; selects, inserts, updates, and deletes. Other code
calls its methods for all interaction with the database. [Fowler03]

Controller

This refactoring uses the code-behind feature to adapt the model code to the data
controls that exist on the page and to map the events that the controller forwards
to the specific action methods. Because the model here returns a DataSet object, its
job is straightforward. This code, like the view code, does not depend on how data
is retrieved from the database.

Enterprise Solution Patterns Using Microsoft .NET48

using System;
using System.Data;
using System.Collections;
using System.Web.UI.WebControls;

public class Solution : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.Button submit;
 protected System.Web.UI.WebControls.DataGrid MyDataGrid;
 protected System.Web.UI.WebControls.DropDownList recordingSelect;

 private void Page_Load(object sender, System.EventArgs e)
 {
 if(!IsPostBack)
 {
 DataSet ds = DatabaseGateway.GetRecordings();
 recordingSelect.DataSource = ds;
 recordingSelect.DataTextField = "title";
 recordingSelect.DataValueField = "id";
 recordingSelect.DataBind();
 }
 }

 void SubmitBtn_Click(Object sender, EventArgs e)
 {
 DataSet ds =
 DatabaseGateway.GetTracks(
 (string)recordingSelect.SelectedItem.Value);

 MyDataGrid.DataSource = ds;
 MyDataGrid.DataBind();
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.submit.Click += new System.EventHandler(this.SubmitBtn_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
}

Chapter 3: Web Presentation Patterns 49

Tests
Separating the model from the ASP.NET environment makes testing of the model
code easier. To test this code inside the ASP.NET environment, you must test the
output of the process. This means reading HTML and determining if it is correct,
which is tedious and error-prone. The separation of the model so that it can run
without ASP.NET allows you to avoid the tedium and test the code in isolation.
The following are sample unit tests in NUnit (http://nunit.org) for the model code:

using System;

using NUnit.Framework;
using System.Collections;
using System.Data;
using System.Data.SqlClient;

[TestFixture]
public class GatewayFixture
{
 [Test]
 public void Tracks1234Query()
 {

 DataSet ds = DatabaseGateway.GetTracks("1234");
 Assertion.AssertEquals(10, ds.Tables["Track"].Rows.Count);
 }

 [Test]
 public void Tracks2345Query()
 {
 DataSet ds = DatabaseGateway.GetTracks("2345");
 Assertion.AssertEquals(3, ds.Tables["Track"].Rows.Count);
 }

 [Test]
 public void Recordings()
 {
 DataSet ds = DatabaseGateway.GetRecordings();
 Assertion.AssertEquals(4, ds.Tables["Recording"].Rows.Count);

 DataTable recording = ds.Tables["Recording"];
 Assertion.AssertEquals(4, recording.Rows.Count);

 DataRow firstRow = recording.Rows[0];
 string title = (string)firstRow["title"];
 Assertion.AssertEquals("Up", title.Trim());
 }
}

Enterprise Solution Patterns Using Microsoft .NET50

Resulting Context
Implementing MVC in ASP.NET results in the following benefits and liabilities:

Benefits
� Reduced dependencies. An ASP.NET page allows the programmer to implement

methods within a page. As the Single ASP.NET Page shows, this can be useful
for prototypes and small short-lived Web applications. As the complexity of the
page, or the need to share code between pages, increases, it becomes more useful
to separate portions of the code.

� Reduced code duplication. The GetRecordings and GetTracks methods in the
DatabaseGateway class can now be used by other pages. This eliminates the
need to copy the methods into multiple views.

� Separation of duties and concerns. The skill set for modifying the ASP.NET
pages is different from the skill set for writing code that accesses the database.
Separating the view and the model, as shown earlier, allows specialists in each
area to work in parallel.

� Optimizing opportunities. Separating the responsibilities into specific classes,
as shown earlier, increases the opportunities for optimization. In the example
described previously, the data is loaded from the database every time a request
is made. It would be possible to cache the data in certain situations, which could
improve the overall performance of the application. This, however, would be
difficult or impossible without separating the code.

� Testability. Isolating the model from the view makes it possible to test the model
outside the ASP.NET environment.

Liabilities
Additional code and complexity. The example shown earlier adds more files and
code, which increases the maintenance cost of the code when changes must be made
to all three roles. In some cases, making the changes in one file is easier than separat-
ing out the changes into multiple files. The extra cost must be weighed against the
reasons for separating the code. For small applications, the cost might not be justified.

Related Patterns
� Table Data Gateway. This pattern is an object that acts as a gateway to a database

table. One instance handles all the roles in a table. [Fowler03]
� Bound Data Control. This pattern is a user interface component that is bound

to a data source and can render itself on the screen or page.

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

Chapter 3: Web Presentation Patterns 51

Page Controller

Context
You decided to use the Model-View-Controller (MVC) pattern to separate the user
interface components of your dynamic Web application from the business logic.
The application you are building constructs the Web pages dynamically, but the
navigation between the pages is mostly static.

Problem
How do you best structure the controller for moderately complex Web applications
so that you can achieve reuse and flexibility while avoiding code duplication?

Forces
The following forces act on a system within this context and must be reconciled
as you consider a solution to the problem:
� The MVC pattern often focuses primarily on the separation between the model

and the view, while paying less attention to the controller. In many rich-client
scenarios, the separation between controller and view is less critical and is often
omitted [Fowler03]. In a thin-client application, however, view and controller
are inherently separated because the presentation occurs in the client browser,
whereas the controller is part of the server-side application. The controller,
therefore, warrants a closer examination.

� In dynamic Web applications, multiple user actions can lead to different controller
logic, followed by the same page presentation. For example, in a simple Web-based
e-mail application, both sending a message and deleting a message from the inbox
is likely to return the user to the (refreshed) inbox page. Although the same page
is rendered after either activity, the application must perform a different action,
based on the previous page and the button the user clicked.

� The code that renders most dynamic Web pages involves very similar steps:
verifying user authentication, extracting the page parameters from the query
string or the form fields, gathering session information, retrieving data from a
data source, rendering the dynamic portion of the page, and adding applicable
headers and footers. This can lead to a significant amount of code duplication.

� Scripted server pages (such as ASP.NET) may be easy to create, but can introduce
a number of disadvantages as the application grows. Scripted pages provide poor
separation between controller and the view, which reduces the opportunities for
reuse. For example, if multiple actions lead to the same page, it is difficult to
reuse the display code across multiple controllers, because it is intertwined with
the controller code. Scripted server pages that intersperse business logic and
presentation logic are also more difficult to test and debug. Finally, developing
scripted server pages requires expertise both in developing business logic and

Enterprise Solution Patterns Using Microsoft .NET52

in rendering visually appealing and efficient HTML pages; these two skill sets
are rarely possessed by a single person. Due to these considerations, it makes
sense to minimize the scripted server-page code and develop business logic in
actual classes.

� As described in the MVC pattern, testing user interface code tends to be time-
consuming and tedious. If you can separate user-interface-specific code from
the actual business logic, testing the business logic becomes simpler and more
repeatable. This is true not only for the presentation portion, but also for the
controller part of an application.

� Common appearance and navigation tend to improve usability and brand
recognition of a Web application. However, common appearance can lead to
repetitive presentation code, especially if the code is embedded inside scripted
server pages. Therefore, you need a mechanism for improving reuse of presen-
tation logic across pages.

Solution
Use the Page Controller pattern to accept input from the page request, invoke the
requested actions on the model, and determine the correct view to use for the
resulting page. Separate the dispatching logic from any view-related code. Where
appropriate, create a common base class for all page controllers to avoid code
duplication and increase consistency and testability. Figure 3.7 shows how the page
controller relates to the model and view.

Model

Domain Logic

PageController

- Handle HTTP request
- Update model and
 decide view View

Generate HTML

Figure 3.7
Page Controller structure

The page controller receives a page request, extracts any relevant data, invokes
any updates to the model, and forwards the request to the view. The view in turn
depends on the model for retrieval of data to be displayed. Defining a separate page
controller isolates the model from the specifics of the Web request — for example,
session management, or the use of query strings or hidden form fields to pass
parameters to the page. In this basic form, you create a controller for every link in

Chapter 3: Web Presentation Patterns 53

the Web application. This keeps the controllers simple, because you only have to
concern yourself with one action at a time.

Creating a separate controller for each Web page (or action) can lead to significant
code duplication. Therefore, you should create a BaseController class to incorporate
common functions such as validating parameters (see Figure 3.8). Each individual
page controller can inherit this common functionality from BaseController. In
addition to inheriting from a common base class, you can also define a set of helper
classes that the controllers can call to perform common functions.

BaseController

Common Behavior

Page1Controller

Page-specific
behavior

Page2Controller

Page-specific
behavior

Figure 3.8
Using BaseController to eliminate code duplication

This approach works well if most pages are similar and you can pull the common
functions into a single base class. The more page variations you have, the more
levels you may have to inject into the inheritance tree. Let’s say that all pages parse
parameters, but only pages that display lists retrieve data from the database, while
pages that require data entry update the model, rather than retrieve data. You could
now introduce two new base classes, ListController and DataEntryController,
that both inherit from BaseController. The list pages could then inherit from
ListController, and the data entry pages could inherit from DataEntryController.
Although this approach may work well in this simple example, the inheritance tree
can get rather deep and complicated if you are dealing with a real-life businesses
application. You may be tempted to add conditional logic into the base classes to
accommodate some of the variants, but doing so violates the principles of encap-
sulation and makes the base classes a notorious bottleneck for any changes to the
system. Therefore, you should consider using helper classes or the Front Controller
pattern as your application becomes more complex.

Using a page controller for a Web application is such a common need that most Web
application frameworks provide a default implementation of the page controller.
Most frameworks incorporate the page controller in the form of a server page (for
example, ASP, JSP, and PHP). Server pages actually combine the functions of view

Enterprise Solution Patterns Using Microsoft .NET54

and controller and do not provide the desired separation between the presentation
code and the controller code. Unfortunately, some of the frameworks make it very
easy to blend together view-related code with controller-related code and make it
difficult to properly separate the controller logic. As a result, the Page Controller
approach has developed a bad reputation with many developers. Now, many
developers associate Page Controller with bad design and Front Controller with good
design. This perception, in fact, resulted from a specific (faulty) implementation
choice; both Page Controller and the Front Controller are perfectly viable architectural
choices.

Therefore, it is preferable to separate the controller logic into separate classes that can
be called from the server page. The ASP.NET page framework provides an excellent
mechanism for achieving this separation, called code-behind classes. (See Implementing
Page Controller in ASP.NET).

Variants
In most cases, the page controller is dependent on the specifics of an HTTP-based
Web request. As a result, the page controller code usually contains references to
HTTP headers, query strings, form fields, multipart form requests, and so forth.
This makes it very hard to test the controller code outside the Web application
framework. The only option is to test the controller by simulating HTTP requests
and parsing the results. This type of testing is both time-consuming and error prone.
Therefore, to improve testability you could separate the Web-dependent and the
Web-independent code into two separate classes (see Figure 3.9).

System.Web.UI.Page

BaseController

ASP.NET specific code

AspNetController

Page Controller Page Controller

Figure 3.9
Separating the Web-dependent and Web-independent code

Chapter 3: Web Presentation Patterns 55

In this example, AspNetController encapsulates all dependencies on the application
framework (ASP.NET). For example, it can extract all incoming parameters from the
Web request and pass it to BaseController in a way that is independent from the Web
interface (for example, in a collection). This approach not only improves testability,
but enables you to reuse the controller code with other user interfaces, for example
a rich-client interface or a custom scripting language.

The downside of this approach is the additional overhead. You now have an
additional class, and each request has to go through a translation before it can be
serviced. Therefore, you should keep the environment-specific part of the controller
as thin as possible and consider the tradeoffs between reduced dependencies and
more efficient development and execution.

Example
See Implementing Page Controller in ASP.NET.

Resulting Context
Using the Page Controller pattern results in a number of benefits and liabilities.

Benefits
� Simplicity. Because each dynamic Web page is handled by a specific controller,

the controllers have to deal with only a limited scope and can remain simple.
Because each page controller deals with only a single page, Page Controller is
particularly well-suited for Web applications with simple navigation.

� Built-in framework features. In its most basic form, the controller is already built
into most Web application platforms. For example, if the user clicks a link in a
Web page that leads to a dynamic page generated by an ASP.NET script, the Web
server analyzes the URL associated with the link and executes the associated
ASP.NET page. In effect, the ASP.NET page is the controller for the action taken
by the user. The ASP.NET page framework also provides code-behind classes to
execute controller code. Code-behind classes provide better separation between
the controller and the view and also allow you to create a controller base class
that incorporates common functionality across all controllers. For an example,
see Implementing Page Controller in ASP.NET.

� Increased reuse. Creating a controller base class reduces code duplication and
enables you to reuse common code across page controllers. You can reuse code
by implementing recurring logic in the base class. This logic is then automatically
inherited by all concrete Page Controller objects. If the implementation of the logic
varies from page to page, you can still use Template Method and implement the
basic execution structure in the base class; the implementation of specific substeps
may vary from page to page.

Enterprise Solution Patterns Using Microsoft .NET56

� Expandability. You can expand a page controller quite easily by using helper
classes. If the logic inside the controller becomes too complex, you can delegate
some of the logic to helper classes. Helper classes also provide another mechanism
for reuse, besides inheritance.

� Separation of developer responsibilities. Using a Page Controller class helps
separate responsibilities among members of the development team. The developer
of the controller must be familiar with the domain model and the business logic
implemented by the application. The designer of the view, on the other hand,
can focus on the presentation style of the results.

Liabilities
Due to its simplicity, Page Controller is the default implementation for most dynamic
Web applications. However, you should be aware of the following limitations:
� One controller per page. The key constraint of Page Controller is that you create

one controller for each Web page. This works well for applications with a static
set of pages and a simple navigation path. Some more complex applications
require dynamic configuration of pages and navigation maps between them.
Spreading this logic across many page controllers would make the application
hard to maintain, even if some of the logic could be pulled into the base controller.
In addition, the built-in features of the Web framework may reduce the amount
of flexibility you have in naming URLs and resource paths (even though you can
compensate for some of this with low-level mechanisms like ISAPI filters). In
these scenarios, consider using Front Controller that intercepts all Web requests
and forwards the request to the appropriate handler, based on configurable rules.

� Deep inheritance trees. Inheritance seems to be one of the most loved and most
hated features of object-oriented programming. Using inheritance alone to reuse
common functionality may lead to inflexible inheritance hierarchies. For more
detail, see Implementing Page Controller in ASP.NET.

� Dependency on the Web framework. In the basic form, the page controller still
depends on the Web application environment and cannot be tested independently.
You can use a wrapper mechanism to decouple the Web-dependent part, but doing
so requires an additional level of indirection.

Testing Considerations
Because Page Controller is dependent on specifics of the Web application framework
(for example, query strings and HTTP headers), you cannot instantiate and test the
controller classes outside the Web framework. If you want to run a suite of automated
unit tests on the controller class, you would have to start the Web application server
for each test case. You would then have to submit HTTP requests in a format that
executes the desired function. This configuration introduces many dependencies
and side effects into the test. To improve testability, consider separating the business
logic (including controller logic as it becomes more complex) from the Web-
dependent code.

Chapter 3: Web Presentation Patterns 57

Related Patterns
For more information, see the following related patterns:
� Intercepting Filter. This pattern is another construct to implement recurring

functionality inside a Web application. The Web server framework can pass each
request through a configurable chain of filters before passing it to the controller.
Filters tend to deal with lower-level functions such as decoding, authentication,
and session management, whereas Page Controller deals with application function-
ality. Filters also are not usually page-specific.

� Front Controller. This pattern is a more complex, but also more powerful alternative
to Page Controller. Front Controller defines a single controller for all page requests,
which enables it to make navigational decisions that span multiple pages.

� Model-View-Controller. Page Controller is an implementation variant of the controller
portion of MVC.

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Element
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Enterprise Solution Patterns Using Microsoft .NET58

Implementing Page Controller in ASP.NET

Context
You are building a Web application in ASP.NET and you want to take advantage
of the event-driven nature of ASP.NET by using the built-in page controller.

Implementation Strategy
The concepts described in the Page Controller pattern are implemented in ASP.NET
by default. The ASP.NET page framework implements these concepts in such a way
that the underlying mechanism of capturing an event on the client, transmitting it
to the server, and calling the appropriate method is automatic and invisible to the
implementer. The page controller is extensible in that it exposes various events at
specific points in the life cycle (see “Page Life Cycle,” later in this pattern) so that
application-specific actions can be run when they are appropriate.

For example, assume the user is interacting with a Web Forms page that contains
one button server control (see “Simple Page Example,” later in this pattern). When
the user clicks the button control, an event is transmitted as an HTTP post to the
server, where the ASP.NET page framework interprets the posted information and
associates the raised event with an appropriate event handler. The framework
automatically calls the appropriate event handler for the button as part of the
framework’s normal processing. As a result, you no longer need to implement
this functionality. Furthermore, you can use the built-in controller, or you can replace
the built-in controller with you own customized controller (see Front Controller).

Page Life Cycle
The following list contains the most common stages of the page life cycle in the
order in which they occur. It also includes the specific events that are raised and
some typical actions that could be performed at the various stages in the processing
of the request:
� ASP.NET page framework initialization (Event: Init). This is the first step in the

life cycle, which initializes the ASP.NET runtime for the request.
� User code initialization (Event: Load). You should perform common tasks

specific to your application, such as opening database connections, when the
page controller raises the Load event. You can assume that when the Load event
is raised, server controls are created and initialized, state has been restored, and
form controls reflect client-side changes. [Reilly02]

� Application-specific event handling. At this stage, you should perform process-
ing specific to your application in response to the events raised by the controller.

� Cleanup (Event: Unload). The page has finished rendering and is ready to
be discarded. You should close any database connections that the Load event

Chapter 3: Web Presentation Patterns 59

opened and discard any objects that are no longer needed. The Microsoft®.NET
Framework closes database connections automatically, after the connection object
is garbage collected. However, you do not have any control over when the garbage
collection occurs. Therefore, it is good practice to close database connections
explicitly to make efficient use of the database connection pool.

Note: There are several more stages of page processing than are listed here. However, they are
not used for most page processing scenarios.

Simple Page Example
The first example is a simple page that takes input from the user and then displays
the input on the screen. The example illustrates the event-driven model that
ASP.NET uses to implement server controls.

Figure 3.10
Simple page

When the user types his or her name and then clicks the Click Here button, the name
appears directly below the button, as shown in Figure 3.11.

Figure 3.11
Simple page displaying user input

Enterprise Solution Patterns Using Microsoft .NET60

In ASP.NET pages, the user interface programming is divided into two distinct
pieces: the visual component, or view, and the logic, which is a combination of the
model and the controller. This division separates the visible portion of the page
(the view) from the code behind the page with which the page interacts (model
and controller).

The visual element is called the Web Forms page. The page consists of a file containing
static HTML or ASP.NET server controls, or both simultaneously. For this example,
the Web Forms page is named SimplePage.aspx and consists of the following code:

<%@ Page language="c#" Codebehind="SimplePage.aspx.cs" AutoEventWireup="false"
Inherits="SimplePage" %>
<HTML>
 <body>
 <form id="Form1" runat="server">
 Name:<asp:textbox id="name" runat="server" />
 <p />
 <asp:button id="MyButton" text="Click Here" OnClick="SubmitBtn_Click"
runat="server" />
 <p />

 </form>
 </body>
</HTML>

The logic for the Web Forms page consists of code that you create to interact with the
form. The programming logic resides in a file that is separate from the user interface
file. This file, referred to as the code-behind file, is named SimplePage.aspx.cs:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public class SimplePage : System.Web.UI.Page
{
 protected System.Web.UI.WebControls.TextBox name;
 protected System.Web.UI.WebControls.Button MyButton;
 protected System.Web.UI.HtmlControls.HtmlGenericControl mySpan;

 public void SubmitBtn_Click(Object sender, EventArgs e)
 {
 mySpan.InnerHtml = "Hello, " + name.Text + ".";
 }
}

The purpose of this code is to indicate to the page controller that when the user clicks
the button, a request will be sent back to the server and the SubmitBtn_Click function
will be executed.

Chapter 3: Web Presentation Patterns 61

This implementation shows how simple it is to connect to the events that the
controller provides. It also illustrates that code written in this fashion is easier to
understand because the application logic is not combined with the low-level code
that manages the event dispatching.

Common Look and Feel Example
The following example uses a typical implementation strategy of the page controller
to provide a banner that displays dynamic content: the authenticated user ’s e-mail
address (which is retrieved from the database) on every page in the application.

The common implementation is contained in a base class from which all of the page
objects in the site inherit. Figure 3.12 shows one of the pages in the site.

Figure 3.12
Banner displaying dynamic content

The individual pages in the site are responsible for rendering their own content,
while the base class is responsible for rendering the header. Because the individual
pages inherit from the base class, they all have the same functionality.

This implementation uses a design pattern called Template Method. The pattern defines
the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure. [Gamma95]

Applying Template Method to this problem involves moving common code from the
individual pages into a base class. This ensures that the common code is contained
in one place and is easily maintainable. In this example, the base class is named
BasePage and is responsible for connecting the Page_Load method to the Load
event. After the work associated with the BasePage; which is retrieving the user ’s
e-mail address from the database and setting the site name, the Page_Load function
calls a method named PageLoadEvent. Subclasses implement PageLoadEvent to
perform their own specific Load functionality. Figure 3.13 shows the structure of this
solution.

Enterprise Solution Patterns Using Microsoft .NET62

#PageLoadEvent() : void

Page1

System.Web.UI::Page

#PageLoadEvent() : void
#Page_Load() : void

BasePage

#PageLoadEvent() : void

Page2

Figure 3.13
Structure of the code-behind pages implementation

When a page is requested, the ASP.NET runtime fires the Load event, which in turn
calls the Page_Load method on BasePage. The BasePage method retrieves the data
it needs and then calls PageLoadEvent on the specific page that was requested to
perform any page-specific loading that is required. Figure 3.14 shows the page
request sequence.

Implementing the common functionality in this manner frees the pages from having
to set up the header and also allows for site-wide changes to be made easily. If the
header rendering and initialization code is not contained in a single file, the changes
must be made to all files that contain code that is related to the header.

Chapter 3: Web Presentation Patterns 63

PageLoadEvent

:Client

Page1.aspx

Page_Load

:ASP.NET

Runtime
:Page1

Figure 3.14
Page request sequence

BasePage.cs

The code for the base class implements the following functionality:
� Connects the Load event to the Page_Load method for request-specific

initialization.
� Retrieves the authenticated user’s name from the request context and using the

DatabaseGateway class finds the user’s record in the database. The code assigns
the eMail label to the user’s e-mail address.

� Assigns the site name to the siteName label.
� Calls the PageLoadEvent method, which derived classes can implement for any

page-specific loading.

Note: It would be better to define the BasePage class as abstract, because doing so would
force the implementers to provide an implementation for PageLoadEvent. However, in Microsoft
Visual Studio® .NET, it is not possible to define this base class as abstract. Instead, the class
provides a default implementation that can be overridden by derived classes.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class BasePage : Page
{
 protected Label eMail;
 protected Label siteName;

Enterprise Solution Patterns Using Microsoft .NET64

 virtual protected void PageLoadEvent(object sender, System.EventArgs e)
 {}

 protected void Page_Load(object sender, System.EventArgs e)
 {
 if(!IsPostBack)
 {
 string name = Context.User.Identity.Name;

 eMail.Text = DatabaseGateway.RetrieveAddress(name);
 siteName.Text = "Micro-site";

 PageLoadEvent(sender, e);
 }
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
}

BasePage.inc

Not only do you have to provide a common base class for the logic code behind
the page, but you also have to provide a common file that holds the view or UI
rendering code. The code is included in each .aspx page. This HTML file is not
intended to be displayed on its own. Using a common file enhances your ability to
make changes in one place and have them propagate to all the pages that include

Chapter 3: Web Presentation Patterns 65

the file. The following example code shows the common file for this example,
named BasePage.inc:

<table width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td align="right" bgcolor="#9c0001" cellspacing="0" cellpadding="0"
width="100%" height="20">
 Welcome:
 <asp:Label id="eMail" runat="server">username</asp:Label>
 </td>
 </tr>
 <tr>
 <td align="right" width="100%" bgcolor="#d3c9c7" height="70">

 <asp:Label id="siteName" Runat="server">Micro-site Banner</
asp:Label>
 </td>
 </tr>
</table>

DatabaseGateway.cs

This class encapsulates all access to the database for these pages. This is an example
of a Table Data Gateway [Fowler03] which represents the model code for the pages in
this application.

using System;
using System.Collections;
using System.Data;
using System.Data.SqlClient;

public class DatabaseGateway
{
 public static string RetrieveAddress(string name)
 {
 String address = null;

 String selectCmd =
 String.Format("select * from webuser where (id = '{0}')",
 name);

 SqlConnection myConnection =
 new
SqlConnection("server=(local);database=webusers;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds,"webuser");
 if(ds.Tables["webuser"].Rows.Count == 1)
 {
 DataRow row = ds.Tables["webuser"].Rows[0];

Enterprise Solution Patterns Using Microsoft .NET66

 address = row["address"].ToString();
 }

 return address;
 }
}

Page1.aspx

The following is an example of how to use the common functionality in a page:

<%@ Page language="c#" Codebehind="Page1.aspx.cs" AutoEventWireup="false"
Inherits="Page1" %>
<HTML>
 <HEAD>
 <title>Page-1</title>
 </HEAD>
 <body>
 <!-- #include virtual="BasePage.inc" -->
 <form id="Page1" method="post" runat="server">
 <h1>Page:
 <asp:label id="pageNumber" Runat="server">NN</asp:label></h1>
 </form>
 </body>
</HTML>

The following directive from the file loads the common HTML for the header:

<!-- #include virtual="BasePage.inc" -->

Page1.aspx.cs

The code-behind class must inherit from the BasePage class and then implement
the PageLoadEvent method to do any page-specific loading. In this example, the
page-specific activity is to assign the number 1 to the pageNumber label.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class Page1 : BasePage
{
 protected System.Web.UI.WebControls.Label pageNumber;

 protected override void PageLoadEvent(object sender, System.EventArgs e)
 {
 pageNumber.Text = "1";
 }
}

Chapter 3: Web Presentation Patterns 67

Testing Considerations
The dependence on the ASP.NET runtime makes testing of the implementation
difficult. It is not possible to instantiate classes that inherit from System.Web.UI.Page
or the other various classes contained in the environment. This makes it impossible
to unit test the individual pieces of the application in isolation. The only remaining
way to test this implementation automatically is to generate HTTP requests and then
retrieve the HTTP response and determine if the response is correct. This approach is
prone to error because you are comparing the text of the response with expected text.

Resulting Context
The built-in ASP.NET page controller functionality results in the following benefits
and liabilities:

Benefits
� Takes advantage of framework features. The page controller functionality is

built into ASP.NET and can be easily extended by connecting application-specific
actions to the events exposed by the controller. It is also easy to separate the
controller-specific code from the model and view code by using the code-behind
feature.

� Explicit URLs. The URL that the user enters refers to an actual page in the appli-
cation. This means that the pages can be bookmarked and entered later. The
URLs also tend to have fewer parameters making them easier for users to enter.

� Increases modularity and reuse. The Common Look and Feel example demon-
strated how you could reuse BasePage for many pages without having to modify
the BasePage class or HTML file.

Liabilities
� Requires code changes. To share common functionality, as demonstrated in the

Common Look and Feel example, the individual pages have to be modified to
inherit from the newly defined base class instead of System.Web.UI.Page. The
Intercepting Filter pattern describes a mechanism for adding common functionality
by changing the Web.config file and not the pages themselves.

� Uses inheritance. The Common Look and Feel example uses inheritance to share
the implementation across multiple pages. Most programmers who learn object-
oriented programming initially like inheritance. However, using inheritance to
share implementation can often lead to software that is difficult to change. If the
base class become complicated with conditional logic, it is better to introduce
helper classes or to consider using Front Controller instead.

Enterprise Solution Patterns Using Microsoft .NET68

� Difficult to test. Because the page controller is implemented in ASP.NET, it is
difficult to test in isolation. To improve the testability, you should separate as
much functionality out of the ASP.NET – specific code in classes that do not
depend on ASP.NET. This enables you to test without having to start the
ASP.NET runtime.

Related Patterns
For more information, see the following related patterns:
� Template Method [Gamma95]. The BasePage class and the Page_Load method

are an example implementation of this pattern.
� Intercepting Filter
� Front Controller

Acknowledgments
[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Reilly02] Reilly, Douglas J. Designing Microsoft ASP.NET Applications. Microsoft
Press, 2002.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

Chapter 3: Web Presentation Patterns 69

Front Controller

Context
You have decided to use the Model-View-Controller (MVC) pattern to separate the
user interface logic from the business logic of your dynamic Web application. You
have reviewed the Page Controller pattern, but your page controller classes have
complicated logic, are part of a deep inheritance hierarchy, or your application
determines the navigation between pages dynamically based on configurable rules.

Problem
How do you best structure the controller for very complex Web applications so that
you can achieve reuse and flexibility while avoiding code duplication?

Forces
The following are specific aspects of the forces from Model-View-Controller that apply
to the Front Controller pattern.
� If common logic is replicated in different views in the system, you need to

centralize this logic to reduce the amount of code duplication. Removing the
duplicated code is critical to improving the overall maintainability of the system.

� The retrieval of data is also best handled in one location. A series of views that
use the same data from the database is a good example. It is better to implement
the retrieval of this data in one place as opposed to having each view retrieve the
data and duplicate the database access code.

� As described in MVC, testing user interface code tends to be time-consuming and
tedious. Separating the individual roles enhances overall testability. This is true
not only for the model code, which was described in MVC, but also applies to the
controller code.

The following forces might persuade you to use Front Controller as opposed to Page
Controller:
� A common implementation of Page Controller involves creating a base class for

behavior shared among individual pages. However, over time these base classes
can grow with code that is not common to all pages. It requires discipline to
periodically refactor this base class to ensure that only common behavior is
included. For example, you do not want a page to examine a request and decide
(based on request parameters) to transfer control to a different page, because this
type of decision is more specific to a particular function, rather than common
among all the pages.

Enterprise Solution Patterns Using Microsoft .NET70

� To avoid adding excessive conditional logic in the base class, you could create a
deeper inheritance hierarchy to remove the conditional logic. For example, in an
application that has three functional areas, it might be useful to have a single
base class that has common functionality for the application. There might also be
another class for each functional area, which inherits from the overall application
base class. This type of structure, at first glance, is straightforward, but often
leads to a very brittle design and implementation, and to a morass of code.

� The Page Controller solution describes a single object per logical page. This solution
breaks down when you need to control or coordinate processing across multiple
pages. For example, suppose that you have complex configurable navigation,
which is stored in XML, in your Web application. When a request comes in, the
application must look up where to go next, based on its current state.

� Because Page Controller is implemented with a single object per logical page, it
is difficult to consistently apply a particular action across all the pages in a Web
application. Security, for example, is best implemented in a coordinated fashion.
Having security handled by each view or page controller object is problematic
because it can be inconsistently applied and can lead to security breaches. An
additional solution to this problem is also discussed in Intercepting Filter.

� The association of the URL to the particular controller object can be constraining
for Web applications. For example, suppose your site has a wizard-like interface
for gathering information. This wizard consists of a number of mandatory pages
and a number of optional pages based on user input. When implemented with
Page Controller, the optional pages would have to be implemented with condi-
tional logic in the base class to select the next page.

Solution
Front Controller solves the decentralization problem present in Page Controller by
channeling all requests through a single controller. The controller itself is usually
implemented in two parts: a handler and a hierarchy of commands (see Figure 3.15).

The handler has two responsibilities:
� Retrieve parameters. The handler receives the HTTP Post or Get request from

the Web server and retrieves relevant parameters from the request.
� Select commands. The handler uses the parameters from the request first to

choose the correct command and then to transfers control to the command for
processing.

Figure 3.16 shows these two responsibilities.

Chapter 3: Web Presentation Patterns 71

«interface»
Command

Client

Handler

+Execute() : void *

Concrete
Command 1

Concrete
Command 2

Figure 3.15
Front Controller structure

The commands themselves are also part of the controller. The commands represent
the specific actions as described in the Command pattern [Gamma95]. Representing
commands as individual objects allows the controller to interact with all commands
in a generic way, as opposed to invoking specific methods on a common command
class. After the command object completes the action, the command chooses which
view to use to render the page.

client:

Send(Request)

Execute(Request)

:Handler :Command

Transfer(Request)

:View

Figure 3.16
Front Controller, typical scenario

Enterprise Solution Patterns Using Microsoft .NET72

Example
See Implementing Front Controller in ASP.NET Using HTTPHandler.

Resulting Context
Using the Front Controller pattern results in the following benefits and liabilities:

Benefits
� Centralized control. Front Controller coordinates all of the requests that are made

to the Web application. The solution describes using a single controller instead
of the distributed model used in Page Controller. This single controller is in the
perfect location to enforce application-wide policies, such as security and usage
tracking.

� Thread-safety. Because each request involves creating a new command object,
the command objects themselves do not need to be thread safe. This means that
you avoid the issues of thread safety in the command classes. This does not mean
that you can avoid threading issues altogether, though, because the code that the
commands act upon, the model code, still must be thread safe [Fowler03].

� Configurability. Only one front controller needs to be configured into the Web
server; the handler does the rest of the dispatching. This simplifies the configura-
tion of the Web server. Some Web servers are awkward to configure. Using
dynamic commands enables you to add new commands without changing
anything [Fowler03].

Liabilities
� Performance considerations. Front Controller is a single controller that handles

all requests for the Web application. Of the two parts, the handler should be
examined closely for performance problems, because the handler determines
the type of command that performs the request. If the handler must perform
a database query or a query of an XML document to make the decision,
performance could be very slow as a result.

� Increased complexity. Front Controller is more complicated than Page Controller. It
often involves replacing the built-in controller with a custom built Front Controller.
Implementing this solution increases the maintenance costs and the learning curve
for new people.

Testing Considerations
Removing business logic from the views simplifies the testing of the views, because
you can then test the views independent from the controller. As described in the
Page Controller pattern, testing the controller may be hindered by the fact that the
controller contains code that makes it dependent on the HTTP run-time environment.

Chapter 3: Web Presentation Patterns 73

This dependency may be resolved by using a two-stage Web handler as described
in Martin Fowler’s book, Patterns for Enterprise Application Architecture [Fowler03],
and in the Page Controller pattern. The controller is separated into two parts: a Web
handler and a dispatcher. The Web handler retrieves data from the Web request and
passes it to the dispatcher in a way that the dispatcher does not depend on the Web
server framework (for example, in a generic collection object). This allows for the
dispatcher to be tested without the Web server framework being present.

Related Patterns
For more information, see the following related patterns:
� Intercepting Filter. This pattern describes another way to implement recurring

functionality inside a Web application. Intercepting Filter works by passing each
request through a configurable chain of filters prior to passing control over to
the controller. Filters tend to deal with lower-level functions such as decoding,
authorization, authentication, and session management whereas Front Controller
and Page Controller deal with application-level functionality. Another aspect of
filter is that they are usually stateless. For example, when a user gets to authori-
zation, the Web server has to authenticate the session. If the user is authenticated
the process continues on. If not, the user is redirected elsewhere. One advantage
of Intercepting Filter is that, in most implementations, the pages themselves do
not have to be modified to add additional functionality.

� Page Controller. This pattern is a simpler alternative to Front Controller. Page
Controller has a single controller object per page as opposed to the single object
for all requests. Page Controller is a more appropriate starting point for most
applications. Only when the need arises should you turn to Front Controller.

Acknowledgments
[Alur01] Alur, Crupi, and Malks. Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall, 2001.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Enterprise Solution Patterns Using Microsoft .NET74

Implementing Front Controller in ASP.NET Using HTTPHandler

Context
You are building a Web application in ASP.NET. You have evaluated the alternative
designs described in Page Controller and Front Controller and have determined that
there is sufficient complexity in your application to warrant implementing Front
Controller.

Background
An example is helpful to explain how to implement Front Controller in ASP.NET
and the value provided by centralizing all control through a single controller
object, as long as the example is complex enough to demonstrate the issues you
will encounter when implementing the pattern.

Note: Because Page Controller is built into ASP.NET, the additional effort required to implement
Front Controller rather than Page Controller is very large. In fact, you must build the whole
framework for Front Controller. You should do so only if your application warrants that amount
of complexity. Otherwise, review Page Controller to determine whether it is sufficient.

The following example builds on the solution described in Implementing Page
Controller in ASP.NET. That solution describes two different pages. The pages inherit
from a common base class, which is responsible for adding the site header to each
page. The implementation is a common choice for Page Controller when you want
to share behavior between pages. The following is the BasePage class from the Page
Controller example:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class BasePage : Page
{
 protected Label eMail;
 protected Label siteName;

 virtual protected void PageLoadEvent(object sender, System.EventArgs e)
 {}

 protected void Page_Load(object sender, System.EventArgs e)
 {
 if(!IsPostBack)
 {
 string name = Context.User.Identity.Name;

 eMail.Text = DatabaseGateway.RetrieveAddress(name);
 siteName.Text = "Micro-site";

Chapter 3: Web Presentation Patterns 75

 PageLoadEvent(sender, e);
 }
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
}

The Page_Load function is called every time the page is being loaded. It retrieves
the e-mail address from the DatabaseGateway class (shown in Implementing Page
Controller in ASP.NET), sets some labels with the data, and then calls PageLoadEvent
for specialized processing of each page.

One of the criteria for choosing Front Controller instead of Page Controller is when
you have excessive conditional logic in the base class. This example does not use
conditional logic in the base class. Therefore, based on this criterion alone, there is
no need to implement Front Controller.

Changing Requirements
The previous example works very well for its intended purpose. However, it is overly
simplistic and not representative of most Web applications. To better approximate
the overall complexity of such applications, the requirements for this example call
for different headers on the pages, depending on the URL and query parameters.

This example creates two sites: a Micro-site and a Macro-site. Each site consults a
different database to retrieve the e-mail address contained in the header. The pages
themselves remain unchanged; only the header content is different. In this example,
most of the implementation is the same as the previous example. The only class that
must be modified is BasePage.

Enterprise Solution Patterns Using Microsoft .NET76

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class BasePage : Page
{
 protected Label eMail;
 protected Label siteName;

 virtual protected void PageLoadEvent(object sender, System.EventArgs e)
 {}

 protected void Page_Load(object sender, System.EventArgs e)
 {
 if(!IsPostBack)
 {
 string site = Request["site"];

 if(site != null && site.Equals("macro"))
 LoadMacroHeader();
 else
 LoadMicroHeader();

 PageLoadEvent(sender, e);
 }
 }

 private void LoadMicroHeader()
 {
 string name = Context.User.Identity.Name;

 eMail.Text = WebUsersDatabase.RetrieveAddress(name);
 siteName.Text = "Micro-site";
 }

 private void LoadMacroHeader()
 {
 string name = Context.User.Identity.Name;

 eMail.Text = MacroUsersDatabase.RetrieveAddress(name);
 siteName.Text = "Macro-site";
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

Chapter 3: Web Presentation Patterns 77

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion
}

As stated previously, the Micro-site and Macro-site each use different databases
to retrieve the e-mail address that is contained in the header. The two methods,
LoadMacroHeader and LoadMicroHeader, use different database gateway classes,
WebUsersDatabase and MacroUsersDatabase, to retrieve the address from the
database.

The Page_Load method’s responsibility has changed. In the previous example, it
retrieves information from the database. In this implementation, it determines
which function, LoadMicroHeader or LoadMacroHeader, to call and then calls the
appropriate method. If you are going to have only two sites, this implementation
is sufficient. However, the base class now contains conditional logic. It is up to
you how comfortable you feel with that logic contained in this class. Clearly,
most developers would flinch if they saw more than a few branches in the code,
but two probably would not elicit the same response. The main reason for limiting
the conditional logic is that it is more likely to change and cause you to modify the
implementation. Because the entire implementation is contained in one file, the
changes that you make could affect other sites.

Implementation Strategy
Front Controller is usually implemented in two parts. A Handler object receives the
individual requests (HTTP Get and Post) from the Web server, retrieves the relevant
parameters, and then selects an appropriate command, based on the parameters. The
second part of the controller, Command Processor, performs the specific actions or
commands to satisfy the request. When finished, the commands forward to the view
so that the page can be displayed.

Note: This implementation strategy resolves the issues raised in the earlier example. Although
this example is probably not sufficient to justify the change to Front Controller, it serves to
illustrate why you would use Front Controller, and the implementation solves problems of this
type that are of a far greater complexity. Also, as with most implementations, there is more
than one way to implement this pattern; this is just one choice.

Enterprise Solution Patterns Using Microsoft .NET78

Handler
ASP.NET provides a low-level request/response API to service incoming HTTP
requests. Each incoming HTTP request that ASP.NET receives is ultimately processed
by a specific instance of a class that implements the IHTTPHandler interface. This
low-level API is ideal for implementing the handler portion of Front Controller.

Note: the Microsoft® .NET Framework provides multiple implementation choices for HTTP
handlers. For example, in a high-volume environment, you may be able to improve response
times with an asynchronous HTTP handler that implements the IHttpAsyncHandler interface.
This solution uses a synchronous handler for sake of simplicity. For more information about
the implementation of asynchronous HTTP handlers, see the Microsoft Developer Network
(MSDN®) Web site (http://msdn.microsoft.com).

Figure 3.17 shows the structure of the handler portion of the controller.

+ProcessRequest(inout context : HttpContext) : void

«interface»
System.Web.UI.IHttpHandler

+Execute(inout context : HttpContext) : void

«interface»
Command

Handler

+Make() : Command

Command Factory

Figure 3.17
Handler portion of the front controller

This solution partitions responsibilities ideally. The Handler class handles the
individual Web requests and delegates the responsibility of determining the correct
Command object to the CommandFactory class. When the CommandFactory returns
a Command object, the Handler calls the Execute method on the Command to
perform the request.

Chapter 3: Web Presentation Patterns 79

Handler.cs

The following code example shows how the Handler class is implemented:

using System;
using System.Web;

public class Handler : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 Command command =
 CommandFactory.Make(context.Request.Params);
 command.Execute(context);
 }

 public bool IsReusable
 {
 get { return true;}
 }
}

Command.cs

The Command class is an example of the Command pattern [Gamma95]. The Command
pattern is useful in this situation, because you do not want the Handler class to
depend directly on the commands. They can be returned generically from the
CommandFactory.

using System;
using System.Web;

public interface Command
{
 void Execute(HttpContext context);
}

CommandFactory.cs

The CommandFactory class is critical to the implementation. It determines, based
on parameters from the query string, which command will be created. In this example,
if the site query parameter is set to micro or is not set at all, the factory creates a
MicroSite command object. If site is set to macro, the factory creates a MacroSite
command object. If the value is set to anything else, the factory returns an
UnknownCommand object for default error handling. This is an example of the
Special Case pattern [Fowler03].

using System;
using System.Collections.Specialized;

Enterprise Solution Patterns Using Microsoft .NET80

public class CommandFactory
{
 public static Command Make(NameValueCollection parms)
 {
 string siteName = parms["site"];

 Command command = new UnknownCommand();

 if(siteName == null || siteName.Equals("micro"))
 command = new MicroSite();
 else if(siteName.Equals("macro"))
 command = new MacroSite();
 return command;
 }
}

Configuring the Handler

HTTP handlers are declared in the ASP.NET configuration as part of a web.config
file. ASP.NET defines an <httphandlers> configuration section where handlers can
be added and removed. For example, ASP.NET maps all requests for Page*.aspx
files to the Handler class in the application’s web.config file:

<httpHandlers>
 <add verb="*" path="Page*.aspx" type="Handler,FrontController" />
</httpHandlers>

Commands
The commands represent the variability in the Web site. In this example, the
functionality to retrieve data from the database for each site is contained in its
own class that inherits from a base class named RedirectingCommand. The
RedirectingCommand class implements the Command interface. When Execute
is called on the RedirectingCommand class, it first calls an abstract method called
OnExecute and, on return, transfers to the view. The specific view is retrieved from
a class called UrlMap. The UrlMap class retrieves the map from the application’s
web.config file. Figure 3.18 shows the structure of the command portion of the
solution.

Chapter 3: Web Presentation Patterns 81

+Execute(inout context : HttpContext) : void

«interface»
Command

#OnExecute(inout context : HttpContext) : void

RedirectingCommand UrlMap

MicroSite

+Make() : Command

Command Factory MacroSite

The UrlMap class reads the
web.config file for the
association of the absolute
path and the internal URL.

Figure 3.18
Command portion of the front controller

RedirectingCommand.cs

RedirectingCommand is an abstract base class that calls an abstract method named
OnExecute to perform the specific command and then, on return, transfers to the
view that is retrieved from the UrlMap.

using System;
using System.Web;

public abstract class RedirectingCommand : Command
{
 private UrlMap map = UrlMap.SoleInstance;

 protected abstract void OnExecute(HttpContext context);

 public void Execute(HttpContext context)
 {
 OnExecute(context);

 string url = String.Format("{0}?{1}",
 map.Map[context.Request.Url.AbsolutePath],
 context.Request.Url.Query);

 context.Server.Transfer(url);
 }
}

Enterprise Solution Patterns Using Microsoft .NET82

UrlMap.cs

The UrlMap class loads configuration information from the application’s web.config
file. The configuration information associates the absolute path of the requested URL
to another URL specified by the file. This allows you to change the actual page to
which a user is forwarded when an external page is requested. This provides a great
deal of flexibility when changing views, because the actual page is never referenced
by the user. The following is the UrlMap class:

using System;
using System.Web;
using System.Xml;
using System.Configuration;
using System.Collections.Specialized;

public class UrlMap : IConfigurationSectionHandler
{
 private readonly NameValueCollection _commands = new NameValueCollection();

 public const string SECTION_NAME="controller.mapping";

 public static UrlMap SoleInstance
 {
 get {return (UrlMap) ConfigurationSettings.GetConfig(SECTION_NAME);}
 }

 object IConfigurationSectionHandler.Create(object parent,object configContext,
XmlNode section)
 {
 return (object) new UrlMap(parent,configContext, section);
 }

 private UrlMap() {/*no-op*/}

 public UrlMap(object parent,object configContext, XmlNode section)
 {
 try
 {
 XmlElement entriesElement = section["entries"];
 foreach(XmlElement element in entriesElement)
 {
 _commands.Add(element.Attributes["key"].Value,element.Attributes["url"].Value);
 }
 }
 catch (Exception ex)
 {
 throw new ConfigurationException("Error while parsing configuration
section.",ex,section);
 }
 }

 public NameValueCollection Map

Chapter 3: Web Presentation Patterns 83

 {
 get { return _commands; }
 }
}

The following is an excerpt from the web.config file, which shows the configuration:

<controller.mapping>
 <entries>
 <entry key="/patterns/frontc/3/Page1.aspx" url="ActualPage1.aspx" />
 <entry key="/patterns/frontc/3/Page2.aspx" url="ActualPage2.aspx" />
 </entries>
</controller.mapping>

MicroSite.cs

The MicroSite class is similar to the code in LoadMicroHeader earlier in this pattern.
The main difference is that you no longer have any access to the labels that were
contained in the page. Instead, you must add the information to the HttpContext
object. The following example shows the MicroSite code:

using System;
using System.Web;

public class MicroSite : RedirectingCommand
{
 protected override void OnExecute(HttpContext context)
 {
 string name = context.User.Identity.Name;

 context.Items["address"] =
 WebUsersDatabase.RetrieveAddress(name);
 context.Items["site"] = "Micro-Site";
 }
}

MacroSite.cs

The MacroSite class is similar to MicroSite except that it uses a different database
gateway class, MacroUsersDatabase. Both classes store information in the passed-in
HttpContext so that the view can retrieve it. The following example shows the
MacroSite code:

using System;
using System.Web;

public class MacroSite : RedirectingCommand
{
 protected override void OnExecute(HttpContext context)
 {

Enterprise Solution Patterns Using Microsoft .NET84

 string name = context.User.Identity.Name;

 context.Items["address"] =
 MacroUsersDatabase.RetrieveAddress(name);
 context.Items["site"] = "Macro-Site";
 }
}

WebUsersDatabase.cs

The WebUsersDatabase class is responsible for retrieving the e-mail address from the
“webusers” database. It is an example of the Table Data Gateway [Fowler03] pattern.

using System;
using System.Data;
using System.Data.SqlClient;

public class WebUsersDatabase
{
 public static string RetrieveAddress(string name)
 {
 string address = null;

 String selectCmd =
 String.Format("select * from webuser where (id = '{0}')",
 name);

 SqlConnection myConnection =
 new
SqlConnection("server=(local);database=webusers;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds,"webuser");
 if(ds.Tables["webuser"].Rows.Count == 1)
 {
 DataRow row = ds.Tables["webuser"].Rows[0];
 address = row["address"].ToString();
 }

 return address;
 }

}

MacroUsersDatabase.cs

The MacroUsersDatabase class is responsible for retrieving the e-mail address from
the “macrousers” database. It is an example of the Table Data Gateway pattern.

using System;
using System.Data;
using System.Data.SqlClient;

Chapter 3: Web Presentation Patterns 85

public class MacroUsersDatabase
{
 public static string RetrieveAddress(string name)
 {
 string address = null;

 String selectCmd =
 String.Format("select * from customer where (id = '{0}')",
 name);

 SqlConnection myConnection =
 new
SqlConnection("server=(local);database=macrousers;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds,"customer");
 if(ds.Tables["customer"].Rows.Count == 1)
 {
 DataRow row = ds.Tables["customer"].Rows[0];
 address = row["email"].ToString();
 }

 return address;
 }

}

Views
The last aspect of the implementation is the views. The views from the example in
“Changing Requirements” were responsible for retrieving information from the
database depending on which site the user is accessing and then displaying the
rendered page to the user. Because the database access code has been moved to the
command, the views now retrieve the data from the HttpContext object. Figure 3.19
on the next page shows the structure of the code-behind classes.

There is still common behavior, so the BasePage class is still needed to avoid code
duplication.

Enterprise Solution Patterns Using Microsoft .NET86

ActualPage1

System.Web.UI.Page

+Page_Load() : void
#PageLoadEvent() : void

BasePage

ActualPage2

Figure 3.19
Structure of the code-behind classes of the view

BasePage.cs

The BasePage class has changed dramatically from the example in “Changing
Requirements.”. It is no longer responsible for determining which site header to
load. It simply retrieves the data that the commands stored in the HttpContext
object and assigns them to the appropriate label:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class BasePage : Page
{
 protected Label eMail;
 protected Label siteName;

 virtual protected void PageLoadEvent(object sender, System.EventArgs e)
 {}

 protected void Page_Load(object sender, System.EventArgs e)
 {
 if(!IsPostBack)

Chapter 3: Web Presentation Patterns 87

 {
 eMail.Text = (string)Context.Items["address"];
 siteName.Text = (string)Context.Items["site"];
 PageLoadEvent(sender, e);
 }
 }

 #region Web Form Designer generated code
 #endregion
}

ActualPage1.aspx.cs and ActualPage2.aspx

ActualPage1 and ActualPage2 are the page-specific code-behind classes. They both
inherit from BasePage to ensure that the header is filled in at the top of the screen:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public class ActualPage1 : BasePage
{
 protected System.Web.UI.WebControls.Label pageNumber;

 protected override void PageLoadEvent(object sender, System.EventArgs e)
 {
 pageNumber.Text = "1";
 }

 #region Web Form Designer generated code
 #endregion
}

using System;
using System.Web.UI.WebControls;

public class ActualPage2 : BasePage
{
 protected Label pageNumber;

 protected override void PageLoadEvent(object sender, System.EventArgs e)
 {
 pageNumber.Text = "2";
 }

 #region Web Form Designer generated code
 #endregion
}

These pages do not have to change when moving from the Page Controller implemen-
tation to the Front Controller implementation.

Enterprise Solution Patterns Using Microsoft .NET88

Testing Considerations
The dependence of the implementation on the ASP.NET runtime makes testing
more difficult. It is not possible to instantiate classes that inherit from
System.Web.UI.Page, System.Web.UI.IHTTPHandler or the other various classes
contained in the ASP.NET runtime. This makes unit testing of most of the individual
pieces of the application impossible. The chosen way to test this implementation
automatically is to generate HTTP requests and then retrieve the HTTP response
and determine if the response is correct. This approach is error-prone because you
are comparing the text of the response with expected text.

CommandFixture.cs
One aspect of the implementation that can be tested is the CommandFactory, because
it is not dependent on the ASP.NET runtime. Therefore, you can write tests to verify
that you get the correct Command object in return. The following are NUnit
(http://nunit.org) tests for the CommandFactory class:

using System;
using System.Collections.Specialized;
using NUnit.Framework;

[TestFixture]
public class CommandFixture
{
 private static readonly string microKey = "micro";
 private static readonly string macroKey = "macro";

 [SetUp]
 public void BuildCommandFactory()
 {
 NameValueCollection map = new NameValueCollection();
 map.Add(microKey, "MicroSite");
 map.Add(macroKey, "MacroSite");
 }

 [Test]
 public void DefaultToMicro()
 {
 NameValueCollection map = new NameValueCollection();
 Command command = CommandFactory.Make(map);
 Assertion.AssertNotNull(command);
 Assertion.Assert(command is MicroSite);
 }

 [Test]
 public void MicroSiteCommand()
 {
 NameValueCollection map = new NameValueCollection();
 map.Add("site", "micro");
 Command command = CommandFactory.Make(map);

Chapter 3: Web Presentation Patterns 89

 Assertion.AssertNotNull(command);
 Assertion.Assert(command is MicroSite);
 }

 [Test]
 public void MacroSiteCommand()
 {
 NameValueCollection map = new NameValueCollection();
 map.Add("site", "macro");
 Command command = CommandFactory.Make(map);
 Assertion.AssertNotNull(command);
 Assertion.Assert(command is MacroSite);
 }

 [Test]
 public void Error()
 {
 NameValueCollection map = new NameValueCollection();
 map.Add("site", "xyzcommand");
 Command command = CommandFactory.Make(map);
 Assertion.AssertNotNull(command);
 Assertion.Assert(command is UnknownCommand);
 }
}

Further work could isolate the Command class. The Execute method has a parameter
that is an HttpContext object. You could change this parameter to make the object
independent of the ASP.NET environment. This would enable you to unit-test the
commands outside of the ASP.NET runtime.

Resulting Context
The additional complexity of implementing Front Controller results in a number
of benefits and liabilities:

Benefits
� Increased flexibility. This implementation demonstrates how to centralize

and coordinate all requests through the Handler class. The Handler uses the
CommandFactory to determine the specific action to perform. This allows the
functionality to be modified and extended without changing the Handler class.
For example, to add another site, a specific command would have to be created
and the only class that would have to change is CommandFactory.

� Simplified views. The views in the Page Controller example retrieve data from
the database and then render the pages. In Front Controller, they no longer depend
on the database, because that work is accomplished by the individual commands.

Enterprise Solution Patterns Using Microsoft .NET90

� Open for extension, but closed to modification. The implementation provides
many opportunities for polymorphic dispatching. For example, the Handler
simply calls the Execute method on the Command object, independent of what
the method and object are doing. Therefore, you can add additional commands
without modifying the Handler. The implementation could be extended further
by replacing the CommandFactory with a different factory for further extension.

� URL mapping. The UrlMap allows the actual page names to be hidden from the
user. The user enters a URL, which is mapped to the specific URL using the
web.config file. This increases the flexibility for programmers because there is
a level of indirection that is not present in the Page Controller implementation.

� Thread-safety. The individual command objects, MicroSite and MacroSite, are
created for each request. This means that you do not have to worry about thread
safety in these objects.

Liabilities
� Decreased performance. This possibility must be examined. All requests are

processed through the Handler object. It uses the CommandFactory to determine
which command to create. Although in this case they do not have performance
problems, both of these classes should be examined carefully for any potential
performance issues.

� Cruel and unusual punishment. This implementation is a lot more complicated
than Page Controller. This implementation does provide more options, but at the
cost of complexity and a lot of classes. You must weigh whether or not it is worth
it. After you have taken the leap and built the framework, it is easy to add new
commands and views. However, due to the implementation of Page Controller in
ASP.NET, you would not expect to see as many implementations of Front Controller
as you would in other platforms.

� Testing considerations. Because Front Controller is implemented in ASP.NET,
it is difficult to test in isolation. To improve testability, you should separate
functionality out of the ASP.NET –specific code into classes that do not depend
on ASP.NET. You can then test these classes without having to start the ASP.NET
runtime.

� Invalid URLs. Because Front Controller determines which view to transfer to,
based on input parameters and often the current state of the application, the
URLs may not always forward to the same page. This precludes users from
saving URLs to access the page at a later time.

Chapter 3: Web Presentation Patterns 91

Related Patterns
For more information, see the following related patterns:
� Template Method [Gamma95]. The PageLoadEvent method of the BasePage class

is an example implementation of Template Method.
� Intercepting Filter
� Page Controller
� Command [Gamma95]
� Factory. The factories described earlier in this pattern combine elements from

both Factory Method [Gamma95] and Abstract Factory [Gamma95].

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Enterprise Solution Patterns Using Microsoft .NET92

Intercepting Filter

Context
Anyone who has built a Web application from scratch realizes that it requires bit
more housekeeping work than building an internal client-server application. First,
you have to deal with the HTTP and all its quirks such as HTTP headers, multi-part
forms, the statelessness of HTTP, character set encoding schemes, Multipurpose
Internet Mail Extensions (MIME) types, and URL rewriting. On top of that, you
have to deal with security measures such as Secure Sockets Layer (SSL) and user
authentication. In many situations, the list continues on to include such items as
client browser detection or user activity logging.

Web application server frameworks perform many of these tasks for you, but
sometimes you need additional control, or you need to insert your own processing
steps before or after the application processes the Web page request.

Problem
How do you implement common pre- and post-processing steps around Web page
requests?

Forces
There are many ways to approach this problem, so you will need to consider what
forces and tradeoffs are involved:
� It is common practice to separate lower-level functions, such as dealing with

HTTP headers, cookies, or character encoding, from the application logic. This
enables you to test and reuse the application logic in other environments that
may not use a Web client.

� Pre-processing and post-processing features may change at a different pace
than application functionality. After you have the character set encoding module
working, you are less likely to change it than the code that deals with rendering
the HTML page. Therefore, a separation of concerns helps to limit the propagation
of changes.

� Many pre-processing and post-processing tasks are common to all Web pages.
You should, therefore, try to implement these functions in a central location to
avoid code duplication.

� Many of the lower-level functions are not dependent on each other. For example,
browser detection and character encoding detection are two independent
functions. To maximize reuse, you should encapsulate these functions in a set
of composable modules. This enables you to add or remove modules without
affecting existing modules.

Chapter 3: Web Presentation Patterns 93

� In many instances, it is very beneficial to be able to add or remove modules at
deployment time rather than at compile-time. For example, you may deploy the
character encoding detection module only in the international deployment of
the software, but not in the local deployment. Or, you may have a free Web site
for anonymous users to which you want to add an authentication module that
requires users to sign in. This ability to add or remove modules at deployment
time without having to make code changes is often called deployment-time
composability.

� Because lower-level functions are executed for every single page request, perfor-
mance is critical. This means two things: do as little as possible and do it efficiently.
You do not want to overload these common functions with unnecessary features
or decision points, but you do want to minimize access to slower, external
resources such as databases. Therefore, you should make each processing step
as compact and as efficient as possible.

� You may even consider implementing some of these functions in a different
programming language, for example a language that is very efficient at processing
character streams (such as C++). On the other hand, using a different language
may preclude you from using some of the useful features that the application
framework provides (for example, automated memory management and object
pooling). Either way, it is a benefit to be able to detach preprocessing from the
main application so that you have the choice of using a different programming
language if necessary.

� After you create these pre-processing and post-processing functions, you want
to be able to reuse them in other Web applications. You want to structure them
so that you can reuse one module in another environment without depending
on the other modules. You also want to be able to combine existing modules
with new modules without having to make any code changes.

Solution
Create a chain of composable filters to implement common pre-processing and
post-processing tasks during a Web page request.

Filter 1 Filter 2 Controller

Figure 3.20
Chain of composable filters

The filters form a series of independent modules that can be chained together to
execute a set of common processing steps before the page request is passed to the
controller object. Because the individual filters implement identical interfaces, they
do not have explicit dependencies on each other. Therefore, new filters can be added

Enterprise Solution Patterns Using Microsoft .NET94

without affecting existing filters. You can even add filters at deployment time by
instantiating them dynamically based on a configuration file.

As much as possible, you should design the individual filters in such as way that
they make no assumptions about the presence of other filters. This maintains the
composability; that is, the ability to add, remove, or rearrange filters. Also, some
frameworks that implement the Intercepting Filter pattern do not guarantee the order
in which the filters are executed. If you find that you have strong interdependencies
between multiple filters, a regular method with calls to helper classes may be the
better choice because it guarantees to preserve the constraints in the filters sequence.

In some contexts, the term Intercepting Filter is associated with a specific implemen-
tation using the Decorator pattern [Gamma95]. The solution described here takes
a bit more abstract view and considers different implementation options of the
Intercepting Filter concept.

Filter Chain
A straightforward implementation of Intercepting Filter is a filter chain that iterates
through a list of all filters. The Web request handler executes the filter chain before
passing control to the application logic (see Figure 3.21).

Request
Handler

Controller

<<interface>>
FilterIterate through

filter list

FilterChain
*

Filter 1 Filter 2

Figure 3.21
Intercepting Filter class diagram

When the Web server receives a page request, Request Handler passes control to
the FilterChain object first. This object maintains a list of all filters and calls each
filter in sequence. FilterChain can read the sequence of filters from a configuration
file to achieve deployment-time composability. Each filter has the chance to modify
the incoming request. For example, it can modify the URL or add header fields to

Chapter 3: Web Presentation Patterns 95

be used by the application. After all filters have been executed, Request Handler
passes control to the controller, which executes the application functionality (see
Figure 3.22).

:FilterChain
:Request
Handler

:Filter1 :Filter2 :Controller

Figure 3.22
Intercepting Filter sequence diagram

One of the key benefits of this design is that filters are self-contained components
without any direct dependency on the other filters or the controller, because
FilterChain invokes each filter. Therefore, a filter does not have to hold a reference
to the next filter. The handler passes a context into each filter on which the filter
operates. The filter can manipulate the context, for example, by adding information
or redirecting the request.

Decorator
An interesting alternative implementation to the Intercepting Filter pattern uses the
Decorator pattern around a Front Controller. Decorator wraps an object in such a way
that it provides the same interface as the original object. As a result, the wrapping
is transparent to any other object that references the original object. Because the
interface of the original object and wrapper are identical, you can add additional
wrappers around the wrapper to create a chain of wrappers that is very similar
to a filter chain. Inside each wrapper, you can perform pre-processing and post-
processing functions.

Figures 3.23 and 3.24 on the next pages show how this concept can be used to
implement Intercepting Filter. Each filter implements the Controller interface. It
also holds a reference to the next object that implements the Controller interface,

Enterprise Solution Patterns Using Microsoft .NET96

which could be either the actual controller (concreteController) or another filter.
Even though the filters call each other directly, there is no direct dependency be-
tween the filters, because each filter only references the Controller interface instead
of the next filter class.

Request
Handler

<<interface>>
Controller

1

concrete
Controller

Filter

Filter 1 Filter 2

next

Figure 3.23
Decorator class diagram

Before the filter passes control to the next filter, it has the opportunity to perform
pre-processing tasks. Likewise, after the rest of the chain is finished processing the
request, the filter has an opportunity to perform post-processing tasks.

The Decorator approach avoids the need for a FilterChain class that iterates over
the filters. Also, the request handler is now completely unaware of the existence
of the filters. As far as the request handler is concerned, it simply calls the controller
by using the Controller interface. This approach usually appears more elegant to
hardcore object-oriented developers, but it can be a bit more difficult to figure out
what is going on by looking at the code. The Decorator approach relates to the Filter
Chain approach much as a linked list relates to an array with an iterator.

Even though the object instances have references to each other, you can still compose
the chain at runtime. You can instantiate each filter passing along a reference to the
Controller interface of the next filter object in the chain. That way, you can build the
filter chain dynamically from back to front.

Chapter 3: Web Presentation Patterns 97

Pre-Process

Post-Process

Pre-Process

Post-Process

:Request
Handler

:concrete
Controller

:Filter1 :Filter2

Figure 3.24
Decorator sequence diagram

Event-Driven Filters
In an ideal world, you would design the individual filters in such a way that they
were not dependent on the sequence in which they were executed, but the real world
rarely works that way. Even if you manage to design the filters independently, they
will end up replicating a lot of functionality. For example, each filter that has to
analyze the HTTP headers (for example, to do browser detection and extract cookies)
will have to parse the headers, extract the header element names, and perform some
action on them. It would be much easier if the framework could do some of this
work and pass along a collection of all header elements, validated and indexed by
element name. This would make the filter development easier and less error-prone,
but then all filters would depend on this common header parsing function. This
would not be a problem unless a filter had to access the HTTP request stream before
any header parsing occurred (maybe because you wanted to manipulate or rearrange
some header information).

Enterprise Solution Patterns Using Microsoft .NET98

If you want to provide additional base functionality, but still allow filters to be
plugged into the request stream, you must define multiple filter chains. Each chain
is then executed before or after the framework completes a processing step. For
example, you can have a filter chain that is executed before any header parsing occurs
and have a second filter chain that is executed after the headers are parsed (see
Figure 3.25). If you take this concept to its logical conclusion, you can define a whole
series of events. You can let the filter decide which event it wants to attach to, based
on what function it performs and what services it needs from the framework.

Filter
Chain

Return
Content

Filter
Chain

Filter
Chain

Filter
Chain

Parse
Form Fields

Execute
Page Logic

Return
Headers

Request

Filter
Chain

Parse
Headers

Figure 3.25
Event-driven intercepting filters

This model shares some similarities to the event model described in the Observer
pattern. In both cases, objects can “subscribe” to events without the original object
being dependent on the observers. The object has no dependencies on any specific
observers because it calls the observers through an abstract interface. The key
difference between Intercepting Filter and Observer lies in the fact that the observer
generally does not modify the source object; it “observes” passively what is going
on in the source object. The purpose of Intercepting Filter, on the other hand, is to
intercept and modify the context in which it is called.

Figure 3.25 also illustrates very well how each filter intercepts the sequence of events
inside the Web server framework, hence the name Intercepting Filter.

Variations
In most cases, filters are passive in the sense that they manipulate the context, but
do not affect flow of execution. In the case of a filter intercepting a Web request,
however, you often must design filters so that they redirect the request to a different
page. For example, an authentication filter may redirect the request to an error page
or to the logon page if the authentication fails.

To illustrate how these filters affect the flow of the Web request, Figure 3.26 shows
the sequence of a typical filter scenario, in which the intercepting filter does not
intervene in the message flow.

Chapter 3: Web Presentation Patterns 99

:HttpRuntime:aClient :FilterOne :FilterTwo :aPage

request

response

before(Context)

Context

before(context)

Context

Invoke Page

response

Figure 3.26
Intercepting filter that does not intervene in the message flow

Figure 3.27 shows an alternate sequence in which Filter One redirects the flow
to a different page based on the type of request.

:HttpRuntime:aClient :FilterOne :FilterTwo :aPage

request

redirect(page)

before(Context)

redirect(page)

Figure 3.27
Intercepting filter that redirects the message flow

Enterprise Solution Patterns Using Microsoft .NET100

In this scenario, no page is rendered, but a redirect header (HTTP response 302) is
produced and is returned to the client. This header causes the client to issue a new
request to the URL specified in the redirect header. Because this type of redirection
requires a second request from the client browser, it is often referred to as client-
side redirect. The main disadvantage is that the client browser has to issue two
requests to retrieve the page. This slows down the page display and can also lead
to complications with bookmarking, because the client will bookmark the redirected
URL, which is generally not good.

Server-side redirects, on the other hand, forward the request to a different page
without requiring a roundtrip to the client. They accomplish this by returning
control to the httpRunTime object, which calls a different Page Controller directly,
passing along the request context. The transfer happens internally in the server
without any involvement of the client. As a result, you do not have to repeat any
common preprocessing of the request.

Server-side redirects are used in two common scenarios: URL manipulation can be
used in Intercepting Filter to allow clients to use virtual URLs to pass parameters to
the application. For example, a filter can convert http://example.com/clientabc into the
URL http://www.example.com/start.aspx?Client=clientabc. This manipulation provides
a level of indirection that lets the client bookmark a virtual URL that is not affected
by internal changes to the application (for example, the migration from .asp to .aspx
files). The other common technique that uses server-side redirection is the use of a
Front Controller. The Front Controller processes all page requests in a central component
and then passes control to the appropriate command. Front Controllers are useful for
Web applications with dynamically configurable navigation paths.

Example
Because intercepting filters are such a common need when processing Web requests,
most Web frameworks provide mechanisms for the application developer to hook
intercepting filters into the request-response process.

The Microsoft® Windows® platform provides two distinct mechanisms:
� The server running Internet Information Services (IIS) provides ISAPI filters.

ISAPI filters are low-level constructs that are called before any other processing
is performed. As a result, ISAPI filters have a high degree of control over the
processing of the request. ISAPI filters are ideal for low-level functions such as
URL manipulations. Unfortunately, ISAPI filters should be written in C++ and
do not have access to any of the functions incorporated into the Microsoft® .NET
Framework.

� The .NET Framework provides the HTTPModule interface. Using a configuration
file, filters that implement this interface can be attached to a series of events
defined by the framework. For more detail, see Implementing Intercepting Filter
in ASP.NET Using HTTP Module.

Chapter 3: Web Presentation Patterns 101

Resulting Context
The Intercepting Filter pattern results in the following benefits and liabilities:

Benefits
� Separation of concerns. The logic contained in the filters is decoupled from the

application logic. Therefore, the application code is not affected when low-level
features change (for example, if you move from HTTP to HTTPS or if you migrate
session management from URL rewriting to hidden form fields).

� Flexibility. The filters are independent of one another. As a result, you can
chain together any combination of filters without having to make code changes
to any filter.

� Central configuration. Due to the composability of filters, you can use a single
configuration file to load the filter chain. Rather than working with a lot of source
code, you can modify a single configuration file to determine the list of filters
to be inserted into the request processing.

� Deployment-time composability. Intercepting Filter chains can be constructed at
runtime based on configuration files. As a result, you can change the sequence of
filters during deployment without having to modify code.

� Reuse. Because the filters are not dependent on their operating environment,
except for the context on which they operate, individual filters can be reused in
other Web applications.

Liabilities
� Order dependency. Intercepting filters have no explicit dependencies on any

other filter. However, filters may make assumptions about the context that is
passed to them. For example, some filters may expect certain processing to have
occurred before they are invoked. Consider these implicit dependencies when
you configure the filter chain. Some frameworks may not guarantee the order
of execution across filters. If the program requires a strict sequence, a hard-coded
method call may be a better solution than a dynamic filter chain.

� Shared state. Filters have no explicit mechanism for sharing state information
with one another except to manipulate the context. This is also true for passing
information from a filter to the controller. For example, if the filter analyzes the
browser type based on header-field values, there is no simple way to pass this
information to the application controller. The most common way is to add a fake
header field to the request context that contains the filter output. The controller
can then extract the fake header field and make a decision based on its value.
Unfortunately, you lose any compile-time checking or type safety between the
filter and the controller. This is the downside of loose coupling.

Enterprise Solution Patterns Using Microsoft .NET102

Intercepting Filter vs. Controller
Because the intercepting filters are executed right before and after the controller,
sometimes it may be difficult to determine whether to implement functionality
inside the intercepting filter or inside the controller. The following criteria provide
some guidelines when making this decision:
� Filters are better suited to dealing with low-level, transport-related functions

such as character-set decoding, decompression, session validation, client-browser
type recognition, and traffic logging. These types of operations tend to be well-
encapsulated, efficient, and stateless. Therefore, it is easy to chain these operations
together without one operation having to pass state information to the other.

� True application functionality that interacts with the model is better taken care
of inside the controller or a helper of the controller. These types of functions
typically do not possess the kind of composability that filters require.

� In most cases. the processing inside a filter is not dependent on the state of the
application; it is executed no matter what. Even though the page controller may
contain common functionality, it is best to maintain the opportunity to override
the behavior on a case-by-case basis. The controller is better suited to this task
than is a chain of filters.

� Many filter implementations (for example, IIS ISAPI filters) execute at a lower
layer inside the application server. This gives filters a great deal of control (not
much happens before the filter is invoked), but prevents them from accessing
many features that the application layer provides, such as session management.

� Because filters are executed for every Web page request, performance is critical.
As a result, the framework may limit the choice of implementation language.
For example, most ISAPI filters are implemented in a compiled language such
as C++. You would not want to have to code complex application logic in C++,
if you can have the convenience of coding these pieces in the Microsoft Visual
Basic® development system or in the Microsoft Visual C#® development tool
with full access to the .NET Framework.

Related Patterns
For more information, refer to the following related patterns:
� Intercepting Filter is commonly used in combination with Front Controller. [Alur01]

and [Fowler03] describe the relationship between the two patterns in detail.
� Decorator [Gamma95]. Intercepting filters can be considered decorators around

a front controller.

Chapter 3: Web Presentation Patterns 103

Acknowledgments
[Alur01] Alur, Crupi, and Malks. Core J2EE Patterns: Best Practices and Design Strategies.
Prentice-Hall, 2001.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Buschmann96] Buschmann, Frank, et al. Pattern-Oriented Software Architecture, Vol 1.
Wiley & Sons, 1996.

[Schmidt00] Schmidt, et al. Pattern-Oriented Software Architecture, Vol 2. Wiley
& Sons, 2000.

Enterprise Solution Patterns Using Microsoft .NET104

Implementing Intercepting Filter in ASP.NET Using HTTP Module

Context
You are building a Web application in Microsoft® ASP.NET with many different
types of requests. Some requests are forwarded to the appropriate page, and others
must be logged or modified in some way before being processed.

Implementation Strategy
The ASP.NET implementation of the Intercepting Filter pattern is an example of the
event-driven filters described in the pattern. ASP.NET provides a series of events
during request processing that your application can hook into. These events guarantee
the state of the request. Individual filters are implemented with an HTTP module.
An HTTP module is a class that implements the IHttpModule interface and
determines when the filter should be called. ASP.NET includes a set of HTTP
modules that can be used by your application. For example, SessionStateModule
is provided by ASP.NET to supply session state services to an application. You can
create your own custom HTTP modules to filter the request or response as needed
by your application.

The general process for writing a custom HTTP module is:
� Implement the IHttpModule interface.
� Handle the Init method and register for the events you need.
� Handle the events.
� Optionally, implement the Dispose method if you have to do cleanup.
� Register the module in the web.config file.

Events
The following lists show the events that, when raised during the processing of a
request, can be intercepted using ASP.NET. All events are listed in the order in
which they occur.

The first list shows the events that are raised before the request is processed:
� BeginRequest. This event signals a new request; it is guaranteed to be raised

on each request.
� AuthenticateRequest. This event signals that the configured authentication

mechanism has authenticated the request. Attaching to this event guarantees
your filter that the request has been authenticated.

� AuthorizeRequest. Like AuthenticateRequest, this event signals that the request
is now one step further down the chain and has been authorized.

Chapter 3: Web Presentation Patterns 105

� ResolveRequestCache. The output cache module uses this event to short-circuit
the processing of requests that have been cached.

� AcquireRequestState. This event signals that individual request state should
be obtained.

� PreRequestHandlerExecute. This event signals that the request handler is
about to execute. This is the last event you can participate in before the HTTP
handler for this request is called.

The next list shows the events that are raised after the request is processed. The events
are listed in the order in which they occur:
� PostRequestHandlerExecute. This event signals that the HTTP handler has

finished processing the request.
� ReleaseRequestState. This event signals that the request state should be stored

because the application is finished with the request.
� UpdateRequestCache. This event signals that code processing is complete and

the file is ready to be added to the ASP.NET cache.
� EndRequest. This event signals that all processing has finished for the request.

This is the last event called when the application ends.

In addition, the following three per-request events can fire in a nondeterministic
order:
� PreSendRequestHeaders. This event signals that HTTP headers are about to

be sent to the client. This provides an opportunity to add, remove, or modify
the headers before they are sent.

� PreSendRequestContent. This event signals that content is about to be sent
to the client. This provides an opportunity to modify the content before it is sent.

� Error. This event signals an unhandled exception.

The following example demonstrates how a request is intercepted after it has been
authenticated by the ASP.NET runtime. When the example module, called
UserLogger, is initialized, it connects a member function, called OnAuthenticate,
to the AuthenticateRequest event. Every time a new request is authenticated, the
OnAuthenticate function is called. In this example, the OnAuthenticate function
logs the name of the authenticated user to the Intercepting Filter Pattern application
event log.

using System;
using System.Web;
using System.Security.Principal;
using System.Diagnostics;

public class UserLogModule : IHttpModule
{
 private HttpApplication httpApp;

Enterprise Solution Patterns Using Microsoft .NET106

 public void Init(HttpApplication httpApp)
 {
 this.httpApp = httpApp;
 httpApp.AuthenticateRequest += new EventHandler(OnAuthentication);
 }

 void OnAuthentication(object sender, EventArgs a)
 {
 HttpApplication application = (HttpApplication)sender;
 HttpResponse response = application.Context.Response;

 WindowsIdentity identity =
 (WindowsIdentity)application.Context.User.Identity;

 LogUser(identity.Name);
 }

 private void LogUser(String name)
 {
 EventLog log = new EventLog();
 log.Source = "Intercepting Filter Pattern";
 log.WriteEntry(name,EventLogEntryType.Information);
 }

 public void Dispose()
 {}
}

must be added to the web.config file so that the ASP.NET runtime recognizes the
module. The following is the configuration file that changes for the UserLogModule
example module:

<httpModules>
 <add name="UserLogModule" type="UserLogModule, ifilter" />
</httpModules>

Examples
The following are examples of intercepting filters that are built into Microsoft .NET:
� DefaultAuthenticationModule. This filter ensures that an Authentication object

is present in the HttpContext object.
� FileAuthorizationModule. This filter verifies that the remote user has Microsoft

Windows NT® permissions to access the file requested.
� FormsAuthenticationModule. This filter enables ASP.NET applications to use

forms authentication.
� PassportAuthenticationModule. This filter provides a wrapper around

PassportAuthentication services for Passport authentication.
� SessionStateModule. This filter provides session-state services for an application.

Chapter 3: Web Presentation Patterns 107

� UrlAuthorizationModule. This filter provides URL-based authorization services
for allowing or denying access to specified URLs.

� WindowsAuthenticationModule. This filter enables ASP.NET applications to
use Microsoft Windows® or Internet Information Services (IIS) authentication.

Testing Considerations
Testing the HTTP modules without the ASP.NET runtime is not possible. Therefore,
a slightly different implementation strategy must be employed to separate as much
of the functionality as possible from the class that implements the IHttpModule
interface. In the previous example, the code that logs the user name does not require
the ASP.NET runtime. This functionality can be placed in its own class, called
UserLog, which is independent of ASP.NET. The UserLogAdapter class, which
implements the IHttpModule interface, can use the UserLog class. This enables
other classes to use the UserLog class and also enables you to test it without the
ASP.NET environment. The following is the same functionality as described
previously, but implemented in a way that allows the logging functionality to
be tested without the ASP.NET runtime:

using System;
using System.Diagnostics;

public class UserLog
{
 public static void Write(String name)
 {
 EventLog log = new EventLog();
 log.Source = "Intercepting Filter Pattern";
 log.WriteEntry(name,EventLogEntryType.Information);
 }
}

using System;
using System.Web;
using System.Security.Principal;

public class UserLogAdapter
{
 private HttpApplication httpApp;

 public void Init(HttpApplication httpApp)
 {
 this.httpApp = httpApp;
 httpApp.AuthenticateRequest += new EventHandler(OnAuthentication);
 }

 void OnAuthentication(object sender, EventArgs a)
 {
 HttpApplication application = (HttpApplication)sender;
 HttpResponse response = application.Context.Response;

Enterprise Solution Patterns Using Microsoft .NET108

 WindowsIdentity identity =
 (WindowsIdentity)application.Context.User.Identity;

 UserLog.Write(identity.Name);
 }

 public void Dispose()
 {}
}

Resulting Context
The implementation of the Intercepting Filter pattern results in the following benefits
and liabilities:

Benefits
� Uses event-driven filters. The ASP.NET runtime provides numerous events, which

enable the programmer to hook into the right place to add their functionality. This
is beneficial, because they can assume the current state of the request based on
the event. For example, if the event is AuthenticateRequest, you can assume that
the request is authenticated prior to your filter being called.

� Enables flexible configuration. The modules are added or removed by editing
the web.config file. The source code does not have to be changed, and the
ASP.NET runtime does not have to be restarted.

� Alleviates order dependency. One of the liabilities of Intercepting Filter is that
filters should not be order-dependent. Because the ASP.NET implementation
uses events, it alleviates the problem by using events to indicate that certain
processing has occurred.

Liabilities
Testing of classes that implement the IHttpModule interface is difficult or impossible
without testing the full ASP.NET runtime.

Related Patterns
For more information, see Adapter [Gamma95]. The Adapter pattern was used
in “Testing Considerations” to help isolate the core functionality and to enhance
testability.

Acknowledgments
[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Chapter 3: Web Presentation Patterns 109

Page Cache

Context
You are working with a Web-based application that presents dynamic information
to users. You have observed that many users access a specific page without the
dynamic information changing.

Problem
How can you improve the response time of dynamically generated Web pages that are
requested frequently but consume a large amount of system resources to construct?

Forces
The following forces act on a system within this context and must be reconciled as
you consider a solution to the problem:
� Generating a dynamic Web page consumes a variety of system resources. When

the Web server receives a page request, the server usually has to retrieve the
requested information from an external data source, such as a database or a Web
service. Access to these resources often occurs over a limited pool of resources,
such as database connections, sockets, or file descriptors. Because a Web server
typically handles many concurrent requests, contention for these pooled resources
may delay the page request until a resource becomes available. After the request
has been sent to the external data source, the results still have to be transformed
into HTML code for display.

� One obvious approach to making systems faster is to buy more hardware. This
option may be appealing because hardware is cheap (or so the vendors say) and
the program does not have to change. On the other hand, more hardware only
helps until you reach its physical limitations. Network limitations, such as data
transfer rates, or latency make these physical limitations more apparent.

� A second approach to making systems faster is to do less (processing) work.
This approach requires more effort from developers, but can provide enormous
increases in performance. The following paragraphs explore the challenges that
this approach poses.

The following paragraphs use a weather example to show how extra development
effort can relieve the processing load. If 10,000 users view the weather forecast for
London within one hour, a default Web server implementation may connect to the
weather service 10,000 times, and render 10,000 HTML pages with images of clouds
and rain, even though it rains all day. To reduce processing, you could just get the
actual weather forecast during the first request, render the HTML page, and then save
that pre-rendered page for later use. When the next request for London weather

Enterprise Solution Patterns Using Microsoft .NET110

arrives, the system could return the saved page to the client browser; there would
be no need to connect to the weather service or render another page.

This would save CPU cycles to render redundant HTML pages and improve response
times. The cost, however, would be the memory allocated to store the pre-rendered
pages. Providing the weather forecast for each postal code may require that you
store thousands of weather forecast pages. (There are thousands of postal codes in
the United States alone.) To figure out which page the user is requesting, you would
also need to index the pre-rendered pages by postal code, or possibly additional
parameters such as which Web browser the user is running (the HTML may differ
slightly by browser). Also, you may receive a lot more requests for the weather in
a large city than for a small town. Likewise, the forecast may change more often in
some regions than in others. Therefore, you need to be smart about which pages you
are pre-rendering and how long you keep them around before you re-render them.

Another item to consider is the composition of the page. Maybe you want to display
a combination page with the weather and the current stock prices. Because stock
prices change more often than the weather, you can no longer store the complete page.
You can store pieces of the page, but then you must manage each page component
separately and reassemble it from pre-rendered components as requests arrive.

Yet another consideration is the variability of the pages. For example, the weather
data may not change, but the page may still look different for different users based
on user preferences such as language, color, browser, and device (computer, Personal
Digital Assistant (PDA), or phone). If you store the rendered page, you have to store
each version separately. If you store the weather data, however, you save a trip to
the weather service, but you still have to render the page. So you use a few more
CPU cycles, but need to cache much less information. For a more detailed description
of this approach, see Page Data Caching.

Solution
Use a page cache for dynamic Web pages that are accessed frequently, but change
less often.

Structure
The basic structure of a page cache is relatively simple. The Web server maintains
a local data store with pre-rendered pages (see Figure 3.28).

Chapter 3: Web Presentation Patterns 111

User Web Servers

Page Cache

Database Servers

Figure 3.28
Basic page cache configuration

Dynamics
The following sequence diagrams make it clear why a page cache can improve
performance. The first sequence diagram (Figure 3.29, on the next page) depicts the
initial state where the desired page is not yet cached (a so-called cache miss). In this
scenario, the Web server must access the database, render the HTML page, store it in
the cache, and then return the page to the client browser. Note that this process is
slightly slower than the scenario without caching because it performs the following
extra steps:
� Determines whether the page is cached
� Stores the page in the cache after it is rendered into HTML

Neither step should take very long in comparison to the database access and the
HTML generation. Because this scenario requires extra processing, however, you
must ensure a good series of cache hits after the system goes through the steps
associated with a cache miss, which are shown in Figure 3.29 on the next page.

Enterprise Solution Patterns Using Microsoft .NET112

client: :Web Server

View(URL)
Stored(URL)

false

page

page

:Page Cache
:Database

Server

Store(URL, page)

GatherData

data

make page

Figure 3.29
Sequence for a cache miss (when the page is not in the cache)

In the cache hit scenario shown in Figure 3.30, the page is already in the cache. A
cache hit saves cycles by skipping the database access, the page rendering, and the
storing of the page.

Chapter 3: Web Presentation Patterns 113

client: :Web Server

View(URL)
Stored(URL)

true

page

page

:Page Cache
:Database

Server

Figure 3.30
Sequence for a cache hit (when the page is in the cache)

Implementation
Caching strategies are an extensive topic that cannot be covered exhaustively in
a single pattern. Nevertheless, it is important to discuss the considerations that are
most relevant when implementing a solution that includes Page Cache.

A Page Cache solution consists of the following key mechanisms:
� Page (or page fragments) storage
� Page indexing
� Cache refresh

The following paragraphs discuss each of these mechanisms.

Page Storage

A page cache must store pre-rendered pages so that the system can retrieve them
quickly. You also want to be able to store as many pages as possible to increase
the chances of a cache hit. When it comes to storage, you usually face a tradeoff
between speed, size, and cost. Assuming that you do not have unlimited funds at
hand, the choice is usually between small or fast. Smaller caches can live in memory
and can be very fast. Larger disk storage caches offer more storage, but are signifi-
cantly slower.

To reach the best compromise between speed and size, you must be careful about
which pages you cache. Some pages will be accessed much more frequently than
others, so, ideally, you should cache only the popular pages and forget about the
rarely used ones. This decision is not always easy to make, because usage patterns
tend to vary. Many caches implement strategies such as Least Frequently Used (LFU)

Enterprise Solution Patterns Using Microsoft .NET114

to remove pages that have been used infrequently since being stored. Other caching
schemes let the user specify the caching strategy for each individual page.

The next most important decision is how big the pieces in the cache should be. Storing
complete pages enables quick page display after a page hit, because the system
retrieves the page from the cache and immediately sends it to the client without any
other action. However, if some portions of the page change frequently and others
do not (for example, a page with weather and stock prices), storing complete pages
could lead to a lot of extra storage. Storing smaller pieces improves the chances of
a page hit, but also requires more storage overhead (there are more pieces to index)
and more CPU consumption (testing the cache for multiple segments and assembling
the final page). For a description on how to assemble pages from cached segments,
see Page Fragment Caching.

Page Indexing

It is also important to consider how the system locates pages in the cache. The
simplest method for a system to locate pages is by URL. If a page does not depend
on any other factors, you can retrieve it from the cache simply by comparing the
requested URL to the URLs of the pages stored in the cache. However, this scenario
rarely occurs. Almost all dynamic pages are built based on parameters such as user
preferences, query strings, form fields, and internal application state. For example,
the weather page in the earlier example depends on the postal code that users enter.
So the system may have to store multiple instances of one page, based on the
parameter. In the postal code example, this could translate to thousands of pages.
This is inefficient because weather services do not actually maintain the forecast for
every postal code, but rather by city or region. If you know how the weather service
translates postal codes into weather regions, you can reduce the number of cached
pages by an order of magnitude and increase the average hit rate. As always, the
more information you have, the more efficient you can be. You can use Vary-By-
Parameter Caching to implement this type of caching, where the page content depends
on parameters.

Cache Refresh

How long the system keeps items in the cache is also important. Storing pages for a
fixed amount of time is the simplest method (see Implementing Page Cache in ASP.NET
Using Absolute Expiration). This method may not always be sufficient, however. In
the weather example, if an unusual weather pattern such as a cold front or a hurricane
is approaching a major city, you may want to update every 15 minutes. You can
resolve these issues by tying the caching duration to external events. For example,
you may choose to flush the cache when an external event arrives (for example, late-
breaking news), forcing the page to be re-rendered when the next request arrives.

Some caching strategies try to pre-render pages during low-traffic periods. This
approach can be very effective if you have predictable traffic patterns and you can
hold pages long enough to avoid refreshing during peak traffic times.

Chapter 3: Web Presentation Patterns 115

Resulting Context
Page Cache results in the following benefits and liabilities:

Benefits
� Conserves CPU cycles required to render pages. This results in faster response

times and increases the scalability of the Web server to a larger number of concur-
rent users.

� Eliminates unnecessary round-trips to the database or other external data
sources. This benefit is particularly important, because these external sources
usually provide only a limited number of concurrent connections that must be
shared by all concurrent page requests in a resource pool. Frequent access to
external data sources can quickly bring a Web server to an abrupt halt due to
resource contention.

� Conserves client connections. Each concurrent connection from a client browser
to the Web server consumes limited resources. The longer it takes to process a
page request, the longer the connection resource is tied up.

� Enables concurrent access by many page requests. Because a page cache is
primarily a read-only resource, it can be multithreaded rather easily. Therefore,
it prevents resource contention that can occur when the system accesses external
data sources. The only portion that must be synchronized is the cache update,
so the considerations around frequency of update are most critical to good
performance.

� Increases the availability of the application. If the system accesses an external
data source to render pages, it depends on the data source being available. Page
caching enables the system to deliver cached pages to the clients even when the
external source becomes unavailable; the data may not be current, but it is likely
better than no data at all.

Note: If this function is critical to your caching strategy, consider using Page Data Cache,
which can provide more flexibility for external data sources.

Liabilities
� Displays information that is not current. If the cache refresh mechanism is

configured incorrectly, the Web site could display invalid data, which could
be confusing or even harmful. For example, an overly extended caching interval
in a live stock feed could become very costly for the user who makes purchasing
decisions based on the data.

� Requires CPU and memory (RAM or disk) resources. Caching pages that are
not frequently viewed or setting refresh intervals that are too short can incur
additional overhead and actually decrease server performance. As with all

Enterprise Solution Patterns Using Microsoft .NET116

performance measures, perform a thorough analysis using actual measurements
and performance indicators to determine the correct settings. Hasty decisions,
such as caching every page, can do more harm than good.

� Adds complexity to the system and can make it more difficult to test and
debug. In most cases, you should develop and test the application without
caching and then enable caching options during the performance-tuning phase.

� Requires additional security considerations. This implication of caching is often
overlooked. When a Web server is processing concurrent requests for confidential
information from multiple users, it is important to avoid crossover between these
requests. Because the page cache is a global entity, an improperly configured
page cache may deliver a page to the browser that was originally rendered for
another user. This may not be an issue with weather forecasts, but would pose a
serious problem if, for example, the system displayed a user’s bank statement to
another user.

� Can produce dramatically inconsistent response times. Although delivering
pages quickly in 99 percent of the cases is surely better than delivering slow
pages every time, a caching strategy that is over-optimized for cache hits and
under-optimized for cache misses can cause sporadic timeouts. This concern is
particularly relevant for Web services as opposed to simple HTML pages.

Related Patterns
The following patterns describe various strategies for implementing Page Cache:
� Implementing Page Cache in ASP.NET Using Absolute Expiration. This pattern inserts

a directive into each page that is to be cached. The directive specifies the refresh
interval in seconds. The refresh interval does not depend on external events, and
the cache cannot be flushed.

� Vary-By-Parameter Caching. This pattern uses a variation of Absolute Expiration
that enables the developer to specify parameters that affect the contents of the
page. As a result, the cache stores multiple versions of the page, which are indexed
by the parameter values.

� Sliding Expiration Caching. This pattern is similar to Absolute Expiration in that the
page is valid for a specified time. However, the refresh interval is reset on each
request. For example, you could use sliding expiration caching to cache a page
for a maximum of 10 minutes. As long as requests for the page are made within
10 minutes, the expiration is postponed for another 10 minutes.

Chapter 3: Web Presentation Patterns 117

Implementing Page Cache in ASP.NET Using Absolute Expiration

Context
You are building a Web application in ASP.NET and you want to cache pages to
improve performance. You have evaluated the alternatives presented in Page Cache
and have determined that absolute expiration is an adequate strategy.

Implementation Strategy
Page caching increases request response throughput by caching the content generated
from dynamic pages. Page caching is enabled by default in ASP.NET, but output from
any given response is not cached unless a valid expiration policy is defined. To
define the expiration policy, you can use either the low-level OutputCache API or
the high-level @ OutputCache directive.

When page caching is enabled, the first GET request to the page creates a page
cache entry. The page cache entry serves subsequent GET or HEAD requests until
the cached response expires.

The page cache respects the expiration policy for pages. If a page is cached with an
expiration policy of 60 seconds, the page is removed from the output cache when
60 seconds have elapsed. If the cache receives another request after that time, it
executes the page code and refreshes the cache. This type of expiration policy is
called absolute expiration, which means that a page is valid until a certain time.

The following example demonstrates a way to use the @OutputCache directive
to cache responses:

<%@ OutputCache Duration="60" VaryByParam="none" %>

<html>
 <script language="C#" runat="server">
 void Page_Load(Object sender, EventArgs e)
 {
 TimeMsg.Text = DateTime.Now.ToString("G");
 }
 </script>

 <body>
 <h3>Using the Output Cache</h3>

 <p>Last generated on: <asp:label id="TimeMsg" runat="server"/>
 </body>
</html>

The example displays the time when the response was generated. To see output
caching in action, invoke the page and note the time at which the response was

Enterprise Solution Patterns Using Microsoft .NET118

generated. Then refresh the page and note that the time has not changed, indicating
that the second response is being served from the cache.

The following line activates page caching on the response:

<%@ OutputCache Duration="60" VaryByParam="none" %>

This directive simply indicates that the page should be cached for 60 seconds and
that the page does not vary according to any GET or POST parameters. Requests
received in the first 60 seconds are satisfied from the cache. After 60 seconds, the
page is removed from the cache; the next request caches the page again.

Testing Considerations
The caching of pages makes testing more difficult. For example, if you change a
page and then view it in the browser, you may not see the updated page because
the browser displays the page from the cache, rather than a newly generated page.
Ideally, you can turn off the caching of pages and run tests that do not require
caching. After these tests run successfully, you can enable caching and then run
the tests that require caching.

Resulting Context
Using absolute expiration to implement Page Cache in ASP.NET results in the
following benefits and liabilities:

Benefits
� This is by far the simplest method of caching pages in ASP.NET. Absolute

expiration may be sufficient in many cases and is clearly an excellent place to
begin, provided that you analyze the usage patterns of the Web application to
determine which pages you cache. Also consider the volatility of the dynamic
content on the page. For example, a weather page may have an expiration policy
of 60 minutes, because the weather does not change very quickly. However, a
Web page that displays a stock quote may not be cacheable at all. To determine
the correct expiration time, you must know the most frequently viewed pages
and understand the volatility of the data the pages contain.

� You can set different expiration policies for different pages. Doing so enables
you to cache only frequently accessed pages and not waste cache space on pages
that are accessed infrequently. It also allows you to refresh pages containing
volatile data more often than others.

Chapter 3: Web Presentation Patterns 119

Liabilities
� Dynamic content on cached pages may become invalid. This is because the

page expiration is based on time rather than content. In the example described
previously, the time is displayed on the page in seconds. Because the page is built
every 60 seconds, the seconds field is invalid immediately after the page is built.
The ramifications of the invalid data in this example are small. If you are
displaying a time-sensitive financial quote, for example, and extreme accuracy
is required, consider a caching strategy that ensures that you never display
invalid data. (See Page Data Caching.)
This strategy does not accommodate passing parameters to the page. Dynamic
pages are often parameterized. For example, a weather page may be parameter-
ized by postal code. Unless you want to create separate pages and URLs for
thousands of postal codes (42,000 in the United States, for example), you cannot
use absolute expiration to cache this page. Vary-By-Parameter Caching resolves
this issue.

� Absolute expiration works well only if the whole page stays the same. In many
applications, large portions of a page change rarely (great candidates for caching),
but are coupled with other sections that change frequently (cannot be cached).
Because absolute expiration caches only whole pages, it cannot take advantage
of localized changes such as this. Page Fragment Caching may be a better choice
in these circumstances, because it can cache portions of a page. HTML frames
provide another option to simulate fragments of pages. However, frames have
known issues in Web browsers, such as navigation and printing problems.

� There is no way to flush the cached pages. The pages remain in the cache until
they expire or the server is restarted. This makes testing problematic. It can also
be difficult in situations where data changes rarely, but if a change occurs you
cannot afford a delay. For example, updating the weather forecast every two hours
is probably sufficient in most cases. However, if a hurricane is approaching, you
may not want to wait two hours before updating the weather forecast.

� You must alter the code in each page to change the expiration policy. Because
the expiration policy can only be changed in the code, there is no mechanism
to turn off caching for the entire application.

� Storing pages in a cache requires disk space on the server. In the example
described earlier, the small page would not require much disk space. As the
content on each page and the number of pages in the cache increase, however,
the demands for disk space on the Web server will also increase.

Enterprise Solution Patterns Using Microsoft .NET120

Variants
The following patterns explain alternate implementations of Page Cache:
� Vary-By-Parameter Caching
� Sliding Expiration Caching

Related Patterns
For related page cache designs and implementation strategies, see the following
patterns:
� Page Data Caching
� Page Fragment Caching

Chapter 3: Web Presentation Patterns 121

Observer

Context
In object-oriented programming, objects contain both data and behavior that, together,
represent a specific aspect of the business domain. One advantage of using objects
to build applications is that all manipulation of the data can be encapsulated inside
the object. This makes the object self-contained and increases the potential for reuse
of the object in other applications. However, objects cannot simply work in isolation.
In all but the most trivial applications, objects must collaborate to accomplish more
complex tasks. When objects collaborate, the objects may have to notify each other
when an object changes state. For example, the Model-View-Controller pattern
prescribes the separation of business data (the model) and the presentation logic
(the view). When the model changes, the system must notify the view so that it can
refresh the visual presentation and accurately reflect the model’s state. In other
words, the view is dependent on the model to inform it of changes to the model’s
internal state.

Problem
How can an object notify other objects of state changes without being dependent
on their classes?

Forces
A solution to this problem has to reconcile the following forces and considerations:
� The easiest way to inform dependent objects of a state change is to call them

directly. However, direct collaboration between objects creates dependency
between their classes. For example, if the model object calls the view object to
inform it of changes, the model class is now also dependent on the view class.
This kind of direct coupling between two objects (also called tight coupling)
decreases the reusability of classes. For example, whenever you want to reuse
the model class, you have to also reuse the view class because the model makes
calls to it. If you have more than one view, the problem is compounded.

� The need to decouple classes occurs frequently in event-driven frameworks. The
framework must be able to notify the application of events, but the framework
cannot be dependent on specific application classes.

� Likewise, if you make a change to the view class, the model is likely to be affected.
Applications that contain many tightly coupled classes tend to be brittle and
difficult to maintain, because changes in one class could affect all the tightly
coupled classes.

Enterprise Solution Patterns Using Microsoft .NET122

� If you call the dependent objects directly, every time a new dependent is added,
the code inside the source object has to be modified.

� In some cases, the number of dependent objects may be unknown at design time.
For example, if you allow the user to open multiple windows (views) for a
specific model, you will have to update multiple views when the model state
changes.

� A direct function call is still the most efficient way to pass information between
two objects (second only to having the functionality of both objects inside a
single object). As a result, decoupling objects with other mechanisms is likely to
adversely affect performance. Depending on the performance requirements of the
application, you may have to consider this tradeoff.

Solution
Use the Observer pattern to maintain a list of interested dependents (observers) in
a separate object (the subject). Have all individual observers implement a common
Observer interface to eliminate direct dependencies between the subject and the
dependent objects (see Figure 3.31).

<<interface>>
Observer

+subscribe(Observer)
+unsubscribe(Observer)
+Notify()

Subject

observers: Collection

+Update()

*

ConcreteSubject ConcreteObserver

Iterates through
list of observers

Figure 3.31
Basic Observer structure

When a state change occurs in the client that is relevant to the dependent objects,
ConcreteSubject invokes the Notify() method. The Subject superclass maintains
a list of all interested observers so that the Notify() method can loop through the
list of all observers and invoke the Update() method on each registered observer.
The observers register and unregister for updates by calling the subscribe() and
unsubscribe() methods on Subject (see Figure 3.32). One or more instances of
ConcreteObserver may also access ConcreteSubject for more information and
therefore usually depend on the ConcreteSubject class. However, as Figure 3.31
illustrates, there is no direct or indirect dependency from the ConcreteSubject
class on the ConcreteObserver class.

Chapter 3: Web Presentation Patterns 123

:Subject

subscribe

update()

update()

subscribe

:Observer1 :Observer2

Notify()

Figure 3.32
Basic Observer interaction

With this generic way of communicating between the subject and observers,
collaborations can be built dynamically instead of statically. Due to the separation
of notification logic and synchronization logic, new observers can be added without
modifying the notification logic, and notification logic can also be changed without
affecting the synchronization logic in observers. The code is now much more separate,
and thus easier to maintain and reuse.

Notifying objects of changes without incurring a dependency on their classes is such
a common requirement that some platforms provide language features to perform
this function. For example, the Microsoft® .NET Framework defines the notion of
delegates and events to accomplish the Observer role. Therefore, you would rarely
implement the Observer pattern explicitly in .NET, but should use delegates and
events instead. Most .NET developers will think of the Observer pattern as a
complicated way to implement events.

The solution presented in Figure 3.31 shows the ConcreteSubject class inheriting
from the Subject class. The Subject class contains the implementations of the
methods to add or remove observers and to iterate through the list of observers.
All ConcreteSubject has to do is to inherit from Subject and call Notify() when a
state change occurs. In languages that only support single inheritance (such as Java
or C#), inheriting from Subject precludes the class from inheriting from any other
class. This can be a problem because in many cases ConcreteSubject is a domain
object that may inherit from a domain object base class. Therefore, it is a better idea

Enterprise Solution Patterns Using Microsoft .NET124

to replace the Subject class with a Subject interface and to provide a helper class for
the implementation (see Figure 3.33). This way, you do not exhaust your single
superclass relationship with the Subject class but can use the ConcreteSubject in
another inheritance hierarchy. Some languages (for example, Smalltalk) even imple-
ment the Subject interface as part of the Object class, from which every class inherits
implicitly.

<<interface>>
Observer

+subscribe(Observer)
+unsubscribe(Observer)
+Notify()

<<interface>>
Subject

+Update()

ConcreteSubject

1
SubjectHelper

observers : Collection

ConcreteObserver

Iterates through
list of observers

Delegates
interface methods
to helper class

Figure 3.33
Using a helper class to avoid inheriting from the Subject class

Unfortunately, you now have to add code to each class that inherits from the Subject
interface to implement the methods defined in the interface. This task can become
very repetitious. Also, because the domain object coincides with ConcreteSubject,
it cannot differentiate between different types of state changes that would be
associated with different subjects. This only allows observers to subscribe to all state
changes of ConcreteSubject, even though you may want to be more selective (for
example, if the source object contains a list, you may want to be notified of updates,
but not of insertions). You could have the observers filter out notifications that are
not relevant, but that makes the solution less efficient, because ConcreteSubject
calls all the observers just to find out that they are really not interested.

You can resolve these issues by separating the subject completely from the source
class (see Figure 3.34). Doing so reduces ConcreteSubject to the implementation of
the Subject interface; it has no other responsibilities. This allows DomainObject to
be associated with more than one ConcreteSubject so that you can differentiate
between different types of events for a single domain class.

Chapter 3: Web Presentation Patterns 125

<<interface>>
Observer

+subscribe(Observer)
+unsubscribe(Observer)
+Notify()

<<interface>>
Subject

+Update()

DomainObject
ConcreteSubject

observers : Collection

ConcreteObserver

*

Iterates through
list of observers

Figure 3.34
Separating DomainObject and Subject

The event and delegate features in the .NET Framework implement this approach
as a language construct so that you do not even have to implement your own
ConcreteSubject classes anymore. Basically, events replace the ConcreteSubject
classes, and delegates implement the role of the Observer interface.

Propagating State Information
So far, this solution has described how a client object can notify the observers when
a state change occurs, but has not yet discussed how the observers find out which
state the client object is in. There are two mechanisms for passing this information
to the observers:
� Push model. In the push model, the client sends all relevant information regarding

the state change to the subject, which passes the information on to each observer.
If the information is passed in a neutral format (for example, XML), this model
keeps the dependent observers from having to access the client directly for more
information. On the other hand, the subject has to make some assumptions
about which information is relevant to the observers. If a new observer is
added, the subject may have to publish additional information required by that
observer. This would make the subject and the client once again dependent on
the observers — the problem you were trying to solve in the first place. So when
using the push model, you should err on the side of inclusion when determining
the amount of information to pass to the observers. In many cases, you would
include a reference to the subject in the call to the observer. The observers can
use that reference to obtain state information.

� Pull model. In the pull model, the client notifies the subject of a state change.
After the observers receive notification, they access the subject or the client for
additional data (see Figure 3.35) by using a getState() method. This model does
not require the subject to pass any information along with the update() method,

Enterprise Solution Patterns Using Microsoft .NET126

but it may require that the observer call getState() just to figure out that the state
change was not relevant. As a result, this model can be a little more inefficient.
Another possible complication occurs when the observer and the subject run in
different threads (for example, if you use RMI to notify the observers). In this
scenario, the internal state of the subject may have changed again by the time the
observer obtains the state information through the callback. This may cause the
observer to skip an operation.

Update

Notify

Update

getState

getState

aDomain
Object

another
Observer

aSubject anObserver

Figure 3.35
State propagation using the pull model

When to Trigger an Update
When implementing the Observer pattern, you have two options for managing the
triggering of the update. The first option is to insert the call to Notify() in the client
right after each call to Subject that affects an internal state change. This gives
the client full control over the frequency of the notification, but also adds extra
responsibility to the client, which can lead to errors if the developer forgets to call
Notify(). The other choice is to encapsulate the call to Notify() inside each state-
changing operation of Subject. This way, a state change always causes Notify() to be
called without additional action from the client. The downside is that several nested
operations might cause multiple notifications. Figure 3.36 shows an example of this

Chapter 3: Web Presentation Patterns 127

in which Operation A calls Sub-Operation B and an observer might receive two calls
to its Update method.

Update

Operation A part 1

Operation A part 2

Sub-Operation B

Execute logic B

Notify

Operation A

Update

Notify

aClient aSubject anObserver

Figure 3.36
Extraneous notifications

Calling multiple updates for a single, but nested operation can cause some ineffi-
ciency, but also leads to more serious side effects: The subject could be in an invalid
state when the nested Notify method is invoked at the end of Operation B (see
Figure 3.36) because Operation A has only been processed part of the way. In this
case, the nested notify should be avoided. For example, Operation B can be extracted
out into a method without notification logic and can rely on the call to Notify()
inside Operation A. Template Method [Gamma95] is a useful construct for making
sure the observers are notified only once.

Enterprise Solution Patterns Using Microsoft .NET128

Observers Affecting State Change
In some cases, an observer may change the state of the subject while it is processing
the update() call. This could lead to problems if the subject automatically calls
Notify() after each state change. Figure 3.37 shows why.

Notify

Notify

Update

getState

Operation A

Update

aDomain
Object

aSubject anObserver

Infinite
Loop!

Figure 3.37
Modifying object state from within Update causes an infinite loop

In this example, the observer performs Operation A in response to the state change
notification. If Operation A changes the state of DomainObject, it then triggers
another call to Notify(), which in turn calls the Update method of the observer
again. This results in an infinite loop. The infinite loop is easy to spot in this simple
example, but if relationships are more complicated, it may be difficult to determine
the dependency chain. One way to reduce the likelihood of infinite loops is to make
the notification interest-specific. For example, in C#, use the following interface for
subject, where Interest could be an enumeration of all types of interest:

interface Subject
{
public void addObserver(Observer o, Interest a);
public void notify(Interest a);
...

Chapter 3: Web Presentation Patterns 129

}

interface Observer
{
 public void update(Subject s, Interest a);
}

Allowing observers to be notified only when an event related to their specific
interest occurs reduces the dependency chain and helps to avoid infinite loops.
This is equivalent to defining multiple, more narrowly defined, event types in
.NET. The other option for avoiding the loop is to introduce a locking mechanism
to keep the subject from publishing new notifications while it is still inside the
original Notify() loop.

Example
See Implementing Observer in .NET.

Resulting Context
Because Observer supports loose coupling and reduces dependencies, should you
loosely couple every pair of objects that depend on each other? Certainly not. As is
the case with most patterns, one solution rarely solves all problems. You need to
consider the following tradeoffs when employing the Observer pattern.

Benefits
� Loose coupling and reduced dependencies. The client is no longer dependent on

the observers because it is isolated through the use of a subject and the Observer
interface. This advantage is used in many frameworks where application compo-
nents can register to be notified when (lower-level) framework events occur. As a
result, the framework calls the application component, but is not dependent on it.

� Variable number of observers. Observers can attach and detach during runtime
because the subject makes no assumptions about the number of observers. This
feature is useful in scenarios where the number of observers is not known at
design time (for example, if you need an observer for each window that the user
opens in the application).

Liabilities
� Decreased performance. In many implementations, the update() methods of the

observers may execute in the same thread as the subject. If the list of observers is
long, the Notify() method may take a long time. Abstracting object dependencies
does not mean that adding observers has no impact on the application.

� Memory leaks. The callback mechanism (when an object registers to be called
later) used in Observer can lead to a common mistake that results in memory leaks,

Enterprise Solution Patterns Using Microsoft .NET130

even in managed C# code. Assuming that an observer goes out of scope but
forgets to unsubscribe from the subject, the subject still maintains a reference to
the observer. This reference prevents garbage collection from reallocating the
memory associated with the observer until the subject object is destroyed as well.
This can lead to serious memory leaks if the lifetime of the observers is much
shorter than the lifetime of the subject (which is often the case).

� Hidden dependencies. The use of observers turns explicit dependencies (through
method invocations) into implicit dependencies (via observers). If observers are
used extensively throughout an application, it becomes nearly impossible for a
developer to understand what is happening by looking at the source code. This
makes it very difficult to understand the implications of code changes. The
problem grows exponentially with the levels of propagation (for example, an
observer acting as Subject). Therefore, you should limit the use of observers to
few well-defined interactions, such as the interaction between model and view
in the Model-View-Controller pattern. The use of observers between domain objects
should generally be cause for suspicion.

� Testing/Debugging difficulties. As much as loose coupling is a great architectural
feature, it can make development more difficult. The more you decouple two
objects, the more difficult it becomes to understand the dependencies between
them when looking at the source code or a class diagram. Therefore, you should
only loosely couple objects if you can safely ignore the association between them
(for example, if the observer is free of side effects).

Related Patterns
For more information, see Implementing Observer in .NET.

Acknowledgments
[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Chapter 3: Web Presentation Patterns 131

Implementing Observer in .NET

Context
You are building an application in Microsoft® .NET and you have to notify depen-
dent objects of state changes without making the source object depend on the
dependent objects.

Background
To explain how to implement Observer in .NET and the value provided by limiting
the dependencies between objects, the following example refactors a solution, which
has a bidirectional dependency, first into an implementation based on the Observer
pattern defined in Design Patterns [Gamma95], then into a modified form of the
Observer pattern for languages that have single inheritance of implementation, and
finally into a solution that uses the .NET Framework language constructs delegates
and events.

The example problem has two classes, Album and BillingService (See Figure 3.38).

Album BillingService

Figure 3.38
Example UML static diagram

These two objects interact to play albums and to charge end-users each time an
album is played.

Album.cs
The following example shows the implementation of the Album class:

using System;

public class Album
{
 private BillingService billing;
 private String name;

 public Album(BillingService billing,
 string name)
 {
 this.billing = billing;
 this.name = name;
 }

Enterprise Solution Patterns Using Microsoft .NET132

 public void Play()
 {
 billing.GenerateCharge(this);

 // code to play the album
 }

 public String Name
 {
 get { return name; }
 }
}

BillingService.cs
The following example shows the implementation of the BillingService class:

using System;

public class BillingService
{
 public void GenerateCharge(Album album)
 {
 string name = album.Name;
 // code to generate charge for correct album
 }
}

These classes have to be created in a specific order. Because the Album class needs
the BillingService object for construction, it must be constructed last. After the
objects are instantiated, the user is charged every time the Play method is called.

Client.cs
The following class, Client, demonstrates the construction process:

using System;

class Client
{
 [STAThread]
 static void Main(string[] args)
 {
 BillingService service = new BillingService();
 Album album = new Album(service, "Up");

 album.Play();
 }
}

Chapter 3: Web Presentation Patterns 133

This code works, but there are at least two issues with it. The first is a bidirectional
dependency between the Album class and the BillingService class. Album makes
method calls on BillingService, and BillingService makes method calls on Album.
This means that if you need to reuse the Album class somewhere else, you have to
include BillingService with it. Also, you cannot use the BillingService class without
the Album class. This is not desirable because it limits flexibility.

The second issue is that you have to modify the Album class every time you add or
remove a new service. For example, if you want to add a counter service that keeps
track of the number of times albums are played, you must modify the Album class’s
constructor and the Play method in the following manner:

using System;

public class Album
{
 private BillingService billing;
 private CounterService counter;
 private String name;

 public Album(BillingService billing,
 CounterService counter,
 string name)
 {
 this.billing = billing;
 this.counter = counter;
 this.name = name;
 }

 public void Play()
 {
 billing.GenerateCharge(this);
 counter.Increment(this);

 // code to play the album
 }

 public String Name
 {
 get { return name; }
 }
}

This gets ugly. These types of changes clearly should not involve the Album class
at all. This design makes the code difficult to maintain. You can, however, use the
Observer pattern to fix these problems.

Enterprise Solution Patterns Using Microsoft .NET134

Implementation Strategy
This strategy discusses and implements a number of approaches to the problems
described in the previous section. Each solution attempts to correct issues with the
previous example by removing portions of the bidirectional dependency between
Album and BillingService. The first solution describes how to implement the
Observer pattern by using the solution described in Design Patterns [Gamma95].

Observer
The Design Patterns approach uses an abstract Subject class and an Observer interface
to break the dependency between the Subject object and the Observer objects. It
also allows for multiple Observers for a single Subject. In the example, the Album
class inherits from the Subject class, assuming the role of the concrete subject
described in the Observer pattern. The BillingService class takes the place of the
concrete observer by implementing the Observer interface, because the BillingService
is waiting to be told when the Play method is called. (See Figure 3.39.)

+AddObserver(in observer : Observer) : void
+RemoveObserver(in observer : Observer) : void
+Notify() : void

Subject

+Update(in subject : object) : void
-GenerateCharge(in album : Album) : void

BillingService

+Play() : void

Album

+Update(in subject : object) : void

«interface»
Observer

*

Figure 3.39
Observer class diagram

By extending the Subject class, you eliminate the direct dependence of the Album
class on the BillingService. However, you now have a dependency on the Observer
interface. Because Observer is an interface, the system is not dependent on the actual
instances that implement the interface. This allows for easy extensions without
modifying the Album class. You still have not removed the dependency between
BillingService and Album. This one is less problematic, because you can easily add
new services without having to change Album. The following examples show the
implementation code for this solution.

Chapter 3: Web Presentation Patterns 135

Observer.cs

The following example shows the Observer class:

using System;

public interface Observer
{
 void Update(object subject);
}

Subject.cs

The following example shows the Subject class:

using System;
using System.Collections;

public abstract class Subject
{
 private ArrayList observers = new ArrayList();

 public void AddObserver(Observer observer)
 {
 observers.Add(observer);
 }

 public void RemoveObserver(Observer observer)
 {
 observers.Remove(observer);
 }

 public void Notify()
 {
 foreach(Observer observer in observers)
 {
 observer.Update(this);
 }
 }
}

Album.cs

The following example shows the Album class:

using System;

public class Album : Subject
{
 private String name;

 public Album(String name)
 { this.name = name; }

Enterprise Solution Patterns Using Microsoft .NET136

 public void Play()
 {
 Notify();

 // code to play the album
 }

 public String Name
 {
 get { return name; }
 }
}

BillingService.cs

The following example shows the BillingService class:

using System;

public class BillingService : Observer
{
 public void Update(object subject)
 {
 if(subject is Album)
 GenerateCharge((Album)subject);
 }

 private void GenerateCharge(Album album)
 {
 string name = album.Name;

 //code to generate charge for correct album
 }
}

You can verify in the example that the Album class no longer depends on the
BillingService class. This is very desirable if you need to use the Album class in a
different context. In the “Background” example, you would need to bring along
the BillingService class if you wanted to use Album.

Client.cs

The following code describes how to create the various objects and the order in
which to do it. The biggest difference between this construction code and the
“Background” example is how the Album class finds out about BillingService.
In the “Background” example, BillingService was passed explicitly as a construction
parameter to Album. In this example, you call a function named AddObserver to
add the BillingService, which implements the Observer interface.

Chapter 3: Web Presentation Patterns 137

using System;

class Client
{
 [STAThread]
 static void Main(string[] args)
 {
 BillingService billing = new BillingService();
 Album album = new Album("Up");

 album.AddObserver(billing);

 album.Play();
 }
}

As you can see, the Album class has no references to the billing service. All it has
to do is to inherit from the Subject class. The Client class passes a reference to an
instance of the BillingService to the album, but the language runtime automatically
casts the BillingService reference into a reference to the Observer interface. The
AddObserver method (implemented in the Subject base class) deals only with
references to the Observer interface; it does not mention the billing service either.
This, therefore, eliminates the dependency of the Album class to anything related
to billing services. However, there still are a number of issues:
� Use of inheritance to share the Subject implementation. The Microsoft Visual

Basic® .NET development system and the C# language allow for single inheritance
of implementation and multiple inheritance of interfaces. In this example, you
need to use single inheritance to share the Subject implementation. This precludes
using it to categorize Albums in an inheritance hierarchy.

� Single observable activity. The Album class notifies the observers whenever the
Play method is called. If you had another function, such as Cancel, you would
have to send the event along with the Album object to the services so they would
know if this were a Play or Cancel event. This complicates the services, because
they are notified of events that they may not be interested in.

� Less explicit, more complicated. The direct dependency is gone, but the code is
less explicit. The initial implementation had a direct dependency between Album
and BillingService, so it was easy to see how and when the GenerateCharge
method was called. In this example, Album calls the Notify method in Subject,
which iterates through a list of previously registered Observer objects and calls
the Update method. This method in the BillingService class calls GenerateCharge.
If you are interested in a great description of the virtues of being explicit, see
“To Be Explicit,” Martin Fowler’s article in IEEE Software [Fowler01].

Enterprise Solution Patterns Using Microsoft .NET138

Modified Observer
The primary liability of Observer [Gamma95] is the use of inheritance as a means
for sharing the Subject implementation. This also limits the ability to be explicit
about which activities Observer is interested in being notified about. To solve these
problems, the next part of the example introduces the modified Observer. In this
solution, you change the Subject class into an interface. You also introduce another
class named SubjectHelper, which implements the Subject interface (See Figure 3.40).

+AddObserver(in observer : Observer) : void
+RemoveObserver(in observer : Observer) : void
+Notify() : void

«interface»
Subject

+Update(in subject : object) : void
-GenerateCharge(in album : Album) : void

BillingService

+Update(in subject : object) : void

«interface»
Observer

1

+Play() : void

Album

*

*

SubjectHelper

Figure 3.40
Modified Observer class diagram

The Album class contains SubjectHelper and exposes it as a public property. This
allows classes like BillingService to access the specific SubjectHelper and indicate
that it is interested in being notified if Album changes. This implementation also
allows the Album class to have more than one SubjectHelper; perhaps, one per
exposed activity. The following code implements this solution (the Observer
interface and BillingService class are omitted here because they have not changed).

Subject.cs

In the following example, Notify has changed because you now have to pass the
Subject into the SubjectHelper class. This was unnecessary in the Observer
[Gamma95] example because the Subject class was the base class.

Chapter 3: Web Presentation Patterns 139

using System;
using System.Collections;

public interface Subject
{
 void AddObserver(Observer observer);
 void RemoveObserver(Observer observer);
 void Notify(object realSubject);
}

SubjectHelper.cs

The following example shows the newly created SubjectHelper class:

using System;
using System.Collections;

public class SubjectHelper : Subject
{
 private ArrayList observers = new ArrayList();

 public void AddObserver(Observer observer)
 {
 observers.Add(observer);
 }

 public void RemoveObserver(Observer observer)
 {
 observers.Remove(observer);
 }

 public void Notify(object realSubject)
 {
 foreach(Observer observer in observers)
 {
 observer.Update(realSubject);
 }
 }
}

Album.cs

The following example shows how the Album class changes when using
SubjectHelper instead of inheriting from the Subject class:

using System;

public class Album
{
 private String name;
 private Subject playSubject = new SubjectHelper();

Enterprise Solution Patterns Using Microsoft .NET140

 public Album(String name)
 { this.name = name; }

 public void Play()
 {
 playSubject.Notify(this);

 // code to play the album
 }

 public String Name
 {
 get { return name; }
 }

 public Subject PlaySubject
 {
 get { return playSubject; }
 }
}

Client.cs

The following example shows how the Client class changes:

using System;

class Client
{
 [STAThread]
 static void Main(string[] args)
 {
 BillingService billing = new BillingService();
 CounterService counter = new CounterService();
 Album album = new Album("Up");

 album.PlaySubject.AddObserver(billing);
 album.PlaySubject.AddObserver(counter);

 album.Play();
 }
}

You can probably already see some of the benefits of reducing coupling between
the classes. For example, the BillingService class did not have to change at all, even
though this refactoring rearranged the implementation of Subject and Album quite
a bit. Also, the Client class is easier to read now, because you can specify to which
particular event you attach the services.

Chapter 3: Web Presentation Patterns 141

The modified Observer solution clearly solves the problems from the previous
solution. In fact, it is the preferred implementation for languages that only have
single inheritance of implementation. However, this solution still shows the
following liabilities:
� More complicated. The original solution consisted of two classes that talked

directly to each other in an explicit fashion; now you have two interfaces and
three classes that talk indirectly, and a lot of code that was not there in the first
example. No doubt, you are starting to wonder if that dependency was not so
bad in the first place. Keep in mind, though, that the two interfaces and the
SubjectHelper class can be reused by as many observers as you want. So it is
likely that you will have to write them only once for the whole application.

� Less explicit. This solution, like Observer [Gamma95], makes it difficult to
determine which observer is observing the changes to Subject.

So this solution makes good object-oriented design, but requires you to create a lot
of classes, interfaces, associations, and so on. Is all of that really necessary in .NET?
The answer is, “no,” as the following example shows.

Observer in .NET
The built-in features of .NET help you to implement the Observer pattern with much
less code. There is no need for the Subject, SubjectHelper, and Observer types
because the common language runtime makes them obsolete. The introduction of
delegates and events in .NET provides a means of implementing Observer without
developing specific types.

In the .NET-based implementation, an event represents an abstraction (supported
by the common language runtime and various compilers) of the SubjectHelper class
described earlier in “Modified Observer.” The Album class exposes an event type
instead of SubjectHelper. The observer role is slightly more complicated. Rather
than implementing the Observer interface and registering itself with the subject,
an observer must create a specific delegate instance and register this delegate with
the subject’s event. The observer must use a delegate instance of the type specified
by the event declaration; otherwise, registration will fail. During the creation of this
delegate instance, the observer provides the name of the method (instance or static)
that will be notified by the subject. After the delegate is bound to the method, it
may be registered with the subject’s event. Likewise, this delegate may be unregis-
tered from the event. Subjects provide notification to observers by invocation of
the event. [Purdy02]

The following code examples highlight the changes you must make to the example
in “Modified Observer” to use delegates and events.

Enterprise Solution Patterns Using Microsoft .NET142

Album.cs

The following example shows how the Album class exposes the event type:

using System;

public class Album
{
 private String name;

 public delegate void PlayHandler(object sender);
 public event PlayHandler PlayEvent;

 public Album(String name)
 { this.name = name; }

 public void Play()
 {
 Notify();

 // code to play the album
 }

 private void Notify()
 {
 if(PlayEvent != null)
 PlayEvent(this);
 }

 public String Name
 {
 get { return name; }
 }

}

BillingService.cs

As the following example shows, the changes to the BillingService class from the
example in “Modified Observer” only involve removing the implementation of the
Observer interface:

using System;

public class BillingService
{
 public void Update(object subject)
 {
 if(subject is Album)
 GenerateCharge((Album)subject);
 }

 private void GenerateCharge(Album theAlbum)
 {

Chapter 3: Web Presentation Patterns 143

 //code to generate charge for correct album
 }
}

Client.cs

The following example shows how the Client class has been modified to use the
new event that is exposed by the Album class:

using System;

class Client
{
 [STAThread]
 static void Main(string[] args)
 {
 BillingService billing = new BillingService();
 Album album = new Album("Up");

 album.PlayEvent += new Album.PlayHandler(billing.Update);
 album.Play();
 }
}

As you can see, the structure of the program is nearly identical to the previous
example. The built-in features of .NET replace the explicit Observer mechanism.
After you get used to the syntax of delegates and events, their use becomes more
intuitive. You do not have to implement the SubjectHelper class and the Subject
and Observer interfaces described in “Modified Observer.” These concepts are
implemented directly in the common language runtime.

The greatest benefit of delegates is their ability to refer to any method whatsoever
(provided that it conforms to the same signature). This permits any class to act as
an observer, independent of what interfaces it implements or classes it inherits from.
While the use of the Observer and Subject interfaces reduced the coupling between
the observer and subject classes, use of delegates completely eliminates it. For more
information on this topic, see “Exploring the Observer Design Pattern,” in the
MSDN® developer program library [Purdy02].

Testing Considerations
Because delegates and events completely eliminate the bidirectional assembly between
Album and BillingService, you can now write tests for each class in isolation.

Enterprise Solution Patterns Using Microsoft .NET144

AlbumFixture.cs
The AlbumFixture class describes example unit tests in NUnit (http://www.nunit.org)
that verify that the PlayEvent is fired when the Play method is called:

using System;
using NUnit.Framework;

[TestFixture]
public class AlbumFixture
{
 private bool eventFired;
 private Album album;

 [SetUp]
 public void Init()
 {
 album = new Album("Up");
 eventFired = false;
 }

 [Test]
 public void Attach()
 {
 album.PlayEvent += new Album.PlayHandler(OnPlay);
 album.Play();

 Assertion.AssertEquals(true, eventFired);
 }

 [Test]
 public void DoNotAttach()
 {
 album.Play();
 Assertion.AssertEquals(false, eventFired);
 }

 private void OnPlay(object subject)
 {
 eventFired = true;
 }
}

Resulting Context
The benefits of implementing Observer in .NET with the delegates and events model
clearly outweigh the potential liabilities.

Chapter 3: Web Presentation Patterns 145

Benefits
Implementing Observer in .NET provides the following benefits:
� Eliminates dependencies. The examples clearly showed that the dependency

was eliminated from the Album and BillingService classes.
� Increases extensibility. The “Observer in .NET” example demonstrated how

easy it was to add new types of observers. The Album class is an example of the
Open/Closed Principle, first written by Bertrand Meyer in Object-Oriented Soft-
ware Construction, 2nd Edition [Bertrand00], which describes a class that is open
to extension but closed to modification. The Album class embodies this principle
because you can add observers of the PlayEvent without modifying the Album
class.

� Improves testability. “Testing Considerations” demonstrated how you could
test the Album class without having to instantiate BillingService. The tests
verified that the Album class worked correctly. The tests also provide an
excellent example of how to write BillingService.

Liabilities
As shown in the example, the implementation of Observer is simple and straight-
forward. However, as the number of delegates and events increases, it becomes
difficult to follow what happens when an event is fired. As a result, the code can
become very difficult to debug because you must search through the code for the
observers.

Related Patterns
For more background on the concepts discussed here, see the following related patterns:
� Observer
� Model-View-Controller

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Fowler01] Fowler, Martin. “To Be Explicit.” IEEE Software, November/December
2001.

[Purdy02] Purdy, Doug; Richter, Jeffrey. “Exploring the Observer Design Pattern.”
MSDN Library, January 2002. Available at: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/observerpattern.asp.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Bertrand00] Meyer, Bertrand. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 2000.

4
Deployment Patterns

“What do you mean it doesn’t run in production? It ran fine in the development
environment.” — Anonymous developer

Building enterprise class solutions involves not only developing custom software,
but also deploying this software into a production server environment. This is where
software development efforts intersect with systems infrastructure efforts. Bringing
these two disciplines together effectively requires a common understanding of the
issues involved and a strong set of application and system infrastructure skills. The
required skills are rarely found in a single team; therefore, deployment activities often
involve the collaboration of several teams, with each team contributing specialized
skills. To simplify discussion, this chapter assumes that there are two teams: the
application development team and the system infrastructure team.

Bringing Teams Together
The application development team is responsible for developing and maintaining
a set of software components that fulfill the application’s requirements. This team
is primarily concerned with meeting functional requirements quickly and flexibly.
Its members seek to manage complexity by creating software abstractions that make
the system easy to extend and maintain.

The system infrastructure team is responsible for building and maintaining the
servers and network infrastructure. Its members are primarily concerned with
such operational requirements as security, availability, reliability, and performance.
Stability and predictability are critical success factors, which are primarily addressed
by controlling change and by managing known good configurations.

Enterprise Solution Patterns Using Microsoft .NET148

The forces acting on the application development team are quite different from the
forces acting on the system infrastructure team. The result is an inherent tension
between the two teams. If this tension is not addressed, the resulting solution may
be optimized for one team or the other, but it will not be an optimal business solution.
Resolving the tension is a critical element for delivering a holistic, software-intensive
enterprise solution that is optimized for the overall needs of the business.

The patterns in this chapter help reduce the tension between the teams by offering
guidance on how to optimally structure your applications and technical infrastructure
to efficiently fulfill the solution’s requirements. The patterns then discuss how to
map the software structure to the hardware infrastructure. Specifically, this chapter
presents a set of patterns that enable you to:
� Organize your software application into logical layers.
� Refine your logical layering approach to provide and consume services.
� Organize your hardware into physical tiers, so you can scale out.
� Refine your physical tier strategy in a three-tiered configuration.
� Allocate processes to processors with a deployment plan.

Patterns Overview
Although the concepts of layer and tier are often used interchangeably, the patterns
in this chapter make a strong distinction between the two terms. A layer is a logical
structuring mechanism for the elements that make up your software solution;
a tier is a physical structuring mechanism for the system infrastructure. The first set
of patterns in this cluster deals with the logical structuring of the software application
into layers. The second set of patterns explores the physical structuring of the
system infrastructure into tiers. Figure 4.1 shows both sets of patterns and their
interrelationships.

Chapter 4: Deployment Patterns 149

Application Deployment Infrastructure

Layered Application

Deployment

3-Layered
Services

Application

4-Layered
Services

Application

Tiered Distribution

3-Tiered
Distribution

4-Tiered
Distribution

Figure 4.1
Deployment cluster

Application Patterns
The first pattern in this cluster, Layered Application, organizes a software application
into a set of logical layers for the purpose of managing dependencies and creating
pluggable components. The pattern defines exactly what a layer is and then describes
how to define your own layers. It also describes some additional techniques that build
on and amplify the benefits of using a layered application. One of the key benefits
of Layered Application is that the well-defined interfaces and strong dependency
management gives you a great deal of flexibility in deploy an application. Although
it is very hard to distribute a single-layered application across multiple servers, it is
much easier to divide the application at layer boundaries and distribute the different
parts to multiple servers. Not every layer boundary makes a good distribution
boundary, however, because the forces that mold your layering decisions are different
from the forces that shape your distribution decisions. For more information, see
Deployment Plan.

Layered Application is applied extensively throughout the software development world.
A common implementation of the pattern for enterprise applications is three-layered
application. This implementation defines three layers: presentation, business, and
data. Although you can add more layers, these three layers are almost always
needed for enterprise business applications.

Enterprise Solution Patterns Using Microsoft .NET150

Most enterprise applications are now developed using a component-based approach.
Although many definitions of a component exist, the simplest definition is that a
component is a unit of self-contained software functionality that can be independently
deployed. Components can be plugged into and out of an execution environment
that exposes an agreed-on set of interfaces at runtime. This pluggability offers a great
deal of flexibility when it comes to deployment. The self-contained aspect of compo-
nents makes them the smallest units at which deployment decisions can be made.

Three-Layered Services Application refines Layered Application to provide specific
structuring guidance for enterprise applications that collaborate with other enterprise
applications in a larger service-oriented architecture. It expands on the typical three
layers described earlier and defines a set of component types for each layer.

Infrastructure Patterns
The next set of patterns in this cluster focuses on the physical infrastructure. The
context for these patterns is an infrastructure that supports an application distributed
over more than one server. Specifically, these patterns do not address mainframe
or other large multiprocessor infrastructure configurations.

Tiered Distribution organizes the system infrastructure into a set of physical tiers to
provide specific server environments optimized for specific operational requirements
and system resource usage. A single-tiered infrastructure is not very flexible; the
servers must be generically configured and designed around the strictest of opera-
tional requirements and must support the peak usage of the largest consumers of
system resources. Multiple tiers, on the other hand, enable multiple environments.
You can optimize each environment for a specific set of operational requirements
and system resource usage. You can then deploy components onto the tier that most
closely matches their resource needs and enables them to best meet their operational
requirements. The more tiers you use, the more deployment options you will have
for each component.

Three-Tiered Distribution refines Tiered Distribution to provide specific guidance on
structuring the infrastructure for Web applications with basic security and other
operational requirements. The pattern suggests that the solution’s servers be
organized into three tiers: client, Web application, and data. The client and data
tiers are self-explanatory, and the Web application tier hosts application business
components as well as the Web presentation components. For solutions with more
stringent security and operational requirements, you may want to consider moving
the Web functionality into its own tier.

Chapter 4: Deployment Patterns 151

Bringing Applications and Infrastructure Together
The final pattern in the cluster is Deployment Plan, which describes a process for
allocating components to tiers. During this process, it is critical to ensure proper
communication between the application development and system infrastructure
teams. All the previous patterns increase the deployment flexibility of the software
application and the systems infrastructure. Deployment Plan builds on this deployment
flexibility, which provides more options for the teams to resolve conflicts of interest.
Resolving these conflicts increases the chance of delivering a solution that provides
optimum business value. The pattern concludes by describing four common models
that typically result when this process is applied to enterprise applications: simple
Web application, complex Web application, extended enterprise, and rich client.

Deployment Patterns
Table 4.1 lists the patterns included in the deployment cluster, along with the prob-
lem statements for each, which should serve as a roadmap to the patterns.

Table 4.1: Deployment Patterns

Pattern Problem

Layered Application How do you structure an application to support such
operational requirements as maintainability, reusability,
scalability, robustness, and security?

Three-Layered Services Application How do you layer a service-oriented application and then
determine the components in each layer?

Tiered Distribution How should you structure your servers and distribute
functionality across them to efficiently meet the operational
requirements of the solution?

Three-Tiered Distribution How many tiers should you have, and what should
be in each tier?

Deployment Plan How do you determine which tier you should deploy each
of your components to?

Enterprise Solution Patterns Using Microsoft .NET152

Layered Application

Context
You are designing a complex enterprise application that is composed of a large
number of components across multiple levels of abstraction.

Problem
How do you structure an application to support such operational requirements as
maintainability, reusability, scalability, robustness, and security?

Forces
When structuring your application, you must reconcile the following forces within
the context of your environment:
� Localizing changes to one part of the solution minimizes the impact on other

parts, reduces the work involved in debugging and fixing bugs, eases application
maintenance, and enhances overall application flexibility.

� Separation of concerns among components (for example, separating the user
interface from the business logic, and separating the business logic from the
database) increases flexibility, maintainability, and scalability.

� Components should be reusable by multiple applications.
� Independent teams should be able to work on parts of the solution with minimal

dependencies on other teams and should be able to develop against well-defined
interfaces.

� Individual components should be cohesive.
� Unrelated components should be loosely coupled.
� Various components of the solution are independently deployed, maintained,

and updated, on different time schedules.
� Crossing too many component boundaries has an adverse effect on performance.
� To make a Web application both secure and accessible, you need to distribute

the application over multiple physical tiers. This enables you to secure portions
of the application behind the firewall and make other components accessible
from the Internet.

� To ensure high performance and reliability, the solution must be testable.

Chapter 4: Deployment Patterns 153

Solution
Separate the components of your solution into layers. The components in each layer
should be cohesive and at roughly the same level of abstraction. Each layer should
be loosely coupled to the layers underneath. Pattern-Oriented Software Architecture,
Vol 1 [Buschmann96] describes the layering process as follows:

Start at the lowest level of abstraction — call it Layer 1. This is the base of your
system. Work your way up the abstraction ladder by putting Layer J on top of
Layer J-1 until you reach the top level of functionality — call it Layer N.

Figure 4.2 shows how this layering scheme would look.

Layer J

Layer N

...

Layer J-1

...

Layer 1

Figure 4.2
Layers

Structure
The key to Layered Application is dependency management. Components in one layer
can interact only with peers in the same level or components from lower levels. This
helps reduce the dependencies between components on different levels. There are
two general approaches to layering: strictly layered and relaxed layered.

A strictly layered approach constrains components in one layer to interacting only
with peers and with the layer directly below. If the application is layered as shown
in Figure 2, for example, Layer J can only interact with components from Layer J-1,
Layer J-1 can only interact with Layer J-2, and so on.

A relaxed layered application loosens the constraints such that a component can
interact with components from any lower layer. Therefore, in Figure 2, not only can
Layer J interact with Layer J-1, but with layers J-2 and J-3.

The relaxed approach can improve efficiency because the system does not have
to forward simple calls from one layer to the next. On the other hand, the relaxed
approach does not provide the same level of isolation between the layers and makes
it more difficult to swap out a lower layer without affecting higher layers.

Enterprise Solution Patterns Using Microsoft .NET154

For large solutions involving many software components, it is common to have a
large number of components at the same level of abstraction that are not cohesive.
In this case, each layer may be further decomposed into one or more cohesive
subsystems. Figure 4.3 on the next page demonstrates a possible UML notation for
representing layers that are composed of multiple subsystems.

<<Layer>>
Layer 1

<<subsystem>>
Subsystem 1

<<subsystem>>
Subsystem 2

<<Layer>>
Layer 2

<<subsystem>>
Subsystem 3

Figure 4.3
UML representation of layers composed of subsystems

The basic Layered Application pattern is often augmented with the following
techniques:
� Layer Supertype [Fowler03]. If the components in the layer share a set of common

behaviors, you extract those behaviors into a common class or component from
which all the components in the layer inherit. Not only does this ease maintenance
and promote reuse, it also reduces the dependencies between layers by allowing
the common behaviors to be invoked through a runtime reference to the supertype
instead of a specific component.

� Abstract interface. An abstract interface is defined for each component in a layer
that is called by components in a higher level. The higher layers access the lower-
level components through the abstract interfaces instead of calling the components
directly. This allows the implementation of the lower-level components to change
without affecting the higher-level components.

� Layer Facade. For larger systems, it is common to use the Facade pattern to provide
a single unified interface to a layer or subsystem instead of developing an abstract
interface for each exposed component [Gamma95]. This gives you the lowest
coupling between layers, because higher-level components only reference the

Chapter 4: Deployment Patterns 155

facade directly. Be sure to design your facade carefully. It will be difficult to
change in the future, because so many components will depend on it.

Dynamics
There are basically two modes of interaction within the layered application:
� Top-down
� Bottom-up

In the top-down mode, an external entity interacts with the topmost layer of the
stack. The topmost layer uses one or more services of the lower-level layers. In turn,
each lower level uses the layers below it until the lowest layer is reached.

For the sake of discussion, this pattern assumes that the external entity is a client
application and the layered application is for a server-based application that exposes
its functionality as a set of services. Figure 4.4 is a UML sequence diagram that
depicts a common top-down scenario.

:Layer N:Client :Layer J :Layer J - 1 :Layer 1

Service 1

Action 1

Service 2

Action 3

Transaction 1

Step 1

Action 2

Figure 4.4
Sequence diagram of a top-down scenario

Enterprise Solution Patterns Using Microsoft .NET156

In this scenario, the client application consumes a set of services offered by a server-
based application. These services are exposed by the topmost layer of the server
application. Therefore, the client only must interact with the topmost layer and has
no direct knowledge of any lower layers. A couple of factors are worth noting.

First, a single incoming invocation can result in multiple outgoing invocations.
The invocation of Service 1 on Layer N illustrates this case. This quite often occurs
when a higher-level service aggregates the results of several lower-level services
or coordinates the execution of multiple lower services that must be executed in a
particular order. For example, an ASP.NET page might feed the output of a customer
domain component to an order component whose output is in turn fed to an invoice
component.

Second, this scenario illustrates the relaxed layered approach. The implementation
of Service 2 bypasses all the intermediate layers and calls Layer 1 directly. A common
example of this is a presentation layer accessing a data access layer directly, bypassing
any intermediate business logic layers. Data maintenance applications often use
this approach.

Third, an invocation of the service at the top layer does not necessarily invoke all
of the layers. This concept is illustrated by the Service 1 to Action 2 sequence, which
occurs when a higher level can process an invocation on its own or has cached the
results of an earlier request. For example, domain components quite often cache
results of database queries, which remove the need to invoke the data access layer
for future invocations.

In the bottom-up mode, Layer 1 detects a situation that affects higher levels. The
following scenario assumes that Layer 1 is monitoring the state of some external
entity such as the file system of the server on which the server application is running.
Figure 4.5 depicts a typical bottom-up scenario as a UML sequence diagram.

:FileSystem:Layer N :Layer J :Layer J - 1 :Layer 1

Presentation
Delegate

Domain
Delegate

Event 1

getState

Figure 4.5
Sequence diagram of a bottom-up scenario

Chapter 4: Deployment Patterns 157

In this scenario, Layer 1 is monitoring the state of the local file system. When it
detects a change, it fires an event exposed by a component from the J-1 layer. This
component then invokes a callback delegate of Layer J, where the state of the domain
layer is updated. The domain component then notifies Layer N that it has been
updated by a delegate provided by Layer N for that purpose.

As in the first scenario, an input at one level can result in multiple outputs. A lower
layer can notify any layer higher than it, not just the next higher layer. And finally,
a notification does not necessarily have to percolate up the entire chain.

Take careful notice of how differently the layers interact in the bottom-up scenario
as opposed to the top-down scenario. In the top-down scenario, higher layers call
lower layers directly and thus are dependent on them. In the bottom-up scenario,
however, lower layers communicate with higher layers through events, callbacks,
and delegates. This level of indirection is required to keep lower layers from being
dependent on higher layers. Making lower layers dependent on higher layers
reduces quite a few of the benefits that the layered architecture provides.

Implementation
There are basically two approaches to implementing the Layered Application pattern:
� Create your own layering scheme
� Reuse an existing layering scheme

Creating Your Own Layering Scheme

Buschmann provides a great discussion about implementing your own layered
application. A brief overview is provided here, but it is highly recommended that
you study the Layers pattern in Buschmann if you need to define your own layered
application. The outline of the process is as follows:
� Use a well-defined set of criteria to group the functionality of the solution into

a set of layers and define the services that each layer provides. This is an iterative
process in which you will likely try multiple combinations of criteria, numbers
of levels, functionality decomposition, and service assignments. UML sequence
diagrams describing the interactions of layers and solution components are an
ideal tool for understanding the tradeoffs involved with each candidate layering
scheme.

� Define the interfaces between each level and the protocols they require to commu-
nicate with each other. To avoid making lower levels dependent on higher levels,
use techniques such as asynchronous messaging, callbacks, and events for com-
munications that need to travel up the stack. Again, UML sequence diagrams are
a great tool for ensuring that you have a complete and consistent set of interfaces.
The diagrams give you a visual clue of the granularity or chattiness of your inter-
face and protocols. Be particularly aware of the number of times you cross a layer
boundary for a given scenario and look for opportunities to refactor your design

Enterprise Solution Patterns Using Microsoft .NET158

to reduce the number of boundary crossings. A key design decision is to determine
how much coupling should exist between levels. Do components in Layer J directly
access components in Layer J-1? This makes higher levels dependent on lower-level
implementation details. Patterns such as Facade and other decoupling techniques
should be explored to minimize this type of coupling.

� Design the implementation of the layers. Traditional object-oriented design
techniques work quite well for this task. Be sure to consider patterns such as
Adapter, Bridge, and Strategy [Gamma95] to enable the switching out of multiple
implementations of a given layer’s interface. This capability is especially valuable
when it comes to testing the interfaces and level implementations. Another critical
design decision is how to handle errors. A consistent error-handling strategy must
be defined across all the levels. Consider the following when designing your error-
handling strategy:
� Try to deal with the error at the lowest level possible.
� Avoid exposing lower-level abstractions to higher levels through the exception

handling mechanism.
� If you must escalate an exception up the stack, convert lower-level exceptions

to exceptions that have some meaning to the handling layer.

Reusing an Existing Layering Scheme

The other approach is to reuse an existing reference layered application to provide
structure for your applications. The canonical three-layered application consists of
the following three layers: presentation, domain, and data source. Even something
as simple as this goes a long way towards achieving the benefits of the Layered
Application pattern. An enhanced version of the canonical model is discussed in
Layered Services Application.

Martin Fowler has found the use of mediating layers between the presentation
and domain layers as well as between the domain and data source layers useful
at times. For more information, see Fowler ’s book, Patterns of Enterprise Application
Architecture [Fowler03].

Testing Considerations
Layered Application enhances testability in several ways:
� Because each layer interacts with the other layers only through well-defined

interfaces, it is easy to plug in alternative implementations of a layer. This allows
some testing on a layer before the layers it depends on are complete. In addition,
an alternative implementation that immediately returns a set of known good data
can be substituted for a layer that takes a long time to compute a correct answer,
thus speeding up test execution. This ability is greatly enhanced if the layered
supertype, abstract interface, and layer facade techniques are used, because they
further decrease the dependencies between layers.

Chapter 4: Deployment Patterns 159

� It is easier to test individual components, because the dependencies between
components are constrained such that components in higher levels can only call
components in lower levels. This helps to isolate individual components for testing
and facilitates swapping out lower-level components with special-purpose
testing components.

Example
It is quite common for enterprise application architects to compose their solutions
into the following three layers:
� Presentation. This layer is responsible for interacting with the user.
� Business. This layer implements the business logic of the solution.
� Data. This layer encapsulates the code that accesses the persistent data stores

such as a relational database.

For more information, see the Three-Layered Services Application pattern.

Resulting Context
Layered Application generally results in the following benefits and liabilities:

Benefits
� Maintenance of and enhancements to the solution are easier due to the low

coupling between layers, high cohesion between the layers, and the ability
to switch out varying implementations of the layer interfaces.

� Other solutions should be able to reuse functionality exposed by the various
layers, especially if the layer interfaces are designed with reuse in mind.

� Distributed development is easier if the work can be distributed at layer
boundaries.

� Distributing the layers over multiple physical tiers can improve scalability,
fault-tolerance, and performance. For more information, see the Tiered
Distribution pattern.

� Testability benefits from having well-defined layer interfaces as well
as the ability to switch out various implementations of the layer interfaces.

Liabilities
� The extra overhead of passing through layers instead of calling a component

directly can negatively affect performance. To help offset the performance hit,
you can use the relaxed layers approach, in which higher layers can directly
call lower layers.

� Development of user-intensive applications can sometime take longer if the
layering prevents the use of user interface components that directly interact
with the database.

Enterprise Solution Patterns Using Microsoft .NET160

� The use of layers helps to control and encapsulate the complexity of large
applications, but adds complexity to simple applications.

� Changes to lower-level interfaces tend to percolate to higher levels, especially
if the relaxed layered approach is used.

Acknowledgments
[Buschmann96] Buschmann, Frank, et al. Pattern-Oriented Software Architecture,
Vol 1. Wiley & Sons, 1996.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

Chapter 4: Deployment Patterns 161

Three-Layered Services Application

Context
You are designing a Layered Application. You want to expose some of the core
functionality of your application as services that other applications can consume,
and you want your application to consume services exposed by other applications.

Problem
How do you layer a service-oriented application and then determine the components
in each layer?

Forces
In addition to the forces discussed in Layered Application, the following forces apply:
� You always want to minimize the impact of adding services to an existing

application.
� Services are often exposed to clients outside the corporate firewall, and therefore

have different security and operational requirements than do business components.
� Communicating with other services involves significant knowledge of protocols

and data formats.
� You want to separate the concerns of your components so that you are only

changing them for one reason, such as to isolate your business logic from the
technology required to access an external service.

Solution
Base your layered architecture on three layers: presentation, business, and data.
This pattern presents an overview of the responsibilities of each layer and the
components that compose each layer. For more information, see the article,
“Application Architecture for .NET: Designing Applications and Services.” [PnP02].

Enterprise Solution Patterns Using Microsoft .NET162

C
om

m
unication

Business
Workflows (BW)

Service Interfaces (SI)

UI Components (UIC)

Users

UI Process Components (UIP)

Business
Components (BC)

Business
Entities (BE)

Data Access
Components (DAC)

Data
Sources

Services

Service Gateways (SG)

O
perational M

anagem
ent

S
ecurity

Figure 4.6
Three-Layered Services Application

Three-Layered Services Application, as presented here, is basically a relaxed three-
layered architecture. The three layers are:
� Presentation. The presentation layer provides the application’s user interface

(UI). Typically, this involves the use of Windows Forms for smart client inter-
action, and ASP.NET technologies for browser-based interaction.

� Business. The business layer implements the business functionality of the
application. The domain layer is typically composed of a number of components
implemented using one or more .NET – enabled programming languages. These
components may be augmented with Microsoft® .NET Enterprise Services for
scalable distributed component solutions and Microsoft BizTalk® Server for
workflow orchestration.

� Data The data layer provides access to external systems such as databases. The
primary .NET technology involved at this layer is ADO.NET. However, it is not
uncommon to use some .NET XML capabilities here as well.

Each layer should be structured as described in the following paragraphs.

Chapter 4: Deployment Patterns 163

Presentation Layer
For most business applications, a form metaphor is used to structure the presentation
layer. The application consists of a series of forms (pages) with which the user
interacts. Each form contains a number of fields that display output from lower
layers and collect user input.

Two types of components that implement forms-based user interfaces are:
� User interface components
� User interface process components

User Interface Components

For rich-client applications, this pattern uses UI components from the
System.Windows.Forms namespace of the .NET Framework. For Web applications,
this pattern uses ASP.NET components. If the standard .NET components do not
meet your needs, .NET supports subclassing of the standard UI components,
as well as plugging your own custom components into the framework.

User Interface Process Components

Complex user interfaces often require many highly complex forms. To increase
reusability, maintainability, and extensibility, you can create a separate user interface
process (UIP) component to encapsulate dependencies between forms and the logic
associated with navigating between them. You can apply the same concept to the
dependencies, validation, and navigation between components of a single form.
These UIP components are typically custom components that are based on design
patterns such as Front Controller, Application Controller [Fowler03], and Mediator
[Gamma95].

The interaction between UI and UIP components often follows the Model-View-
Controller or Presentation-Abstraction-Controller [Buschmann96] pattern.

Business Layer
Large enterprise applications are often structured around the concepts of business
processes and business components. These concepts are addressed through a number
of components, entities, agents, and interfaces in the business layer.

Business Components

In Business Component Factory, Peter Herzum and Oliver Sims define a business
component as follows:

The software implementation of an autonomous business concept or business
process. It consists of all the software artifacts necessary to represent, implement,
and deploy a given business concept as an autonomous, reusable element of a
larger distributed information system. [Herzum00]

Enterprise Solution Patterns Using Microsoft .NET164

Business components are the software realization of business concepts. They are
the primary units of design, implementation, deployment, maintenance, and
management for the life cycle of the business application. Business components
encapsulate the business logic, also called business rules. These rules constrain
the behavior of a business concept to match the needs of a particular company.
For example, the business rule that determines whether a given customer is approved
for a line of credit may be encapsulated in the customer business component for
small solutions. For larger solutions, it is likely that all credit-related business logic
is encapsulated in a separate credit component.

Note: Three-Layered Services Application diverges from the Herzum and Oliver definition in
that business processes components are separated into their own class: Business Workflow
Components.

Business Workflows

Business processes reflect the macro-level activities that the business performs.
Examples include order processing, customer support, and procurement of materials.
These business processes are encapsulated by business workflow components that
orchestrate one or more business components to implement a business process.
For example, a ProcessOrder business workflow component may interact with
Customer, Order, and Fulfillment business components to carry out the Process
Order business process. You can use any .NET language to develop custom business
workflow components. Alternatively, you can use BizTalk Server to define the
business process and automatically orchestrate the business components.

Business Entities

Business entities are data containers. They encapsulate and hide the details of
specific data representation formats. For instance, a business entity may initially
encapsulate a recordset obtained from a relational database. Later, that same
business entity may be modified to wrap an XML document with minimal impact
to the rest of the application.

Business and business workflow components can interact with independent business
entity components, or they can use a business entity to set their own state and then
discard the business entity. Business entities are often used as Data Transfer Objects
[Fowler03]. The data access components will often return business entities instead
of database-specific structures. This helps significantly in isolating database-specific
details to the data layer.

Service Interfaces

An application may expose some of its functionality as a service that other applica-
tions can use. A service interface presents this service to the outside world. Ideally,
it hides the implementation details and exposes only a course-grained business
interface. Service interfaces are often implemented using XML Web services.

Chapter 4: Deployment Patterns 165

If you are using a domain model, classes in your domain model are often realized
by one or more domain layer components.

Data Layer
Most business applications must access data that is stored in corporate databases,
which are most often relational databases. Data access components in this data layer
are responsible for exposing the data stored in these databases to the business layer.

Data Access Components

Data access components isolate the business layer from the details of the specific
data storage solution. This isolation provides the following benefits:
� Minimizes the impact of a change in database provider.
� Minimizes the impact of a change in data representation (for example, a change

in database schema).
� Encapsulates all code that manipulates a particular data item in one place. This

greatly simplifies testing and maintenance.

ADO.NET can be used directly as the data access components for simple applications.
More complex applications may benefit from developing a set of classes over
ADO.NET that help you to manage the complexities of object-relational mapping.

Service Gateways

Business components often must access internal and external services or applications.
A service gateway is a component that encapsulates the interface, protocol, and code
required to use such services. For example, a business solution often requires infor-
mation from the accounting system to complete a business process. The solution
would delegate all interaction with the accounting system to a service gateway. The
service gateway makes it much easier to change the external service provider.
The service gateway can even simulate the external service to facilitate testing of the
domain layer.

Foundation Services
In addition to the three standard layers, Three-Layered Services Application defines a
set of foundation services that all layers can use. These services fall into three basic
categories:
� Security. These services maintain application security.
� Operational management. These services manage components and associated

resources, and also meet operational requirements such as scalability and fault
tolerance.

� Communication. These are services, such as .NET remoting, SOAP, and asyn-
chronous messaging, which provide communication between components.

Enterprise Solution Patterns Using Microsoft .NET166

Resulting Context
Using Three-Layered Services Application results in the following benefits and liabilities:

Benefits
The three layers prescribed by this pattern are a great starting point for designing
your own solutions. You accrue most of the benefits of the Layered Architecture
pattern while minimizing the negative effects of having to cross too many layers.

Liabilities
For complex solutions, it may be necessary to further divide the domain layer,
especially if reuse is a high priority or if you are designing a family of solutions
based on a common set of components. In such cases, it is common to replace
the one business layer described in this pattern with the following three layers
(For details, see Larman02):
� Application. The application layer contains business components that are unique

to the application.
� Domain. The domain layer contains business components that are common

within the business domain. Examples include components related to the
insurance, energy, or banking industry.

� Business services. The business services layer contains business components
that provide common business functionality such as financial, product, and order
functionality.

One user interface layer may be insufficient for solutions that provide complex user
interfaces. Data validation, command processing, printing, and undo/redo are a few
examples of functionality that may require additional layering.

Acknowledgments
[Buschmann96] Buschmann, Frank, et al. Pattern-Oriented Software Architecture. John
Wiley & Sons Ltd, 1996.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Herzum00] Herzum, Peter and Sims, Oliver. Business Component Factory. John Wiley
and Sons, Inc., 2000.

[Larman02] Larman, Craig. Applying UML and Patterns. Prentice-Hall PTR, 2002.

[PnP02] patterns & practices, Microsoft Corporation. “Application Architecture
for .NET: Designing Applications and Services.” MSDN Library. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

Chapter 4: Deployment Patterns 167

Tiered Distribution

Context
You are designing the physical infrastructure on which your complex distributed
enterprise application will be hosted. You have decided to distribute your application
over multiple servers rather than over multiple processors on a multiprocessor
computer.

After you have made the decision to distribute your application over multiple com-
puters, you need to consider the consequences from the following three perspectives:
� System architecture. This perspective is fundamentally about servers. Key

aspects of this perspective include the number of servers, the role each server
plays in the solution, the relationship between servers, and how the multiple
servers collaborate together to meet system-level operational requirements.

� Application architecture. This perspective is fundamentally concerned with
components. Key aspects of this perspective include packaging components
into deployment units, mapping deployment units to operating system processes,
and mapping these processes to servers.

� Application administration. This perspective is fundamentally concerned with
executable modules, such as DLLs and executable files. Key aspects of this
perspective include packaging components into executable modules, delivering
and installing the executable modules onto the correct servers, and then config-
uring them.

This pattern addresses the system architecture perspective. Specifically, it addresses
the role each server plays in a solution.

Problem
How should you structure your servers and distribute functionality across them
to efficiently meet the operational requirements of the solution?

Forces
The following forces act on a system within this context and must be reconciled
as you consider a solution to the problem:
� Components of your application each consume different amounts of resources,

such as memory, processor capacity, file handles, IO sockets, disk space, and so on.
� Servers must be configured to provide an efficient environment for solution

components.
� A single-server configuration is not likely to meet the requirements of all the

components deployed within a complex enterprise application.

Enterprise Solution Patterns Using Microsoft .NET168

� Different servers have different scalability profiles that are determined by the type
of components they host. For example, the size of a database may increase at a
different rate than the number of users of the solution.

� Different servers have different security requirements that are determined by the
type of components they host. For example, components that present information
to the user often have different security requirements than components that
implement business logic.

� The techniques for meeting availability, reliability and fault-tolerance requirements
vary by type of component. For example, the solution’s database may be hosted
on a single server that is configured for maximum fault-tolerance and high
availability, while the Web components may achieve high availability and fault-
tolerance through arranging a group of Web servers into a server farm.

� Performance, political, or legal considerations may dictate the geographic
locations of specific servers and the components they host. For example, databases
containing sensitive corporate information may be hosted at secure corporate
data centers, but the application servers that contain the business logic may
reside at a third-party hosting facility.

� Every computer boundary that a component invocation crosses adversely affects
performance. Component invocations that cross the network are much slower
than component invocations in the same application domain or process.

� Licensing considerations may constrain the deployment of software components
to specific servers.

Solution
Structure your servers and client computers into a set of physical tiers. A tier is
composed of one or more computers that share one or more of the following
characteristics:
� System resource consumption profile. The components hosted on the tier’s

servers may use a set of system resources, such as memory, sockets, and I/O
channels, in a similar way. For instance, a solution may have a tier dedicated to
Web servers and another to database servers. The Web servers consume a lot of
network sockets and file descriptors, while the database servers consume a lot
of file I/O bandwidth and disk space. Using multiple tiers enables you to optimize
both the server configuration in the Web tier for Web access and the server
configuration in the data tier for data access.

� Operational requirements. The servers in a tier often share common operational
requirements, such as security, scalability, availability, reliability, and performance.
For example, servers in a Web tier are often configured in a server farm for
scalability and reliability, but the servers in a data tier are often configured
as highly available clusters.

Chapter 4: Deployment Patterns 169

Although tiered distribution affects all operational requirements, it has the most
impact on the system-level operational requirements, such as system security,
scalability, and availability.

� Design constraints. A tier may be dedicated to servers that share a common
design constraint. For instance, an organization’s security policy may dictate
that only Web servers are allowed on the public side of the perimeter network
(also known as DMZ, demilitarized zone, and screened subnet), and that
conversely, all application logic and corporate databases must reside on the
corporate side of the perimeter network.

The word “layer” is often used interchangeably with tier. However, this set of
patterns makes a distinction between the two. Conceptually, a tier is the hardware
equivalent of a software architecture layer (See Layered Application). Whereas layers
logically structure your application’s components, tiers physically structure your
solution’s servers. A useful heuristic for determining the number of tiers in a
solution is to count the number of computers involved in realizing a use case.
Do not count computers that are only loosely associated with a use case, such as
display terminals, Web proxies, caches, and file servers. The rest of this pattern
refers to this heuristic as the tiering heuristic.

Example
To provide a better understanding of just what a tier is, and the value provided
by distributing your solution over multiple tiers, the following discussion works
through an example of refactoring a monolithic single-tiered solution into a multi-
tiered solution. The example is an order-processing application, and only considers
one use case: Process Order. This use case is responsible for allowing a customer
service representative to enter an order into the system.

Single-Tiered Solution
Initially, the solution was designed for use by customer service agents and was
deployed on a mainframe with the rest of the company’s mission-critical applications.
Figure 4.7 shows this distribution.

Enterprise Solution Patterns Using Microsoft .NET170

Terminal

Mainframe

Order Processing

Application

Other

Application

Yet Another

Application

Terminal

Figure 4.7
Single-tiered distribution

According to the tiering heuristic, Figure 4.7 is a single-tiered application. One
computer does all the processing. The terminal does not perform any processing
in support of the use case other than to accept input and provide output to the
application’s users.

Deployment and administration are very easy, because only one computer is involved.

As the number of users and the load each user puts on the system increase, more
resources such as memory, processors, and disk space will be added to the system.
Eventually, the expansion capabilities of the single computer will be exhausted and
a second computer will be required. For mainframe-class computers, the cost
associated with adding a new computer can be very high. This factor severely
limits the options for scalability. At some point, adding a new user will cost you
an additional mainframe and the associated infrastructure.

The terminal has no processing power of its own. All work is done on the mainframe,
and the quality of the user experience is limited due to the limited user-interface
functionality.

As long as all the users of the system are within the company’s intranet, the security
of the solution is quite high. Most companies add additional security precautions
if the mainframe is exposed to the Internet.

Two-Tiered Solution
Several factors caused the company to switch to a two-tiered solution. First, the
customer service representatives required more robust user interfaces. Second, the
desire to take orders 24 hours per day affected the mainframe’s batch-processing
windows. Third, performance of the order-processing system was sometimes
unacceptable when the mainframe was under a high load.

Chapter 4: Deployment Patterns 171

As a result of these factors, the order-processing system was removed from the
mainframe and was rearchitected as a two-tiered fat-client solution. The fat-client
architecture puts most of the business logic on the client tier, leaving the other tier
to host the solution’s database. Figure 4.8 shows this distribution.

Client Computer

Order Processing
Application

Client Computer

Order Processing
Application

Database Server

Order
Database

Client Tier

Data Tier

Figure 4.8
Two-tiered distribution

The Process Order use case now involves two computers and thus is a two-tiered
solution according to the tiering heuristic. The user interacts with the order appli-
cation on the client computer, and the order application then obtains the data
required for the use case from the data tier.

Deployment and administration are now more complicated. The application must
be distributed, installed, and configured on each client computer, and a separate
installation for the server components (in this case, just the database) must be
maintained.

Scalability significantly improves over the single-tiered solution. Each user has
his or her own dedicated computer, so the only limit to scalability is how many
concurrent users the database servers can handle. Compared to a mainframe, the
database server is relatively low cost and can be dedicated to the order-processing
application. This allows the database server to be optimized for the usage patterns
of the order-processing application. If a single database server is ever unable to
handle the load, an additional database server can be added.

Each user computer has it own processor and a robust graphical user interface. The
order processing takes advantage of this by offering a much more interactive user
interface that ultimately results in increased productivity from the customer service
agents and lower error rates for the data entered.

Security is more complex in the two-tiered solution. Users typically log on to the
client application. Additionally, the data tier often requires a separate authentication

Enterprise Solution Patterns Using Microsoft .NET172

process. This requires the administration of two separate security systems and
increases the number of potential security vulnerabilities.

Three-Tiered Solution
To better serve key customers, the company decided to expose its order processing
application to some of its key customers through an extranet. To minimize deploy-
ment issues, the company decided to rearchitect the solution to allow access through
a Web browser and rich-client interfaces. Figure 4.9 shows this distribution.

Database Server

Order
Database

Client Computer

Order Processing
Rich Interface

Client Computer

Order Processing
Rich Interface

Web and Application Server

Client Tier

Application Tier

Data Tier

Web Server Application Server
Remoting Service

Order Processing Application

Figure 4.9
Three-tiered distribution

For more details about this distribution, see Three-Tiered Distribution. The following
section discusses the effects of moving the example to a three-tiered distribution.

The Process Order use case now involves three computers and therefore is a three-
tiered solution. The Web interface provides a basic interface to the order-processing
system that allows customers to perform common operations fairly efficiently. For
more complex tasks, customers must contact their customer support representative,
who uses the rich interface to carry out the task. The business logic has been extracted
out of the client tier and placed in its own application tier where many users can
share it. This application tier invokes the services of the data tier for its data needs.

Chapter 4: Deployment Patterns 173

According to the tiering heuristic, it is the number of computers involved in process-
ing a use case that determines the number of tiers, and not the number of computers
per tier. For example, it is common for Web-based solutions to have multiple servers
in the application tier arranged in a load balanced configuration. Because only one
computer in the tier is involved with a given use-case instance, the tier adds only one
computer to the tier count. Similarly, because the load balancer does not fundamen-
tally advance the use-case processing, it does not count toward the tier count either.

Deployment and administration tasks are simpler than with two-tiered distribution,
because most of the application logic is deployed on a centralized server. Therefore,
clients usually do not have to be updated for application changes that do not require
user interfaces changes. This is especially true for the browser-based user interfaces,
which involve virtually no deployment effort. The rich interface that the customer
support agents use involves somewhat more distribution effort, but the effort
required is still significantly less than that involved in a fat-client installation.

The application tier is often the scalability bottleneck in Web applications. Not only
does the application tier handle the Web server responsibilities, it also performs all
of the business logic processing for the solution. The application tier is most often
deployed in a server farm to achieve scalability and fault tolerance. A server farm is
a set of identical servers with a load balancer that distributes work evenly across the
server set. For more information, see Server Farm.

Configuring and tuning the application tier is more difficult due to the need to
balance the differing server resource requirements of the Web server components
and business processing components.

The database tier is virtually the same as described in a two-tiered distribution.

Computers on the client tier typically follow one of two strategies. For Web applica-
tions, the client tier uses the Web browser environment for interacting with the user.
Minimal configuration and tuning of the client computers is required, other than
adjusting network connectivity parameters and browser settings. As noted earlier,
this significantly reduces the client’s deployment and administrative costs. For rich
applications, the client application uses the computer resources on the client comput-
ers to significantly enhance the user experience. Additionally, some tasks can be
offloaded from the application tier at the expense of increasing the client computer ’s
deployment and administration burden.

The security concerns of three-tiered distribution are similar to those of two-tiered
distribution. However, the main security issue for this example is the fact that the
solution is now exposed to users who are external to the company. As a result, a
firewall configuration known as a perimeter network is usually placed between the
application and data tiers. The application tier is on the public side of the perimeter
network, because it also hosts the Web server, and most security professionals do not
grant external users access to servers on the corporate side of the perimeter network.

Enterprise Solution Patterns Using Microsoft .NET174

Four-Tiered Solution
The company has decided to expose its order-processing application to all its
customers over the Internet. Therefore, to increase security and scalability, the
company has once again rearchitected its solution by separating the Web servers
and applications servers into their own tiers. Figure 4.10 shows this distribution.

Database Server

Order
Database

Data Tier

Client Computer

Order Processing
Rich Interface

Client Computer

Order Processing
Web Interface

Client Tier

Application Tier

Web Server

Web Tier Order Processing Application
Virtual Directory

Application Server

Order Processing Application

Application Server Remoting Service

Figure 4.10
Four-tiered distribution

The Process Order use case now involves four computers and therefore is a four-
tiered solution. The flow is the same as for three tiers, except that the Web servers
have been separated into an additional tier, which adds one computer to the tier
count.

Chapter 4: Deployment Patterns 175

Because four-tiered distribution is very similar to three-tiered distribution, much
of the earlier discussion applies here. The primary areas where the two distributions
differ are configuration, scalability, and security.

The servers in the Web tier consume a different set of resources than servers in the
application tier. Therefore, separating them into separate tiers allows the two differ-
ent server types to optimize their resource usage. The servers on the Web tier can
now be optimized for Web server use, which typically involves lots of network
sockets and I/O throughput; the application tier servers can be optimized for
processing business transactions, which typically involves maximizing processor
utilization, threading, and database connections.

The Web tier typically addresses scalability and fault-tolerance through a Server Farm
as described earlier. The application tier addresses the same concerns through the
use of Server Cluster. A server cluster is a set of servers configured for high-availability
that appear to clients as one super server. For more information, see Server Cluster.

Separating the Web servers into a new tier enables the Web tier to be placed within
the perimeter network and the application tier servers to be placed on the corporate
side of the perimeter network. Now, if a fault allows unauthorized access to the Web
server, sensitive information hosted on the application servers is not exposed.

Summary
The refactoring exercise in this pattern demonstrated several criteria for structuring
your solution’s tiers:
� Tiers were used to allow servers and client computers to be optimized for specific

tasks, such as interacting with users, serving Web pages, and hosting databases.
� Tiers were used to separate servers that had different security profiles.
� Tiers were used to separate servers that had different scalability and fault-

tolerance requirements.
� Tiers were used to reduce the administration and deployment overhead required

of distributed applications.

You can address the vast majority of distribution scenarios by following one of the
Tiered Distribution implementation patterns, such as Three-Tiered Distribution. If none
of the implementation patterns address your requirements, see Application Deployment
for guidance on how to design your own deployment solution.

Resulting Context
This pattern results in a number of benefits and liabilities.

Enterprise Solution Patterns Using Microsoft .NET176

Benefits
The resulting context of the solution described in this pattern has the following
benefits:
� Each tier can be optimized for specific resource usage profiles. For instance,

servers in tiers that interact with a large number of client computers can be
optimized for socket and file handle usage.

� Each tier can have a different security profile.
� Each tier can be designed for different operational characteristics. For instance,

Web tiers usually achieve scalability and fault-tolerance through server farms,
whereas database tiers usually achieve the same through server clusters.

� Each tier can be separately modified to respond to changes in load, requirements,
hosting strategy, and so on. For example, you can scale out a Web tier to accept
an increase in the number of users, independent of scaling up the database
servers to accept an increase in the transactional throughput. This flexibility
tends to reduce overall total cost of ownership, because servers can be added
and removed as the business requirements and technical environment change.

� Tiers can be deployed to meet geographical, political, and legal requirements.
� Tiers ease some of the administrative and deployment burden associated with

distributed solutions.

Liabilities
The benefits of the solution described in this pattern are offset by the following
liabilities:
� Each tier involved in processing a client request degrades performance and adds

application and system management overhead.
� Server clusters and server farms add cost and complexity to your infrastructure.

Related Patterns
For more information, see the following related patterns:
� Server Farm
� Server Cluster
� Application Server
� Three-Tiered Distribution
� Deployment Plan

Acknowledgments
[PnP02] patterns & practices, Microsoft Corporation. “Application Architecture
for .NET: Designing Applications and Services.” MSDN Library. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

Chapter 4: Deployment Patterns 177

Three-Tiered Distribution

Context
Your are implementing a distributed solution using the Tiered Distribution pattern.

Problem
How many tiers should you have, and what should be in each tier?

Forces
The forces discussed in Tiered Distribution, apply to this pattern as well. For a
discussion of those general forces, see Tiered Distribution. The following forces apply
specifically to the Three-Tiered Distribution pattern:
� The load on your database is significant enough that you want to dedicate

a server (or entire cluster) to the database.
� Your security policy mandates that corporate databases must not be hosted

on servers that are directly connected to the Internet.
� You have a large number of users who have their own computer or device for

accessing the solution. For example, you have a Web application with a large
number of users accessing a common application.

� You must be able to scale the client tier to handle a significant increase in the
number of users.

� Your clients need to execute transactions against a shared database, and you want
to share business logic across solutions.

� The scalability requirements of the clients, application logic, and databases are
significantly different.

Enterprise Solution Patterns Using Microsoft .NET178

Solution
Structure your application around three physical tiers: client, application, and
database. Figure 4.11 shows this three-tiered distribution.

Database Server

Order
Database

Client Computer

Order Processing
Rich Interface

Client Computer

Order Processing
Rich Interface

Client Tier

Application Tier

Data Tier

Web Server Application Server
Remoting Service

Order Processing Application

Web and Application Server

Figure 4.11
Three-tiered distribution

Client Tier
The client tier interacts with the users of the solution. If your application conforms
to Three-Layered Services Application, this tier hosts the presentation layer components.

Hardware

For Web applications, the client tier consists of the user workstations, PDAs, and
other devices that host a Web browser. For service-oriented solutions, this tier
consists of the computers and devices that consume the service.

Computers in the client tier are independent of each other and should not have
hard-coded references to application tier resources; instead, they should use naming
services such as Domain Name System (DNS), Lightweight Directory Access

Chapter 4: Deployment Patterns 179

Protocol (LDAP), or Universal Description, Discovery, and Integration (UDDI)
to find servers and services.

The number of computers in this tier can be quite large. Web applications essentially
have an infinite number of computers in this tier. Solutions often need to scale up
to handle a large increase in the number of users and their associated computers.
The client tier does not impose any limit on the number of computers it contains,
or how fast you can add computers. However, all the computers in the client tier
must eventually interact with the application tier. The scalability of the application
tier ultimately constrains the ability of the client tier to handle new users or increased
workload per user.

Software

The operating system and solution software on the client tier is configured and
optimized for responsive user interaction and must provide the following two
services at a minimum:
� A mechanism for presenting the solution’s user interface. For Web applications,

this mechanism is a Web browser. For rich clients, it may be a custom UI frame-
work, or may even be provided by the operating system.

� The software infrastructure required to communicate with other tiers. An example
for rich clients would be TCP/IP sockets. HTTP would provide this service for
Web applications.

Security

The client tier quite often exists in a separate security context from that of the other
tiers, and individual computers within the tier are often in their own context.
Many solutions must be able to adapt the security context of the client tier to the
application tier.

The network infrastructure for Web-based enterprise applications is often based on
a perimeter network (also known as DMZ, demilitarized zone, and screened subnet).
The client tier is, by definition, on the public side of the perimeter network.

Application Tier
The servers in the application tier are responsible for hosting the application’s
business components and, in the case of Web applications, the Web servers as well.
If your application conforms to Three-Layered Services Application, this tier hosts the
business layer.

Hardware

The computers in the application tier are servers, the configuration of which must
balance between the conflicting resource requirements of an application server and
a Web server.

Enterprise Solution Patterns Using Microsoft .NET180

Because application tier servers are Web servers, this tier often must contain multiple
servers configured as a Server Farm to meet scalability and fault-tolerance operational
requirements. As you add users to the client tier and the performance of the solution
diminishes beyond acceptable parameters, you must add servers to the farm. For
details concerning scalability and fault-tolerance characteristics of server farms,
see Server Farm.

Software

The servers in the application tier have both Web server and application server
software installed. The application server software provides the execution context
for the application logic. For an overview of the application server concept, see
Application Server. For an example of the software infrastructure that this tier re-
quires, see Implementing Application Server Using Windows Server 2003.

If your solution is a Web application, the server must be optimized for security and
network connectivity. Otherwise, the server configuration should reflect the resource
requirements of your business components and application server. Avoid hard-coding
references to specific databases in the application. Use a configuration file, registry,
or naming service to option references to the proper databases.

Security

The servers in this tier usually reside within the same security context. Therefore
they can interact with each other using a common security infrastructure.

If a perimeter network is used, the combined application and Web server is usually
deployed in there. This has the adverse affect of increasing the exposure of sensitive
business logic to the public Internet. Consider the Four-Tiered Distribution pattern if
your security requirements dictate that sensitive business logic must be kept on the
corporate side of the perimeter network.

Data Tier
The servers in the data tier host the databases that the solution requires. If your
application conforms to the Three-Layered Services Application pattern, this tier hosts
the data layer.

Hardware

The computers in the data tier are sized and configured as enterprise servers. The
servers are optimized for I/O throughput and hard-disk utilization. If the scalability
and fault-tolerance operational requirements dictate that you have multiple servers
in this tier, they are almost always configured as a server cluster. A server cluster is
typically used in this case, because all the servers must manipulate a shared state
(for example, the database), and because server-class computers have a very high
limit on disk space and disk I/O capacity. For details concerning scalability and
fault-tolerance characteristics of server clusters, see Server Cluster.

Chapter 4: Deployment Patterns 181

Software

Data tier servers host database management systems such as Microsoft® SQL Server™
2000. Usually, reporting and data analysis software is also deployed on this tier.
Database software that is specifically tuned for use in a clustered environment is
required to maximize the benefit from a clustered server environment.

Security

Because of the need to protect corporate data assets, the data tier often has the most
stringent security requirements of all the tiers. Typically, access to these servers is
limited to the application servers and database administrator workstations. For
solutions with stringent security requirements, the data tier may be deployed on its
own subnet on the network.

If a perimeter network is used, the data tier is almost always on the corporate side
of the perimeter network. Some very security-conscious solutions even have a
second perimeter network between the application and data tiers.

Resulting Context
The Three-Tiered Distribution pattern results in a number of benefits and liabilities.

Benefits
Using this pattern results in the following benefits:
� Scalability and fault tolerance are strongly supported by configuring the appli-

cation tier as a server farm and the database tier as a server cluster.
� Separating the client computer from the application logic supports the develop-

ment and distribution of thin-client applications.
� Each tier can operate within its own security context.
� Having the Web server and business components on the same computer, and

quite often in the same process, increases performance.

Liabilities
The following liabilities offset the benefits of using Three-Tiered Distribution:
� Business logic is directly exposed to the client tier, which can be a significant

security risk for Web applications.
� Hardware for supporting a Web server is significantly cheaper than hardware for

supporting both a Web server and an application server. Therefore, the incremental
cost of adding a new user is usually higher for this solution than for a solution
where the Web servers are separated from the application servers.

Enterprise Solution Patterns Using Microsoft .NET182

Related Patterns
For more information, see the following related patterns:
� Tiered Distribution
� Application Server
� Server Farm
� Server Cluster

Acknowledgments
[PnP02] patterns & practices, Microsoft Corporation. “Application Architecture
for .NET: Designing Applications and Services.” MSDN Library. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

Chapter 4: Deployment Patterns 183

Deployment Plan

Context
You have developed a component-based application that is logically structured
into layers, as described in Three-Layered Services Application. You want to distribute
it onto a set of servers that are physically structured into tiers, as described in Tiered
Distribution.

C
om

m
unication

Business
Workflows (BW)

Service Interfaces (SI)

UI Components (UIC)

Users

UI Process Components (UIP)

Business
Components (BC)

Business
Entities (BE)

Data Access
Components (DAC)

Data
Sources

Services

Service Gateways (SG)

O
perational M

anagem
ent

S
ecurity

Figure 4.12
Three-Layered Services Application

Problem
How do you determine which tier you should deploy each of your components to?

Enterprise Solution Patterns Using Microsoft .NET184

Forces
When determining which tier to deploy your components onto, you must consider
the following forces within the context of your environment:
� Layered Application mostly concerns managing design dependencies between

components, while Tiered Distribution concerns optimizing the runtime server
configuration to meet system-level operational requirements. Therefore, the
criteria for structuring your application into layers are fundamentally different
from the criteria used for optimizing physical component deployment. For
example, one of the driving forces for assigning components to layers is to
minimize the dependencies between components in different layers. Conversely,
a primary driver for optimizing component deployment is to match a component’s
resource consumption profile to an appropriate server. This implies that a direct
mapping of layers to tiers is often not the best distribution strategy. For instance,
the Open Systems Interconnection (OSI) network protocol stack reference model
is structured into seven layers. Seven different servers, each hosting a separate
layer, are not required or even recommended.

� The people who structure the application into layers are often not the same
people who structure the hardware infrastructure. People in these two groups
often have different skill sets with few skills in common. For example, application
architects focus on application components and the relationships between
components, while system architects focus on the servers and the networks that
connect them.

� Each additional tier to which components must be deployed adds complexity,
deployment effort, and cost. Deploying all components to one tier is relatively
simple. As you add more tiers, it becomes harder to determine which component
goes where. Similarly, it takes relatively little effort to deploy all of your compo-
nents to one location; after you add additional tiers, though, you have to put
extra effort into your build and deployment process to decide which component
goes where. Finally, each additional tier adds fixed and recurring costs for the
additional hardware composing the tier.

� The components that compose your application each consume a different amount
of resources such as memory, processor utilization, file handles, IO sockets, and
disk space. There are two approaches for assigning components to tiers based on
this force: specialized tiers and general purpose tiers. Specialized tiers are optimized
for hosting components with specific resource utilization profiles. Because the
servers in the specialized tier are optimized for a specific profile, each server
can host many more components that meet that profile than can a generically
configured server. Therefore, using specialized tiers usually results in more tiers
with fewer servers per tier. On the other hand, servers in a general purpose tier
are generically configured, and so the deployment decision basically becomes:
how many components each server can hold before a given system resource is

Chapter 4: Deployment Patterns 185

completely consumed. Using general purpose tiers usually results in fewer tiers
with more servers per tier.

� Different components have different operational requirements such as security,
availability, and fault-tolerance. For example, components that are accessed from
the Web have different security requirements than do components that are on the
corporate side of the perimeter network (also known as DMZ, demilitarized
zone, and screened subnet). The same two approaches described for the previous
force work here as well. Specialized tiers can be added to host components with
specific operational requirements, or a general purpose tier can be configured to
meet all operational requirements.

� Security requirements often drive you to add tiers, with each tier hosting
components that have common security requirements. Beside the added com-
plexity, deployment effort, and cost noted earlier, each additional tier adds to
the overall security risk. Each additional tier also adds new servers and other
infrastructure that must be secured.

� Business, political, or legal considerations may require specific components of
a solution to be hosted at specific geographic locations. For example, databases
containing sensitive corporate information may need to be hosted at secure
corporate data centers, while the application servers that contain the business
logic may reside at a third-party hosting facility.

� Every process and server boundary that a component invocation crosses adversely
affects response time. Component invocations that cross process boundaries are
several times slower than in-process invocations, while component invocations
that cross the network are an order of magnitude slower than component
invocations in the same process.

Solution
The application architects must meet with the system architects to create a deploy-
ment plan that describes which tier each of the application’s components will be
deployed to. Key to the success of this meeting is that both parties are starting from
a set of high-quality requirements that are precisely specified down to a testable
level. For example, a requirement stated as “The application must be scalable”
is not specific enough to be testable. A more testable requirement would be: “The
application must support 50 concurrent users with two second response time at
launch and must scale up to 500 concurrent users with three second response time.”
This requirement is also phrased in a way that both system and application architects
can understand. In addition starting from specific requirements, both parties must
be intimately aware of the technical, legal, and business constraints that will be
imposed on the solution.

Based on these requirements and constraints, the application architects define a set
of components as specified in Three-Layered Services Application, and the system
architects define a set of tiers as specified in Tiered Distribution. The discussion

Enterprise Solution Patterns Using Microsoft .NET186

between the two parties while performing this mapping often causes significant
changes to the components and tiers as each party becomes aware of the other ’s
perspective.

You start the meeting by mapping the component roles defined in Three-Layered
Services Application to tiers, using the forces described earlier as a guide. For example,
user interface components may be mapped to the Web tier, whereas business
components are almost always mapped to the application tier.

The next step is to go through each component in the application and assign it to a
tier. In most cases, you can assign a component to a tier by determining what role
it plays in the application and then assigning it to the corresponding tier identified
for that role in the previous step. However, some components inevitably have
unique operational or resource requirements that will cause them to be mapped
to alternative tiers. Although these special cases are expected, too many of them
indicate that you may need to modify the initial mapping of roles to tiers.

While assigning components to tiers, you may be unable to find a tier that is a good
match for a component. When this happens, the two teams must work together and
determine the cost and benefits of modifying the component to better work with the
infrastructure, or modifying the infrastructure to better suit the component.

Several common deployment plan models for enterprise applications have been
identified, based on Three-Layered Services Application: simple Web application, com-
plex Web application, extended enterprise application, and smart client application.

Simple Web Application
The simple Web application configuration deploys all components into a single
general-purpose tier. This configuration, which is shown in Figure 4.13, is the least
complex and simplest configuration to understand.

Database ClustersWeb Application FarmWeb Clients

UIC

UIP

BC

DAC

Figure 4.13
Simple Web application deployment

Chapter 4: Deployment Patterns 187

Complex Web Application
The complex Web application configuration, shown in Figure 4.14, separates the
presentation and domain components and deploys them to different tiers that have
been specialized to address their unique requirements.

Application Farm Database ClustersWeb FarmWeb Clients

BC

DAC

UIC

UIP

Figure 4.14
Complex Web application deployment

The user interface components (UIC) and user interface process components (UIP)
are exposed to the Internet and can potentially interact with numerous clients.
Because these presentation layer components are often exposed outside a company’s
firewall, they typically have much more restrictive security requirements than do
components that are not exposed. Also, many organizations mandate that servers
exposed to the Internet cannot contain any sensitive data. Therefore, putting the
presentation layer components into a separate tier and configuring that tier for
maximum security greatly increases the overall security of the solution with
minimal impact on the components that have less severe security requirements.

Because presentation layer components are exposed to the Internet, their performance
and scalability requirements typically differ from those of domain and data access
layer components. Presentation layer components are often optimized to handle
many concurrent users who interact with the components in bursts. Domain and
data access layer components are often optimized to handle a steady stream of
requests from a relatively few number of sources. It can be difficult to configure a
single tier to adequately support both sets of optimizations. Therefore, the solution
is to use two tiers, each optimized for the type of components they host.

Extended Enterprise Application
Extended enterprise applications consume services provided by other applications
and may also expose functionality as services to be consumed by other applications.
Figure 4.15 on the next page shows this deployment configuration.

Enterprise Solution Patterns Using Microsoft .NET188

Application Farm Database ClustersWeb FarmWeb Clients

SI

SG

BC

DAC

UIC

UIP

Figure 4.15
Extended enterprise application deployment

The reasons for placing the service gateways (SG) and service interfaces (SI) in the
Web tier are the same as for placing the presentation components in the Web tier, as
discussed earlier in this pattern.

Smart Client Application
The smart client configuration deploys the user interface components onto the client
tier instead of the Web tier. The primary motivation for moving the presentation
components to the client tier is that rich user interfaces demand a high degree of
interactivity with the user. Mainstream Web technology does not support these rich
user interface requirements. Figure 4.16 shows the smart client configuration with
the additional tier.

Application Farm Database ClustersWeb FarmWeb Clients

SI

SG

BC

DAC

UIC

UIP

Figure 4.16
Smart client application deployment

Chapter 4: Deployment Patterns 189

Note: Large enterprise applications tend to look like a composite of one or more of the
models discussed in this pattern. For instance, while most business components of an
extended enterprise application run in the application server, a few might run in the Web
farm and one or two might run in the browser for performance reasons.

Resulting Context
The meeting between the application development and system infrastructure teams
is critical for successful application deployment. The resulting deployment plan
provides the following benefits:
� Assigns components to tiers to meet the requirements of both teams.
� Facilitates communication between the two teams and defines the contract that

both teams agree to abide by. If one of the teams cannot fulfill its commitments,
then the two teams must get together and redefine a new contract.

Note: The meeting between the application development and system infrastructure teams will
not produce an optimum deployment plan unless the corporate culture recognizes the equal
importance of both the application and system architecture views. Both teams must be flexible
and willing to seek compromises that enable both teams to fulfill their requirements.

5
Distributed Systems Patterns

In today’s connected world, enterprise applications increasingly run distributed
across multiple servers, connect to remote data sources and Web services, and are
accessible over the Internet. Distributed computing is powerful, but it is not without
challenges. Networks are inherently unreliable, and communicating with remote
servers is slow when compared to local interprocess communication. In addition,
running a program simultaneously across multiple computers can introduce a host
of concurrency and synchronization issues.

Instance-Based vs. Service-Based Collaboration
Distributed computing can be based on two distinct architectural styles, according to
Business Component Factory [Herzum00]:
� Instance-based collaboration
� Service-based collaboration

Instance-based collaboration extends the model of object-oriented computing across
network boundaries. A component can instantiate remote object instances, pass
references to these remote objects around, invoke methods on the remote objects,
and de-allocate them. The advantage of this approach is that the same object-oriented
programming model used inside the application applies to the distributed compo-
nents. Most runtime platforms incorporate support for instance-based collaboration
so that a developer has to make no (or few) special provisions to access a remote
object versus a local object. This simplifies developing a distributed solution tremen-
dously, often to the point where previously co-located objects can be distributed
during deployment time without requiring any code changes to the application.
Instance-based collaboration also gives the consumer of a remote object fine-grained
control over the lifetime of the remote object, allowing more efficient usage of
remote resources.

Enterprise Solution Patterns Using Microsoft .NET192

The ease-of-use of instance-based collaboration, however, comes at the expense of
a complex interaction model and tight coupling between consumer and provider.
Instance-based interaction requires a specific instance of a remote object to be
addressable over the network, introducing the complexities of lifetime and instance
management into the communications protocol. For this reason, most platforms that
support instance-based collaboration do not provide interoperability with other
platforms.

Service-based collaboration addresses some of these challenges by exposing only a
“manager-like” or “coordinator-like” interface to potential consumers. Consumers
can invoke a method on this interface but they do not have lifetime control over any
remote objects This simplifies the interaction tremendously and enables the use of
standard protocols that support interoperability across platforms.

However, service-based collaborations do not provide the continuity of using an
object-oriented programming model for both local and remote objects. This means
that you have to track the state of a conversation between objects explicitly, some-
thing you did not have to worry about when using instance-based collaboration.
Also, while standards-based protocols improve interoperability, they require the
application to convert application-internal data types into a common format that is
understood by each communicating endpoint, which may involve additional trans-
formation logic.

Near Links vs. Far Links
Another way to think about distributed systems is to consider each system as a
collection of processing nodes connected by links. The nodes represent actual server
machines while the links represent the network that connects these machines to-
gether. The links within the system fall within two classifications: near links or
far links.

Near links are those that reside in the same enterprise, are connected reliably and do
not require interoperability. Far links include all other links and include any link
that spans the Internet.

If your distributed system spans near links only, then instance-based collaboration
may be optimal. Using instance-based collaboration, you can expand the power of
object-oriented development across machine boundaries while taking advantage of
your platform infrastructure to optimize speed, navigate type systems, and handle
marshalling details for you. Technology choices here would include .NET remoting
and Enterprise Services within the Microsoft® .NET Framework.

On the other hand, if your distributed system spans far links, then service-based
collaboration is usually a better choice. Interacting with a service that offers up a
“coordinator-like” interface allows the service to be responsible for implementation
and shields the user of the service from implementation details. Service interfaces

Chapter 5: Distributed Systems Patterns 193

often return messages, which offer less coupling than remote procedure calls. The
best messages are those that contain both a header and a body, which allow the
receiver to act upon the message autonomously. Technology choices here would
include capabilities such as Web services.

The balance of this chapter will describe patterns usually associated with instance-
based collaboration and near links. Patterns usually associated with service-based
collaborations and far links are further described in Chapter 6, “Services Patterns.”

Distributed Computing Challenges
The core of a distributed architecture is the ability to invoke a method on an object
or communicate with services that reside in a different process and possibly on a
different computer. Although this does not sound difficult, you must address a
surprisingly long list of issues:
� How do you instantiate a remote object?
� If you want to invoke a method on an existing object, how do you obtain a

reference to this object?
� Network protocols transport only byte streams, not objects. How can you invoke

a method over a byte stream?
� What about security? Can anyone invoke a method on the remote object?
� Most networks are inherently unreliable. What happens if the remote object is

unreachable? What if the remote object receives the method invocation but cannot
send the response because of network problems?

� Calling a remote object can be much slower than invoking a local method. Do
you want to invoke the remote method asynchronously so that you can continue
processing locally while the remote object processes the request?

The list of questions continues. Fortunately, the features in the .NET Framework take
care of most of these issues, allowing developers to create distributed applications
without having to deal with many of the nasty details. These features make remote
invocation almost transparent to the programmer, at least at the syntactic level. This
simplicity can be deceiving, however, because developers still must understand
some of the underlying principles of remote communication to write robust and
efficient distributed applications. The Distributed Systems patterns cluster helps
developers make informed design decisions when implementing distributed
applications.

Enterprise Solution Patterns Using Microsoft .NET194

Using Layered Application
The secret to creating an easy-to-use infrastructure for distributed systems is Layered
Application. A distributed services layer relies on lower layers, such as the TCP/IP
stacks and socket communication layers, but hides the details of these layers from
upper layers that contain the application and business logic layers. This arrange-
ment allows the application developer to work at a higher level of abstraction
without having to worry about such details as TCP/IP packets and network byte
ordering. It also allows lower layers to be replaced without any impact on the upper
layers. For example, you can switch to a different transport protocol (for example
HTTP instead of straight TCP/IP) without changing code at the application layer.

One way to make remote invocation easy for developers is to use a Proxy
[Gamma95]. A proxy is a local stand-in object with which the client object communi-
cates. When the client creates an instance of the remote object, the infrastructure
creates a proxy object that looks to the client exactly like the remote type. When the
client invokes a method on that proxy object, the proxy invokes the remoting infra-
structure. The remoting infrastructure routes the request to the server process,
invokes the server object, and returns the result to the client proxy, which passes the
result to the client object. Because all of this happens behind the scenes, the client
object may be completely unaware that the other object resides on a different com-
puter. This not only makes developing distributed applications easier, it also allows
you to distribute objects after the program has been developed while only minimally
changing the application code.

Patterns Overview
The Distributed Systems patterns cluster focuses on two primary concepts: remote
invocation and coarse-grained interfaces.

Remote Invocation
The Broker pattern describes how to locate a remote object and invoke one of its
methods without introducing the complexities of communicating over a network into
the application. This pattern establishes the basis for most distributed architectures,
including .NET remoting.

Chapter 5: Distributed Systems Patterns 195

Design

Singleton

Implementing Broker
with .NET Remoting

(Server-Activated)

Implementing
Singleton in C#

Broker

Implementing Broker
 with .NET Remoting

(Client-Activated)

Implementing
DTO in .NET

with a DataSet

DTO

Implementing DTO
with .NET with

a Typed DataSet

Implementation

Figure 5.1
Patterns in the Distributed Systems cluster

One of the guiding principles of the .NET Framework is to simplify complex program-
ming tasks without taking control away from the programmer. In accordance with
this principle, .NET remoting allows the developer to choose from a number of
remoting models, as described in the following paragraphs.

Local Copy
The simplest remoting model creates a local copy of the remote object in the client
process. Any subsequent method invocations on this object are truly local calls. This
model avoids many of the complications inherent in distributed computing but has
a number of shortcomings. First, computing is not really distributed because you are
running a local copy of an object in your own process space. Second, any updates
you make to the object's state are lost because they occur only locally. Finally, an
object is usually remote because it requires a remote resource or because the pro-
vider of the remote object wants to protect access to its internals. Copying the object
instance to the local process not only defeats both of these goals but also adds the
overhead of shipping a complete object over a remote channel. Because of these
limitations, the only application of object copying that this chapter discusses is the
Data Transfer Object pattern.

Enterprise Solution Patterns Using Microsoft .NET196

Server-Activated Objects
Invoking the methods directly on the remote object is a better model than working
on a local copy. However, you can invoke a method on a remote object only if you
have a reference to it. Obtaining a reference to the remote object requires the object
to be instantiated first. The client asks the server for an instance of the object, and
the server returns a reference to a remote instance. This works well if the remote
object can be viewed as a service. For example, consider a service that verifies credit
card numbers. The client object submits a credit card number and receives a positive
or negative response, depending on the customer's spending (and payment) habits.
In this case, you are not really concerned with the instance of the remote object. You
submit some data, receive a result, and move on. This is a good example of a stateless
service, a service in which each request leaves the object in the same state that it was
in before.

Not all remote object collaborations follow this model, though. Sometimes you want
to call the remote object to retrieve some data that you can then access in subsequent
remote calls. You must be sure that you call the same object instance during subse-
quent calls. Furthermore, when you are finished examining the data, you would like
the object to be deallocated to save memory on the server. With server-activated
objects, you do not have this level of control over object instances. Server-activated
objects offer a choice of only two alternatives for lifetime instance management:
� Create a new instance of the object for each call.
� Use only a single instance of the remote object for all clients (effectively making

the object a Singleton).

Neither of these options fits the example where you want to access the same remote
instance for a few function calls and then let the garbage collector have it.

Client-Activated Objects
Client-activated objects give the client control over the lifetime of the remote objects.
The client can instantiate a remote object almost as it would instantiate a local object,
and the garbage collector removes the remote objects after the client removes all
references to the object instance. This level of control comes at a price, though. To
use client activation, you must copy the assembly available to the client process.
This contradicts the idea that a variety of clients should be able to access the remote
objects without further setup requirements.

You can have the best of both worlds, though, by creating a server-activated object
that is a factory object for server objects. This factory object creates instances of other
objects. The factory itself is stateless; therefore, you can easily implement it as a
server-activated singleton. All client requests then share the same instance of the
factory. Because the factory object runs remotely, all objects it instantiates are remote
objects, but the client can determine when and where to instantiate them.

Chapter 5: Distributed Systems Patterns 197

Coarse-Grained Interfaces
Invoking a method across process and network boundaries is significantly slower
than invoking a method on an object in the same operating system process.

Many object oriented design practices typically lead to designing objects with fine-
grained interfaces. These objects may have many fields with associated getters and
setters and many methods, each of which encapsulates a small and cohesive piece of
functionality. Because of this fine-grained nature, many methods must be called to
achieve a desired result. This fine-grained interface approach is ideal for stand-alone
applications because it supports many desirable application characteristics such as
maintainability, reusability, and testability.

Working with an object that exposes a fine-grained interface can greatly impede
application performance, because a fine-grained interface requires many method
calls across process and network boundaries. To improve performance, remote
objects must expose a more coarse-grained interface. A coarse-grained interface is
one that exposes a relatively small set of self-contained methods. Each method
typically represents a high-level piece of functionality such as Place Order or Update
Customer. These methods are considered self-contained because all the data that a
method needs is passed in as a parameter to the method.

Data Transfer Object
The Data Transfer Object pattern applies the coarse-grained interface concept to the
problem of passing data between components that are separated by process and
network boundaries. It suggests replacing many parameters with one object that
holds all the data that a remote method requires. The same technique also works
quite well for data that the remote method returns.

There are several options for implementing a data transfer object (DTO). One tech-
nique is to define a separate class for each different type of DTO that the solution
needs. These classes usually have a strongly typed public field (or property) for each
data element they contain. To transfer these objects across networks or process
boundaries, these classes are serialized. The serialized object is marshaled across the
boundary and then reconstituted on the receiving side. Performance and type safety
are the key benefits to this approach. This approach has the least amount of marshal-
ing overhead, and the strongly typed fields of the DTO ensure that type errors are
caught at compile time rather than at run time. The downside to this approach is
that a new class is created for each DTO. If a solution requires a large number of
DTOs, the effort associated with writing and maintaining these classes can be
significant.

A second technique for creating a DTO is to use a generic container class for holding
the data. A common implementation of this approach is to use something like the
ADO.NET DataSet as the generic container class. This approach requires two extra

Enterprise Solution Patterns Using Microsoft .NET198

translations. The first translation on the sending side converts the application data
into a form that is suitable for use by the DataSet. The second translation happens
on the receiving side when the data is extracted from the DataSet for use in the
client application. These extra translations can impede performance in some applica-
tions. Lack of type safety is another disadvantage of this approach. If a customer
object is put into a DataSet on the sending side, attempting to extract an order object
on the receiving side results in a run-time error. The main advantage to this ap-
proach is that no extra classes must be written, tested, or maintained.

ADO.NET offers a third alternative, the typed DataSet. ADO.NET provides a
mechanism that automatically generates a type-safe wrapper around a DataSet. This
approach has the same potential performance issues as the DataSet approach but
allows the application to benefit from the advantages of type safety, without requir-
ing the developer to develop, test, and maintain a separate class for each DTO.

Distributed Systems Patterns
Table 5.1 lists the patterns included in the Distributed Systems patterns cluster,
along with the problem statements and associated implementations that serve as a
roadmap to the patterns.

Table 5.1: Distributed Systems Patterns

Pattern Problem Associated implementations

Broker How can you structure a distributed Implementing Broker with .NET Remoting
system so that application developers Using Server-Activated Objects
don’t have to concern themselves with Implementing Broker with .NET Remoting
the details of remote communication? Using Client-Activated Objects

Data How do you preserve the simple Implementing Data Transfer Object in .NET
Transfer semantics of a procedure call interfeace with a DataSet
Object without being subject to the latency Implementing Data Transfer Object in .NET

issues inherent in remote communication? with a Typed DataSet

Singleton How do you make an instance of an object Implementing Singleton in C#
globally available and guarantee that only
one instance of the class is created?

Note: The scope for this pattern cluster does not currently include message-oriented
middleware, integration of multiple applications, or service-oriented architectures. These
topics are extremely important and are part of the overall pattern language, but do not
appear in this initial release.

Chapter 5: Distributed Systems Patterns 199

Broker

Context
Many complex software systems run on multiple processors or distributed computers.
There are a number of reasons to distribute software across computers, for example:
� A distributed system can take advantage of the computing power of multiple

CPUs or a cluster of low-cost computers.
� Certain software may only be available on specific computers.
� Parts of the software may have to run on different network segments due

to security considerations.
� Some services may be provided by business partners and may only be accessed

over the Internet.

However, implementing a distributed system is not easy because you have to deal
with issues such as concurrency, cross-platform connectivity, and unreliable network
connections.

Problem
How can you structure a distributed system so that application developers don’t
have to concern themselves with the details of remote communication?

Forces
The following forces must be reconciled as you build a distributed system:
� Although distributed systems provide a lot of advantages, they also tend to

introduce significant complexity into the software system. Physical and logic
boundaries exist between processes or computers running on the same network.
To have objects running on different processes or computers communicating
with each other across these boundaries, you have to deal with issues such as
communications, encoding, and security. If you mix these implementation details
with the application code, a simple change in the communications infrastructure
could lead to significant code changes.

� The distribution of the system often occurs after development is complete.
For example, software may be distributed across multiple servers to increase
processing power. You would not want to change the application code at this
late a stage in the life cycle.

Enterprise Solution Patterns Using Microsoft .NET200

� The details of cross-process communication can be quite tedious. You have to
deal with TCP/IP sockets, marshaling and unmarshaling, serialization, timeouts,
and many other challenges. Therefore, it makes sense to have a special team focus
on the infrastructure so that the application developers do not have to learn
about remote communications.

� To maintain the flexibility of being able to move components to different
locations at deployment time, you must avoid hard-coding the location
of specific components.

Solution
Use the Broker pattern to hide the implementation details of remote service
invocation by encapsulating them into a layer other than the business component
itself [Buschmann96].

This layer provides an interface to the client that allows it to invoke methods just as
it would invoke any local interface. However, the methods inside the client interface
trigger services to be performed on remote objects. This is transparent to the client
because the remote service object implements the same interface. This pattern refers
to the business component that initiates the remote service invocation as the client,
and the component that responds to the remote service invocation as the server.

Figure 5.2 shows the static structure of a simple example without any distribution.
The client invokes the performFunctionA method on the server directly. This is
possible only if the server objects reside on the same computer as the client objects.

<<uses>>Client Server

 +performFunctionA()

«interface»
ServiceInterface

Figure 5.2
Structure with no distribution

Chapter 5: Distributed Systems Patterns 201

Figure 5.3 shows the static structure when distribution is implemented.

+locateServer()
+marshalRequest()
+sendRequest()
+unmarshalResponse()

ClientProxy

process boundary

<<uses>>Client Server

 +performFunctionA()

«interface»
ServiceInterface

+unmarshalRequest()
+marshalResponse()
+sendResponse()
+locateClient()

ServerProxy
delegate

Figure 5.3
Structure with distribution

The ServiceInterface is a necessary abstraction that makes distribution possible by
providing the contract about the service that the server is going to provide without
exposing the implementation details on the server side. When implementing the
distribution, client and server proxies would be added to handle all the “plumbing”
for sending a method invocation and its parameters across the network to the server
and then sending the response back to the client. The proxies would do all the
marshaling and unmarshaling of data, security control, transfer channel config-
uration, and any other additional work. The client would simply invoke the
performFunctionA method on the client proxy as if it were a local call because the
client proxy actually implements the ServerInterface. The code change to the client
would be minimal and thus you could develop your whole business domain model
without any knowledge about the distribution nature of the system. Any change to
the way remote service invocation is implemented would be limited to within the
proxy classes, and would not have any impact on the domain model. Figure 5.4
shows one scenario of the interactions between these components.

Enterprise Solution Patterns Using Microsoft .NET202

process boundary

performFunctionA()

return result()

return result()

:Client :Server:ClientProxy :ServerProxy

locateServer()

marshalRequest()

unmarshalResponse()

unmarshalRequest()

marshalResponse()

locateClient()

sendRequest()

sendResponse()

perform FunctionA()

Figure 5.4
Behavior with distribution

Server Look-Up
The Broker solution addresses most of the problems described previously. However,
because the client proxy communicates with the server proxy directly, the client
must be able to find the location of the server at compile time. This means that you

Chapter 5: Distributed Systems Patterns 203

cannot change or move the server to a different location at run time. To overcome
this limitation, you need to avoid exposing the exact location of the server. Instead,
you deploy a new component, the broker component, at a well-known location and
then expose that location to the client. The broker component is then responsible for
locating the server for the client. The broker component also implements a repository
for adding and removing server components, which makes it possible to add, remove,
or exchange server components at run time. Figure 5.5 shows the static structure
with the broker component involved.

This type of function is often called a naming service. Looking up remote objects is
a common requirement in enterprise computing. Therefore, a number of platforms
implement a naming service, for example, Microsoft uses the Active Directory®
directory service.

+marshalRequest()
+sendRequest()
+unmarshalResponse()

ClientProxy

process boundary
process boundary

<<uses>>

<<uses>>

<<uses>>

+locateServer()
+locateClient()
+registerServer()
+unregisterServer()

Broker

Client Server

 +performFunctionA()

«interface»
ServiceInterface

+unmarshalRequest()
+marshalResponse()
+sendResponse()

ServerProxy
delegate

process boundary

Figure 5.5
Broker structure with server look-up

Enterprise Solution Patterns Using Microsoft .NET204

The broker is hosted at a well-known location that should not change very often.
Any server that is activated and ready to receive requests would register itself
with the broker so that the next time a client asks the broker for this type of server,
the broker would be able to use it. This could also increase the performance and
availability of the system, because it enables you to have multiple identical server
components that run and serve multiple clients at the same time. This mechanism
is sometimes called load balancing. Figure 5.6 shows a sample interaction scenario
between these components.

process boundary process boundary

performFunctionA()
()

()

return result()

:Client :ServerProxy:ClientProxy :Broker

locateServer()

marshalRequest()

unmarshalResponse()

:Server

unmarshalRequest()

marshalResponse()

sendResponse()

return result()

performFunctionA()

()

locateClient()

sendRequest()

registerServer()

Figure 5.6
Broker behavior with server look-up

Chapter 5: Distributed Systems Patterns 205

Broker as Intermediary
In the previous scenario, the broker is only responsible for locating the server for
the client. The client obtains the location of the server from the broker and then
communicates with the server directly without any involvement of the broker. In
some situations, however, direct communication between client and server is not
desirable. For example, for security reasons, you may want to host all the servers
in your company’s private network, which is behind a firewall, and only allow
access to them from the broker. In this case, you must have the broker forward all
the requests and responses between the server and the client instead of having them
talk to each other directly. Figure 5.7 shows a revised static structure of this model.

+marshalRequest()
+sendRequest()
+unmarshalResponse()

ClientProxy

<<uses>>

+locateServer()
+locateClient()
+registerServer()
+unregisterServer()
+forwardRequest()
+forwardResponse()

Broker

Client Server

 +performFunctionA()

«interface»
ServiceInterface

+unmarshalRequest()
+marshalResponse()
+sendResponse()

ServerProxy
delegate

process boundary
<<uses>> <<uses>>

process boundary

Figure 5.7
Structure of Broker serving as intermediary

Enterprise Solution Patterns Using Microsoft .NET206

Figure 5.8 shows the interaction diagram with the broker serving as a messenger
between the client and the server. This example also shows how the communica-
tion between the client and the server can be asynchronous (note the open arrow-
head on the sendRequest call).

process boundary process boundary

performFunctionA()
()

return result()

:Client :ServerProxy:ClientProxy :Broker

marshalRequest()

unmarshalResponse()

:Server

unmarshalRequest()

marshalResponse()

return result()

performFunctionA()

sendRequest()

registerServer()

locateServer()

locateClient()

forward Request()

sendResponse()

forwardResponse()

Figure 5.8
Behavior of Broker serving as intermediary

Chapter 5: Distributed Systems Patterns 207

There are also situations when the client must make a series of method invocations
on the same server to complete one long and complex business transaction. In these
cases, the server must maintain the state between client calls. The broker must then
make sure that all server calls that a client makes inside an atomic session are routed
to the exact same server component.

Example
The Broker pattern and its variants are implemented in many distributed system
frameworks. See Implementing Broker in .NET Remoting Using Server-Activated Objects
and Implementing Broker in .NET Remoting Using Client-Activated Objects.

Resulting Context
The Broker pattern has many of the benefits and liabilities of the Layered Application
pattern.

Benefits
Broker provides the following benefits:
� Isolation. Separating all the communication-related code into its own layer

isolates it from the application. You can decide to run the application distributed
or all on one computer without having to change any application code.

� Simplicity. Encapsulating complex communication logic into a separate layer
breaks down the problem space. The engineers coding the broker do not have
to concern themselves with arcane user requirements and business logic, and
the application developers do not have to concern themselves with multicast
protocols and TCP/IP routing.

� Flexibility. Encapsulating functions in a layer allows you to swap this layer with
a different implementation. For example, you can switch from DCOM to .NET
remoting to standard Web services without affecting the application code.

Liabilities
Unfortunately, layers of abstraction can harm performance. The basic rule is that the
more information you have, the better you can optimize. Using a separate broker
layer may hide details about how the application uses the lower layer, which may
in turn prevent the lower layer from performing specific optimizations. For example,
when you use TCP/IP, the routing protocol has no idea what is being routed. There-
fore, it is hard to decide that a packet containing a video stream, for instance, should
have routing priority over a packet containing a junk e-mail.

Enterprise Solution Patterns Using Microsoft .NET208

Security Considerations
Server components that contain sensitive business data are often located in a
company’s private network, protected behind a firewall. The broker component
then sits in a perimeter network (also known as demilitarized zone, DMZ, or
screened subnet), which is a small network inserted as a neutral zone between a
company’s private network and the outside public network. Access to the server
components is only allowed from the perimeter network and not from the outside
public network. This extra layer prevents outside users from getting direct access
to a server.

Related Patterns
For more information about Broker, see the following related patterns:
� Implementing Broker with .NET Remoting Using Server-Activated Objects and

Implementing Broker with .NET Remoting Using Client-Activated Objects describe
two implementation strategies for the Broker pattern.

� Data Transfer Object
� Remote Proxy. The ClientProxy object described in this pattern follows a variant

of the Proxy pattern described in [Gamma95, Buschmann96], which is called
Remote Proxy.

Acknowledgments
[Buschmann96] Buschmann, Frank, et al. Pattern-Oriented Software Architecture.
John Wiley & Sons Ltd, 1996.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Chapter 5: Distributed Systems Patterns 209

Implementing Broker with .NET Remoting Using
Server-Activated Objects

Context
You are using the Microsoft® .NET Framework to build an application that requires
the use of distributed objects. Your requirements include the ability to pass objects
by value or reference, whether those objects reside on the same computer, on different
computers in the same local area network (LAN), or on different computers in a wide
area network (WAN). Your application does not require you to control the lifetime
of the remote objects explicitly.

Background on .NET Remoting
Remoting uses object references to communicate between the client and the server.
In the server-activated scenario, your client retrieves a reference to an existing server
object using the remoting infrastructure (Activator.GetObject). After you have a
reference to the object, you can call its methods as though the object were in your
process rather than running on a separate computer. The following underlying
mechanism is used to implement this functionality:
� The client retrieves an instance of the remote type.
� The remoting infrastructure creates a proxy object that acts as a surrogate for the

remote type.
� The client calls a method on that proxy. The remoting system receives the call,

routes it to the server process, invokes the server object, and then returns a result
to the client proxy, which passes the result to the client object.

The calls themselves have to be sent in some fashion between the client and server.
The remoting infrastructure refers to this mechanism as a transport channel. Channels
transport messages between applications across remoting boundaries, whether
between application domains, processes, or computers. A channel can listen on an
endpoint for inbound messages; send outbound messages to another endpoint, or
both. This enables you to plug in a wide range of protocols, even if the common
language runtime is not at the other end of the channel.

Although the server process knows everything about each unique object, the client
knows only that it wants a reference to an object in another application domain,
perhaps on another computer. From the world outside the server application domain,
the object is located by a URL.

Server Activation
As described in the introduction to the Distributed Systems cluster, the .NET
Framework supports two activation models: server activation and client activation.
Server-activated objects are objects whose lifetimes are directly controlled by the

Enterprise Solution Patterns Using Microsoft .NET210

server. The server application domain creates these objects only when the client makes
a method call on the object, not when the client calls new or Activator.GetObject();
this saves a network round-trip solely for the purpose of instance creation. Only a
proxy is created in the client application domain when a client requests an instance
of a server-activated type. This also means, however, that only default constructors
are allowed for server-activated types. To publish a type whose instances will be
created with specific constructors that take arguments, you can use client activation.

To create an instance of a server-activated type, clients typically use
Activator.GetObject().

Choosing a Protocol and Serialization Mechanism
The type of protocol you choose to use has an impact on the how your application
performs. For some criteria for choosing the correct type of channel for your
application, see “Choosing Communication Options in .NET” from the .NET
Framework Developer’s Guide, available on the MSDN® developer program Web
site at: http://msdn.microsoft.com/library/.

In this pattern, you will see an example of HttpChannel/SOAP and TcpChannel/
Binary.

Implementation Strategy
This pattern presents two examples of server-activated objects and the flexibility
of the .NET remoting infrastructure. The first example uses HttpChannel with its
default serialization mechanism, SOAP. The second example uses TcpChannel with
its default serialization mechanism, which is binary. Before examining the applications
themselves, let’s first look at the class that must be distributed across the network.

Server Object
The RecordingsManager class provides a method named GetRecordings, which
retrieves a list of recordings from a database and return the result in DataSet. Note
that a series of considerations is involved in determining the best data types to be
transmitted over a remote connection. This example uses DataSet because it keeps
the sample code short and demonstrates the transfer of complex data types. For a
thorough treatment of this topic, see the MSDN article “Designing Data Tier
Components and Passing Data Through Tiers” at:

http://msdn.microsoft.com/library/en-us/dnbda/html/BOAGag.asp

RecordingsManager.cs

The following sample shows the RecordingsManager class:

using System;
using System.Data;
using System.Data.SqlClient;

Chapter 5: Distributed Systems Patterns 211

public class RecordingsManager
{
 public DataSet GetRecordings()
 {
 String selectCmd = "select * from Recording";

 SqlConnection myConnection = new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand =
 new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Recording");
 return ds;
 }
}

This class must be accessed remotely. First, the RecordingsManager class must
inherit from a class in the remoting infrastructure called MarshallByRefObject.
MarshalByRefObject is the base class for objects that communicate across application
domain boundaries by exchanging messages using a proxy. Objects that do not
inherit from MarshalByRefObject are implicitly marshaled by value. When a remote
application references a marshal-by-value object, a copy of the object is passed across
remoting boundaries. Because you want to use the proxy method instead of the copy
method to communicate, you need to inherit from MarshallByRefObject. Second, you
need to extract an interface from this class. The interface is necessary to reduce the
dependencies between the client and server and also to better deploy the application.
For more information, see “Deployment Considerations” later in this pattern.

IRecordingsManager.cs

The following is the code for the extracted IRecordingsManager interface:

using System;
using System.Data;

public interface IRecordingsManager
{
 DataSet GetRecordings();
}

RecordingsManager.cs (Remote-Enabled)

Making the changes to RecordingsManager results in the following code:

public class RecordingsManager : MarshalByRefObject, IRecordingsManager
{ /* … */ }

Enterprise Solution Patterns Using Microsoft .NET212

HttpChannel: SOAP Serialization
The primary motivations for choosing this channel and serialization mechanism
include security and interoperability. HttpChannel hosted in Microsoft Internet
Information Services (IIS) enables you to take advantage of security functions that
are built into IIS and ASP.NET. If you choose any other channel or choose not to
host HttpChannel in IIS, you have to provide your own security functions. Also,
to interoperate between different operating systems, you must use the HttpChannel
and SOAP serialization. However, HttpChannel is not the highest-performing option
due to the use of XML serialization and the additional overhead of using the HTTP
protocol inside IIS and ASP.NET. For more information, see “Operational Consid-
erations” later in this pattern.

The following solution uses HttpChannel with SOAP serialization for the
RecordingsManager class described earlier (See Figure 5.9).

«interface»
IRecordingsManager

+Main() : void

HttpClient RecordingsManager

+GetRecordings() : System.Data.DataSet

+Main() : void

HttpServer

1 1

Figure 5.9
HttpChannel implementation

HttpServer.cs

HttpServer is a console application that creates the HttpChannel object and assigns
port 8100. The code then associates the name “RecordingsManager.soap” with an
instance of RecordingsManager.

There are two activation modes for server-activated objects: Singleton and
SingleCall.

Singleton types never have more than one instance at any one time. If an instance
exists, all client requests are serviced by that instance. If one does not exist, the

Chapter 5: Distributed Systems Patterns 213

server creates an instance and all subsequent client requests are serviced by that
instance.

SingleCall types always have one instance per client request. The next method
invocation will be serviced by a different server instance, even if the previous
instance has not yet been recycled by the system.

RecordingsManager uses the Singleton activation mode, so that you will have only
one instance of RecordingsManager running on the server. This works fine, because
the object has only a single method that retrieves a predefined set of data. The last
line makes sure that the code will not exit until the user presses ENTER. You should
note that this is probably not the best way to ensure that the program does not exit.
If the program were to do so, clients would not be able to access the server objects.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

public class HttpServer
{
 static void Main(string[] args)
 {
 HttpChannel channel = new HttpChannel(8100);
 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.RegisterWellKnownServiceType(
 typeof(RecordingsManager),
 "RecordingsManager.soap",
 WellKnownObjectMode.Singleton);

 Console.ReadLine();
 }
}

HttpClient.cs

The client program calls the remoting framework function Activator.GetObject(),
specifying the URL where the object is located along with the type that should
be returned. In this case, you should expect an IRecordingsManager object at
http://localhost:8100/RecordingsManager.soap. After you have the instance, you can
call methods on it as if it were in the same application domain.

using System;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;

Enterprise Solution Patterns Using Microsoft .NET214

using System.Runtime.Remoting.Channels.Http;

public class HttpClient
{
 [STAThread]
 static void Main(string[] args)
 {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 IRecordingsManager mgr = (IRecordingsManager)
 Activator.GetObject(typeof(IRecordingsManager),
 "http://localhost:8100/RecordingsManager.soap");

 Console.WriteLine("Client.main(): Reference acquired");

 DataSet ds = mgr.GetRecordings();
 Console.WriteLine("Recordings Count: {0}",
 ds.Tables["recording"].Rows.Count);
 }
}

TcpChannel: Binary Serialization
The primary motivation for choosing this channel and serialization mechanism
is performance. In fact, using binary serialization alone increases performance
dramatically. (See “Operational Considerations.”) If you do not have any security
issues (for example, you are building a small application that runs entirely inside
a firewall), you should use TcpChannel with binary serialization, because it
performs the best.

The following solution uses the TcpChannel with binary serialization for the
RecordingsManager class described earlier (See Figure 5.10).

«interface»
IRecordingsManager

+Main() : void

TcpClient RecordingsManager

+GetRecordings() : System.Data.DataSet

+Main() : void

TcpServer

1 1

Figure 5.10
TcpChannel/binary serialization implementation

Chapter 5: Distributed Systems Patterns 215

TcpServer.cs

TcpServer is a console application that creates the TcpChannel object and assigns
port 8100. The code then associates the name “GetRecordingsManager” with an
instance of RecordingsManager. The activation mode for RecordingsManager is a
singleton, so you will have only one instance of RecordingsManager running on the
server. The last line ensures that the code will not exit until the user presses ENTER.
You should note that this is probably not best the way to ensure that the program
does not exit. If the program were to do so, clients would not be able to access the
server objects.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

public class TcpServer
{
 static void Main(string[] args)
 {
 TcpChannel channel = new TcpChannel(8100);
 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.RegisterWellKnownServiceType(
 typeof(RecordingsManager),
 "GetRecordingsManager",
 WellKnownObjectMode.Singleton);

 Console.ReadLine();
 }
}

TcpClient.cs

The client program calls the remoting framework method Activator.GetObject()
to retrieve a proxy for the RecordingsManager object on the server. The method
specifies the URL where the object is located along with the type that should be
returned. In this case, you should expect an IRecordingsManager object at the
following location: http://localhost:8100/GetRecordingsManager. After you have the
instance, you can call methods on it as if it were in the same application domain.

using System;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

class TcpClient
{
 [STAThread]
 static void Main(string[] args)
 {
 TcpChannel channel = new TcpChannel();
 ChannelServices.RegisterChannel(channel);

Enterprise Solution Patterns Using Microsoft .NET216

 IRecordingsManager mgr = (IRecordingsManager)
 Activator.GetObject(typeof(IRecordingsManager),
 "tcp://localhost:8100/GetRecordingsManager");

 Console.WriteLine("Client.main(): Reference acquired");

 DataSet ds = mgr.GetRecordings();
 Console.WriteLine("Recordings Count: {0}",
 ds.Tables["recording"].Rows.Count);
 }
}

Deployment Considerations
When using .NET remoting, you must pay careful attention to the deployment
of the application into different assemblies. The main goal is to ensure that the
code on the server does not have to be shipped to the client. Figure 5.11 on the next
page is a UML deployment diagram for the HttpChannel/SOAP example.

<<assembly>>
System.Runtime.Remoting

<<executable>>
HttpClient

<<executable>>
HttpServer

<<assembly>>
IRecordingsManager

IRecordingsManager

RecordingsManager

<<assembly>>
Server

Figure 5.11
Structure for the HttpChannel/SOAP example

Chapter 5: Distributed Systems Patterns 217

This example uses an assembly named IRecordingsManager, which is shared
between the client and server. This assembly contains the IRecordingsManager
interface, which defines the interface of the remote object that the client and server
are sharing. In the example, the IRecordingsManager assembly is downloaded
to the client.

Tests
It is relatively simple to write tests for the server in NUnit. You retrieve the object
from the server and call methods as if they were local objects. The following class
tests the HttpServer class:

HttpServerFixture.cs
using System;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using NUnit.Framework;

[TestFixture]
public class HttpServerFixture
{
 private IRecordingsManager mgr;
 private HttpChannel channel;
 private DataSet dataSet;

 [SetUp]
 public void LoadDataSet()
 {
 channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 mgr = (IRecordingsManager)
 Activator.GetObject(typeof(IRecordingsManager),
 "http://localhost:8100/RecordingsManager.soap");

 dataSet = mgr.GetRecordings();
 }

 [Test]
 public void RetrieveDataSet()
 {
 DataTable recording = dataSet.Tables["recording"];
 Assertion.AssertEquals(4,recording.Rows.Count);

 DataRow row = recording.Rows[0];
 string title = (string)row["title"];
 Assertion.AssertEquals("Up", title.Trim());

Enterprise Solution Patterns Using Microsoft .NET218

 }

 [TearDown]
 public void Release()
 {
 ChannelServices.UnregisterChannel(channel);
 }
}

Resulting Context
Using server-activated objects to implement Broker with .NET remoting results
in a number of benefits and liabilities.

Benefits
.NET remoting provides a fully featured distributed object model with full common
language runtime semantics running on the client and server. You do not lose any
fidelity between client and server. The example demonstrated passing the complicated
type, System.Data.DataSet between the client and server. This would not be possible
without having the common language runtime on both sides of the connection.

Liabilities
Some of the Broker benefits are offset by the following potential liabilities:
� Remote objects. You cannot forget that these are remote objects. Even though

they look like local objects, there is still overhead involved in marshaling data
back and forth from the server. Keep in mind that a remote call can be at least
1000 times slower than a local call in the common language runtime. Therefore,
you do not want to make more calls than necessary. This desire to minimize
round-trips may cause you not to use the finest granularity in regards to the
interface.

� Deployment complexity. When using server-activated objects as described
in the examples, the objects must have been registered prior to the client asking
for them. This makes deployment more complex.

� Limited interoperability. You can use .NET remoting to build Web services.
However, you must pare down your endpoints to the simplest data types. For
example, if you want interoperability with other Web service toolkits, you must
restrict parameters to built-in simple types and your own data types (don’t use
.NET Framework types like DataSet), and use server-activated objects.

� More complicated. Compared to Web services, .NET remoting is more difficult
to learn, implement, and debug.

Chapter 5: Distributed Systems Patterns 219

Security Considerations
To use the security features available with Microsoft Internet Information Services
(IIS) (for example, standard HTTP authentication schemes include Basic, Digest,
digital certificates, and even Microsoft .NET Passport), you must use an HTTP-based
application hosted in IIS with ASP.NET. Using any other transport protocol or using
the HttpChannel outside of IIS requires you to provide a security mechanism.

Operational Considerations
The following is a summary of a performance comparison that appears in the MSDN®
article, “Performance Comparison: .NET Remoting vs. ASP.NET Web Services”
[Dhawan02]. The article concludes that you can achieve the highest performance
by using the TCP channel and binary serialization with a Windows Service host. This
configuration transmits binary data over raw TCP sockets, which is more efficient
than HTTP. Performance is 60 percent faster than with the slowest approach, which
is HttpChannel using SOAP serialization hosted in IIS with ASP.NET.

Hosting in IIS is slower because it involves an extra process hop from IIS
(Inetinfo.exe) to Aspnet_wp.exe. However, if you choose to host your channel
without IIS and ASP.NET, you will need to provide your own mechanisms for
authentication, authorization, and privacy.

Related Patterns
For more information, see the following related patterns:
� Broker
� Proxy [Gamma95]

Acknowledgments
[Dhawan02] Dhawan, Priya. “Performance Comparison: .NET Remoting
vs. ASP.NET Web Services.” MSDN Library, September 2002. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/bdadotnetarch14.asp.

[Crocker02] Crocker, Olsen, and Jezierski. “Designing Data Tier Components
and Passing Data Through Tiers.” MSDN Library, August 2002. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/boagag.asp.

Enterprise Solution Patterns Using Microsoft .NET220

Implementing Broker with .NET Remoting Using
Client-Activated Objects

Context
You are building an application in .NET that requires the use of distributed objects,
the lifetimes of which are controlled by the client. Your requirements include the
ability to pass objects by value or reference, whether those objects reside on the
same computer, on different computers in the same local area network (LAN), or
on different computers in a wide area network (WAN).

Implementation Strategy
This pattern presents two implementations of client-activated objects in .NET
remoting. The main difference between client-activated objects (CAO) and server-
activated objects (SAO) is what controls the lifetime of the remote object. In the
CAO scenario, the client controls the lifetime; in the SAO scenario, the server controls
the lifetime. The example used here is similar in functionality to the example used
in Implementing Broker in .NET Using Server-Activated Objects. The first implementation
uses client activation as it is described in the .NET documentation and samples.
This implementation demonstrates the capabilities of client-activated objects;
however, they do have some drawbacks. The second implementation, known
as the hybrid approach, resolves these problems.

Client-Activated Object Implementation
The RecordingsManager class has a method named GetRecordings, which retrieves
a list of recordings from a database and returns the result in DataSet. This class
extends the MarshalByRefObject class to ensure that in a remoting scenario a
proxy object is used instead of copying the object from the server to the client.
The functionality described here is identical to that of the example described in
Implementing Broker in .NET Using Server-Activated Objects.

RecordingsManager.cs

The following sample shows the RecordingsManager class, which is responsible
for retrieving DataSet from the database:

using System;
using System.Data;
using System.Data.SqlClient;

public class RecordingsManager : MarshalByRefObject
{

Chapter 5: Distributed Systems Patterns 221

 public DataSet GetRecordings()
 {
 String selectCmd = "select * from Recording";

 SqlConnection myConnection = new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand =
 new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Recording");
 return ds;
 }
}

HttpServer.cs

The following code configures the server to allow for client-activated objects to be
created using the new operator. Instead of actually registering an instance (as the
SAO example demonstrates), this code configures the server with an application
name and the type of the object that will be created. The URL for the remote object
is http://localhost:8100/RecordingsServer. Behind the scenes, an SAO is automatically
created by the framework on localhost. This SAO is responsible for accepting requests
from clients and creating the objects when the client requests them.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

public class HttpServer
{
 static void Main(string[] args)
 {
 HttpChannel channel = new HttpChannel(8100);
 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.ApplicationName = "RecordingsServer";
 RemotingConfiguration.RegisterActivatedServiceType(
 typeof(RecordingsManager));

 Console.WriteLine("Recordings Server Started");
 Console.ReadLine();
 }
}

Enterprise Solution Patterns Using Microsoft .NET222

HttpClient.cs

To be able to the use the new operator and have the remoting framework create
a remote object, as opposed to a local object, you must first associate the type of
the remote object with the URL that was specified when the server set the
ApplicationName property. This example defines ApplicationName as
RecordingsServer and uses port 8100 on localhost.

using System;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

class HttpClient
{
 [STAThread]
 static void Main(string[] args)
 {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.RegisterActivatedClientType(
 typeof(RecordingsManager),
 "http://localhost:8100/RecordingsServer");

 RecordingsManager mgr = new RecordingsManager();

 Console.WriteLine("Client.main(): Reference acquired");

 DataSet ds = mgr.GetRecordings();
 Console.WriteLine("Recordings Count: {0}",
 ds.Tables["recording"].Rows.Count);
 }
}

Registering the remote object associates the type of the object with the URL. After
this occurs, the call to new creates a remote object on the server. This object looks
like any other object in the code.

This implementation allows for direct creation of remote objects under the control
of the client. It also demonstrates that after the client is configured, object creation
is identical to local object creation using the new operator. However, it has a major
flaw. You cannot use the shared interface approach described in the SAO pattern. This
means that you must ship the compiled objects to the client. For another alternative
that uses SoapSuds, see Advanced .NET Remoting [Ingo02].

Note: Shipping compiled server objects violates the general principle of distributed objects.
It is also undesirable due to deployment and versioning issues.

Chapter 5: Distributed Systems Patterns 223

To address some of these issues, the following implementation describes a hybrid
approach that uses an SAO to create objects. This approach provides the client with
the ability to control the lifetime of the object without the server code having to be
shipped to the client.

Hybrid Approach
The hybrid approach involves the RecordingsFactory SAO, which provides methods
to create the RecordingsManager CAO. (If you are not familiar with the SAO
examples, see Implementing Broker with .NET Remoting Using Server-Activated Objects.)
The following class diagram describes the overall solution.

RecordingsFactory
<<creates>>

HttpServer

+Create() : IRecordingsManager

«interface»
IRecordingsFactory

«interface»
IRecordingsManager

HttpClient

MarshalByRefObject

RecordingsManager

1

Figure 5.12
Structure of the hybrid approach

Enterprise Solution Patterns Using Microsoft .NET224

This implementation uses the shared interface approach described in the SAO
examples. The two interfaces, IRecordingsManager and IRecordingsFactory, are
in an assembly that is shared between the client and the server. IRecordingsFactory
has a single Create method, which returns an object to implement the
IRecordingsManager interface. This is an example of the AbstractFactory
[Gamma95] pattern. Because the client only depends on the interfaces, there is no
need to ship the server code. When a client needs a IRecordingsManager object, it
calls the Create method on an instance of IRecordingsFactory. This allows the client
to be in control of the lifetime of the IRecordingsManager object without needing
its implementation. The two interfaces from the shared assembly are as follows.

IRecordingsManager.cs

The following sample shows the IRecordingsManager interface:

using System;
using System.Data;

public interface IRecordingsManager
{
 DataSet GetRecordings();
}

IRecordingsFactory.cs

The following sample shows the IRecordingsFactory interface:

using System;

public interface IRecordingsFactory
{
 IRecordingsManager Create();
}

The server implementations of these objects, RecordingsFactory and
RecordingsManager, are straightforward and are contained in their own assembly,
named Server.

RecordingsFactory.cs

This class extends MarshalByRefObject and implements the IRecordingsFactory
interface:

using System;

public class RecordingsFactory : MarshalByRefObject, IRecordingsFactory
{
 public IRecordingsManager Create()
 {
 return new RecordingsManager();
 }
}

Chapter 5: Distributed Systems Patterns 225

The RecordingsFactory object is the server-activated object. This implementation
simply calls new on the RecordingsManager type. This RecordingsManager object
is created on the server and is returned, not as a RecordingsManager object, but as
the IRecordingsManager interface. This mechanism allows the client to depend
on the interface rather than the implementation.

RecordingsManager.cs

The only change required in the RecordingsManager class is that it now implements
the IRecordingsManager interface.

using System;
using System.Reflection;
using System.Data;
using System.Data.SqlClient;

public class RecordingsManager : MarshalByRefObject, IRecordingsManager
{
 public DataSet GetRecordings()
 {
 Console.WriteLine("Assembly: {0} - filling a request",
 Assembly.GetEntryAssembly().GetName().Name);

 String selectCmd = "select * from Recording";

 SqlConnection myConnection = new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand =
 new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "Recording");
 return ds;
 }
}

HttpServer.cs

The server initialization code in the hybrid approach configures the remoting
framework for a server-activated RecordingsFactory object. The activation scheme
is independent of the channel and the protocol used, so they remain the same as
before (HTTP protocol on port 8100).

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

public class HttpServer
{

Enterprise Solution Patterns Using Microsoft .NET226

 static void Main(string[] args)
 {
 HttpChannel channel = new HttpChannel(8100);
 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.RegisterWellKnownServiceType(
 typeof(RecordingsFactory),
 "RecordingsFactory.soap",
 WellKnownObjectMode.Singleton);

 Console.ReadLine();
 }
}

In this code, the RecordingsFactory type is associated with the URL:
http://localhost:8100/RecordingsFactory.soap.

HttpClient.cs

The client code demonstrates the hybrid nature of this approach. You first use the
Activator.GetObject method to retrieve the IRecordingsFactory object from the
server. Using this server-activated object, you then call the Create method to
instantiate an IRecordingsManager object. This newly instantiated object is created
on the server but is a remote object.

using System;
using System.Data;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

public class HttpClient
{
 [STAThread]
 static void Main(string[] args)
 {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 IRecordingsFactory factory = (IRecordingsFactory)
 Activator.GetObject(typeof(IRecordingsFactory),
 "http://localhost:8100/RecordingsFactory.soap");

 Console.WriteLine("Client.main(): Factory acquired");

 IRecordingsManager mgr = factory.Create();
 DataSet ds = mgr.GetRecordings();
 Console.WriteLine("Recordings Count: {0}",
 ds.Tables["recording"].Rows.Count);
 }
}

Chapter 5: Distributed Systems Patterns 227

Resulting Context
Using client-activated objects to implement Broker with .NET remoting results
in the following benefits and liabilities:

Benefits
� Distributed object model. .NET remoting provides a fully featured distributed

object model with full common language runtime semantics running on the client
and server. You do not lose any fidelity between client and server. The example
demonstrated passing the complicated type, System.Data.DataSet, between the
client and server. This would not be possible without having the common
language runtime on both sides of the connection.

� Construction parameters. The objects in both the client-activated and hybrid
implementations allow for passing constructor arguments when the objects
are created.

Liabilities
� Remote objects. You cannot forget that these are remote objects. Even though

they look like local objects, there is still overhead involved in marshaling data
back and forth from the server. Keep in mind that a remote call can be at least
1000 times slower than a local call in the common language runtime. Therefore,
you do not want to make more calls than necessary. This desire to minimize
round-trips may cause you not to use the finest granularity in regards to the
interface.

� No shared assembly. In the CAO approach, you cannot use the shared assembly
approach with interfaces. Instead, you must ship the implementation to the client
or use SoapSuds to extract the metadata.

� Deployment complexity. When using server-activated objects as described
in the the hybrid approach, objects must have been registered prior to the client
asking for them. This makes deployment more complex.

� Limited interoperability. You can use .NET remoting to build Web services.
However, you must pare down your endpoints to the simplest data types. For
example, if you want interoperability with other Web services toolkits, you must
restrict parameters to built-in simple types and your own data types (do not use
.NET Framework types such as DataSet), and use server-activated objects.

� More complicated. Compared to Web services, .NET remoting is more difficult
to learn, implement, and debug.

Enterprise Solution Patterns Using Microsoft .NET228

Security Considerations
To use the security features available with Microsoft Internet Information Services
(IIS) (for example, standard HTTP authentication schemes include Basic, Digest,
digital certificates, and even Microsoft .NET Passport) you must use an HTTP-based
application hosted in IIS with ASP.NET. Using any other transport protocol or using
the HttpChannel outside of IIS requires you to provide a security mechanism.

Operational Considerations
The following is a summary of a performance comparison that appears in the MSDN®
article, “Performance Comparison: .NET Remoting vs. ASP.NET Web Services”
[Dhawan02]. The article concludes that you can achieve the highest performance
by using the TCP channel and binary serialization with a Windows Service host.
This configuration transmits binary data over raw TCP sockets, which is more
efficient than HTTP. Performance is 60 percent faster than with the slowest approach,
which is HttpChannel using SOAP serialization hosted in IIS with ASP.NET.

Hosting in IIS is slower because it involves an extra process hop from IIS
(Inetinfo.exe) to Aspnet_wp.exe. However, if you choose to host your channel
without IIS and ASP.NET, you will need to provide your own mechanisms for
authentication, authorization, and privacy.

Related Patterns
For more information, see the following related patterns:
� Broker
� Proxy [Gamma95]

Acknowledgments
[Ingo02] Rammer, Ingo. Advanced .NET Remoting. Apress, 2002.

[Dhawan02] Dhawan, Priya. “Performance Comparison: .NET Remoting
vs. ASP.NET Web Services.” MSDN Library, September 2002. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/bdadotnetarch14.asp.

Chapter 5: Distributed Systems Patterns 229

Data Transfer Object

Context
You are designing a distributed application, and to satisfy a single client request,
you find yourself making multiple calls to a remote interface, which increases the
response time beyond acceptable levels.

Problem
How do you preserve the simple semantics of a procedure call interface without
being subject to the latency issues inherent in remote communication?

Forces
When communicating with a remote object, consider the following tradeoffs:
� Remote calls (those that have to cross the network) are slow. Although many

remote invocation frameworks can hide the complexities of making a remote call,
they cannot eliminate the steps that are required for the communication to take
place. For example, the remote object location has to be looked up, and a connec-
tion to the remote computer has to be made before the data can be serialized into
a byte stream, possibly encrypted, and then transmitted to the remote computer.

� When considering the performance of networks, you have to look at both latency
and throughput. In simplified terms, latency describes the time that passes before
the first byte of data reaches the destination. Throughput describes how many
bytes of data are sent across the network within a certain time period (for ex-
ample, 1 second). In modern IP routing-based networks (for example, the Inter-
net), latency can be a bigger factor than throughput. That means it may take
almost the same amount of time to transmit 10 bytes of data as it takes to trans-
mit 1,000 bytes of data. This effect is particularly pronounced when using
connectionless protocols such as HTTP. Faster networks can often increase the
throughput, but latency is much more difficult to reduce.

� When designing an object interface, good practices are to hide much of the
information inside an object and to provide a set of fine-grained methods for
accessing and manipulating that information. Fine-grained means that each
method should be responsible for a single, fairly small, and atomic piece of
functionality. This approach simplifies programming and provides better abstrac-
tion from the object internals, thereby increasing potential for reuse. This must be
balanced against the fact that using finer-grained methods implies invoking more
methods to perform a high-level task. Typically, the overhead of these extra
function calls is acceptable when the methods are invoked within the same
process; however, the overhead can become severe when these methods are
invoked across process and network boundaries.

Enterprise Solution Patterns Using Microsoft .NET230

� The best way to avoid latency issues that are inherent in remote calls is to make
fewer calls and to pass more data with each call. One way to accomplish this is to
declare the remote method with a long list of parameters. This allows the client to
pass more information to the remote component in a single call. Doing so makes
programming against this interface error-prone, however, because arguments are
likely to call parameters of the external method solely by position in the call
statement. For example, if a remote method accepts 10 string parameters, it is
easy for the developer to pass arguments in the wrong order. The compiler will
not be able to detect such a mistake.

� A long parameter list does not help return more information from the remote call
to the client because most programming languages limit the return type of a
method call to a single parameter. Coincidentally, the return is often when the
most data is transmitted. For example, many user interfaces transmit a small
amount of information but expect a large result set in return.

Solution
Create a data transfer object (DTO) that holds all data that is required for the remote
call. Modify the remote method signature to accept the DTO as the single parameter
and to return a single DTO parameter to the client. After the calling application
receives the DTO and stores it as a local object, the application can make a series of
individual procedure calls to the DTO without incurring the overhead of remote
calls. Martin Fowler describes this pattern in Patterns of Enterprise Application Archi-
tecture [Fowler03].

The following figure shows how a client application makes a sequence of remote
calls to retrieve the various elements of a customer name.

Chapter 5: Distributed Systems Patterns 231

: CustomeraClient

GetTitle()

process boundary

GetFirstName()

GetMiddleName()

GetLastName()

Figure 5.13
Remote calls without a DTO

A DTO allows the remote object to return the whole customer name to the client in a
single remote call. In this example, doing so would reduce the number of calls from
four to one. Instead of making multiple remote calls, the client makes a single call
and then interacts with the DTO locally (see Figure 5.14 on the next page).

Enterprise Solution Patterns Using Microsoft .NET232

: CustomerDTOaClient

GetTitle()

process boundary

aServer

GetFirstName()

GetMiddleName()

GetLastName()

GetCustomerDTO()

<<create>>

Figure 5.14
Reducing the number of calls by using a DTO

A DTO is a simple container for a set of aggregated data that needs to be transferred
across a process or network boundary. It should contain no business logic and limit
its behavior to activities such as internal consistency checking and basic validation.
Be careful not to make the DTO depend on any new classes as a result of implement-
ing these methods.

Chapter 5: Distributed Systems Patterns 233

When designing a data transfer object, you have two primary choices: use a generic
collection or create a custom object with explicit getter and setter methods.

A generic collection has the advantage that you only need a single class to fit any
data transfer purpose throughout the whole application. Furthermore, collection
classes (for example, simple arrays or hashmaps) are built into almost all language
libraries, so you do not have to code new classes at all. The main drawback of using
collection objects for DTOs is that the client has to access fields inside the collection
either by position index (in the case of a simple array) or by element name (in the
case of a keyed collection). Also, collections store items of the same type (usually the
most generic Object type), which can lead to subtle but fatal coding errors that
cannot be detected at compile time.

Creating custom classes for each DTO provides strongly-typed objects that the client
application can access exactly like any other object, so they provide compile-time
checking and support code editor features such as Microsoft® IntelliSense® technol-
ogy. The main drawback is that you could end up having to code a large number of
these classes if your application makes a lot of remote calls.

A number of options try to combine the benefits of the two approaches. The first is
code generation that generates the source code for custom DTO classes off existing
metadata, such as an Extensible Markup Language (XML) schema. The second
approach is to provide a more powerful collection that is generic but stores relation-
ship and data type information along with the raw data. The Microsoft ADO.NET
DataSet supports both approaches (see Implementing Data Transfer Object in .NET
with a DataSet).

Now that you have a DTO class, you need to populate it with data. In most in-
stances, data inside a DTO is derived from more than one domain object. Because
the DTO has no behavior, it cannot extract the data from the domain objects. This is
fine, because keeping the DTO unaware of the domain objects enables you to reuse
the DTO in different contexts. Likewise, you do not want the domain objects to
know about the DTO because that may mean that changing the DTO would require
changing code in the domain logic, which would lead to a maintenance nightmare.

The best solution is to use the Assembler pattern [Fowler03], which creates DTOs
from business objects and vice versa. Assembler is a specialized instance of the
Mapper pattern also mentioned in Patterns of Enterprise Application Architecture
[Fowler03].

Enterprise Solution Patterns Using Microsoft .NET234

+CreateDTO(in DomainObject)
+UpdateDomainObject(in DataTransferObject)

Assembler

DomainObject

DataTransferObject

+Serialize()
+Deserialize()

Figure 5.15
Using an Assembler to load data into the DTO

The key characteristic of Assembler is that the DTO and the domain object do not
depend upon each other. This decouples the two objects. The downside is that
Assembler depends on both the DTO and the domain object. Any change to these
classes may result in having to change the Assembler class.

Example
See Implementing Data Transfer Object in .NET with a DataSet

Testing Considerations
DTOs are simple objects that should not contain any business logic that would
require testing. You do, however, need to test data aggregation for each DTO. De-
pending on your serialization mechanism, testing may or may not be required for
each DTO. If serialization is part of the framework, you need to test only one DTO.
If not, use a generic reflection mechanism so that you do not need to test the serial-
ization of each DTO.

Chapter 5: Distributed Systems Patterns 235

DTOs also contribute to the testability of remote functions. Having the results of a
remote method available in an object instance makes it easy to pass this data to a test
module or to compare it with the desired outcome.

Security Considerations
Ideally, data obtained from untrusted sources, such as user input from a Web page,
should be cleansed and validated before being placed into a DTO. Doing so enables
you to consider the data in the DTO relatively safe, which simplifies future interac-
tions with the DTO.

The security credentials of the processes and associated users receiving the DTO are
also important to consider. DTOs often contain a large amount of information that is
assembled from many different sources. Are all users of the DTO authorized to
access all the information contained within it? The best way to ensure that users are
authorized is to populate the DTO with only the specific data that is authorized by
the users’ security credentials. Try to avoid making the DTO responsible for its own
security. This increases the number of dependences the DTO has on other classes,
which means these classes must be deployed to all nodes on which the DTO is used.
It also spreads the security functionality across more classes, which increases secu-
rity risk and negatively affects flexibility and maintainability.

Resulting Context
Data Transfer Object results in the following benefits and liabilities:

Benefits
� Reduced number of remote calls. By transmitting more data in a single remote

call, the application can reduce the number of remote calls.
� Improved performance. Remote calls can slow an application drastically. Reduc-

ing the number of calls is one of the best ways to improve performance. In most
scenarios, a remote call carrying a larger amount of data takes virtually the same
time as a call that carries only a small amount of data.

� Hidden internals. Passing more data back and forth in a single call also more
effectively hides the internals of a remote application behind a coarse-grained
interface. This is the main motivation behind the Remote Facade pattern
[Fowler03].

� Discovery of business objects. In some cases, defining a DTO can help in the
discovery of meaningful business objects. When creating custom classes to serve
as DTOs, you often notice groupings of elements that are presented to a user or
another system as a cohesive set of information. Often these groupings serve as
useful prototypes for objects that describe the business domain that the applica-
tion deals with.

Enterprise Solution Patterns Using Microsoft .NET236

� Testability. Encapsulating all parameters in a serializable object can improve
testability. For example, you could read DTOs from an XML file and call remote
functions to test them. Likewise, it would be easy to serialize the results back into
XML format and compare the XML document to the desired outcome without
having to create lengthy comparison scripts.

Liabilities
� Possible class explosion. If you chose to use strongly-typed DTOs, you may have

to create one (or two, if you consider the return value) DTO for each remote
method. Even in a coarse-grained interface, this could lead to a large number of
classes. It can be hard to code and manage this number of classes. Using auto-
matic code generation can alleviate some of this problem.

� Additional computation. The act of translating from one data format on the
server to a byte stream that can be transported across the network and back into
an object format inside the client application can introduce a fair amount of
overhead. Typically, you aggregate the data from multiple sources into the single
DTO on the server. To improve efficiency of remote calls across the network, you
have to perform additional computation on either end to aggregate and serialize
information.

� Additional coding effort. Passing parameters to a method can be done in a single
line. Using a DTO requires instantiating a new object and calling setters and
getters for each parameter. This code can be tedious to write.

Related Patterns
For more information, see the following related patterns:
� Remote Facade. The Data Transfer Object pattern is typically used in conjunction

with a coarse-grained Remote Facade to reduce the number of remote calls.
� Mapper [Fowler03]. A Mapper is the recommended technique to load the DTO

with data elements from the domain objects.
� Value Object. Some books refer to Data Transfer Object as Value Object. This usage is

no longer considered correct. For more information, see Patterns of Enterprise
Application Architecture [Fowler03].

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

Chapter 5: Distributed Systems Patterns 237

Implementing Data Transfer Object in .NET with a DataSet

Context
You are implementing a distributed application in the .NET Framework. The client
application displays a form that requires making multiple calls to an ASP.NET Web
service to satisfy a single user request. Based on performance measurements, you
have found that making multiple calls degrades application performance. To in-
crease performance, you would like to retrieve all the data that the user request
requires in a single call to the Web service.

Background

Note: The following is the same sample application that is described in Implementing Data
Transfer Object in .NET with a Typed DataSet.

The following is a simplified Web application that communicates with an ASP.NET
Web service to deliver recording and track information to the user. The Web service
in turn calls a database to provide the data that the client requests. The following
sequence diagram depicts the interaction among the application, the Web service,
and the database for a typical page.

Figure 5.16 illustrates the sequence of calls needed to fulfill the entire user request.
The first call retrieves the recording information, and the second call retrieves the
track information for the specified recording. In addition, the Web service must
make separate calls to the database to retrieve the required information.

Enterprise Solution Patterns Using Microsoft .NET238

GetRecording(long id)

GetTracks
(long recordingId)

recording

Show Recording and Tracks

Recording and Track Page

tracks

webApplication : webService : : Database

GetRecording(long id)

recording

GetTracks
(long recordingId)

tracks

Figure 5.16
Behavior of a typical user request

Chapter 5: Distributed Systems Patterns 239

Database Schema
The schema that is used in the example shown in Figure 5.17 depicts a recording
record that has a one-to-many relationship with a track record.

recording

idPK

title
artist

track

idPK

FK1

title
duration
recordingld

1..n

Figure 5.17
Schema for sample application

Implementing a DTO
One way to improve the performance of this user request is to package all the
required data into a data transfer object (DTO) that can be sent with a single call to
the Web service. This reduces the overhead associated with two separate calls and
allows you to use a single connection with the database to retrieve both the record-
ing and the track information. For a detailed description of how this improves
performance, see the Data Transfer Object pattern.

Implementation Strategy
There are a number of possible implementations for Data Transfer Object in the .NET
Framework. To use a DTO, you have to complete the following four steps. The good
news is that the DataSet class that is built into the .NET Framework already takes
care of three (actually, more like three and one-half) of the following steps:
1. Design the DTO class. One step in this process is to decide what data types and

structures to support. The DataSet is generic enough to use for any DTO pur-
pose; therefore, you do not need to design a new class for each DTO.

2. Write or generate the code for the data transfer class. DataSet is part of the .NET
library, so you do not have to code it.

3. Create an instance of the DTO, and fill it with data. This is the only step that you
have to program. DataSet provides convenient functions to load the DTO with
data from a database or Extensible Markup Language (XML) document, greatly
simplifying this task.

4. Serialize the DTO into a byte or character stream (and back) so that the content
of the object can be sent over the network. The DTO has built-in serialization
functions.

Enterprise Solution Patterns Using Microsoft .NET240

A DataSet holds a collection of DataTable objects. Each DataTable object represents
the data that was retrieved using a SELECT statement or stored procedure execu-
tion. The data in a DataSet can be written out or read as XML. A DataSet also stores
schema information, constraints, and relationships among multiple DataTable
objects. Through a DataSet, you can add, edit, and delete data; therefore, a DataSet
makes an ideal data transfer object in the .NET Framework, especially when you
add the requirement to display the DataSet in controls on a form.

Because the .NET Framework already implements the DataSet, the remainder of this
implementation strategy focuses on how to fill a DataSet from a data source and
how to use the resulting DataSet in the Web Form.

Filling a DataSet from the Database

This example demonstrates how to fill the DataSet with the data that the sample
application requires by using a database query. This includes the recording record as
well as all the track records that are associated by the recordingId.

Assembler.cs

The Assembler class is a specialized instance of the Mapper pattern [Fowler03].
Its purpose is to isolate the DTO from the rest of the system. The following code
example shows how the DTO is created from the database:

using System;
using System.Data;
using System.Data.SqlClient;

public class Assembler
{
 public static DataSet CreateRecordingDto(long id)
 {
 string selectCmd =
 String.Format(
 "select * from recording where id = {0}",
 id);

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd,
 myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "recording");

 String trackSelect =
 String.Format(
 "select * from Track where recordingId = {0} order by Id",
 id);

Chapter 5: Distributed Systems Patterns 241

 SqlDataAdapter trackCommand =
 new SqlDataAdapter(trackSelect, myConnection);
 trackCommand.Fill(ds, "track");

 ds.Relations.Add("RecordingTracks",
 ds.Tables["recording"].Columns["id"],
 ds.Tables["track"].Columns["recordingId"]);

 return ds;
 }
}

This code has some interesting aspects. You need to execute queries to fill both the
recording and track tables. You must also explicitly define the relationship between
the two tables even though the relationship is defined in the database.

Note: The example shown here does not describe the only way to fill the DataSet. There are
many ways to retrieve this data from the database. For example, you could use a stored
procedure.

Using a DataSet in an ASP.NET Page

When using the .NET user interface controls (Web Forms or Windows Forms) a
DataSet is a natural choice. For example, the sample application page uses two
DataGrid controls, RecordingGrid and TrackGrid. Because you need to retrieve
both the recording and the tracks for the recording, it makes sense to use a single
DataSet that contains multiple tables.

Given the DataSet that was built by the Assembler class, this code displays how to
assign a DataSet to the DataSource property of the two grid controls:

using System;
using System.Data;

public class RetrieveForm : System.Web.UI.Page
{
 private RecordingCatalog catalog = new RecordingCatalog();

 // …

 protected void Button1_Click(object sender, System.EventArgs e)
 {
 string stringId = TextBox1.Text;
 long id = Convert.ToInt64(stringId);

 DataSet ds = catalog.Get(id);
 RecordingGrid.DataSource = ds.Tables["recording"];
 RecordingGrid.DataBind();

 TrackGrid.DataSource = ds.Tables["track"];
 TrackGrid.DataBind();
 }
}

Enterprise Solution Patterns Using Microsoft .NET242

Tests
Because the DataSet is provided by the .NET Framework, you do not need to write
tests to verify that it functions correctly. You could argue this point, but you should
assume that classes provided by the Framework are innocent until proven guilty;
therefore, what you need to test is the code that assembles the DataSet, which in this
case is the Assembler class.

RecordingAssemblerFixture.cs
This fixture tests that the contents of the DataSet are filled and that the relationship
between recording and track is defined correctly:

using NUnit.Framework;
using System.Data;

[TestFixture]
public class RecordingAssemblerFixture
{
 private DataSet ds;
 private DataTable recordingTable;
 private DataRelation relationship;
 private DataRow[] trackRows;

 [SetUp]
 public void Init()
 {
 ds = Assembler.CreateRecordingDto(1234);
 recordingTable = ds.Tables["recording"];
 relationship = recordingTable.ChildRelations[0];
 trackRows = recordingTable.Rows[0].GetChildRows(relationship);
 }

 [Test]
 public void RecordingCount()
 {
 Assert.Equals(1, recordingTable.Rows.Count);
 }

 [Test]
 public void RecordingTitle()
 {
 DataRow recording = recordingTable.Rows[0];
 string title = (string)recording["title"];
 Assert.Equals("Up", title.Trim());
 }

 [Test]
 public void RecordingTrackRelationship()
 {
 Assert.Equals(10, trackRows.Length);
 }

Chapter 5: Distributed Systems Patterns 243

 [Test]
 public void TrackContent()
 {
 DataRow track = trackRows[0];

 string title = (string)track["title"];
 Assert.Equals("Darkness", title.Trim());
 }

 [Test]
 public void InvalidRecording()
 {
 DataSet ds = Assembler.CreateRecordingDto(-1);
 Assert.Equals(0, ds.Tables["recording"].Rows.Count);
 Assert.Equals(0, ds.Tables["track"].Rows.Count);
 }
}

These tests describe how to access the individual elements of the DataSet. The tests
themselves demonstrate some of the issues, in that you need to know the column
names as well as the types of the objects. Because of this direct dependency, this
code must change if the database schema changes. These types of issues are miti-
gated when you use a typed DataSet. For more information, see Implementing Data
Transfer Object in .NET with a Typed DataSet.

Resulting Context
The following are the benefits and liabilities related to using a DataSet as a data
transfer object:

Benefits
� Development tool support. The DataSet class is implemented in ADO.NET, so

there is no need to design and implement the data transfer object. There is also
extensive support in the Microsoft Visual Studio® version 6.0 development
system for automating the creation and filling of DataSet objects.

� Integration with controls. A DataSet works directly with the built-in controls in
Windows Forms and Web Forms, making it a logical choice as a data transfer
object.

� Serialization. The DataSet comes with the ability to serialize itself into XML. Not
only is the content serialized but the schema for the content is also present in the
serialization.

� Disconnected database model. The DataSet is a snapshot of the current contents
of the database. This means that you can alter the contents of the DataSet and
subsequently use the DataSet as the means to update the database.

Enterprise Solution Patterns Using Microsoft .NET244

Liabilities
� Interoperability. Because the DataSet class is part of ADO.NET, it is not the best

choice for a data transfer object in cases requiring interoperability with clients
that are not running the .NET Framework. You can still use DataSet, however, the
client will be forced to parse the XML and build its own representation. If
interoperability is a requirement, see Implementing Data Transfer Object in .NET
with Serialized Objects.

� Stale data. The DataSet, as stated previously, is disconnected from the database.
It is filled with a snapshot of the data in the database when it is constructed. This
implies that the actual data in the database may be different from what is con-
tained in the DataSet. For reading primarily static data, this is not a major issue.
If the data is constantly changing, however, using a DataSet is not recommended.

� Dependency on database schema. Because the DataSet is most often filled from
the database, any code that references the column names depends on the data-
base schema. Also, because the programmer must explicitly code the relation-
ships between tables, if a relationship changes in the database, the code also has
to be modified.

� Potential for performance degradation. Instantiating and filling a DataSet can be
expensive. Serializing and deserializing a DataSet can also be very time consum-
ing. A good rule of thumb for using a DataSet is that a DataSet is a good choice
when you are using more than one table or relying on the capability of the
DataSet to update the database. If you are displaying the results from a single
table and do not require the capabilities that a DataSet provides, you could
consider using a DataReader to load strongly-typed objects, which may offer
better performance.

� Not type-safe. The values that you receive from the DataSet may have to be cast
to the correct data type. This requires you to determine what the types are sup-
posed to be. This can be tedious and error-prone because you have to inspect the
DataSet type information explicitly. A typed DataSet, as described in “Working
with a Typed DataSet” [Microsoft02], alleviates this issue by generating a
strongly-typed DataSet subclass that inherits from the generic DataSet class.

� Proliferation of two-tiered architecture. The convenience of using a DataSet can
become a liability when it tempts developers to pass DataSets from the database
directly to the user interface. This can couple the user interface tightly to the
physical database schema. A number of mechanisms can help avoid this issue.
For example, a DataSet can be filled from a stored procedure so that the DataSet
structure is abstracted from the physical database schema. Alternatively,
DataSets can be loaded from XML documents, which can be transformed using
Extensible Stylesheet Language (XSL). This provides another level of indirection
among user interface, business logic, and data storage.

Chapter 5: Distributed Systems Patterns 245

Related Patterns
For more information, see the following related patterns:
� Implementing Data Transfer Object in .NET with Serialized Objects.
� Implementing Data Transfer Object in .NET with a Typed DataSet.
� Assembler. In Patterns of Enterprise Application Architecture, Fowler defines

Assembler as a specialized instance of the Mapper pattern [Fowler03].

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Powell03] Powell, Matt. “DataSets, Web Services, DiffGrams, Arrays, and
Interoperability.” MSDN Library, February, 2003. Available at: http://
www.msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html
/service02112003.asp.

Enterprise Solution Patterns Using Microsoft .NET246

Implementing Data Transfer Object in .NET with a Typed DataSet

Context
You are implementing a distributed application with the .NET Framework. The
client application displays a form that requires making multiple calls to an ASP.NET
Web service to satisfy a single user request. Based on performance measurements
you have found that making multiple calls degrades application performance. To
increase performance, you would like to retrieve all the data that the user request
requires in a single call to the Web service.

Background

Note: The following is the same sample application that is described in Implementing Data
Transfer Object in .NET with a DataSet.

The following is a simplified Web application that communicates with an ASP.NET
Web service to deliver recording and track information to the user. The Web service
in turn calls a database to provide the data that the client requests. The following
sequence diagram depicts the interaction among the application, the Web service,
and the database for a typical page.

Chapter 5: Distributed Systems Patterns 247

GetRecording(long id)

GetTracks
(long recordingId)

recording

Show Recording and Tracks

Recording and Track Page

tracks

webApplication : webService : : Database

GetRecording(long id)

recording

GetTracks
(long recordingId)

tracks

Figure 5.18
Behavior of a typical user request

Figure 5.18 illustrates the sequence of calls needed to fulfill the entire user request.
The first call retrieves the recording information, and the second call retrieves the
track information for the specified recording. In addition, the Web service must
make separate calls to the database to retrieve the required information.

Database Schema
The schema that is used in the example shown in Figure 5.19 on the next page
depicts a recording record that has a one-to-many relationship with a track record.

Enterprise Solution Patterns Using Microsoft .NET248

recording

idPK

title
artist

track

idPK

FK1

title
duration
recordingld

1..n

Figure 5.19
Schema for sample application

Implementing a DTO
One way to improve the performance of this user request is to package all the
required data into a data transfer object (DTO) that can be sent with a single call to
the Web service. This reduces the overhead associated with two separate calls and
allows you to use a single connection with the database to retrieve both the record-
ing and the track information. For a detailed description of how this improves
performance, see the Data Transfer Object pattern.

Implementation Strategy
A typed DataSet is a generated subclass of System.Data.DataSet. You provide an
XML schema file which is then used to generate a strongly-typed wrapper around
the DataSet. The following two code samples illustrate the differences. The first
sample is implemented with an ordinary DataSet:

DataTable dataTable = dataSet.Tables["recording"];
DataRow row = dataTable.Rows[0];
string artist = (string)row["artist"];

This sample indicates that you need to know the table and column names to access
the tables and fields contained in the DataSet. You also have to know the return type
of the Artist field to ensure that the correct cast is done. If you do not use the correct
type, you will get a runtime error. The following is the same example implemented
with a typed DataSet:

 Recording recording = typedDataSet.Recordings[0];
 string artist = recording.Artist;

This example demonstrates the benefits that the typed interface provides. You no
longer have to refer to table or column by name and you do not have to know that
the return type of the Artist column is a string. A typed DataSet defines a much
more explicit interface that is verifiable at compile time instead of at runtime.

Chapter 5: Distributed Systems Patterns 249

In addition to the strongly-typed interface a typed DataSet also can be used in all
places a DataSet can be used; therefore, it also can be used as a DTO. It is loaded in a
similar fashion as a DataSet and it can be serialized to and from XML. In compari-
son to an ordinary DataSet you do have to write and maintain an XML schema that
describes the typed interface. The Microsoft Visual Studio® .NET development
system provides a number of tools that simplify the creation and maintenance of the
schema.

The rest of this implementation strategy outlines the steps required in creating a
typed DataSet for the sample application just described.

Creating a Typed DataSet
A typed DataSet is generated from an XML schema. Visual Studio .NET provides a
drag-and-drop tool which automates the creation of the schema (see Figure 5.20) and
the generation of the typed DataSet classes. If you do not use Visual Studio.NET,
you can write the XML schema and use a command-line tool called XSD.exe to
generate the typed DataSet. For detailed instructions on both of these methods, see
“Typed DataSets in ADO.NET” from the May 2001 issue of .NET Developer
[Wildermuth02].

Figure 5.20
Visual Studio .NET DataSet file type

RecordingDto.xsd

The following is the XML schema for the DTO to be used in this example. It com-
bines both the recording table along with its associated track records in a single
typed DataSet named RecordingDto:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="RecordingDto" targetNamespace="http://msdn.microsoft.com/practices/
RecordingDto.xsd"
 elementFormDefault="qualified" attributeFormDefault="qualified" xmlns="http://
tempuri.org/RecordingDTO.xsd"
 xmlns:mstns="http://msdn.microsoft.com/practices/RecordingDto.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata" xmlns:codegen="urn:schemas-
microsoft-com:xml-msprop">
 <xs:element name="RecordingDto" msdata:IsDataSet="true">

Enterprise Solution Patterns Using Microsoft .NET250

 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="recording" codegen:typedName="Recording"
codegen:typedPlural="Recordings"
 codegen:typedChildren="Track">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:long" codegen:typedName="Id" /
>
 <xs:element name="title" type="xs:string"
codegen:typedName="Title" />
 <xs:element name="artist" type="xs:string"
codegen:typedName="Artist" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="track" codegen:typedName="Track"
codegen:typedPlural="Tracks" codegen:typedParent="Recording">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:long" codegen:typedName="Id" /
>
 <xs:element name="title" type="xs:string"
codegen:typedName="Title" />
 <xs:element name="duration" type="xs:string"
codegen:typedName="Duration" />
 <xs:element name="recordingId" type="xs:long"
codegen:typedName="RecordingId" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="RecordingDTOKey1" msdata:PrimaryKey="true">
 <xs:selector xpath=".//mstns:recording" />
 <xs:field xpath="mstns:id" />
 </xs:unique>
 <xs:unique name="RecordingDTOKey2" msdata:PrimaryKey="true">
 <xs:selector xpath=".//mstns:track" />
 <xs:field xpath="mstns:id" />
 </xs:unique>
 <xs:keyref name="recordingtrack" refer="mstns:RecordingDTOKey1">
 <xs:selector xpath=".//mstns:track" />
 <xs:field xpath="mstns:recordingId" />
 </xs:keyref>
 </xs:element>
</xs:schema>

This schema is not the exact file produced by Visual Studio .NET. It is annotated
with a number of attributes that are prefixed from the codegen namespace. This
modification is desirable because the code that is generated does not adhere to the
.NET naming conventions. For example, without the modification, Visual Studio

Chapter 5: Distributed Systems Patterns 251

.NET would generate a track class that corresponds to the track table, whereas
according to conventions used in the .NET Framework the class should be named
Track. To change the name of the class that is generated, you must add the
codegen:typedName attribute to the element definition in the XML schema:

<xs:element name="track" codegen:typedName="Track">
 …
</element>

There are a number of other attributes besides codegen:typedName. For a detailed
description of all the attributes, see “Typed DataSets in ADO.NET” from the May
2001 issue of .NET Developer [Wildermuth02].

Filling a Typed DataSet from the Database
The following code example demonstrates how to fill a typed DataSet with the data
that the sample application requires. This includes the specific recording record and
all of its associated track records. The difference between this code and filling an
ordinary DataSet is that you do not need to explicitly define the relationship be-
tween the recording and track records.

Assembler.cs

Just as in Implementing a Data Transfer Object in .NET with a DataSet, an Assembler
class maps the actual database calls into the typed DataSet:

using System;
using System.Data;
using System.Data.SqlClient;

using Recording;

public class Assembler
{
 public static RecordingDto CreateRecordingDto(long id)
 {
 string selectCmd =
 String.Format(
 "select * from recording where id = {0}",
 id);

 SqlConnection myConnection =
 new SqlConnection(
 "server=(local);database=recordings;Trusted_Connection=yes;");
 SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd,
 myConnection);

 RecordingDto dto = new RecordingDto();
 myCommand.Fill(dto, "recording");

 String trackSelect =

Enterprise Solution Patterns Using Microsoft .NET252

 String.Format(
 "select * from Track where recordingId = {0} order by Id",
 id);

 SqlDataAdapter trackCommand =
 new SqlDataAdapter(trackSelect, myConnection);
 trackCommand.Fill(dto, "track");

 return dto;
 }
}

Note: The example shown here is not meant to describe the only way to fill the typed DataSet.
There are many ways to retrieve this data from the database. For example, you could use a
stored procedure.

Using a Typed DataSet in an ASP.NET Page
As mentioned previously, a typed DataSet inherits from System.Data.DataSet. This
means that it can be substituted for a DataSet. For example, when using the .NET
user interface controls (Web Forms or Windows Forms) a typed DataSet can be used
in all places you could use a DataSet. The sample application page shown in the
following code example uses two DataGrid controls, RecordingGrid and
TrackGrid. You can use the typed DataSet, RecordingDto when setting the
DataSource properties on the controls because a typed DataSet inherits from
DataSet.

using System;
using System.Data;
using RecordingApplication.localhost;

public class RetrieveForm : System.Web.UI.Page
{
 private RecordingCatalog catalog = new RecordingCatalog();

 // …

 protected void Button1_Click(object sender, System.EventArgs e)
 {
 string stringId = TextBox1.Text;
 long id = Convert.ToInt64(stringId);

 RecordingDTO dto = catalog.Get(id);
 RecordingGrid.DataSource = dto.recording;
 RecordingGrid.DataBind();

 TrackGrid.DataSource = dto.track;
 TrackGrid.DataBind();
 }
}

Chapter 5: Distributed Systems Patterns 253

Tests
Because the typed DataSet is generated by tools in the .NET Framework, you do not
need to write tests to verify that it functions correctly. In the following tests, you are
testing that the Assembler class loaded the typed DataSet correctly.

AssemblerFixture.cs

using NUnit.Framework;
using System.Data;
using Recording;

[TestFixture]
public class AssemblerFixture
{
 private RecordingDto dto;
 private RecordingDto.Recording recording;
 private RecordingDto.Track[] tracks;

 [SetUp]
 public void Init()
 {
 dto = Assembler.CreateRecordingDto(1234);
 recording = dto.Recordings[0];
 tracks = recording.GetTracks();
 }

 [Test]
 public void RecordingCount()
 {
 Assert.Equals(1, dto.Recordings.Rows.Count);
 }

 [Test]
 public void RecordingTitle()
 {
 Assert.Equals("Up", recording.Title.Trim());
 }

 [Test]
 public void RecordingChild()
 {
 Assert.Equals(10, tracks.Length);

 foreach(RecordingDto.Track track in tracks)
 {
 Assert.Equals(recording.Id, track.RecordingId);
 }
 }

 [Test]
 public void TrackParent()

Enterprise Solution Patterns Using Microsoft .NET254

 {
 RecordingDto.Track track = tracks[0];
 RecordingDto.Recording parent = track.Recording;
 Assert.Equals("Up", parent.Title.Trim());
 }

 [Test]
 public void TrackContent()
 {
 RecordingDto.Track track = tracks[0];
 Assert.Equals("Darkness", track.Title.Trim());
 }

 [Test]
 public void InvalidRecording()
 {
 RecordingDto dto = Assembler.CreateRecordingDto(-1);
 Assert.Equals(0, dto.Recordings.Rows.Count);
 Assert.Equals(0, dto.Tracks.Rows.Count);
 }
}

These tests describe how to access the individual elements of the DataSet. Because
of the use of a typed DataSet, the test code does not require the actual column
names and does not require the return type to be cast. Comparing these tests with
the ones described in Implementing Data Transfer Object in .NET with a DataSet reveals
the differences between using a strongly-typed interface and a generic interface. The
strongly-typed interface is easier to use and understand. It also provides the added
benefit of compile-time checking on return types.

Resulting Context
Implementing DTO with a typed DataSet shares a number of the same benefits and
liabilities as implementing DTO with a DataSet; however, certain benefits and
liabilities are unique to a typed-DataSet implementation.

Benefits
The typed DataSet shares the following benefits with a DataSet when used as a DTO:
� Development tool support. Because the DataSet class is implemented in

ADO.NET, there is no need to design and implement the DTO. There is also
extensive support in Visual Studio for automating the creation and filling of
DataSet and typed-DataSet objects.

� Integration with controls. A DataSet works directly with the built-in controls in
Windows Forms and Web Forms, making it a logical choice as a DTO.

� Serialization. The DataSet comes complete with the ability to serialize itself into
XML. Not only is the content serialized, but the schema for the content is also
present in the serialization.

Chapter 5: Distributed Systems Patterns 255

� Disconnected database model. The DataSet represents a snapshot of the current
contents of the database. This means that you can alter the contents of the
DataSet and subsequently use the DataSet as the means to update the database.

An additional benefit that might persuade you to use a typed DataSet as opposed to
an ordinary DataSet is the strongly-typed interface of the typed DataSet. A typed
DataSet, as described here, generates classes that can be used to access the contained
data. The classes present an interface which defines how the class is to be used in a
more explicit manner. This removes the need for casting which was present in the
DataSet implementation.

Liabilities
The typed DataSet shares the following liabilities with a DataSet when used in the
context of a DTO:
� Interoperability. Because the DataSet class is part of ADO.NET, it is not the best

choice for a DTO in cases requiring interoperability with clients that are not
running the .NET Framework.. You can still use DataSet, however, the client will
be forced to parse the XML and build its own representation. If interoperability is
a requirement, see Implementing Data Transfer Object in .NET with Serialized Objects.

� Stale data. The typed DataSet, like a DataSet, is disconnected from the database.
It is filled with a snapshot of the data in the database when it is constructed. This
implies that the actual data in the database may be different from what is con-
tained in the typed DataSet. For reading primarily static data, this is not a major
issue. If the data is constantly changing, however, using any kind of DataSet is
not recommended.

� Potential for performance degradation. Instantiating and filling a DataSet can be
an expensive operation. Serializing and deserializing a DataSet can also be very
time consuming. A good rule of thumb for using a DataSet is that a DataSet is a
good choice when you are using more than one table or relying on the capability
of the DataSet to update the database. If you are displaying the results from a
single table, then using a DataReader with strongly-typed objects may offer
better performance. For more information, see Implementing Data Transfer Object in
.NET with Serialized Objects.

The following are additional liabilities when using a typed DataSet as opposed to an
ordinary DataSet:
� A typed DataSet is still a DataSet. A typed DataSet can be substituted at

runtime with a DataSet. This means that even though the strongly-typed inter-
face exists, programmers can still access the data without the typed interface. A
possible result of doing this is that there could be parts of the code which couple
the application tightly to the DataSet table and column names.

� The need for an XML schema. When using a typed DataSet you have to create
and maintain an XML schema to describe the strongly-typed interface. Visual

Enterprise Solution Patterns Using Microsoft .NET256

Studio .NET provides a number of tools to assist in this process, but nevertheless
you still have to maintain an additional file.

Related Patterns
For more information, see the following related patterns:
� Implementing Data Transfer Object in .NET with a DataSet.
� Implementing Data Transfer Object in .NET with Serialized Objects.
� Assembler. In Enterprise Application Architecture Patterns, Fowler defines Assembler

as a specialized instance of the Mapper pattern [Fowler03].

Acknowledgments
[Beau02] Beauchemin, Bob. Essential ADO.NET. Addison-Wesley, 2002.

[Fowler03] Fowler, Martin. Enterprise Application Architecture Patterns. Addison-
Wesley, 2003.

[Wildermuth01] Wildermuth, Shawn. “Typed DataSets in ADO.NET.” .NET Devel-
oper. May 2001.

Chapter 5: Distributed Systems Patterns 257

Singleton

Context
In some situations, a certain type of data needs to be available to all other objects
in the application. In most cases, this type of data is also unique in the system. For
example, a user interface can have only one mouse pointer that all applications must
access. Likewise, an enterprise solution may interface with a single-gateway object
that manages the connection to a specific legacy system.

Problem
How do you make an instance of an object globally available and guarantee that
only one instance of the class is created?

Note: The definition of singleton used here is intentionally narrower than in Design Patterns:
Elements of Reusable Object-Oriented Software [Gamma95].

Forces
The following forces act on a system within this context and must be reconciled as
you consider a solution to the problem:
� Many programming languages (for example, Microsoft Visual Basic® version 6.0

or C++) support the definition of objects that are global in scope. These objects
reside at the root of the namespace and are universally available to all objects in
the application. This approach provides a simple solution to the global accessibil-
ity problem but does not address the one-instance requirement. It does not stop
other objects from creating other instances of the global object. Also, other object-
oriented languages, such as Visual Basic .NET or C#, do not directly support
global variables.

� To ensure that only a single instance of a class can exist, you must control the
instantiation process. This implies that you need to prevent other objects from
creating an instance of the class by using the instantiation mechanism inherent in
the programming language (for example, by using the new operator). The other
part of controlling the instantiation is providing a central mechanism by which
all objects can obtain a reference to the single instance.

Solution
Singleton provides a global, single instance by:
� Making the class create a single instance of itself.
� Allowing other objects to access this instance through a class method that returns

a reference to the instance. A class method is globally accessible.
� Declaring the class constructor as private so that no other object can create a new

instance.

Enterprise Solution Patterns Using Microsoft .NET258

Figure 5.21 shows the static structure of this pattern. The UML class diagram is
surprisingly simple because Singleton consists of a simple class that holds a reference
to a single instance of itself.

-Singleton()

Singleton

+Instance : Singleton

1

Figure 5.21
Singleton structure

Figure 5.21 shows that the Singleton class contains a public class-scope (static)
property, which returns a reference to the single instance of the Singleton class. (The
underline in UML indicates a class-scope property.) Also, the numeral 1 in the
upper-right corner indicates that there can only be one instance of this class in the
system at any time. Because the default constructor for Singleton is private, any
other object in the system has to access the Singleton object through the Instance
property.

The Singleton pattern is often classified as an idiom rather than a pattern because the
solution depends primarily on the features of the programming language you use
(for example, class methods and static initializers). Separating the abstract concept
from a particular implementation, as this patterns collection does, may make the
Singleton implementation look surprisingly simple.

Example
For an example, see Implementing Singleton in C#.

Resulting Context
Singleton results in the following benefits and liabilities:

Benefits
� Instance control. Singleton prevents other objects from instantiating their own

copies of the Singleton object, ensuring that all objects access the single instance.
� Flexibility. Because the class controls the instantiation process, the class has the

flexibility to change the instantiation process.

Chapter 5: Distributed Systems Patterns 259

Liabilities
� Overhead. Although the amount is minuscule, there is some overhead involved

in checking whether an instance of the class already exists every time an object
requests a reference. This problem can be overcome by using static initialization
as described in Implementing Singleton in C#.

� Possible development confusion. When using a singleton object (especially one
defined in a class library), developers must remember that they cannot use the
new keyword to instantiate the object. Because application developers may not
have access to the library source code, they may be surprised to find that they
cannot instantiate this class directly.

� Object lifetime. Singleton does not address the issue of deleting the single object.
In languages that provide memory management (for example, languages based
on the .NET Framework), only the Singleton class could cause the instance to be
deallocated because it holds a private reference to the instance. In languages,
such as C++, other classes could delete the object instance, but doing so would
lead to a dangling reference inside the Singleton class.

Related Patterns
For more information, see the following related patterns:
� Abstract Factory [Gamma95]. In many cases, Abstract Factories are implemented as

singletons. Typically, factories should be globally accessible. Restricting the
factory to a single instance ensures that the one factory globally controls object
creation. This is useful if the factory allocates object instances from a pool of
objects.

� Monostate [Martin02]. Monostate is similar to the Singleton, but it focuses on state
rather than on identity. Instead of controlling the instances of an object, Monostate
ensures that only one shared state exists for all instances by declaring all data
members static.

� Implementing Broker with .NET Remoting Using Server-Activated Objects. This
pattern uses a Singleton factory to create new objects on the server.

Acknowledgments
[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Martin02] Martin, Robert C. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2002.

Enterprise Solution Patterns Using Microsoft .NET260

Implementing Singleton in C#

Context
You are building an application in C#. You need a class that has only one instance,
and you need to provide a global point of access to the instance. You want to be sure
that your solution is efficient and that it takes advantage of the Microsoft® .NET
common language runtime features. You may also want to make sure that your
solution is thread safe.

Implementation Strategy
Even though Singleton is a comparatively simple pattern, there are various tradeoffs
and options, depending upon the implementation. The following is a series of
implementation strategies with a discussion of their strengths and weaknesses.

Singleton
The following implementation of the Singleton design pattern follows the solution
presented in Design Patterns: Elements of Reusable Object-Oriented Software [Gamma95]
but modifies it to take advantage of language features available in C#, such as
properties:

using System;

public class Singleton
{
 private static Singleton instance;

 private Singleton() {}

 public static Singleton Instance
 {
 get
 {
 if (instance == null)
 {
 instance = new Singleton();
 }
 return instance;
 }
 }
}

This implementation has two main advantages:
� Because the instance is created inside the Instance property method, the class can

exercise additional functionality (for example, instantiating a subclass), even
though it may introduce unwelcome dependencies.

Chapter 5: Distributed Systems Patterns 261

� The instantiation is not performed until an object asks for an instance; this ap-
proach is referred to as lazy instantiation. Lazy instantiation avoids instantiating
unnecessary singletons when the application starts.

The main disadvantage of this implementation, however, is that it is not safe for
multithreaded environments. If separate threads of execution enter the Instance
property method at the same time, more that one instance of the Singleton object
may be created. Each thread could execute the following statement and decide that
a new instance has to be created:

if (instance == null)

Various approaches solve this problem. One approach is to use an idiom referred
to as Double-Check Locking [Lea99]. However, C# in combination with the common
language runtime provides a static initialization approach, which circumvents these
issues without requiring the developer to explicitly code for thread safety.

Static Initialization
One of the reasons Design Patterns [Gamma95] avoided static initialization is because
the C++ specification left some ambiguity around the initialization order of static
variables. Fortunately, the .NET Framework resolves this ambiguity through its
handling of variable initialization:

public sealed class Singleton
{
 private static readonly Singleton instance = new Singleton();

 private Singleton(){}

 public static Singleton Instance
 {
 get
 {
 return instance;
 }
 }
}

In this strategy, the instance is created the first time any member of the class is
referenced. The common language runtime takes care of the variable initialization.
The class is marked sealed to prevent derivation, which could add instances. For a
discussion of the pros and cons of marking a class sealed, see [Sells03]. In addition,
the variable is marked readonly, which means that it can be assigned only during
static initialization (which is shown here) or in a class constructor.

This implementation is similar to the preceding example, except that it relies on the
common language runtime to initialize the variable. It still addresses the two basic

Enterprise Solution Patterns Using Microsoft .NET262

problems that the Singleton pattern is trying to solve: global access and instantiation
control. The public static property provides a global access point to the instance.
Also, because the constructor is private, the Singleton class cannot be instantiated
outside of the class itself; therefore, the variable refers to the only instance that can
exist in the system.

Because the Singleton instance is referenced by a private static member variable, the
instantiation does not occur until the class is first referenced by a call to the Instance
property. This solution therefore implements a form of the lazy instantiation prop-
erty, as in the Design Patterns form of Singleton.

The only potential downside of this approach is that you have less control over the
mechanics of the instantiation. In the Design Patterns form, you were able to use a
nondefault constructor or perform other tasks before the instantiation. Because the
.NET Framework performs the initialization in this solution, you do not have these
options. In most cases, static initialization is the preferred approach for implement-
ing a Singleton in .NET.

Multithreaded Singleton
Static initialization is suitable for most situations. When your application must delay
the instantiation, use a non-default constructor or perform other tasks before the
instantiation, and work in a multithreaded environment, you need a different
solution. Cases do exist, however, in which you cannot rely on the common lan-
guage runtime to ensure thread safety, as in the Static Initialization example. In such
cases, you must use specific language capabilities to ensure that only one instance of
the object is created in the presence of multiple threads. One of the more common
solutions is to use the Double-Check Locking [Lea99] idiom to keep separate threads
from creating new instances of the singleton at the same time.

Note: The common language runtime resolves issues related to using Double-Check Locking
that are common in other environments. For more information about these issues, see “The
‘Double-Checked Locking Is Broken’ Declaration,” on the University of Maryland, Department
of Computer Science Web site, at http://www.cs.umd.edu/~pugh/java/memoryModel
/DoubleCheckedLocking.html.

The following implementation allows only a single thread to enter the critical area,
which the lock block identifies, when no instance of Singleton has yet been created:

using System;

public sealed class Singleton
{
 private static volatile Singleton instance;
 private static object syncRoot = new Object();

Chapter 5: Distributed Systems Patterns 263

 private Singleton() {}

 public static Singleton Instance
 {
 get
 {
 if (instance == null)
 {
 lock (syncRoot)
 {
 if (instance == null)
 instance = new Singleton();
 }
 }

 return instance;
 }
 }
}

This approach ensures that only one instance is created and only when the instance
is needed. Also, the variable is declared to be volatile to ensure that assignment to
the instance variable completes before the instance variable can be accessed. Lastly,
this approach uses a syncRoot instance to lock on, rather than locking on the type
itself, to avoid deadlocks.

This double-check locking approach solves the thread concurrency problems while
avoiding an exclusive lock in every call to the Instance property method. It also
allows you to delay instantiation until the object is first accessed. In practice, an
application rarely requires this type of implementation. In most cases, the static
initialization approach is sufficient.

Resulting Context
Implementing Singleton in C# results in the following benefits and liabilities:

Benefits
� The static initialization approach is possible because the .NET Framework explic-

itly defines how and when static variable initialization occurs.
� The Double-Check Locking idiom described earlier in “Multithreaded Singleton” is

implemented correctly in the common language runtime.

Liabilities
If your multithreaded application requires explicit initialization, you have to take
precautions to avoid threading issues.

Enterprise Solution Patterns Using Microsoft .NET264

Acknowledgments
[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Lea99] Lea, Doug. Concurrent Programming in Java, Second Edition. Addison-Wesley,
1999.

[Sells03] Sells, Chris. “Sealed Sucks.” sellsbrothers.com News. Available at: http://
www.sellsbrothers.com/news/showTopic.aspx?ixTopic=411.

Note: Despite its title, the “Sealed Sucks” article is actually a balanced discussion of the pros
and cons of marking a class sealed.

6
Services Patterns

Abstractions enable us to assign behavior and data to discrete chunks of software
that interact at runtime. In well-architected systems, the sum of these interactions
forms a coherent executable intelligence, which provides tangible business value
to the enterprise.

The previous chapter introduced patterns for distributing a single application across
multiple processing nodes using instance-based collaboration and systems separated
by near links. Near links, as you may recall, are reliable links that connect distributed
systems residing in the same trust zone and within the same enterprise; near links
do not require interoperability. Far links are all other links, including links that span
the Internet. This chapter is primarily concerned with systems that are connected by
far links and that use service-based collaboration.

When building distributed systems characterized by near links and instance based
collaboration, the developing organization usually has full control over all compo-
nents involved in the solution. However, many large enterprise applications contain
systems separated by far links and have to interact with preexisting systems that are
usually not under control of the developing organization. For example, an order
management system may use credit scoring functionality implemented in a pre-
existing system or a sales tax calculation service provided by an external service
provider. As a result, complex solutions are likely to have to interact with functions
that are controlled by outside organizations and must be used as is.

Enterprise Solution Patterns Using Microsoft .NET266

This chapter focuses on collaboration between applications and external services. To
describe how Web services provide an interoperable environment that facilitates
such collaboration, the chapter overview addresses the following topics:
� Basic collaboration concepts
� Web services
� Patterns for service-based collaboration using Web services

Collaboration Concepts
Classes, objects, components, and interfaces are the basic building blocks of modern
software. Some of these elements encapsulate problem domains, while others
provide system infrastructure and technical architecture. Each building block pro-
vides a useful function, but the real power lies in the composition of individual
elements into a collaborative solution that provides tangible business value to an
enterprise (or a web of connected enterprises). To enable this level of collaboration,
software elements must adhere to agreed-upon organizing principles and must
expose standard interfaces to each other. Where components are dissimilar, one
element must be adapted to the other, or both must be adapted to an agreed upon
standard.

Service-Based Collaboration
Chapter 5 introduced the notion of instance-based and service-based collaboration,
highlighting the strengths and weaknesses of each approach. Service-based collabo-
ration works well in scenarios where the consuming application does not have any
control over the remote services or has to interoperate with solutions developed on
top of different programming languages or platforms.

Service-based interfaces expose a single instance of an interface that provides a
service to potential consumers. In the context of Web services, Microsoft defines a
software service as a “discrete unit of application logic that exposes message-based
interfaces suitable for being accessed across a network.“ [Microsoft02-2]

A service does not depend on the process that invokes it; it is self-contained and
context-independent. This allows any potential consumer on the network to access
the service. Services are well-defined by means of a contract that specifies the format
for requests to the service and the format of the associated replies.

Although not necessarily message based, the notion of creating a set of logically
grouped services was used in application development before the advent of distrib-
uted applications. For example, operating systems provide services to all applica-
tions running on the operating system. The Microsoft Windows® GDI library, for
instance, provides graphical services, and the Open Database Connectivity (ODBC)
API exposes database access services. And just as abstracting some of the core
capabilities of an operating system in to a set of services helped simplify application

Chapter 6: Services Patterns 267

programming models, identifying core business capabilities of an enterprise and
encapsulating them as a set of interoperable services helps to simplify collaborations
with partners outside the corporate firewall.

Service-Oriented Architecture
Service-oriented architectures (SOAs) apply the concept of a service to distributed
enterprise applications. In an SOA, each application exposes high-level business
functions as services to be consumed by other applications. Because of the expanded
scope and complexity of these service-oriented solutions, a service-oriented architec-
ture must provide additional functions beyond the capability to invoke a remote
service. The most important of these functions include:
� Making services locatable at runtime. It is easy for a stand-alone application to

locate an operating system service such as a GDI call; it is implemented in a local
dynamic-link library named gdi32.dll. However, enterprise services can be
distributed across many computers, networks, or facilities. Some of these services
may change locations because they are tied to existing applications. Therefore,
locating a service in a distributed, service-oriented architecture can be a complex
task.

� Making service and consumer agree on a common format. After the correct
service is found, the consuming application must be able to dynamically deter-
mine which protocol to use to access the service, how to format a request, and
what type of response to expect. Because services can be implemented in a
variety of languages and platforms, getting the service and the consumer to agree
on a common format can also be a challenging task.

Service Contracts
When one method calls another inside an application, the method signature defines
the “understanding” between the method and the caller, for example the number
and types of parameters passed into the method and returned on its completion.
Method calls can embody their understanding in a simple method signature because
the caller and the method make a number of implicit assumptions; for example, that
both methods execute inside the same process and share the same memory space;
that both methods use the same programming language; and that execution returns
to the calling method once the called method is complete. In the world of distributed
SOAs, many of these assumptions are no longer valid and need to be spelled out
explicitly in a service contract.

The service contract must specify the implementation of the communication channel
connecting the Service Consumers with the Service Provider Applications, such as
the network protocol. The service contract must also specify what kinds of messages
the service can consume or produce, described by means of a detailed schema for
each message involved in the interaction.

Enterprise Solution Patterns Using Microsoft .NET268

Figure 6.1 shows the elements of a service-oriented architecture.

Service
Repository

Service Consumer

Contract

Service A

Service Provider Application

Figure 6.1
Invocation of a service in an SOA

A single service may need to support multiple contracts. For instance, service
consumers within the same organization may want to interact with the service
through a series of relatively fine-grained messages and may be granted access to
sensitive functionality. Service consumers external to the organization may want to
interact with the service in a more coarse-grained manner for performance reasons,
and will not be granted access to sensitive functionality.

The following steps are required to invoke a remote service:
1. Discovery: A service consumer (any application wanting to access a service)

queries the service repository, which provides the location of the desired service.
2. Negotiation: The service consumer and the service provider agree on a communi-

cations format specified by the service contract.
3. Invocation: The service consumer invokes the service.

Web Services
Web services provide a standards-based implementation of an SOA. Web services
define a suite of technologies and protocols that greatly simplify creating solutions
based on a set of collaborating applications. Among the many technologies and
principles associated with Web services, two features are key:
� A communication contract between the service provider and service consumer
� Interoperability

Chapter 6: Services Patterns 269

Communication Contract
A protocol stack is commonly used as a metaphor for communication between
systems, the most well-known incarnation being the Open Systems Interconnect
(OSI) layer model. A protocol stack describes communication as a set of layered
services on both sides of the communication, with “higher” layers using the services
of the lower layers. For example, an application protocol such as FTP or HTTP can
use a TCP/IP transport protocol, which in turn uses an Ethernet card to move bits
and bytes over the connection.

A communication contract defines all layers of this protocol stack in detail. As an
example, the telephone system provides the hardware layer as voice communication
in a certain frequency range (400 – 4000 Hz) and MTDF dialing. However, it does
two participants little good if they use compatible telephony hardware but speak
different languages. If you have ever received a phone call from a confused interna-
tional caller or a fax machine, you know that the communication can fail even if the
communication layer works beautifully.

The Web services contract works similarly. It needs to address two primary aspects
of the communication:
� A common communications channel
� Data representation and message schemas

Common Communications Channel
In order for the applications to communicate, they must use compatible protocols.
TCP/IP has become the default core communication protocol stack. Most, if not all,
operating systems provide built-in TCP/IP functionality. Any application that uses a
properly configured TCP/IP stack can communicate with other applications that use
TCP/IP stacks on the same local network.

Figure 6.2 shows the communication channel between two applications with com-
patible protocol stacks.

TCP/IP Network
Infrastructure

Application A

TCP/IP

Application B

TCP/IP

Figure 6.2
Communication channel and TCP/IP protocol stacks

As an example, Application A may make a request for a Web service exposed by
Application B. Application A’s protocol stack breaks down the application-level
request into one or more low-level data packets to be streamed across the network.

Enterprise Solution Patterns Using Microsoft .NET270

Application B’s protocol stack translates the packets back into an application-level
call to the service. The service reply undergoes an equivalent process.

The ubiquity of the TCP/IP protocol stack makes it the ideal foundation for inter-
operable communications. However, TCP/IP is a low-level protocol and does not
define the content of any messages between the applications. Like a phone line, it
provides a channel for communication but does not specify a common language to
be spoken.

HTTP is a protocol layered on top of TCP/IP that provides the most basic conven-
tions for making a request to an external resource. The simplicity of HTTP has
helped it gain wide support as the protocol used to transport information across the
Internet and across corporate firewalls. Thus, HTTP has become both a blessing and
a curse. Its universal use makes it ideal for routing messages, but its capability to
permeate most corporate firewalls concerns many IT security administrators.

With the addition of HTTP, the resulting protocol stack now appears as shown in
Figure 6.3.

TCP/IP Network
Infrastructure

Application A

HTTP

Application B

HTTP

TCP/IP TCP/IP

Figure 6.3
Communication protocol stacks with addition of HTTP

Data Representation and Message Schemas
The second part of the communication contract deals with what is being passed
across the communications channel, comparable to the language spoken across a
telephone line. This part of the contract needs to define three things:
� The data representation format
� The message schema
� The binding of messages to services

Data Representation Format

If applications are to successfully communicate with each other, they must all agree
to a common set of data definitions for data passed over the connection. The Web
services protocol stack already constrains the data passed back and forth to be in a
textual format. But what does that textual data represent? Does it represent a serial-
ized object? An array of integers? Or an XML document?

Chapter 6: Services Patterns 271

There are basically two ways to provide information about what the data represents:
provide an external description or use self-describing data.

An external description defines the schema of the data in some form external to the
data itself. The interface definition languages (IDL) used by Distributed RPC,
DCOM, or CORBA technologies are examples of languages designed to write exter-
nal descriptions. This external approach to data description limits interoperability
because all computers involved in the collaboration must have access to the external
description.

Self-describing data includes an embedded description of the data with the data
itself. Using this approach enhances interoperability because the data can be parsed
without having to consult an external description of the data.

Web services use XML as the data representation format. XML provides the follow-
ing advantages:
� It is text based and therefore compatible with the communication channel
� It is an industry standard with broad industry and user support
� It is self-describing
� It is interoperable
� XML parsers exist for virtually all platforms, and many development tools are

available to ease the development of XML applications

Message Schema

The message is the fundamental unit of communication in Web services and there-
fore it is imperative that all collaborating parties have a precise understanding of the
message contents.

The communication contract must specify all the request messages associated with a
service and any associated response messages. Then the contents for each message
must be specified. This task typically involves identifying the data elements of each
message, specifying the data type of the elements, and specifying any constraints
associated with the types or between types.

SOAP divides a message into two sections: an optional header and a mandatory
body. The header contains information associated with the communication and
services infrastructure. The body contains the business-oriented content of the
message while the header contains metadata.

Message Binding

After the messages have been defined, they must be associated with a communica-
tion channel. In addition to HTTP, SOAP can work with other text-based communi-
cation protocols such as SMTP. As a result, a service may support more than one
communication protocol.

Enterprise Solution Patterns Using Microsoft .NET272

Web services use Web Services Description Language (WSDL) to provide a detailed
specification of all the messages supported by a service. In turn, WSDL uses the
XML Schema Definition (XSD) standard to document the internal structure of each
message and any constraints on any of the message elements.

WSDL groups messages into operations. An operation is the logical unit of interac-
tion with a service, which is defined as a request message and any associated re-
sponse messages.

Finally, WSDL binds operations to one or more protocols, such as HTTP and SMTP,
and then groups these bound operation together in a service. In addition to specify-
ing the operations associated with a service, the WSDL service specification also
documents the communication channel-specific address of the service. For instance,
the service specification would document the URL to identify a service that is
exposed through SOAP over HTTP.

Interoperability
Interoperability was a major factor in the previous discussion of communication
channels and message descriptions. Several other features of Web services signifi-
cantly aid interoperability.

Open Standards
One of the key disadvantages of using a traditional approach to distributed commu-
nication is that applications are dependent on proprietary communication technol-
ogy, protocols, and data formats.

Web services are entirely based on a set of widely-supported, platform-independent,
open standards. As a result, virtually every major platform has one or more imple-
mentations of the Web services protocol stack. This significantly reduces the effort
and cost associated with implementing and deploying solutions based on collaborat-
ing applications.

Service Repository
The final piece of the Web services puzzle is service discovery. How does a service
consumer application find the services it needs to collaborate with? The answer is to
provide a federated service repository that contains descriptions of the services and
associate these descriptions with various metadata elements that are useful for
identifying particular services. For instance, the service repository should return
pointers to services based on several different criteria such as developing organiza-
tion, hosting organization, industry type, and business process supported.

Using a service repository significantly reduces coupling between the service pro-
vider and service consumer. The reduction results from the consumer only needing a
reference to the service, rather than hard-coding all the details needed to access the

Chapter 6: Services Patterns 273

service within the service consumer. This allows the service provider to change
many pieces of the communications contract without requiring any changes to the
service consumer. The provider only needs to update the registry. Applications that
make full use of the UDDI specification will automatically use the new settings the
next time they access the service.

UDDI
The Universal Discovery, Description, and Integration (UDDI) specification solves
the service discovery problem for Web services. Interoperability was one of the
primary goals of UDDI, so it is not surprising that UDDI uses many of the technolo-
gies and protocols already discussed in this chapter.

At its core, UDDI is simply a repository containing links to WSDL service descrip-
tions. UDDI defines several XML descriptions of various metadata that may be
associated with a service. These descriptions include, information about the organi-
zation providing the service, the business process supported by the service, and the
service type. Finally, UDDI exposes its functionality as a set of SOAP services.

Patterns Overview
The patterns in this chapter describe how to structure a custom-developed solution
in a service-oriented environment. Specifically, these patterns enable you to:
� Expose application functionality as a service
� Encapsulate the details of consuming services that are exposed by other

applications

Figure 6.4 shows the relationship between a service gateway, a service interface, and
the implementation of the service.

Service Gateway Service Interface Service Implementation

Service Provider ApplicationService Consumer

Figure 6.4
Service elements

Enterprise Solution Patterns Using Microsoft .NET274

As you design service oriented systems, it is helpful to separate the elements that are
responsible for application business logic from those elements responsible for
communicating with services and participating in service contracts. Separating these
elements furthers the general design objective of separation of concerns, and im-
proves maintainability, flexibility, and testability.

The Service Interface pattern provides guidance on structuring the service provider
portion of the contract. It discusses using a service interface component that encap-
sulates the details of communicating with a particular set of service consumers and
invokes a service implementation component that performs the actual business logic
associated with the service Implementing Service Interface in .NET then provides a
concrete example of creating a service interface component using the .NET frame-
work.

The Service Gateway design pattern provides guidance for implementing the service
consumer portion of the contract. It discusses using a service agent component that
encapsulates all the low-level details of communicating with the service and exposes
an interface that is optimized for the use of the other components within the service
consumer application. Implementing Service Gateway in .NET then provides a concrete
example of creating a Service Gateway component using the .NET Framework.

Services Patterns
Table 6.1 lists the patterns in the Services patterns cluster, along with the problem
statements and associated implementations that serve as a roadmap to the patterns.

Table 6.1: Service Patterns

Pattern Problem Associated implementations

Service Interface How do you make pieces of your Implementing Service Interface
application’s functionality available in .NET
to other applications, while
ensuring that the interface
mechanics are decoupled from
the application logic?

Service Gateway How do you decouple the details Implementing Service Gateway
of fulfilling the contract responsi- in .NET
bilities defined by the service from
the rest of your application?

Chapter 6: Services Patterns 275

Service Interface

Context
You are designing an enterprise application, and you need to make some of its
functionality available across a network. This functionality needs to be accessible to
various types of systems, so interoperability is a key aspect of the design. In addi-
tion to interoperability, you also may need to support different types of communi-
cations protocols and accommodate varying operational requirements.

Problem
How do you make pieces of your application’s functionality available to other
applications, while ensuring that the interface mechanics are decoupled from
the application logic?

Forces
While designing your application, you must address the following forces:
� It is desirable to separate elements that are responsible for the application’s

business logic from the elements responsible for communication protocols, data
transformation, and fulfillment of service contracts. Doing so furthers the general
design objective of separation of concerns.

� Consumers of your application may want responses optimized for particular
usage scenarios. For example, some consumers may want responses optimized
for direct display to users, while others may want responses optimized for
software processing.

� Consumers of your application may want to communicate with the application
using different technologies. For instance, consumers that are external to your
company may want to access the application through SOAP over the Internet,
while consumers that are internal to your company may want to access the
application through .NET remoting.

� The application itself may impose different operational requirements on different
consumers. For example, your application may have security requirements that
authorize consumers internal to your company to perform update and delete
operations, while consumers that are external to your company are only autho-
rized to perform read-only operations. Or, for example, different consumers may
need different transactional support from the application. To some clients, the
context in which specific transactions occur is not important while other clients
may need precise control of the transactional context. A handle to this context
might then be passed to other elements of the application as needed.

� The application’s ability to respond to changes in the business environment in a
timely manner is greatly enhanced if changes to the business logic are isolated

Enterprise Solution Patterns Using Microsoft .NET276

from the mechanisms used by consumers to interact with the application. For
example, the fact that a particular set of business logic was implemented in a
custom built component and then later implemented as a wrapper around a
packaged solution should ideally have no impact on the consumers of the
application.

Solution
Design your application as a collection of software services, each with a service
interface through which consumers of the application may interact with the service.

A software service is a discrete unit of application logic that exposes a message-
based interface that is suitable for being accessed by other applications.
[Microsoft02-2] Each software service has an associated interface that it presents to
the consumers. This interface defines and implements a contract between the con-
sumers of the service and the provider of the service. This contract and its associated
implementation are referred to as a service interface.

Figure 6.5 shows a service gateway consuming a service provided by a service
interface. The collaboration between these two elements is governed by a contract.

Application
Logic

Service
Gateway

Contract

ProviderConsumer

Service
Interface

Application
Logic

Figure 6.5
Service elements

Service Interface
As Figure 6.5 shows, Service Interface provides an entry point that consumers use to
access the functionality exposed by the application. The Service Interface is usually
network addressable, meaning that it is capable of being accessed by the consumer
over some sort of communication network. The network address can be a well-
known location or it can be obtained from a service directory such as UDDI.

A key aspect of the design of a service interface is to decouple the implementation
needed to communicate with other systems from the application’s business logic.

Chapter 6: Services Patterns 277

The service interface provides a much more coarse-grained interface while preserv-
ing the semantics and finer granularity of the application logic. It also provides a
barrier that enables the application logic to change without affecting the consumers
of the interface.

The service interface implements the contract between the consumer and provider.
This contract allows them to exchange information even if they are on different
systems. The service interface is responsible for all of the implementation details
needed to perform this communication. Such details include but are not limited to:
� Network protocol. The service interface should encapsulate all aspects of the

network protocol used for communication between the consumer and service.
For example, suppose that a service is exposed to consumers through HTTP over
a TCP/IP network. You can implement the service interface as an ASP.NET
component published to a well-known URL. The ASP.NET component receives
the HTTP request, extracts the information needed by the service to process the
request, invokes the service implementation, packages the service response, and
sends the response back to the consumer as an HTTP response. From the service
perspective, the only component that understands HTTP is the service interface.
The service implementation has its own contract with the service interface and
should have no dependencies on the specifics of the technology that consumers
use to communicate with the service interface.

� Data formats. The service interface translates between consumer data formats
and the data formats that the service expects. For example, consumers external to
the company may supply data and expect reply data to be in an XML format that
conforms to an industry-standard XML schema. Consumers internal to the
company may want to use an XML format optimized for this particular service.
The service interface is responsible for transforming and mapping both data
formats in a format that the service can use. The service implementation does not
have any knowledge of the specific data formats the service interface might use
to communicate with the consumers.

� Security. The service interface should be considered its own trust boundary.
Different consumers may have different security requirements, so it is up to the
service interface to implement these consumer-specific requirements. For in-
stance, consumers external to the company will generally have more restrictive
security requirements than consumers internal to the company. External consum-
ers may have strong authentication requirements and may only be authorized to
perform a very limited subset of the operations authorized for internal consum-
ers. Internal consumer may be implicitly trusted for most operations and only
require authorization for the most sensitive operations.

� Service level agreements. The service interface has a significant role in ensuring
that the service meets its service level commitments to a specific set of consum-
ers. Service interfaces may implement caching to increase response time and
reduce bandwidth consumption. Multiple instances of a service interface may be
deployed across a load-balanced set of processing nodes to achieve scalability,
availability, and fault-tolerance requirements.

Enterprise Solution Patterns Using Microsoft .NET278

Minimizing the Number of Service Interfaces
In general, you will need one service interface for each unique usage scenario,
technology stack, service level agreement, or operational requirement. However, the
more service interfaces supported by your application, the more work is involved in
building and maintaining the implementation. Therefore, you should try to mini-
mize the number of service interfaces that an application needs to support. For
example, an application may offer two service interfaces for accessing its functional-
ity. The first service interface may be optimized for consumers that are external to
the company. It may specify a few very coarse-grained sets of request–and-response
pairs using SOAP over HTTP communication technology and mandate very strict
security requirements. The second service interface may be optimized for consumers
that are internal to the company. It may specify a somewhat larger number of
request-and-response pairs that are not quite as coarse-grained as those specified in
the first service interface, and emphasize performance requirements over security
concerns.

Example
See Implementing Service Interface in .NET.

Testing Considerations
Service Interface encapsulates all the details of providing a service and decouples it
from the application logic. This separation enables you to replace the application
logic with mock [Mackinnon00] implementations. These mock implementations
replace the real application code with dummy implementations that emulate the real
code. Using mock implementations allows you to write tests that verify that the
code works without having to depend on the actual application code. You can also
extend the mock implementations to simulate error conditions that might be difficult
or impossible to simulate with the real code.

Resulting Context
Using the Service Interface pattern results in the following benefits and liabilities:

Benefits
� The service interface mechanics are decoupled from the application logic. This

separation allows you to easily add new interfaces and to change the implemen-
tation of the underlying application with minimal impact on consumers.

� Decoupling the service interface code from the service implementation code
enables you to deploy the two code bases on separate tiers, potentially increasing
the deployment flexibility of the solution.

Chapter 6: Services Patterns 279

Liabilities
� Many platforms make exposing the application functionality simple. However,

this can lead to a poor decision in terms of granularity. If the interface is too fine-
grained, you can end up making too many calls to the service to perform a
specific action. You need to design your service interfaces to be appropriate for
network or out–of-process communication.

� Each additional service interface provided by a service increases the amount of
work required to make a change to the functionality exposed by a service.

� The Service Interface pattern adds complexity and performance overhead that may
not be justified for very simple service-oriented applications.

Related Patterns
For more information, see the following related patterns:
� Service Gateway. Service Gateway performs the role of the consumer of a service

interface.
� Remote Facade [Fowler03]: Service Interface is a specific type of Remote Facade

adapted for use in service-oriented architectures. A remote facade is similar to a
remote proxy, but sometimes uses encapsulation to make the remote interface
more coarse-grained.

� Service Layer [Fowler03]: As the number and complexity of service interfaces
increase, it may make sense to pool the common pieces of functionality into its
own software layer.

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Mackinnon00] Mackinnon, Tim, et al. “Endo-Testing: Unit Testing with Mock
Objects.” eXtreme Programming and Flexible Processes in Software Engineering — XP2000
conference.

[Microsoft02-2] Microsoft Corporation. “Application Architecture: Conceptual
View.” .NET Architecture Center. Available from MSDN at: http://msdn.microsoft.com
/architecture/default.aspx?pull=/library/en-us/dnea/html/eaappconland.asp.

Enterprise Solution Patterns Using Microsoft .NET280

Implementing Service Interface in .NET

Context
Your application is deployed on the Microsoft Windows® operating system. You
have decided to expose a piece of your application’s functionality as an ASP.NET
Web Service. Interoperability is a key issue so you cannot use complex data types
that are present only in the Microsoft .NET Framework.

Background
When you insert an audio compact disc (CD) into your computer often the program
that you use to play the CD informs you of various pieces of information regarding
the recording. This information might include track information, cover art, reviews,
and so on. To demonstrate an implementation of the Service Interface pattern, this is
implemented as an ASP.NET Web service.

Implementation Strategy
Service Interface describes a separation of interface mechanics and application logic.
The interface is responsible for implementing and enforcing the contract for a
service that is being exposed and the application logic is responsible for the business
functionality that the interface uses in a particular way. This example uses an
ASP.NET Web service to implement the service interface.

Note: The application logic that is shown here is an example of the Table Data Gateway pattern.
In a typical application, there would be some additional business functionality that the imple-
mentation would provide. To focus on Service Interface, such additional business functionality
is omitted from this example.

Service Interface Implementation
An ASP.NET Web Service is used to implement Service Interface. Implementing this
as a Web Service makes this piece of functionality accessible to any number of
disparate systems using Internet standards, such as XML, SOAP, and HTTP. Web
services depend heavily upon the acceptance of XML and other Internet standards to
create an infrastructure that supports application interoperability.

Because the focus is on interoperability between the consumer and the provider you
cannot rely on complex types that may or may not be present on different platforms.
This leads you to define a contract that provides interoperability. The approach
described below involves defining a data transfer object using an XML schema,
generating the data transfer object using platform specific tools and then relying on
the platform to implement the service interface code that uses the data transfer
object. This is not the only approach that will work. The .NET Framework generates

Chapter 6: Services Patterns 281

all the pieces of functionality for you. However, there are cases in which it generates
service interfaces that are not easily interoperable. On the other hand, you could
specify the interface using Web Services Description Language (WSDL) and XML
schema and then use the wsdl.exe utility to generate service interfaces for your
application..

Contract

As described in Service Interface a contract exists which allows providers of a service
and consumers to interoperate. There are three aspects to this contract when imple-
menting it as an ASP.NET Web service:
� Specify XML schema. The definition of the data that is transferred between the

consumer and the provider is specified using an XML schema. The input to the
service is a simple variable of the type long; therefore a schema is not needed for
this scenario because simple types are built into the SOAP specification. How-
ever, the return type of the Web service is not a simple type, so the type must be
specified using an XML schema. In this example, the schema is contained in the
Recording.xsd file.

� Data transfer object. The .NET framework has a tool called xsd.exe which, given
an XML schema, can generate a data transfer object to be used by the code that
implements the Web service. In this example, the name of the data transfer object
is Recording and it is contained in the Recording.cs file.

� Service Interface implementation. A class that inherits from
System.Web.Services.WebService and specifies at least one method that is
marked with the [WebMethod] attribute. In this example, the class is called
RecordingCatalog and it is contained in the RecordingCatalog.asmx.cs file. This
class is responsible for making the call to the service implementation and also for
translating the output of the service implementation into the format that the Web
service will use. The functionality to translate the data is encapsulated in a class
called RecordingAssembler and contained in the RecordingAssembler.cs file.
This class is an example of an assembler, which is a variant of the Mapper pattern.
[Fowler03]

The diagram on the next page depicts the relationship of the classes that implement
the service interface.

Enterprise Solution Patterns Using Microsoft .NET282

System.Web.Services.WebService

System.Data.DataSet

Recording
Catalog

Track

<<create>>

0..*

Recording

+Get(in id : long) : Recording

Recording
Assembler

+Assemble(in ds : System.Data.DataSet)
: Recording

RecordingGateway

+GetRecording(in id : long)
: System.Data.DataSet

Service Interface Application Logic

Figure 6.6
Service Interface class diagram

Chapter 6: Services Patterns 283

Recording.xsd

The definition of the information that will be transferred to the client is specified
using an XML schema. The following schema defines two complex types; Recording
and Track.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:tns="http://msdn.microsoft.com/practices"
elementFormDefault="qualified" targetNamespace="http://msdn.microsoft.com/pat-
terns" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Recording" type="tns:Recording" />
 <xs:complexType name="Recording">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="id" type="xs:long" />
 <xs:element minOccurs="1" maxOccurs="1" name="title" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="artist" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="unbounded" name="Track"
type="tns:Track" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Track">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="id" type="xs:long" />
 <xs:element minOccurs="1" maxOccurs="1" name="title" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="duration" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

The Recording type has an ID, artist, title, and an unbounded number of Track
types. A Track type also has ID, title, and duration elements.

Recording.cs

As mentioned earlier, the .NET Framework has a xsd.exe command-line tool, which
takes as input an XML schema and outputs a class that can be used in your program.
The generated class is used as the return value of the Web service. The command
that was used to generate the Recording.cs class is as follows:

xsd /classes Recording.xsd

The output that was produced by running this command is shown below:
//———————————————————————————————————————
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3705.288
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//———————————————————————————————————————

Enterprise Solution Patterns Using Microsoft .NET284

//
// This source code was auto-generated by xsd, Version=1.0.3705.288.
//
using System.Xml.Serialization;

/// <remarks/>
[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://msdn.microsoft.com/
practices")]
[System.Xml.Serialization.XmlRootAttribute(Namespace="http://msdn.microsoft.com/
practices", IsNullable=false)]
public class Recording {

 /// <remarks/>
 public long id;

 /// <remarks/>
 public string title;

 /// <remarks/>
 public string artist;

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("Track")]
 public Track[] Track;
}

/// <remarks/>
[System.Xml.Serialization.XmlTypeAttribute(Namespace="http://msdn.microsoft.com/
practices")]
public class Track {

 /// <remarks/>
 public long id;

 /// <remarks/>
 public string title;

 /// <remarks/>
 public string duration;
}

RecordingCatalog.asmx.cs

After the types are defined, you need to implement the actual Web service imple-
mentation. This class encapsulates all of the Service Interface behavior. The service
that is being exposed is defined explicitly by using the [WebMethod] attribute.

[WebMethod]
public Recording Get(long id)
{ /* … */ }

The Get method takes as input an id and returns a Recording object. As described in
the XML schema a Recording may also include a number of Track objects.

Chapter 6: Services Patterns 285

The following is the implementation.

using System.ComponentModel;
using System.Data;
using System.Web.Services;

namespace ServiceInterface
{
 [WebService(Namespace="http://msdn.microsoft.com/practices")]
 public class RecordingCatalog : System.Web.Services.WebService
 {
 private RecordingGateway gateway;

 public RecordingCatalog()
 {
 gateway = new RecordingGateway();
 InitializeComponent();
 }

 #region Component Designer generated code
 // …
 #endregion

 [WebMethod]
 public Recording Get(long id)
 {
 DataSet ds = RecordingGateway.GetRecording(id);
 return RecordingAssembler.Assemble(ds);
 }
 }
}

The Get method makes a call to the RecordingGateway to retrieve a DataSet. It then
makes a call to the RecordingAssembler.Assemble method to translate the DataSet
into the generated Recording and Track objects.

RecordingAssembler.cs

The reason this class is part of the service interface is because of the need to translate
the output of the application logic into the objects that are being sent out over the
Web service. The RecordingAssembler class is responsible for translating the return
type of the service implementation, in this case an ADO.NET DataSet, into the
Recording and Track types that were generated in a previous step.

using System;
using System.Collections;
using System.Data;

public class RecordingAssembler
{
 public static Recording Assemble(DataSet ds)
 {
 DataTable recordingTable = ds.Tables["recording"];

Enterprise Solution Patterns Using Microsoft .NET286

 if(recordingTable.Rows.Count == 0) return null;

 DataRow row = recordingTable.Rows[0];

 Recording recording = new Recording();
 recording.id = (long)row["id"];
 string artist = (string)row["artist"];
 recording.artist = artist.Trim();
 string title = (string)row["title"];
 recording.title = title.Trim();

 ArrayList tracks = new ArrayList();
 DataTable trackTable = ds.Tables["track"];
 foreach(DataRow trackRow in trackTable.Rows)
 {
 Track track = new Track();
 track.id = (long)trackRow["id"];
 string trackTitle = (string)trackRow["title"];
 track.title = trackTitle.Trim();
 string duration = (string)trackRow["duration"];
 track.duration = duration.Trim();
 tracks.Add(track);
 }
 recording.Track = (Track[])tracks.ToArray(typeof(Track));

 return recording;
 }
}

Assembler classes in general are somewhat ugly. Their job is to translate from one
representation to another so they are usually straightforward but always depend
on both representations. These dependencies make them susceptible to changes from
both representations.

Although assemblers are useful, you may not always want to create one yourself if
there are readily available alternatives that meet your needs. As an alternative in this
case, you could use XML serialization to create an instance of an
XMLDataDocument, associate it with the DataSet and return the XML instead. For
details on this approach, see the “DataSets, Web Services, DiffGrams, Arrays, and
Interoperability” article on MSDN®: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnservice/html/service02112003.asp?frame=true

Application Logic
The application logic in this example is probably too simple for most enterprise
applications. The reasoning for this that the pattern focuses on the Service Interface
so the implementation portion is shown more for completeness instead of being a
representative example. This implementation uses a Table Data Gateway to retrieve
data from a database. The Table Data Gateway class, called RecordingGateway,
retrieves the recording record and the track records associated with the recording.
The result is returned in a single DataSet. For a detailed discussion of the database

Chapter 6: Services Patterns 287

schema used and of DataSet, see Implementing Data Transfer Object in .NET with a
DataSet.

RecordingGateway.cs

This class fills a DataSet with two results sets: recording and track. The client passes
in the ID of the recording record that is desired. The class performs two queries
against the database to fill the DataSet. The last thing it does is to define the rela-
tionship between the recording and its track records.

using System;
using System.Collections;
using System.Data;
using System.Data.SqlClient;

public class RecordingGateway
{
 public static DataSet GetRecording(long id)
 {
 String selectCmd =
 String.Format(
 "select * from recording where id = {0}",
 id);

 SqlConnection myConnection =
 new SqlConnection(
"server=(local);database=recordings;Trusted_Connection=yes");
 SqlDataAdapter myCommand =
new SqlDataAdapter(selectCmd, myConnection);

 DataSet ds = new DataSet();
 myCommand.Fill(ds, "recording");

 String trackSelect =
 String.Format(
 "select * from Track where recordingId = {0} order by Id",
 id);

 SqlDataAdapter trackCommand =
new SqlDataAdapter(trackSelect, myConnection);
 trackCommand.Fill(ds, "track");

 ds.Relations.Add("RecordingTracks",
 ds.Tables["recording"].Columns["id"],
 ds.Tables["track"].Columns["recordingId"]);

 return ds;
 }
}

Note: The example shown here is not meant to describe the only way to fill a DataSet. There
are many ways to retrieve this data from the database. For example, you could use a stored
procedure.

Enterprise Solution Patterns Using Microsoft .NET288

Tests
The unit tests focus on testing the internal aspects of the implementation. One unit
test tests the retrieval of information from the database (RecordingGatewayFixture)
and the other tests the conversion of a DataSet into Recording and Track objects
(RecordingAssemblerFixture).

RecordingGatewayFixture
The RecordingGatewayFixture class tests the output of the RecordingGateway,
which is a DataSet. This verifies that, given an ID, a proper DataSet is retrieved from
the database with both recording and track information.

using NUnit.Framework;
using System.Data;

[TestFixture]
public class RecordingGatewayFixture
{
 private DataSet ds;
 private DataTable recordingTable;
 private DataRelation relationship;
 private DataRow[] trackRows;

 [SetUp]
 public void Init()
 {
 ds = RecordingGateway.GetRecording(1234);
 recordingTable = ds.Tables["recording"];
 relationship = recordingTable.ChildRelations[0];
 trackRows = recordingTable.Rows[0].GetChildRows(relationship);
 }

 [Test]
 public void RecordingCount()
 {
 Assertion.AssertEquals(1, recordingTable.Rows.Count);
 }

 [Test]
 public void RecordingTitle()
 {
 DataRow recording = recordingTable.Rows[0];
 string title = (string)recording["title"];
 Assertion.AssertEquals("Up", title.Trim());
 }

 [Test]
 public void RecordingTrackRelationship()
 {
 Assertion.AssertEquals(10, trackRows.Length);
 }

Chapter 6: Services Patterns 289

 [Test]
 public void TrackContent()
 {
 DataRow track = trackRows[0];

 string title = (string)track["title"];
 Assertion.AssertEquals("Darkness", title.Trim());
 }

 [Test]
 public void InvalidRecording()
 {
 DataSet ds = RecordingGateway.GetRecording(-1);
 Assertion.AssertEquals(0, ds.Tables["recording"].Rows.Count);
 Assertion.AssertEquals(0, ds.Tables["track"].Rows.Count);
 }
}

RecordingAssemblerFixture

The second fixture tests the RecordingAssembler class by testing the conversion of
a DataSet into Recording and Track objects:

using NUnit.Framework;
using System.Data;
using System.IO;
using System.Xml;

[TestFixture]
public class RecordingAssemblerFixture
{
 private static readonly long testId = 1234;
 private Recording recording;

 [SetUp]
 public void Init()
 {
 DataSet ds = RecordingGateway.GetRecording(1234);
 recording = RecordingAssembler.Assemble(ds);
 }

 [Test]
 public void Id()
 {
 Assertion.AssertEquals(testId, recording.id);
 }

 [Test]
 public void Title()
 {
 Assertion.AssertEquals("Up", recording.title);
 }

Enterprise Solution Patterns Using Microsoft .NET290

 [Test]
 public void Artist()
 {
 Assertion.AssertEquals("Peter Gabriel", recording.artist);
 }

 [Test]
 public void TrackCount()
 {
 Assertion.AssertEquals(10, recording.Track.Length);
 }

 [Test]
 public void TrackTitle()
 {
 Track track = recording.Track[0];
 Assertion.AssertEquals("Darkness", track.title);
 }

 [Test]
 public void TrackDuration()
 {
 Track track = recording.Track[0];
 Assertion.AssertEquals("6:51", track.duration);
 }

 [Test]
 public void InvalidRecording()
 {
 DataSet ds = RecordingGateway.GetRecording(-1);
 Recording recording = RecordingAssembler.Assemble(ds);
 Assertion.AssertNull(recording);
 }
}

After running these tests you have confidence that the retrieval of information from
the database works correctly and you can translate the database output into the data
transfer objects. However, the tests do not address end-to-end functionality nor do
they test all of the service interface code. The following example tests the full func-
tionality. It is referred to as a functional or acceptance test since it verifies that the
whole interface works as expected. The approach described below retrieves a
DataSet from the RecordingGateway. It then makes a call using the web service to
retrieve the exact same Recording. After it is received it simply compares the two
results. If they are the equal then Service Interface works correctly.

Note: Only a sample of possible acceptance tests are shown here. You should also note that
there are also other ways to do this type of testing. This is just one way of performing the
tests.

Chapter 6: Services Patterns 291

AcceptanceTest.cs

The following are some sample acceptance tests for the service interface:

using System;
using System.Data;
using NUnit.Framework;
using ServiceInterface.TestCatalog;

[TestFixture]
public class AcceptanceTest
{
 private static readonly long id = 1234;
 private DataSet localData;
 private DataTable recordingTable;

 private RecordingCatalog catalog = new RecordingCatalog();
 private ServiceInterface.TestCatalog.Recording recording;

 [SetUp]
 public void Init()
 {
 // get the recording from the database
 localData = RecordingGateway.GetRecording(id);
 recordingTable = localData.Tables["recording"];

 // get the same recording from the web service
 recording = catalog.Get(id);
 }

 [Test]
 public void Title()
 {
 DataRow recordingRow = recordingTable.Rows[0];
 string title = (string)recordingRow["title"];
 Assertion.AssertEquals(title.Trim(), recording.title);
 }

 [Test]
 public void Artist()
 {
 DataRow recordingRow = recordingTable.Rows[0];
 string title = (string)recordingRow["artist"];
 Assertion.AssertEquals(title.Trim(), recording.artist);
 }

 // continued
}

Enterprise Solution Patterns Using Microsoft .NET292

Resulting Context
The following are the benefits and liabilities related to using an ASP.NET Web
service as an implementation of Service Interface:

Benefits
� Separation of concerns. The separation of the service interface and application

logic is important because they are likely to vary independently. Implementing
the interface portion as an ASP.NET Web service facilitates the separation.

� Interoperability. Basing the interface on Internet standards, such as XML and
SOAP, allow for different clients to access the Web service, no matter which
operating system they are using.

� ASP.NET Web services and Microsoft Visual Studio.NET. The environment
makes working with Web services very straightforward. The xsd.exe tool demon-
strated in this example provides a tool to translate an XML schema into a C# or
Microsoft Visual Basic® .NET class. To create the Web service, this example used
a predefined template in the Microsoft Visual Studio® .NET development system
and generated the majority of the RecordingCatalog.asmx.cs file.

Liabilities
� Data Transformation. In many cases, there must be a data transformation from

the application logic representation to the representation that is being used by the
service interface. This transformation is always problematic due to the dependen-
cies introduced by having a class that depends on both representations. In this
example, the RecordingAssembler class depends on the DataSet returned by the
RecordingGateway as well as the generated Recording and Track classes.

� Synchronization. Keeping the schema and the generated code both updated is
not automatic. Therefore, any change to the schema requires that you rerun the
xsd.exe tool to regenerate the Recording.cs class.

Related Patterns
� Table Data Gateway [Fowler03]. The RecordingGateway shown here is an example

of this pattern.
� Mapper [Fowler03] The RecordingAssembler shown here is a variant of the

Mapper pattern, which is often referred to as an assembler.
� Implementing Data Transfer Object in .NET with a DataSet. This pattern describes

the database schema that is used in this example.

Acknowledgments
[Microsoft02-1] Microsoft Corporation. “XML Web Services Overview.” .NET Frame-
work Developer’s Guide. Available from the MSDN Library at: http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconwebservicesoverview.asp.

[Fowler03] Fowler, Martin. Enterprise Application Architecture Patterns. Addison-
Wesley, 2003.

Chapter 6: Services Patterns 293

Service Gateway

Context
You are designing an enterprise application that consumes a service provided by
another application. The service defines a contract that all service consumers must
conform to in order to access the service. The contract defines such things as the
technology, communications protocols, and message definitions needed to commu-
nicate with the service. To communicate with the service, your application needs to
fulfill its responsibilities as detailed in the contract.

Problem
How do you decouple the details of fulfilling the contract responsibilities defined by
the service from the rest of your application?

Forces
When designing an application that consumes services provided by other applica-
tions, you must address the following forces:
� Implementing the consumer’s contract responsibilities requires you to implement

security and communication mechanisms such as authentication, marshaling,
encryption, and message routing. These mechanisms often change at a different
rate and for different reasons than the application’s business logic.

� The contract may specify data formats that are different from your application’s
internal representation. If so, the data must be translated. Sometimes this transla-
tion is a simple as renaming a field or converting a data type, but other times this
conversion involves complex structural and semantic transformations. For
example, most services expose coarse-grained type-based interfaces to optimize
their use in distributed environments. Therefore, when an operation is invoked
on a service from an object-oriented application, information from several of your
applications’ fine-grained objects will often need to be aggregated and trans-
formed into the format specified by the contract. Likewise, the response from the
operation will usually need to be broken apart and mapped back to fine-grained
objects.

� Your organization may not control the contract specified by the service. If the
contract changes, you will want to minimize the impact on the application code.

� The communications channel that provides connectivity between your applica-
tion and the services typically exposes a generic, low-level application program-
ming interface (API) to the application. This API may include generic functions
such as SendData. In most situations, you want your application to deal with a
more semantically rich interface, through methods such as ValidateCreditCard or
GetCustomerAddress.

Enterprise Solution Patterns Using Microsoft .NET294

� Some contracts may specify asynchronous messaging; that is, they may not
return a result immediately. Instead, the service consumer must be prepared to
receive a separate result message from the service. The event-driven program-
ming needed to handle such incoming messages from a service can complicate an
application significantly.

Solution
Encapsulate the code that implements the consumer portion of the contract into its
own Service Gateway component. Service gateways play a similar role when access-
ing services as data access components do for access to the application’s database.
They act as proxies to other services, encapsulating the details of connecting to the
source and performing any necessary translation.

Service Gateway is a specific type of Martin Fowler’s Gateway pattern [Fowler03] that
is adapted for use in service-oriented architectures, and as such, its major concern is
encapsulating a consuming application’s access to external systems. Service Gateway
often interacts with Remote Facade [Fowler03] instead of interacting with an external
system directly. Remote Facade encapsulates complex functionality in provider
applications and exposes that functionality as a single simple interface to consumer
applications. Service Interface is a specific type of Remote Facade adapted for use in
service-oriented architectures. In service-oriented architectures, it is common for a
consuming application’s service gateway to collaborate with a service interface
exposed by a provider application. The following fiqure illustrates this relationship.

RetrievalForm.aspx Service Gateway
(Recording Catalog.cs)

Service Interface

Recording
Catalog Service

Web Application

Figure 6.7
Service Gateway consuming the service of a service interface

The Service Gateway component encapsulates the low-level details of communicating
with a service. Such details include but are not limited to:
� Communications channel. Service Gateway encapsulates all the low-level network

communications functionality needed to communicate with the service. For
example, Service Gateway hides all the details of using SOAP over HTTP for
communicating with a Web service.

� Data formats. Service Gateway maps between the internal organization of infor-
mation in your application and the format mandated by the service’s communica-
tion contract. For example, your application may be composed of a collaborating

Chapter 6: Services Patterns 295

set of fine-grained objects; however a Web service it consumes may require an
XML document as input and provide an XML document as a result. The gateway
is responsible for translating between the fine-grained object interfaces and XML
documents.

� Service discovery. For simple to moderately complex scenarios, Service Gateway
should encapsulate the process of finding the proper service. This may involve
looking up the network address of the service in a configuration file or using a
service repository such as UDDI. For complex scenarios, such as those that
require dynamic determination of the proper service to call based on changing
data, the service discovery functionality may be encapsulated in its own Service
Gateway component.

� Process adapter. Service Gateway should adapt the application’s business process
to work with the service. For example, a single call to the service gateway may
result in multiple invocations to one or more service operations. Therefore, the
interface that the service gateway presents to the application should be in terms
of the application’s processes, rather than in terms of communication and secu-
rity protocols..

� Asynchronous vs. synchronous calling semantics. Service Gateway adapts the
consuming application’s calling semantics (asynchronous or synchronous) to the
calling semantics specified by the contract. For instance, a consuming
application’s design may not support the asynchronous calling semantics speci-
fied in the contract. The consuming application’s service gateway would then be
required to convert the application’s synchronous calls to the asynchronous
protocol specified in the contract.

You do not have to implement Service Gateway as a single object. In fact, it may be
advantageous to separate some of the functions into separate objects. For example,
using separate objects may make it easier to use code generation to create some
portions of the gateway. The code that implements the mapping data between the
internal application format and the format expected by the service is an ideal candi-
date for this mapping, provided that the service provider publishes metadata
describing the required data format (for example, in the form of WSDL or an XML
schema). This metadata can be used to generate a strongly typed class that encapsu-
lates this mapping.

Example
See Implementing Service Gateway in .NET.

Testing Considerations
Service Gateway can significantly improve the testability of the system. A service
gateway encapsulates all the details of accessing the service into a single component
and hides the component behind an interface that has no direct dependencies on the
underlying communications channel. This allows you to replace the gateway with a

Enterprise Solution Patterns Using Microsoft .NET296

Service Stub [Fowler03] during testing. This stub does not access the external system
at all, but returns results that simulate the external system directly to the application
logic. Service Stub can also be used to simulate error conditions, such as the external
service being unavailable.

Resulting Context
Using a Service Gateway component to isolate the application from the details of
communicating with the service provides the following benefits and liabilities:

Benefits
� Decoupling the service access logic from the rest of the application makes it easy

to change the service the application accesses. For example, you may want to
switch to a new version of the same service, or you may want to use a service
with better service-level guarantees from another vendor. Switching to another
service is much easier if you can automatically generate the code that does the
data mapping.

� Service Gateway hides the complexities of accessing a service from the application.
This improves reuse of both the application components and the service access
components. The application has no direct reference to the service, so it is inde-
pendent of any implementation details and the location of the service. Encapsu-
lating the service access logic in a separate layer also improves the reuse of the
access logic because it can now be used across multiple service calls as long as the
same transport and authentication mechanism is used.

� Service Gateway provides an ideal location for providing common features such as
asynchronous invocation, caching, and error handling.

Liabilities
� Service Gateway adds an additional level of complexity that may be unnecessary

for simple solutions. In particular, the effort and infrastructure needed to support
the automatic generation of mapping components may not be needed if your
organization will only be accessing a few relatively static services.

� A particular service gateway is responsible for interacting with a single service.
Coordination among multiple services must he handled by an additional compo-
nent such as the business process component specified in Three-Layered Services
Application.

� The service gateway is often contained within a single application. Therefore,
code duplication can result: if multiple applications access the same service, both
applications may duplicate the gateway functionality. Developing a reusable
service gateway component is one alternative. Another solution is to extract the
common functionality into its own service that is deployed locally within your
organization. Some of distributed computing solutions discussed in the previous
chapter, such as Remote Facade, can also be useful in this situation.

Chapter 6: Services Patterns 297

Related Patterns
For more information, see the following related patterns:
� Three-Layered Services Application. The Service Gateway component specified in

Three-Layered Services Application is an implementation of the Service Gateway
pattern.

� Service Interface. Service Interface plays a role in provider applications that is
similar to the role Service Gateway plays in consumer applications.

� Mapper [Fowler03]. Mapper provides translation between two or more fixed
interfaces without either object being aware of the other. Service gateways may
incorporate Mapper to translate between application and service data formats.

� Remote Facade [Fowler03]. Service Interface is a specific type of Remote Facade
adapted for use in service-oriented architectures. A remote facade is similar to a
remote proxy but sometimes uses encapsulation to make the remote interface
more coarse-grained.

� Gateway [Fowler03]. Gateway is an object that encapsulates access to an external
system or resource. Service Gateway is a specific instance of Gateway.

� Assembler: Similar to Mapper, this pattern assembles an object from many objects.
Communication between two interfaces in a mapper is bidirectional, whereas it
tends to be unidirectional in assemblers.

Acknowledgments
[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Schmidt00] Schmidt, Douglas, Pattern-Oriented Software Architecture Vol.2, Wiley &
Sons, 2000.

Enterprise Solution Patterns Using Microsoft .NET298

Implementing Service Gateway in .NET

Context
You are implementing Service Gateway in an application that will be deployed on the
Microsoft Windows® operating system. The service to be consumed is a Web service
that uses SOAP over HTTP for communications and is fully described by means of
Web Services Description Language (WSDL).

Implementation Strategy
Service Gateway recommends encapsulating the code that implements the low-level
details of communicating with a service into its own component. The component is
responsible for implementing the consumer portion of the communications contract
between the consumer and the service provider.

Web services document the service provider portion of the communications contract
using WSDL. The wsdl.exe tool in the .NET Framework SDK processes a WSDL
description of a Web service and generates a class that encapsulates all the details of
communicating with the service through SOAP. For many applications, this proxy
class can be used as the service gateway. Some advanced scenarios require the
service gateway to have responsibilities beyond basic communication, such as
transactions and security; in these scenarios, you may need to wrap the generated
class to provide this additional functionality.

Example Overview
This example shows how you could use the implementation strategy described to
develop a Web application that displays recording information. The recording
catalog service discussed in Implementing Service Interface in .NET provides the
recording information.

Figure 6.8 shows the overall structure of the application.

RetrievalForm.aspx Service Gateway
(Recording Catalog.cs)

Service Interface

Recording
Catalog Service

Web Application

Figure 6.8
Application structure

Figure 6.9 shows the user interface of the example Web application.

Chapter 6: Services Patterns 299

Figure 6.9
Example Web application

This is a very simple Web application. The user enters a recording ID in the Select a
Recording text box and clicks Submit. The Web application queries the recording
catalog service and displays the result.

Figure 6.10 on the next page shows a detailed class diagram of the application.

The RecordingCatalog class is the Service Gateway component. It is the class that is
generated by the wsdl.exe utility. Further details are discussed later in the pattern.

The RetrievalForm class derives from WebForm class and provides the Web-based
user interface for the application.

The Recording and Track classes are defined in the WSDL description of the service
and therefore are generated by the wsdl.exe utility. These classes are purely data
containers and contain no methods. Their primary role is to act as data transfer
objects in interactions with the service.

The RecordingDisplayAdapter and TrackDisplayAdapter classes are wrappers
around Recording and Track that adapt their interfaces for ease of use by the user
interface controls.

Enterprise Solution Patterns Using Microsoft .NET300

Track Display Adapter

Web Application

Recording Display Adapter

Recording
Catalog

Track

Service Gateway

1

1

Recording

RetrievalForm

+Get(in id : long) : Recording

Figure 6.10
Structural view of example Web application

WSDL Description
You need to obtain the WSDL description for the service to be able to generate the
service gateway. The WSDL describes the contract that the service gateway and
service interface agree on. The service used in this example was developed in
ASP.NET. ASP.NET-based Web services have a built-in mechanism for obtaining the
WSDL description of the service. In the URL text box of a Web browser, you type the
URL of the service with ?WSDL appended to the end.

Chapter 6: Services Patterns 301

For example, if the URL of the service is:

http://localhost/ServiceInterface/RecordingCatalog.asmx

you would type the following to display the WSDL description for the service:

http://localhost/ServiceInterface/RecordingCatalog.asmx?WSDL

The WSDL description for the service gateway in the Web application example
defines a service named RecordingCatalog as follows. For the implementation in this
discussion, only the SOAP port is of interest. This section of the description specifies
the URL for the service and references the RecordingCatalogSoap binding.

Note: The full WSDL description is not shown here. However, key excerpts that have an impact
on the generated service gateway classes are shown.

<service name="RecordingCatalog">
 <port name="RecordingCatalogSoap" binding="s0:RecordingCatalogSoap">
 <soap:address location="http://localhost/ServiceInterface/
RecordingCatalog.asmx" />
 </port>
 ...
 Description of other ports.
 ...
</service>
The following is the binding definition for RecordingCatalog:
<binding name=”RecordingCatalogSoap” type=”s0:RecordingCatalogSoap”>
 …
</binding>

The next section specifies that the service has one operation, which is named “Get”.
It also describes the type of message that the service expects and the type of message
that the service will respond with:

<portType name=”RecordingCatalogSoap”>
 <operation name=”Get”>
 <input message=”s0:GetSoapIn” />
 <output message=”s0:GetSoapOut” />
 </operation>
</portType>

The following section defines the parameters associated with calling the service and
the type of what is returned to the user:

<message name="GetSoapIn">
 <part name="parameters" element="s0:Get" />
</message>
<message name="GetSoapOut">
 <part name="parameters" element="s0:GetResponse" />
</message>

Enterprise Solution Patterns Using Microsoft .NET302

Lastly, the WSDL description specifies, in the form of an XML schema, the Get
message to have one element, which is a long value. The response message returns a
type, named Recording, which is composed of the recording ID, title, artist, and list
of tracks.

<types>
 <s:schema elementFormDefault="qualified"targetNamespace="http://
msdn.microsoft.com/patterns">
 <s:element name="Get">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="id" type="s:long" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetResult" type="s0:Recording" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="Recording">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="id" type="s:long" />
 <s:element minOccurs="0" maxOccurs="1" name="title" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="artist" type="s:string" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Track"
type="s0:Track" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="Track">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="id" type="s:long" />
 <s:element minOccurs="0" maxOccurs="1" name="title" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="duration" type="s:string" />
 </s:sequence>
 </s:complexType>
 <s:element name="Recording" type="s0:Recording" />
 </s:schema>
 </types>

Service Gateway Implementation
To generate the class and the data transfer classes, you need to execute the following
command:

wsdl http://localhost/ServiceInterface/RecordingCatalog.aspx

The name of the output file is based on the service name given in the WSDL descrip-
tion; in this example, the file name is RecordingCatalog.cs. This file contains the
source code for three class definitions: RecordingCatalog, Recording, and Track.

Chapter 6: Services Patterns 303

For more information on wsdl.exe, see .NET Framework Tools on MSDN®:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html
/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

RecordingCatalog.cs

RecordingCatalog is the class that encapsulates the details of SOAP messaging and
HTTP communications. This class exposes a public Get method that is responsible
for calling the “Get” operation on the service. Notice the correspondence between
the types defined in the XML schema definition and the C# types. The sample
application uses this method to obtain the catalog data that will be displayed to
the user.

public class RecordingCatalog :
System.Web.Services.Protocols.SoapHttpClientProtocol {

 /// <remarks/>
 public RecordingCatalog() {
 this.Url = "http://localhost/ServiceInterface/RecordingCatalog.asmx";
 }

 /// <remarks/>
 [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://
microsoft.com/pag/patterns/Get", RequestNamespace="http://microsoft.com/pag/
patterns", ResponseNamespace="http://microsoft.com/pag/patterns",
Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public Recording Get(long id) {
 object[] results = this.Invoke("Get", new object[] {
 id});
 return ((Recording)(results[0]));
 }

 // …
}

Recording Data Transfer Object

The following is the implementation of the Recording type specified in the XML
schema section of the WSDL description and generated in C# by the wsdl.exe tool:

public class Recording {

 /// <remarks/>
 public long id;

 /// <remarks/>
 public string title;

 /// <remarks/>
 public string artist;

Enterprise Solution Patterns Using Microsoft .NET304

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("Track")]
 public Track[] Track;
}

Track Data Transfer Object

One of the fields defined in the Recording class refers to the Track type. Track is also
specified in the XML schema section of the WSDL file. Its representation as a C#
class is defined as follows:

public class Track {

 /// <remarks/>
 public long id;

 /// <remarks/>
 public string title;

 /// <remarks/>
 public string duration;
}

Application Implementation
The remaining three classes, RetrievalForm, RecordingDisplayAdapter, and
TrackDisplayAdapter, are used to create a Web page that displays the catalog
information.

RetrievalForm.aspx

The RetrievalForm is an ASP.NET page that provides a basic user interface for
displaying the data retrieved from the Recording Catalog Web service. It has a text
box for entering a recording ID, a button control to initiate the data lookup, and two
repeater controls for displaying the returned information. The code for this class is
as follows:

<%@ Page language="c#" Codebehind="RetrievalForm.aspx.cs" AutoEventWireup="false"
Inherits="RetrieveForm" %>
<HTML>
 <HEAD>
 <title>Solution</title>
 </HEAD>
 <body>
 <form id="start" method="post" runat="server">
 <h3>Recordings</h3>
 Select a Recording:

 <asp:textbox id="TextBox1" runat="server"></asp:textbox><asp:button
id="Button1" onclick="Button1_Click" runat="server" text="Submit"></asp:button>
 <p><asp:repeater id="RecordingRepeater" runat="server">
 <HeaderTemplate>

Chapter 6: Services Patterns 305

 <table cellpadding="3" cellspacing="0" bordercolor="black" border="1"
style="background-color:#CCCCFF;border-color:Black;font-family:Verdana;font-
size:8pt;width:400px;border-collapse:collapse;">
 <tr bgcolor="#aaaadd">
 <td>Id</td>
 <td>Title</td>
 <td>Artist</td>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><%# DataBinder.Eval(Container.DataItem, "Id") %></td>
 <td><%# DataBinder.Eval(Container.DataItem, "Title") %></td>
 <td><%# DataBinder.Eval(Container.DataItem, "Artist") %></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:repeater></p>
 <p>
 <asp:Repeater id="TrackRepeater" runat="server">
 <HeaderTemplate>
 <table cellpadding="3" cellspacing="0" bordercolor="black" border="1"
style="background-color:#CCCCFF;border-color:Black;font-family:Verdana;font-
size:8pt;width:400px;border-collapse:collapse;">
 <tr bgcolor="#aaaadd">
 <td>Id</td>
 <td>Title</td>
 <td>Duration</td>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><%# DataBinder.Eval(Container.DataItem, "Id") %></td>
 <td><%# DataBinder.Eval(Container.DataItem, "Title") %></td>
 <td><%# DataBinder.Eval(Container.DataItem, "Duration") %></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater></p>
 </form>
 <P></P>
 </body>
</HTML>

Enterprise Solution Patterns Using Microsoft .NET306

RetrievalForm.apsx.cs

RetrevalForm.apsx.cs is the code-behind class for the RetrievalForm page. Its re-
sponsibility is to map the results of the call to the Web service to the user interface
components. This class uses the RecordingCatalog class to access the Web service.
The code is as follows:

using System;
using System.Collections;
using System.Data;

public class RetrievalForm : System.Web.UI.Page
{
 private RecordingCatalog catalog = new RecordingCatalog();

 protected System.Web.UI.WebControls.Button Button1;
 protected System.Web.UI.WebControls.Repeater RecordingRepeater;
 protected System.Web.UI.WebControls.Repeater TrackRepeater;
 protected System.Web.UI.WebControls.TextBox TextBox1;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

 #region Web Form Designer generated code
 …
 #endregion

 protected void Button1_Click(object sender, System.EventArgs e)
 {
 string stringId = TextBox1.Text;
 long id = Convert.ToInt32(stringId);

 Recording recording = catalog.Get(id);
 if(recording != null)
 {
 ArrayList recordingAdapters = new ArrayList();
 recordingAdapters.Add(new
RecordingDisplayAdapter(recording));
 RecordingRepeater.DataSource = recordingAdapters;
 RecordingRepeater.DataBind();

 ArrayList trackAdapters = new ArrayList();
 foreach(Track track in recording.Track)
 {
 trackAdapters.Add(new TrackDisplayAdapter(track));
 }

 TrackRepeater.DataSource = trackAdapters;
 TrackRepeater.DataBind();
 }
 else
 {

Chapter 6: Services Patterns 307

 RecordingRepeater.DataSource = null;
 RecordingRepeater.DataBind();

 TrackRepeater.DataSource = null;
 TrackRepeater.DataBind();
 }
 }
}

RecordingDisplayAdapter.cs

The RecordingDisplayAdapter class performs two functions. First, it isolates the
user interface from changes made to the types defined in the XML schema section
of the WSDL description. Second, because the data binding functionality of the
repeater control only works with properties and not public fields, the adapter
provides a property interface for the fields defined in the Recording class. The code
is as follows:

using System;

public class RecordingDisplayAdapter
{
private Recording recording;

 public RecordingDisplayAdapter(Recording recording)
 {
 this.recording = recording;
 }

 public long Id
 {
 get { return recording.id; }
 }

 public string Artist
 {
 get { return recording.artist; }
 }

 public string Title
 {
 get { return recording.title; }
 }
}

Enterprise Solution Patterns Using Microsoft .NET308

TrackDisplayAdapter.cs

The TrackDisplayAdapter class performs the same function for the Track class as the
RecordingDisplayAdapter does for the Recording class, as shown in the following
code:

using System;

public class TrackDisplayAdapter
{
 private Track track;

 public TrackDisplayAdapter(Track track)
 {
 this.track = track;
 }

 public long Id
 {
 get { return track.id; }
 }

 public string Duration
 {
 get { return track.duration; }
 }

 public string Title
 {
 get { return track.title; }
 }
}

Tests
The example application consists mostly of generated code, which does not gener-
ally require unit tests. The type of testing it requires is referred to as acceptance
testing. Acceptance tests exercise the system entirely to ensure that it performs the
functions necessary for completion.

Resulting Context

Benefits
� Ease of development. Using this implementation approach incurs very little

development cost because the tools generate much of the code for you.
� Support for both synchronous and asynchronous invocation. The proxy gener-

ated by wsdl.exe provides support for both synchronous and asynchronous
invocation. Synchronous invocation is simple and easy to work with. Asynchro-
nous invocation can have a very positive impact on performance.

Chapter 6: Services Patterns 309

Liabilities
� Limited flexibility. You will need to add any functionality the generating class

does not provide by developing a custom wrapper class that implements the new
functionality and then forwards the request to the class generated by wsdl.exe.

Related Patterns
For more information, see the following related patterns:
� Adapter [Gamma95]. Service Gateway is an example of an adapter class. It trans-

lates from its own interface into the calls needed to invoke the Web service.
� Service Interface. Service Gateway consumes services that are provided by imple-

mentations of Service Interface.

Acknowledgments
[Microsoft02-1] Microsoft Corporation. “XML Web Services Overview.” .NET Frame-
work Developer’s Guide. Available from the MSDN Library at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconwebservicesoverview.asp.

[Fowler03] Fowler, Martin. Enterprise Application Architecture Patterns. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

7
Performance and Reliability Patterns

Performance, scalability, and reliability are important attributes of any enterprise
application. Although there are many ways to increase performance and improve
reliability, this patterns cluster focuses how to combine multiple systems that
serve any number of applications or users for greater scalability and improved
availability. The patterns in this chapter provide a basis to effectively adapt to
changes in load and peak traffic, and to increase availability.

Meeting Operational Requirements
Today’s enterprise applications have to meet ever-increasing operational de-
mands, including higher availability, improved performance, and the ability to
maintain these demands as the load on applications increases. This creates the
need for application and supporting infrastructure designs that maximize
scalability and availability.

Scalability
Scalability is the ability of a system or systems to handle increasing demands
while maintaining acceptable performance levels. To scale a system effectively, you
must identify the nature of the increasing demand and understand its impact on
the various system components. After you identify the limiting component, you
can either scale up or scale out.

Scaling Up
Scaling up is a strategy that increases the capacity of a resource (for example,
processor, memory, or storage) in a single server to handle load. For example, you
can scale up a database cluster that is built on a multiprocessor operating system
by increasing the number of processors or memory.

Enterprise Solution Patterns Using Microsoft .NET312

Scaling Out
Scaling out is the strategy that increases the capacity of an infrastructure tier to
handle load by adding servers, thereby increasing the aggregate capacity of those
servers.

Availability
Availability is the measurable run time of a server, the software running on a
server, or an application and depends on careful design and operational discipline,
including change controls, rigorous testing, and quick upgrade and fallback
mechanisms. To achieve the highest levels of availability, it is important to isolate
all single points of failure in the design. A highly available design process should
analyze each component of the architecture to verify that overall system perfor-
mance does not depend on any single piece of hardware or software performing
a specific function or providing access to a specific piece of information.

Patterns Overview
This patterns cluster starts off with Server Clustering, which focuses on using
server clusters to design an infrastructure tier that meets specific availability and
scalability requirements. A server cluster is two or more servers that are intercon-
nected to form a unified virtual computing resource.

Clustering servers increases the availability of a system by ensuring that if a
server becomes unavailable because of failure or planned downtime, another
server in the cluster can assume the workload, ensuring that the application
remains available to users. Clustering also enhances scalability by supporting
more users at the current level of performance or by improving application
performance for the current users. Clustering servers for scalability adds server
redundancy, helping to increase system availability, as mentioned earlier.

The Server Clustering pattern focuses on clustering as a general design technique,
which is applied to two additional design patterns: Load-Balanced Cluster and
Failover Cluster. Figure 7.1 shows the Performance and Reliability patterns cluster.

Chapter 7: Performance and Reliability Patterns 313

Design

Load-Balanced
Cluster

Server
Clustering

Failover
Cluster

Figure 7.1
Performance and Reliability patterns cluster

Load-Balanced Cluster
The Load-Balanced Cluster pattern addresses how to maintain acceptable
performance through the design and implementation of a scalable infrastructure
tier. This pattern describes the common ways to balance incoming Internet
Protocol (IP) traffic across a set, or farm, of read-only or application servers.

Load balancing enhances the performance, availability, and scalability of
infrastructure tiers, which contain servers such as Web servers, streaming media
servers, and virtual private network (VPN) servers, by distributing requests
across all of the healthy servers in the server farm (see Server Farm). Load-
balanced servers also serve a failover function by redistributing load to the
remaining servers when a server in the load-balanced cluster fails.

Failover Cluster
The Failover Cluster pattern helps you design a highly available application infra-
structure tier that protects against loss of service due to the failure of a single
server or the software that it hosts. The pattern describes failover clusters and
how they provide high availability for read/write stores such as databases,
messaging systems, and file and print services.

In a failover cluster, if one of the servers becomes unavailable, another server
takes over and continues to provide the service to the end-user, a process known
as failover. When failover occurs, users continue to use the application and are
unaware that a different server is providing it.

Enterprise Solution Patterns Using Microsoft .NET314

Performance and Reliability Patterns
Table 7.1 lists the patterns in the Performance and Reliability patterns cluster. The
patterns are arranged so that later patterns build on earlier patterns. This implies
a progression from more general patterns (such as Server Clustering) to more
specific patterns (such as Failover Cluster).

Table 7.1: Performance and Reliability Patterns

Pattern Problem

Server Clustering How do you provide an infrastructure for your application that meets
specific operational requirements, such as availability and scalability?

Load-Balanced Cluster How should you design a scalable infrastructure tier that accounts for
changes in load while maintaining an acceptable level of performance?

Failover Cluster How should you design a highly available infrastructure tier that protects
against loss of service due to the failure of a single server or the
software that it hosts?

Chapter 7: Performance and Reliability Patterns 315

Server Clustering

Context
You are designing an infrastructure tier upon which an application will be de-
ployed. Your operational requirements include availability or performance capa-
bilities that cannot be met because either performance bottlenecks or single points
of failure exist in your infrastructure.

Problem
How do you provide an infrastructure for your application that meets specific
operational requirements such as availability and scalability?

Forces
As you are designing your infrastructure, consider the following forces:
� Users expect applications to be available and responsive when they use them.
� Continuous uptime in a production environment, whether it is a database

powering a critical client/server application or an e-commerce Web site, is
becoming a common business requirement.

� There is a potential for high monetary loss when an application fails. For
example, a high-volume online store bringing in $25,000 per hour goes down
due to a single server that fails in the infrastructure. The monetary impact can
become quite severe if the outage lasts for several hours.

� All systems within an application infrastructure require maintenance. Indi-
vidual systems must be able to accommodate both hardware and software
upgrades without incurring application downtime. For example, a patch is
released to repair a security issue associated with a component running on a
server that delivers the application. If this is the only server, the application
will experience downtime. If it is one of a series of servers, only the server will
experience downtime, not the application.

� Adding hardware can increase the cost and complexity of the solution. For
example, new or more capable hardware requires additional development and
testing to enable an application to take full advantage of the more capable
environment. Additional maintenance and training costs are also associated
with managing a more complex environment.

Solution
Design your application infrastructure so that your servers appear to users and
applications as virtual unified computing resources. One means by which to
achieve this virtualization is by using a server cluster. A server cluster is the combi-
nation of two or more servers that are interconnected to appear as one, thus
creating a virtual resource that enhances availability, scalability, or both.

Enterprise Solution Patterns Using Microsoft .NET316

Clustering servers might include the goal of increasing availability by ensuring
that if a server becomes unavailable due to failure or planned downtime, another
server in the cluster can assume the workload (see the Failover Cluster pattern).
This type of clustering avoids loss of service to the users or applications that
access the cluster and can occur transparently, without the users’ knowledge.

You can also use clustering to enhance scalability. Server clusters can support more
users at the current level of performance or improve application performance for
the current number of users by sharing the workload across multiple servers. A
byproduct of clustering servers for scalability is that the additional redundancy
of the multiple servers helps increase system availability, as mentioned earlier (see
the Load-Balanced Cluster pattern).

Application
Calls common interface for all servers

Server Cluster

any number of
servers from 2 to n

Server 1 Server n

Figure 7.2
Basic clustering concepts

Figure 7.2 illustrates how server clustering can make two or more servers (Server
1 through Server n) appear as one virtual resource to a dependent application.

Asymmetric Clusters
In asymmetric clusters, a standby server exists only to take over for another server
in the event of failure. This type of cluster is usually used to provide high avail-
ability and scalability for read/write stores such as databases, messaging systems,
and file and print services. If one of the nodes in a cluster becomes unavailable,
due to either planned downtime for maintenance or unplanned downtime due to
failure, another node takes over the function of the failed node.

Chapter 7: Performance and Reliability Patterns 317

The standby server performs no other useful work and is either as capable as or
less capable than a primary server. A less capable, less expensive standby server
is often used when primary servers are configured for high availability and fault
tolerance with multiple redundant subsystems. One common type of asymmetric
cluster is known as a failover cluster (see the Failover Cluster pattern).

Application
Calls common interface for all servers

Server Cluster

Normal Condition

Server 1 Server n

Application
Calls common interface for all servers

Server Cluster

Failure Condition

Server 1 Server n

any number of
servers from 2 to n

any number of
servers from 2 to n

Figure 7.3
Asymmetric cluster

Figure 7.3 illustrates how an asymmetric cluster presents a virtual resource to an
application. Under normal conditions, the primary server handles all requests. In
the event of a failure, the standby server takes over handling all requests.

Symmetric Clusters
In symmetric clusters, every server in the cluster performs useful work. Typically,
each server is the primary server for a particular set of applications. If one server
fails, the remaining server continues to process its assigned set of applications as
well as the applications on the failed server. Symmetric clusters are more cost-
effective because they use more of the cluster ’s resources more often; however, in
the event of a failure, the additional load on the remaining servers could cause
them to fail as well.

Enterprise Solution Patterns Using Microsoft .NET318

Application
Calls common interface for all servers

Server Cluster
Server 1 Server n

any number of
servers from 2 to n

Figure 7.4
Symmetric cluster

Figure 7.4 illustrates how a symmetric cluster presents a virtual resource to an
application. Requests are divided among healthy servers to distribute load and
increase scalability.

One common type of symmetric cluster is a load-balanced cluster (see the Load-
Balanced Cluster pattern). Load-balanced clusters enhance the performance, avail-
ability, and scalability of services such as Web servers, media servers, VPN
servers, and read-only stores by distributing requests across all of the healthy
servers in the server cluster.

Example
See the Load Balanced Cluster and Failover Cluster patterns.

Resulting Context
Server Clustering results in the following benefits and liabilities:

Benefits
� Improved scalability. Server Clustering enables applications to handle more load.
� Higher availability. Server Clustering helps applications avoid interruptions in

service.

Chapter 7: Performance and Reliability Patterns 319

� Greater flexibility. The ability of clustering to present a virtual unified comput-
ing resource provides IT personnel with more options for configuring the
infrastructure to support application performance, availability, and scalability
requirements.

Liabilities
� Increased infrastructure complexity. Some clustering designs significantly

increase the complexity of your solution, which may affect operational and
support requirements. For example, clustering can increase the numbers of
servers to manage, storage devices to maintain, and network connections to
configure and monitor.

� Additional design and code requirements. Applications may require specific
design and coding changes to function properly when used in an infrastructure
that uses clustering. For example, the need to manage session state can become
more difficult across multiple servers and could require coding changes to
accommodate maintaining state so that session information is not lost if a
server fails.

� Incompatibility. An existing application or application component may not be
able to support clustering technologies. For example, a limitation in the tech-
nology used to develop the application or component may not support cluster-
ing even through code changes.

Related Patterns
For more information, see the following related patterns:
� Tiered Distribution. Tiered Distribution organizes the system infrastructure into a

set of physical tiers to optimize server environments for specific operational
requirements and system resource usage.

� Load-Balanced Cluster. Load-balanced clusters can improve application perfor-
mance for the current number of users by sharing the workload across multiple
servers.

� Failover Cluster. Failover clusters can increase availability by creating redun-
dancy in the infrastructure.

Acknowledgments
[Microsoft03] Microsoft Corporation. “Technical Overview of Windows Server
2003 Clustering Services.” Available on the Microsoft Windows Server 2003 Web
site at: http://www.microsoft.com/windowsserver2003/techinfo/overview/clustering.mspx.

[Marcus00] Marcus, Evan, and Hal Stern. Blueprints for High Availability: Designing
Resilient Distributed Systems. John Wiley & Sons, 2000.

Enterprise Solution Patterns Using Microsoft .NET320

Load-Balanced Cluster

Context
You have decided to use clustering in designing or modifying an infrastructure
tier to maintain performance requirements while supporting the ability to adapt
to changing demands.

Problem
How should you design a scalable infrastructure tier that accounts for changes in
load while maintaining an acceptable level of performance?

Forces
When designing your scalable infrastructure tier, consider the following forces:
� Individual servers have a maximum amount of load capacity for any given

application. For example, if a single server provides Web pages as part of a
Web-based application and the user or transaction load increases beyond the
limitation of the server, the application will either fall below performance
expectations or, in the worst case, become unavailable.

� Individual servers have maximum physical performance limitations, including
limitations to the bus speed, the amount of memory, the number of processors,
and the number of peripherals that any one server can use. For example, if the
server is capable of housing only four processors, you cannot add a fifth
processor to enhance performance.

� Certain applications have limitations on the number of CPUs that they can use.
� Servers, as individual entities, are single points of failure within a solution. If

only one server is responsible for delivering the functionality of a component
within an application, its failure results in an application failure.

� Adding servers can increase the complexity of managing and monitoring the
server hardware and its associated software.

Solution
Install your service or application onto multiple servers that are configured to
share the workload. This type of configuration is a load-balanced cluster. Load
balancing scales the performance of server-based programs, such as a Web server,
by distributing client requests across multiple servers. Load balancing technolo-
gies, commonly referred to as load balancers, receive incoming requests and redi-
rect them to a specific host if necessary. The load-balanced hosts concurrently
respond to different client requests, even multiple requests from the same client.
For example, a Web browser may obtain the multiple images within a single Web

Chapter 7: Performance and Reliability Patterns 321

page from different hosts in the cluster. This distributes the load, speeds up
processing, and shortens the response time to clients.

Load balancers use different algorithms to control traffic. The goal of these
algorithms is to intelligently distribute load and/or maximize the utilization of all
servers within the cluster. Some examples of these algorithms include:
� Round-robin. A round-robin algorithm distributes the load equally to each

server, regardless of the current number of connections or the response time.
Round-robin is suitable when the servers in the cluster have equal processing
capabilities; otherwise, some servers may receive more requests than they can
process while others are using only part of their resources.

� Weighted round-robin. A weighted round-robin algorithm accounts for the differ-
ent processing capabilities of each server. Administrators manually assign a
performance weight to each server, and a scheduling sequence is automatically
generated according to the server weight. Requests are then directed to the
different servers according to a round-robin scheduling sequence.

� Least-connection. A least-connection algorithm sends requests to servers in a
cluster, based on which server is currently serving the fewest connections.

� Load-based. A load-based algorithm sends requests to servers in a cluster, based
on which server currently has the lowest load.

Additionally, some load balancers incorporate failure detection. The balancer
keeps track of the server or the application running on the server and stops
sending requests to a server after a failure. Figure 7.5 on the next page shows the
basic components of load balancing.

Enterprise Solution Patterns Using Microsoft .NET322

Server 1 Server 2 Server N

Client Client

Load Balancer

Figure 7.5
Load balancing components

When the load balancer receives a request from the client, one of the servers in
the group processes the request. Every server is capable of handling the request
independently. If any server is unavailable due to error or maintenance, other
servers can still serve requests without being affected. Thus, the overall availabil-
ity of the service is much higher than if a single server were serving all the re-
quests. Using a single physical load balancer or a single network switch in front
of a set of software load-balanced servers introduces another single point failure,
however. You can use redundant load balancing devices and/or switches to
mitigate this risk.

Session State Management
Applications often require user interaction among the individual steps in a com-
plete use case. Each response the user makes during the interaction affects the
choices available to the user and the state of the application as it progresses
toward the user ’s goal. The term session state is often used to describe this use-
case-focused state. A portion of this session state is needed only to track progress
through the task and is discarded when the use case is complete; other parts of
the session state are saved in long-term storage in the database if the use case

Chapter 7: Performance and Reliability Patterns 323

concludes successfully. For example, a customer using an online shopping cart is
rarely asked for payment or shipping information until he or she has selected a
checkout button, which is not enabled until there is at least one item in the
shopping cart.

Distributed applications typically call software components on remote servers
over a network connection. The application must track the changes in session state
that occur between the individual steps to provide continuity between them.
Application designers typically maintain session state in one of three basic places:
� Client. Application designers store each user ’s session state on the user ’s

computer.
� Intermediate server. Application designers store session state on a computer

that serves as an intermediary between client computers and the database
servers on which the user’s information is permanently stored.

� Database server. Application designers store session state in the database
server along with other long-term application and user data.

Only the intermediate server approach affects this pattern. Each approach and its
advantages and disadvantages are described in detail in Chapter 2, “Designing
for Scalability,” of Designing for Scalability with Microsoft Windows DNA
[Sundblad00].

A simple solution such as the one shown in Figure 7.5 is good enough when all the
servers are stateless; that is, after a server serves a request, the state of the server
is restored to the default value. There are two scenarios in which the server can
be stateless. In one, the client does not need a session; that is, each request is a
single unit of work, and no temporary values persist between requests. In the
other scenario, known as client session management, the client itself keeps the state
of a session and sends the session state information within the request so that any
server can pick up the request and keep processing it.

In server session management scenarios, the server maintains the state of a user
session. Server session management requires the load balancer to direct all re-
quests from one client within the same user session to the same server instance.
This mechanism is often called server affinity.

One inherent concern to session management is that if the server goes offline due
to error or maintenance, the client’s work could be lost and the client would have
to resend all the previous requests from the lost session. In some cases, occasional
session loss is not a major problem for the user. For example, in an online map
search application, if the server loses an address that the user has just typed, it’s
not too much trouble for the user to retype the address. In other cases, however,
session loss could be extremely inconvenient. For example, in an online leasing
application with a stateless client, it may take the user 10 minutes to type several
pages worth of information into a contract form. You certainly do not want the

Enterprise Solution Patterns Using Microsoft .NET324

user spend another 10 minutes retyping all of the information if one of the servers
in the load balancing group goes offline. To avoid session loss due to server
failure in a load balancing group, there are two approaches: centralized state
management and asynchronous session state management. Figure 7.6 shows
centralized state management.

Server 1 Server 2 Server N

Client Client

State Server 1

(Active)

State Server 2

(Failover)

Load Balancer

Highly Available Session State Management

State Data

Figure 7.6
Load balancing and centralized state management

Chapter 7: Performance and Reliability Patterns 325

The centralized state management approach stores the session state information
on a centralized server in a different tier from the application servers. Each time
the application server receives a request that is part of a session, it fetches the
session state from the session management server before processing the request.
The session management service can be a database or another type of application
that runs on a server that stores shared resources and is configured for high
reliability. For more information about how to improve fault-tolerance on shared
resources, see the Failover Cluster pattern.

Figure 7.7 shows asynchronous session state management.

Server 1 Server 2 Server N

Client Client

Load Balancer

Asynchronous exchange of session state

Figure 7.7
Load balancing and asynchronous session state management

Using the asynchronous session state management approach, every server broad-
casts its session state to all other servers whenever the session state is changed;
therefore, every server contains the state information for all sessions, and any
server can process a request that is part of a session. Session state also survives

Enterprise Solution Patterns Using Microsoft .NET326

individual server failures. This solution is cheaper because no extra equipment is
required but harder to configure and maintain because it involves asynchronous
calls. Storing the state for all sessions on every server can also be less efficient.

Implementation
The two major categories of load balancing implementations are:
� Software-based load balancing. Software-based load balancing consists of special

software that is installed on the servers in a load-balanced cluster. The soft-
ware dispatches or accepts requests from the client to the servers, based on
different algorithms. The algorithms can be a simple round-robin algorithm or
a much more complicated algorithm that considers server affinity. For example,
Microsoft® Network Load Balancing is a load balancing software for Web
farms, and Microsoft Component Load Balancing is a load balancing software
for application farms.

� Hardware-based load balancing. Hardware-based load balancing consists of a
specialized switch or router with software to give it load balancing functional-
ity. This solution integrates switching and load balancing into a single device,
which reduces the amount of extra hardware that is required to implement
load balancing. Combining the two functions, however, also makes the device
more difficult to troubleshoot.

Example
To help you better understand how to use load balancing to achieve scalability,
the following discussion compares an existing non-load-balanced solution, which
contains a single system (single point of failure) in the application tier, to a highly
scalable solution that maintains performance and increases availability.

Non-Load-Balanced Tier
Initially, an organization might start with a solution architecture such as the one
outlined in Figure 7.8, which might meet initial performance expectations. As the
load increases, however, the application tier must adapt to the increased load to
maintain acceptable performance.

Chapter 7: Performance and Reliability Patterns 327

Host: AppServer20
IP address x.x.2.20

Data Source

Application Tier

Data Tier

Client Tier

Client Client

Figure 7.8
Basic solution with a single application server

In Figure 7.8, the application tier contains only one application server
(AppServer20), which serves client requests. If the server becomes overloaded,
the solution will either fall below acceptable performance levels or become un-
available.

Load-Balanced Tier
To increase the scalability and to maintain performance, the organization might
use a load balancer to extend the application tier. The following example, shown
in Figure 7.9 on the next page, adds two servers to the application tier to create a
load-balanced cluster, which accesses data from the data tier and provides appli-
cation access to the clients in the client tier.

Enterprise Solution Patterns Using Microsoft .NET328

Data Source

Application Tier

Data Tier

Host: AppServer3
IP address x.x.2.3

Host: AppServer1
IP address x.x.2.1

Client Tier

Client Client

Virtual Host: AppServer20
Virtual IP Address x.x.2.20

Host: AppServer2
IP address x.x.2.2

Figure 7.9
Solution with a scalable application tier

The result is a standard load-balanced design. Either a hardware device or soft-
ware that is running on the host machines assigns a virtual host name
(AppServer20) and an IP address to AppServer1, AppServer2, and AppServer3.
The load-balanced cluster exposes this virtual IP address and host name to the
network and balances the load of the incoming requests evenly across healthy
servers within the group. If AppServer1 fails, the request is simply directed to
AppServer2 or AppServer3. Depending upon the technology used to provide this
functionality, a certain number of additional servers can be added to the load-
balanced cluster to maximize scalability and stay ahead of increasing demand.

Chapter 7: Performance and Reliability Patterns 329

Resulting Context
The Load-Balanced Cluster pattern results in the following benefits and liabilities:

Benefits
� Improved scalability. Scalable load-balanced tiers enable the system to main-

tain acceptable performance levels while enhancing availability.
� Higher availability. Load balancing enables you to take a server offline for

maintenance without loss of application availability.
� Potential cost savings. Multiple low-cost servers often provide a cost savings

over higher-cost multiprocessor systems.

Liabilities
� Development complexity. A load-balanced solution can be difficult to develop

if the solution must maintain state for individual transactions or users.
� Doesn’t account for network failure. If a server or network failure occurs

during a client session, a new logon may be required to reauthenticate the
client and to reestablish session state.

Related Patterns
For more information, see the following related patterns:
� Server Clustering. Server Clustering discusses the use of virtual computing re-

sources to enhance the scalability and eliminate the single points of failure that
affect availability.

� Failover Cluster. Failover clusters can create redundancy in the infrastructure to
increase availability.

� Tiered Distribution. Tiered Distribution organizes the system infrastructure into
a set of physical tiers to optimize server environments for specific operational
requirements and system resource usage.

Acknowledgments
[Microsoft03] Microsoft Corporation. “Technical Overview of Windows Server
2003 Clustering Services.” Available on the Microsoft Windows Server 2003 Web
site at: http://www.microsoft.com/windowsserver2003/techinfo/overview/clustering.mspx.

[Sundblad00] Sundblad, Sten and Per. Designing for Scalability with Microsoft
Windows DNA. Microsoft Press, 2000.

Enterprise Solution Patterns Using Microsoft .NET330

Failover Cluster

Context
You have decided to use clustering in designing or modifying an infrastructure
tier to provide highly available services.

Problem
How should you design a highly available infrastructure tier that protects against
loss of service due to the failure of a single server or the software that it hosts?

Forces
As you design a highly available infrastructure tier, consider the following forces:
� The failure of hardware components, applications, or services can render an

application unusable or unavailable. For example, imagine if a server that is
delivering an application experiences a power supply failure. If this is the only
server or only power supply in the server, a single point of failure exists and
the application will be unavailable.

� Planned server downtime can affect the application availability. For example, if
you want to update the operating system on a database server for which there
is no standby server, you might have to bring down the application to patch
the server.

� Monitoring and maintaining multiserver tiers increases demand on system and
network resources.

� An application using a failover cluster may need special coding to ensure that
when a failure occurs, the failover process is transparent to the user and the
application remains available. For example, placing timeouts and retries in code
that saves data to a database ensures that a transaction will complete if a
failover occurs.

Solution
Install your application or service on multiple servers that are configured to take
over for one another when a failure occurs. The process of one server taking over
for a failed server is commonly known as failover. A failover cluster is a set of
servers that are configured so that if one server becomes unavailable, another
server automatically takes over for the failed server and continues processing.
Each server in the cluster has at least one other server in the cluster identified as
its standby server.

Chapter 7: Performance and Reliability Patterns 331

Detecting Failure
For a standby server to become the active server, it must somehow determine that
the active server no longer functions. The system usually uses one of the follow-
ing general types of heartbeat mechanisms to accomplish this:
� Push heartbeats. For push heartbeats, the active server sends specified signals to

the standby server at a well-defined interval. If the standby server does not
receive a heartbeat signal over a certain time interval, it determines that the
active server failed and takes the active role. For example, the active server
sends a status message to the standby server every 30 seconds. Due to a
memory leak, the active server eventually runs out of memory and then
crashes. The standby server notes that it has not received any status messages
for 90 seconds (three intervals) and takes over as the active server.

� Pull heartbeats. For pull heartbeats, the standby server sends a request to the
active server. If the active server does not respond, the standby server repeats
the request a specific number of times. If the active server still does not re-
spond, the standby server takes over as the active server. For example, the
standby server may send a getCustomerDetails message to the active server
every minute. Due to a memory leak, the active server eventually crashes. The
standby server sends the getCustomerDetails request three times without
receiving a response. At this time, the standby server takes over as the active
server.

A cluster can use multiple levels of heartbeats. For example, a cluster can use push
heartbeats at the server level and a set of pull heartbeats at the application level.
In this configuration, the active server sends heartbeat messages to the standby
server any time the server is up and connected to the network. These heartbeat
messages are sent at relatively frequent intervals (for example every 5 seconds)
and the standby server may be programmed to take over as active server if only
two heartbeats are missed. This means that no more than 10 seconds will elapse
before the standby server will detect the failure of the active server and initiate
the standby process.

Quite often, heartbeats are sent over dedicated communication channels so that
network congestion and general network problems do not cause spurious
failovers. Additionally, the standby server might send query messages to one or
more key applications running on the active server and wait for a response within
a specified timeout interval. If the standby server receives the correct response, it
takes no further action. To minimize the performance impact on the active server,
application-level querying is usually conducted over a relatively long period, such
as every minute or longer. The standby server may be programmed to wait until
it has sent at least five requests without a response before taking over as the
active server. This means that up to 5 minutes could elapse before the standby
server initiates the failover process.

Enterprise Solution Patterns Using Microsoft .NET332

Synchronizing State
Before the standby server can start processing transactions, it must synchronize
its state with the state of the failed server. There are basically three different
approaches to synchronization:
� Transaction log. In transaction log, the active server maintains a log of all

changes to its state. Periodically, a synchronization utility processes this log to
update the standby server’s state to match the state of the active server. When
the active server fails, the standby server must use the synchronization utility
to process any additions to the transaction log since the last update. After the
state is synchronized, the standby server becomes the active server and begins
processing.

� Hot standby. In hot standby, updates to the internal state of the active server are
immediately copied to the standby server. Because the standby server ’s state is
a clone of the active server ’s, the standby server can immediately become the
active server and start processing transactions.

� Shared storage. In shared storage, both servers maintain their state on a shared
storage device such as a Storage Area Network or a dual-hosted disk array.
Again, the failover can happen immediately because no state synchronization is
required.

Determining the Active Server
It is extremely important that only one active server exists for a given set of
applications. If multiple servers behave as if they are the active server, data
corruption and deadlock often result. The usual way to address this issue is by
using some variant of the active token concept. The token, at its simplest level, is a
flag that identifies a server as the active server for an application. Only one active
token exists for each set of applications; therefore, only one server can own the
token. When a server starts, it verifies that its partner owns the active token. If it
does, the server starts as the standby server. If it does not detect the active token,
it takes ownership of the active token and starts as the active server. The failover
process transfers the active token to the standby server when the standby server
becomes active.

In most cases, when a standby server becomes active, it is transparent to the
application or user that it is supporting. When a failure does occur during a
transaction, the transaction may have to be retried for it to complete successfully.
This raises the importance of coding the application in such a way that the failover
process remains transparent. One example of doing so is including timeouts with
retries when committing data to a database.

Chapter 7: Performance and Reliability Patterns 333

Additionally, most servers use Internet Protocol (IP) addresses to communicate;
therefore, for a failover to succeed, the infrastructure must be able to support the
transferring of an IP address from one server to another. An example of this is
having network switches that can support the IP address transfer. If your systems
infrastructure cannot support this, you may want to use a load-balanced cluster
instead of a failover cluster. For more information, see the Load-Balanced Cluster
pattern.

Scaling Failover Cluster Servers
Scalability in failover clusters is typically achieved by scaling up, or adding more
capability, to an individual server within the cluster. It is important to understand
that a failover cluster must be designed to handle the expected load and that
individual servers should be sized so that they can accommodate expected growth
in CPU, memory, and disk usage. Failover Cluster servers are typically high-end
multiprocessor servers that are configured for high availability by using multiple
redundant subsystems. If the resource requirements of your solution are greater
than the limitations of the servers in the cluster, the cluster will be extremely
difficult to scale.

Example
To help you better understand how to use failover clustering to achieve high
availability, the following discussion walks through refactoring an already imple-
mented basic solution, which contains a single system (single point of failure), into
a highly available solution.

Non-Failover Solution
Initially, an organization might start with a basic solution architecture such as the
one outlined in Figure 7.10 on the next page. Although the solution might meet
initial availability expectations, certain factors such as an increase in the number
of users or a need for less application downtime may force changes in the design.

Enterprise Solution Patterns Using Microsoft .NET334

Host: Database10
IP address x.x.1.10

Data Store

Application Server(s)Application Tier

Data Tier

Client Tier

Client Client

Figure 7.10
Non-failover solution with single point of failure

In Figure 7.10, the data tier contains only a single database server (Database10)
that services the application tier. If the database server or the software that it
hosts fails, the application server will no longer be able to access the data it needs
to service the client. This will make the application unavailable to the client.

Failover Cluster Solution
To increase the availability of the solution, the organization might decide to
eliminate the potential single point of failure presented by the single database
server in the data tier. You could do this by adding a server to the data tier and
creating a failover cluster from the existing database server, the new server, and
a shared storage device. In Figure 7.11, which illustrates this change, the cluster
consists of the two servers connected to a shared storage array.

Chapter 7: Performance and Reliability Patterns 335

Shared Data

Application Server(s)

Client Tier

Application Tier

Data Tier

Client Client

Virtual Host: Database10
Virtual IP Address x.x.1.10

Heartbeat

Host: Database02
IP address x.x.1.2
Passive

Host: Database01
IP address x.x.1.1
Active

Figure 7.11
Solution with failover data tier

The first server (Database01) is the active server that handles all of the transac-
tions. The second server (Database02), which is sitting idle, will handle trans-
actions only if Database01 fails. The cluster exposes a virtual IP address and host
name (Database10) to the network that clients and applications use.

Note: You can extend this design to include multiple active servers (more than the one shown)
either with a single standby server shared among them or with each active server configured as
a standby server for another active server.

Enterprise Solution Patterns Using Microsoft .NET336

Resulting Context
The Failover Cluster pattern results in the following benefits and liabilities:

Benefits
� Accommodates planned downtime. Failover clusters can allow for system

downtime without affecting availability. This accommodates routine mainte-
nance and upgrades.

� Reduces unplanned downtime. Failover clusters reduce application downtime
related to server and software failure by eliminating single points of failure at
the system and application levels.

Liabilities
� Can increase response times. Failover cluster designs can increase response

times due to the increased load on the standby server or the need to update
state information on or from multiple servers.

� Increases equipment costs. The additional hardware that failover clusters
require can easily double the cost of an infrastructure tier.

Related Patterns
For more information, see the following related patterns:
� Server Clustering. Server Clustering presents the concept of using virtual comput-

ing resources to enhance the scalability and eliminate the single points of
failure that affect availability.

� Load-Balanced Cluster. Load-balanced clusters can increase application perfor-
mance for the current number of users by sharing workload across multiple
servers.

� Tiered Distribution. Tiered Distribution organizes the system infrastructure into
a set of physical tiers to optimize server environments for specific operational
requirements and system resource usage.

A
Pattlets

Pattlets are actual patterns to which this guide refers, but which it does not discuss
in detail. For more information about why pattlets are used, see Chapter 2, “Orga-
nizing Patterns.” The following table lists each pattlet mentioned in this guide and,
where applicable, a reference to the original work that identified it.

Table A: Pattlets

Pattlet Solution Reference

Four-Tiered Distribution Refines Three-Tiered Distribution by Microsoft PAG (TBD)
separating the Web servers into their own
tier.

Abstract Factory Provides an interface for creating families Gamma95
of dependent objects without specifying
their concrete classes.

Adapter Converts the interface of a class into Gamma95
another interface clients expect.

Application Controller Is a centralized point for handing screen Fowler03
navigation and the flow of an application.

Application Server An execution environment for enterprise Microsoft PAG (TBD)
applications. For developers, application
servers provide an integrated set of core
technical services and high-level frame-
works. For administrators, application
servers provide integrated management,
operations, and deployment services and
tools.

(continued)

Appendix

Enterprise Solution Patterns Using Microsoft .NET338

Pattlet Solution Reference

Assembler An instance of the Mapper [Fowler03] Fowler03
pattern Fowler’s discussion of the Data
Transfer Object (DTO) pattern talks about
using an assembler object to populate the
DTO with data.

Bound Data Control Dynamically binds a presentation or view Microsoft PAG (TBD)
component directly to the data it is
presenting.

Bridge Decouples an abstraction from its Gamma95
implementation so that the two can vary
independently.

Command(s) Encapsulates a request as an object, Gamma95
thereby letting you parameterize clients
with different requests, queue or log
requests, and support undoable operations.

Decorator Attaches additional responsibilities to an Gamma95
object dynamically. Decorators provide a
flexible alternative to subclassing for
extending functionality.

Facade Provides a unified interface to a set of Gamma95
interfaces in a subsystem. Facade defines
a higher-level interface that makes the
subsystem easier to use.

Gateway An object that encapsulates access to an Fowler03
external system or resource.

Implementing Data Discusses implementation of Data Transfer Microsoft PAG (TBD)
Transfer Object in .NET Object using a .NET serialized object.
with Serialized Objects

Layer Supertype A type that acts as the supertype for all Fowler03
types in its layer.

Layers Structures applications that can be Buschmann96
decomposed into groups of subtasks in
which each group of subtasks is at a
particular level of abstraction.

Mapper An object that sets up a communication Fowler03
between two independent objects.

Appendix A: Pattlets 339

Pattlet Solution Reference

Mediator Defines an object that encapsulates how Gamma95
a set of objects interact. Mediator
promotes loose coupling by keeping
objects from referring to each other
explicitly, and lets you vary their
interaction independently.

MonoState Similar to Singleton but focuses on state Martin02
rather than identity. Instead of controlling
the instances of an object, MonoState
ensures that there is only one shared
state for all instances by declaring all
data members static.

Observer Defines a one-to-many dependency Gamma95
between objects so that when one objects
changes state, all its dependents are
notified and updated automatically.

Naming Service A well-known repository that maps Mowbray97
external names to specific objects.

Page Data Caching An alternative to page caching that Microsoft PAG (TBD)
caches the data on which a page depends
instead of caching the whole page (data
plus content).

Page Fragment Caching A refinement of Page Cache, where each Microsoft PAG (TBD)
page is composed of fragments and
caching is controlled at the fragment level.

Presentation-Abstraction- Defines a structure for interactive software Buschmann96
Controller systems in the form of a hierarchy of

cooperating agents. Every agent is
responsible for a specific aspect of the
application’s functionality and consists of
three components: presentation,
abstraction, and control. This subdivision
separates the human-computer interaction
aspects of the agent from its functional
core and its communications with other
agents.

Proxy Provides a surrogate or placeholder for Gamma95
another object to control access to it.

(continued)

Enterprise Solution Patterns Using Microsoft .NET340

Pattlet Solution Reference

Remote Facade Provides a coarse-grained facade on fine- Fowler03
grained objects to improve efficiency over
a network.

Server Farm A set of servers that are fed requests Microsoft PAG/CIS (TBD)
from a load balancer.

Special Case A subclass that provides special behavior Fowler03
for particular cases.

Strategy Defines a family of algorithms, Gamma95
encapsulates each one, and makes them
interchangeable. Strategy lets the
algorithm vary independently from clients
that use it.

Table Data Gateway An object that acts as a Gateway to a Fowler03
database table. One instance handles all
the rows in the table.

Table Module A single instance that handles the Fowler03
business logic for all rows in a database
table or view.

Template Method Defines the skeleton of an algorithm in Gamma95
an operation, deferring some steps to
subclasses. Template Method lets
subclasses redefine certain steps of an
algorithm without changing the algorithm’s
structure.

Utility Component A component that provides a commonly Microsoft PAG (TBD)
used low-level service such as persistence,
logging, or lookup.

Bibliography

[Alexander79] Alexander, Christopher. The Timeless Way of Building. Oxford
University Press, 1979.

[Alur01] Alur, Crupi, and Malks. Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall, 2001.

[Beau02] Beauchemin, Bob. Essential ADO.NET. Addison-Wesley, 2002.

[Bertrand00] Meyer, Bertrand. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 2000.

[Burbeck92] Burbeck, Steve. “Application Programming in Smalltalk-80: How to use
Model-View-Controller (MVC).” University of Illinois in Urbana-Champaign (UIUC)
Smalltalk Archive. Available at http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

[Buschmann96] Buschmann, Frank, et al. Pattern-Oriented Software Architecture.
John Wiley & Sons Ltd, 1996.

[Crocker02] Crocker, Olsen, and Jezierski. “Designing Data Tier Components and
Passing Data Through Tiers.” MSDN Library, August 2002. Available at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/boagag.asp.

[Dhawan02] Dhawan, Priya. “Performance Comparison: .NET Remoting vs.
ASP.NET Web Services.” MSDN Library, September 2002. Available at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch14.asp.

[Fowler01] Fowler, Martin. “To Be Explicit.” IEEE Software, November/December 2001.

[Fowler03] Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003.

[Gamma95] Gamma, Helm, Johnson, and Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Herzum00] Herzum, Peter and Sims, Oliver. Business Component Factory. John Wiley
& Sons, Inc., 2000.

[Ingo02] Rammer, Ingo. Advanced .NET Remoting. Apress, 2002.

[Larman02] Larman, Craig. Applying UML and Patterns. Prentice-Hall PTR, 2002.

[Lea99] Lea, Doug. Concurrent Programming in Java, Second Edition. Addison-
Wesley, 1999.

[Mackinnon00] Mackinnon, Tim, et al. “Endo-Testing: Unit Testing with Mock
Objects.” eXtreme Programming and Flexible Processes in Software Engineering —
XP2000 conference.

[Marcus00] Marcus, Evan, and Hal Stern. Blueprints for High Availability: Designing
Resilient Distributed Systems. John Wiley & Sons, 2000.

Enterprise Solution Patterns Using Microsoft .NET342

[Martin02] Martin, Robert. Agile Software Development: Principles, Patterns, and
Practices. Prentice-Hall, 2002.

[Mowbray97] Mowbray, Thomas, J., PhD. Corba Design Patterns. John Wiley & Sons, 1997.

[Microsoft02] Microsoft Corporation. “Working with a Typed DataSet,” .NET
Developers Guide. Available from the MSDN Library at: http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpguide/html/cpconworkingwithtypeddataset.asp.

[Microsoft02-1] Microsoft Corporation. “XML Web Services Overview.” .NET Frame-
work Developer’s Guide. Available from the MSDN Library at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconwebservicesoverview.asp.

[Microsoft02-2] Microsoft Corporation. “Application Architecture: Conceptual
View.” .NET Architecture Center. Available from MSDN at: http://msdn.microsoft.com
/architecture/default.aspx?pull=/library/en-us/dnea/html/eaappconland.asp.

[Microsoft03] Microsoft Corporation. “Technical Overview of Windows Server 2003
Clustering Services.” Available on the Microsoft Windows Server 2003 Web site at:
http://www.microsoft.com/windowsserver2003/techinfo/overview/clustering.mspx.

[PnP02] patterns & practices, Microsoft Corporation. “Application Architecture for
.NET: Designing Applications and Services.” MSDN Library. Available at: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

[Powell03] Powell, Matt. “DataSets, Web Services, DiffGrams, Arrays, and
Interoperability.” MSDN Library, February, 2003. Available at: http://
www.msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html
/service02112003.asp.

[Purdy02] Purdy, Doug; Richter, Jeffrey. “Exploring the Observer Design Pattern.”
MSDN Library, January 2002. Available at: http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/observerpattern.asp.

[Reilly02] Reilly, Douglas J. Designing Microsoft ASP.NET Applications. Microsoft
Press, 2002.

[Schmidt00] Schmidt, et al. Pattern-Oriented Software Architecture, Vol 2. John Wiley
& Sons, 2000.

[Sells03] Sells, Chris. “Sealed Sucks.” sellsbrothers.com News. Available at: http://
www.sellsbrothers.com/news/showTopic.aspx?ixTopic=411.

Note: Despite its title, the “Sealed Sucks” article is actually a balanced discussion of the pros
and cons of marking a class sealed.

[Sundblad00] Sundblad, Sten and Per. Designing for Scalability with Microsoft Windows
DNA. Microsoft Press, 2000.

[Wildermuth01] Wildermuth, Shawn. “Typed DataSets in ADO.NET.” .NET Developer.
May 2001.

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices

Proven practices for predictable results

Patterns & practices are Microsoft’s recommendations for architects, software developers,
and IT professionals responsible for delivering and managing enterprise systems on the
Microsoft platform. Patterns & practices are available for both IT infrastructure and software
development topics.

Patterns & practices are based on real-world experiences that go far beyond white papers
to help enterprise IT pros and developers quickly deliver sound solutions. This technical
guidance is reviewed and approved by Microsoft engineering teams, consultants, Product
Support Services, and by partners and customers. Organizations around the world have
used patterns & practices to:

Reduce project cost
� Exploit Microsoft’s engineering efforts to save time and money on projects

� Follow Microsoft’s recommendations to lower project risks and achieve predictable outcomes

Increase confidence in solutions
� Build solutions on Microsoft’s proven recommendations for total confidence and predictable

results

� Provide guidance that is thoroughly tested and supported by PSS, not just samples, but
production quality recommendations and code

Deliver strategic IT advantage
� Gain practical advice for solving business and IT problems today, while preparing companies

to take full advantage of future Microsoft technologies.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

pat ter ns & pract ices

Proven practices for predictable results

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

Patterns & practices are available for both IT infrastructure and software development
topics. There are four types of patterns & practices available:

Reference Architectures

Reference Architectures are IT system-level architectures that address the business
requirements, operational requirements, and technical constraints for commonly occurring
scenarios. Reference Architectures focus on planning the architecture of IT systems and
are most useful for architects.

Reference Building Blocks

References Building Blocks are re-usable sub-systems designs that address common technical
challenges across a wide range of scenarios. Many include tested reference implementations to
accelerate development.

Reference Building Blocks focus on the design and implementation of sub-systems and are most
useful for designers and implementors.

Operational Practices

Operational Practices provide guidance for deploying and managing solutions in a production
environment and are based on the Microsoft Operations Framework. Operational Practices focus on
critical tasks and procedures and are most useful for production support personnel.

Patterns

Patterns are documented proven practices that enable re-use of experience gained from solving
similar problems in the past. Patterns are useful to anyone responsible for determining the
approach to architecture, design, implementation, or operations problems.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices cur rent t i t les

December 2002

Reference Architectures
Microsoft Systems Architecture—Enterprise Data Center 2007 pages
Microsoft Systems Architecture—Internet Data Center 397 pages
Application Architecture for .NET: Designing Applications and Services 127 pages
Microsoft SQL Server 2000 High Availability Series: Volume 1: Planning 92 pages
Microsoft SQL Server 2000 High Availability Series: Volume 2: Deployment 128 pages
Enterprise Notification Reference Architecture for Exchange 2000 Server 224 pages
Microsoft Content Integration Pack for Content Management Server 2001

and SharePoint Portal Server 2001 124 pages
UNIX Application Migration Guide 694 pages
Microsoft Active Directory Branch Office Guide: Volume 1: Planning 88 pages
Microsoft Active Directory Branch Office Series Volume 2: Deployment and

Operations 195 pages
Microsoft Exchange 2000 Server Hosting Series Volume 1: Planning 227 pages
Microsoft Exchange 2000 Server Hosting Series Volume 2: Deployment 135 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 1: Planning 306 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 2: Deployment 166 pages

Reference Building Blocks
Data Access Application Block for .NET 279 pages
.NET Data Access Architecture Guide 60 pages
Designing Data Tier Components and Passing Data Through Tiers 70 pages
Exception Management Application Block for .NET 307 pages
Exception Management in .NET 35 pages
Monitoring in .NET Distributed Application Design 40 pages
Microsoft .NET/COM Migration and Interoperability 35 pages
Production Debugging for .NET-Connected Applications 176 pages
Authentication in ASP.NET: .NET Security Guidance 58 pages
Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication 608 pages

Operational Practices
Security Operations Guide for Exchange 2000 Server 136 pages
Security Operations for Microsoft Windows 2000 Server 188 pages
Microsoft Exchange 2000 Server Operations Guide 113 pages
Microsoft SQL Server 2000 Operations Guide 170 pages
Deploying .NET Applications: Lifecycle Guide 142 pages
Team Development with Visual Studio .NET and Visual SourceSafe 74 pages
Backup and Restore for Internet Data Center 294 pages

For current list of titles visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

	Front Cover
	Contents
	Foreword
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Documentation Conventions
	Community
	Feedback and Support
	Acknowledgments

	Chapter 1: Patterns for Building Enterprise Solutions
	Patterns Document Simple Mechanisms
	Patterns as Problem-Solution Pairs
	Patterns at Different Levels
	Simple Refinement

	Common Vocabulary
	Concise Solution Description

	Summary

	Chapter 2: Organizing Patterns
	Pattern of Patterns
	Pattern Clusters
	Different Levels of Abstraction
	Architecture Patterns
	Design Patterns
	Implementation Patterns

	Viewpoints
	The Pattern Frame
	Constraints
	Pattlets
	Pattern Language for Solutions
	Summary

	Chapter 3: Web Presentation Patterns
	Complexity and Redundancy
	Patterns Overview
	More Powerful Controllers
	Filters and Caching

	Web Presentation Patterns
	Model-View-Controller
	Context
	Problem
	Forces
	Solution
	Example
	Testing Considerations
	Resulting Context
	Variants
	Related Patterns
	Acknowledgments

	Implementing Model-View-Controller in ASP.NET
	Context
	Implementation Strategy
	Tests
	Resulting Context
	Related Patterns
	Acknowledgments

	Page Controller
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Related Patterns
	Acknowledgments

	Implementing Page Controller in ASP.NET
	Context
	Implementation Strategy
	Testing Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Front Controller
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Testing Considerations
	Related Patterns
	Acknowledgments

	Implementing Front Controller in ASP.NET Using HTTPHandler
	Context
	Background
	Implementation Strategy
	Testing Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Intercepting Filter
	Context
	Problem
	Forces
	Solution
	Variations
	Example
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Intercepting Filter in ASP.NET Using HTTP Module
	Context
	Implementation Strategy
	Examples
	Testing Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Page Cache
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns

	Implementing Page Cache in ASP.NET Using Absolute Expiration
	Context
	Implementation Strategy
	Testing Considerations
	Resulting Context
	Variants
	Related Patterns

	Observer
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Observer in .NET
	Context
	Background
	Implementation Strategy
	Testing Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Chapter 4: Deployment Patterns
	Bringing Teams Together
	Patterns Overview
	Application Patterns
	Infrastructure Patterns
	Bringing Applications and Infrastructure Together

	Deployment Patterns
	Layered Application
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Acknowledgments

	Three-Layered Services Application
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Acknowledgments

	Tiered Distribution
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Related Patterns
	Acknowledgments

	Three-Tiered Distribution
	Context
	Problem
	Forces
	Solution
	Resulting Context
	Related Patterns
	Acknowledgments

	Deployment Plan
	Context
	Problem
	Forces
	Solution
	Resulting Context

	Chapter 5: Distributed Systems Patterns
	Instance-Based vs. Service-Based Collaboration
	Near Links vs. Far Links
	Distributed Computing Challenges
	Using Layered Application
	Patterns Overview
	Remote Invocation
	Local Copy
	Client-Activated Objects
	Coarse-Grained Interfaces
	Data Transfer Object

	Distributed Systems Patterns
	Broker
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Security Considerations
	Related Patterns
	Acknowledgments

	Implementing Broker with .NET Remoting Using Server-Activated Objects
	Context
	Background on .NET Remoting
	Implementation Strategy
	Deployment Considerations
	Tests
	Resulting Context
	Security Considerations
	Operational Considerations
	Related Patterns
	Acknowledgments

	Implementing Broker with .NET Remoting Using Client-Activated Objects
	Context
	Implementation Strategy
	Resulting Context
	Security Considerations
	Operational Considerations
	Related Patterns
	Acknowledgments

	Data Transfer Object
	Context
	Problem
	Forces
	Solution
	Example
	Testing Considerations
	Security Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Data Transfer Object in .NET with a DataSet
	Context
	Background
	Implementation Strategy
	Tests
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Data Transfer Object in .NET with a Typed DataSet
	Context
	Background
	Implementation Strategy
	Tests
	Resulting Context
	Related Patterns
	Acknowledgments

	Singleton
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Singleton in C#
	Context
	Implementation Strategy
	Resulting Context
	Acknowledgments

	Chapter 6: Services Patterns
	Collaboration Concepts
	Service-Based Collaboration
	Service-Oriented Architecture
	Service Contracts

	Web Services
	Communication Contract
	Interoperability

	Patterns Overview
	Services Patterns
	Service Interface
	Context
	Problem
	Forces
	Solution
	Example
	Testing Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Service Interface in .NET
	Context
	Background
	Implementation Strategy
	Tests
	Resulting Context
	Related Patterns
	Acknowledgments

	Service Gateway
	Context
	Problem
	Forces
	Solution
	Example
	Testing Considerations
	Resulting Context
	Related Patterns
	Acknowledgments

	Implementing Service Gateway in .NET
	Context
	Implementation Strategy
	Tests
	Resulting Context
	Related Patterns
	Acknowledgments

	Chapter 7: Performance and Reliability Patterns
	Meeting Operational Requirements
	Scalability
	Availability

	Patterns Overview
	Load-Balanced Cluster
	Failover Cluster

	Performance and Reliability Patterns
	Server Clustering
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Related Patterns
	Acknowledgments

	Load-Balanced Cluster
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Related Patterns
	Acknowledgments

	Failover Cluster
	Context
	Problem
	Forces
	Solution
	Example
	Resulting Context
	Related Patterns

	Appendix A: Pattlets
	Bibliography
	Additional Resources

