David Burgett
Matthew Baute
John Pickett
Eric Brown

7!
Ve!
)

=
7
-

o
)

—

LLl

Z

.NET e-Business Architecture

David Burgett, Matthew Baute, John Pickett, Eric Brown, G. A. Sullivan
Copyright © 2002 by Sams Publishing

1st Edition, November 27, 2001

Team-F Iy'

Copyright (c) 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from
the use of the information contained herein.

International Standard Book Number: 0672322196
Printed in the United States of America
First Printing: Month Year

04 03 02 01 4 3 2 1

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an "as is" basis. The authors and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book or from the use of the CD or programs accompanying it.

Credits

Associate Publisher

Linda Engelman

Acquisitions Editor

Karen Wachs

Development Editor
Grant Munroe

Managing Editor
Charlotte Clapp

Project Editor

Leah Kirkpatrick

Copy Editor

Ned Snell

Technical Editor

Beth Breidenbach, Jawahar Puvvala

Team Coordinator

Lynne Williams

Media Developer

Dan Scherf

Contents

Introduction

Who Should Use This Book?
How This Book Is Organized
Part I: Preliminaries and Planning

Part I1: Designing .NET e-Business Solutions

Part I11: Building the .NET e-Business

Part IV: Testing and Deploying .NET Sites

Conventions Used In This Book

Part I: Preliminaries and Planning

Chapter 1 .NET--The Big Picture

The Internet Rules!
A Level Playing Field
Standards--So Many to Choose From
Enterprise-Level Attributes
The Evolution of the Programming Model
Clients and Servers
Applications Become Sites
Scale Up versus Scale Out
Balancing the Load
A Matter of State
Incorporating Services
Services
The Passport Service
The Role of SOAP
SOAP on a ROPE (The SDK for VS)
DISCO and UDDI
BizTalk: All Three
The Organization
The Initiative
The Server

Complete the Picture with BizTalk Orchestration

Cast of Characters

CLR: The Common Language Runtime

CLR Security

Windows

Microsoft Message Queue

Internet Information Server

The Microsoft .NET Enterprise Servers
From Here

Chapter 2 gasTix: A Sample .NET e-Business

Introducing gasTix: The Sample Client
Background
Problem Statement
Vision Statement
Solution Concept
Business Goals
Design Criteria
Architecting the System
The .NET Architectural Foundation
gasTix Conceptual Architecture
gasTix Use Cases
Web Site Flow
Home Page
Artists/Teams by Name
Subcategories by Category
Artists by Subcategory
State List/US Map
Venue Search Page
Cities with Venues List
Venues by City/State
Venues by Name
Events by Venue
Events by Artist/Team
Seating Chart
Event Details
Event Pricing Details
Ticket Purchase
Purchase Confirmation
Update Profile
Shipment Status
Project Design and Approach: The Microsoft Solutions Framework
Development Process Overviews
A Note on the Sample Application
From Here

Chapter 3 Enabling Inter-Application Communications

Challenges of Inter-Application Communications
XML--Extensible Markup Language

XML and HTML

XSD Schema
SOAP and Web Services

WSDL, DISCO, and UDDI

Microsoft BizTalk Server
Business Document Exchange
BizTalk Orchestration
BizTalk Messaging

From Here

Part I1: Designing .NET e-Business Solutions

Chapter 4 Tools of the Trade

.NET Architectural Tools
.NET Framework Classes
Common Language Runtime (CLR)
Common Type System (CTS) / Common Language Specification (CLS)
Metadata
Server Integration and Device Independence
Security and Authentication
Performance and Scalability
.NET Architectural Tools Summary
.NET Language Tools
Visual C# .NET
Visual Basic .NET
Language Choice
Other Languages
.NET Language Tools Summary
.NET Developer Productivity Tools
Visual Studio .NET
ILDasm
Command Line Compilers
.NET Developer Productivity Tools Summary
From Here

Chapter 5 Implementing .NET Presentation Services

Why Should Developers Switch to ASP.Net?
The Page Object
What are Web Controls?

Event-Driven Programming

Using Web Controls in Visual Studio.NET
Advanced Features of Web Controls

User Controls

Separation of Ul and Code
From Here

Chapter 6 Implementing .NET Business Services

Architectural Goals
Interoperability
Performance
Availability
Scalability
Security
gasTIX Business Services--A closer look
Business Facade
Business
Data
Data Access
System Framework
Web Services
What's New for Component Development?
Remoting versus DCOM
ADO.NET
From Here

Chapter 7 Implementing .NET Data Services

Data Modeling
Relational versus Dimensional Models
Physical Modeling
Indexing for Performance
Number of Indexes
Clustered versus Non-Clustered Indexes
Long or Short Index Keys?
Index Tuning Wizard
Transact-SQL
Variables in Transact SQL
Parameters in Transact SQL
Transact SQL Cursors
Functions in Transact SQL
Views
Advantages of Using Views
Disadvantages of Using Views
Partitioned Views
Indexed Views
Stored Procedures
Creating Stored Procedures
Stored Procedure Performance Issues
Triggers
AFTER Triggers
INSTEAD OF Triggers

User-Defined Functions
Inline Table-Valued Functions
Multistatement Table-Valued Functions
XML Support in SQL Server
Transact-SQL XML extensions
OPENXML
Integration of SQL Server and IIS
From Here

Chapter 8 Handling security

Security Concepts
Authentication and Authorization
Authenticating Users
Authorization - working with Role-Based Security
Working with Code Access Security
Signing Assemblies
Code permissions and associated tools
From Here

Chapter 9 COM+ Integration

A Legacy from the Past
The Need for Legacy Components
To Migrate or Not to Migrate
A Sample Architecture
Technology Overview
Managed versus Unmanaged Code
Calling the Operating System
Wrapping it All Up.
Approaches to Partial Ports
Advanced Topics
Typed Transitions and the Stack
Controlling the Marshalling Mechanism
Detailed Walkthrough
What We Need
Creating a Simple Visual Basic DLL
Calling the DLL from a Web Service
Calling the DLL from a Visual Basic.NET Class Library
Calling the Class Library from a Visual Basic Executable
From Here

Part III1: Building the .NET e-Business

Chapter 10 gasTIX Event Searching

Building Presentation Services with ASP.NET
Presentation Service Goals
ASP.NET Web Controls
Building the ASP.NET Project
The gasTIX Search Project
Separation of Code and Design in gasTIX
Using ASP.NET Web Controls
Using Repeater Controls
User Controls
A Simple User Control
Building a Nested User Control
From Here

Chapter 11 Purchasing a Ticket

Setting Up the Examples
Web.Config
Global . ASAX
Middle Tier Objects Versus XML Web Services
Business Objects
Using XML Web Services via Soap
Building the gasTIX Purchasing User Interface
Organization and Flow of the User Interface
Event Details
Payment Information
Confirming the Purchase
Displaying a Receipt
Viewing the Seating Chart
The Ul for Purchasing a Ticket
Tools
Visual Studio .NET
Command-Line tools
From Here

Chapter 12 Fulfillment

Communication Overview
Notification of New Orders
Message Format and Structure
Message Transport
Message Transport Alternatives
Sending the Order
BTS Messaging Definitions
Creating the Organizations and Applications
Creating the Port

Creating the Channel

Formatting the Order
Functoids
Alternatives

Processing the Order
Receiving the Order
Activating Orchestration from BTS Messaging
TPA Orchestration Overview
Creating the Business Process
Receiving Messages in the Schedule
Creating the Components
Creating the Component Ports
Mapping the Data

Delivery Receipts
Transport Acknowledgement and Retry
BTS Queues
Receipts
BTS Framework Reliable Delivery
Limitations

Order Status Return and Enhanced Receipts
Transactions in Orchestration Schedules

Correlation

Implementation Choices
Updating Order Status

From Here

Chapter 13 .NET Remoting

Application Domains
Remotable versus Non-Remotable Objects
Marshal-By-Value
Marshal-by-Reference
Channels
Serializing Messages
Remoting Configuration Options
Hosting a Remote Object
Hosting in a Managed .EXE or Managed Service
Internet Information Server (11S)
.NET Component Services Framework
Consuming a Remote Object
Activation and Lifetime Control
Server Activation
Client Activation
Object Lifetimes
From Here

Part IV: Testing and Deploying .NET Sites

Chapter 14 Debugging a .NET Application

.NET Debugging--The Basics
Debugging gasTIX
Attaching to gasTIX Web
Just-In-Time Debugging
Trace and Debug Classes
Debugging an ASP.NET Web Application
ASP.NET Tracing
Debugging and Testing a Web Service
Exception Handling
The Exception Object
Fundamentals
Best Practices
From Here

Chapter 15 Performance Tuning in .NET

Performance Tuning Concepts
Why Performance Tune?
How to Performance Tune?
When To Performance Tune?
.NET Performance Mechanisms
ASP.NET Caching Technologies
.NET Application Profiling
Asynchronous Processing in .NET
Install-Time Code Generation
Other .NET Performance Considerations
.NET Performance Tuning Tools
Tuning the .NET Presentation Tier with Application Center Test (ACT)
Tuning the .NET Business Tier with Visual Studio Analyzer
Tuning the .NET Data Tier
From Here

Chapter 16 Deploying the Application

Putting the Application Together
The Presentation Tier
The Business Tier
The Data Tier

Infrastructure Considerations
Technical Requirements for Deployment
Application-lmposed Requirements
Performance Considerations

Team~ny®

Scaling Up Versus Scaling Out
Deployment Platform for gasTIX Sites
Executing Deployments with Visual Studio .NET
Visual Studio .NET Deployment Projects
Dissecting the Web Setup Project
Deploying a .NET Application to the World
File System
Registry
User Interface
Custom Actions
Creating Web Clusters with Application Center
About Application Center
Preparing a Web Cluster for Use with .NET and ACK
Deploying .NET Applications on Application CenterClusters
From Here

Appendix Design Document

gasTIX Requirements
Implemented Functionality
Future Functionality

gasTIX Use Cases
Use Case --Select Event by Category
Use Case --Select Event by Venue
Use Case --Select Event by State
Use Case --Select Event by Artist/Team Name
Use Case --Pricing/Availability Check
Use Case --View Seating Chart
Use Case --Purchase Tickets

gasTIX Site Map

gasTIX Object Models

gasTIX Data Model

G. A. Sullivan sprang from humble beginnings as the IBM PC was being launched--just one other person
(who still works here!) and me writing code, working at the kitchen table. Our organization has
experienced dramatic growth in the past 19 years (visit our website for details), but our motivations,
decisions, and investments are still colored by my beginnings as a software developer, and 1 still get
excited when | see great new technology.

The Microsoft .NET platform and toolset is exciting, comprehensive, and powerful. We have been using
Microsoft tools and technologies since the release of their first C compiler for the DOS platform. We've
grown up with Microsoft, and are proud of the strong partnership we enjoy with Microsoft today. In
reviewing the comprehensive scope and power of the .NET platform, I'm reminded of those early days, and
feel the same sense of excitement and impending possibility.

The .NET platform represents an incredible opportunity for our industry to create new systems that work
well on the Internet and allow unprecedented levels of integration with business partners and customers,
all using standard Internet protocols.

Web services, which are described in detail in this book, play a key role in the .NET story. Microsoft is once
again “betting the ranch” on a new initiative, and challenging our thinking on what it means to write an
application or create a website. With their own web services initiative, they have staked out a true
leadership position in this emerging market. | believe the world will follow their lead.

It is important to realize, however, that .NET does NOT represent technology created for its own sake.
Leveraging technologies such as XML and SOAP, and products like the collection of .NET Enterprise Servers,
Microsoft has provided a platform that delivers real business value. This value is exemplified by improved
quality, rapid time to market, and tighter integration between a company, its customers, and its business
partners.

So here is our seventh book. We have tried to describe how the .NET platform can be used to create
practical, real-world applications. | hope you enjoy it!

Greg Sullivan
CEO

G. A. Sullivan is a global .NET application development company focused on delivering Microsoft .NET
solutions to middle market and Fortune 1000 companies. G. A. Sullivan was among the first in the world
to become a Microsoft Gold Certified Partner for E-Commerce Solutions and currently has five locations
that have earned this designation. Since 1982, the company has partnered with clients to streamline
business processes and implement leading-edge technologies through complete strategic, technical and
creative expertise. G. A. Sullivan is among the fastest growing private companies in America with nearly
300 software development professionals in six U.S. and two European locations. The company has
ranked on the Deloitte & Touche Technology FAST 500 for four consecutive years and has appeared for
three years on Inc. magazine’s Inc. 500.

G. A. Sullivan is a recognized leader in the technology industry, known for building complex solutions that
are flexible, scalable and highly reliable. Vertical industry specialization includes Financial Services
(banking, insurance and securities), Healthcare, Manufacturing, Government and Retail. Technical
specialization includes the Microsoft Windows DNA platform, and the new Microsoft .NET platform and
toolset. The company has high-level expertise building E-Commerce, Business Intelligence, Knowledge
Management, Security and Mobile solutions.

G. A. Sullivan has built a solid team of industry leaders committed to sharing their technical expertise.
Members of the G. A. Sullivan team frequently speak at national and international industry conferences.
In addition to writing technical books, the company publishes an ongoing white paper series, writes
articles for trade publications and organizes numerous community development seminars and informative
roundtable discussions across the United States and Europe.

For additional information about G. A. Sullivan visit www.gasullivan.com.
G. A. Sullivan

55 West Port Plaza, Suite 100

St. Louis, Missouri 63146

Email: corporate@gasullivan.com

As a Consultant for G. A. Sullivan, Robert Amar has worked with a wide variety of clients and industries
to implement Microsoft platform-based solutions. Robert has experience in developing traditional
object-oriented and web-based user interfaces using a diverse set of languages and development tools.
Recently Robert has worked on cutting-edge applications for the life insurance industry which implement
the ACORD XML transaction standards for the life insurance industry and use BizTalk Server as a means of
communicating between underwriters, agents, and insurance companies. Robert is an MCP in Visual Basic.

Robert would like to thank my fiancée Nicha Chowpaknam for all her encouragement and support.

As a Senior Technical Architect in G. A. Sullivan's e-Business Group, Matthew Baute helps clients design,
implement, and tune leading-edge technology solutions for the Microsoft platform. In addition to extensive
Windows DNA experience, Matthew recently completed the early phase of a large, distributed C# and
ASP .NET project involving OLAP and Digital Dashboard technology. Matthew is an MCSD in Visual Basic
and SQL Server whose authoring credits include a white paper entitled Multi-Tier Performance Tuning, and
a chapter on Visual Basic and ADO in G. A. Sullivan's previous title, Building Enterprise Solutions with
Visual Studio 6.

Matthew would like to express special thanks to Helena, and to Mom and Dad.

As G. A. Sullivan’s Chief Technology Officer (CTO), Don Benage leads the daily operations of the
company’s Technology Center. Specialties include application development, e-business and Internet
technologies, and XML-based, loosely-coupled, highly scalable systems. Prior to joining G. A. Sullivan in
1995, he spent five years at Microsoft Corporation. Don has also directed several of G. A. Sullivan’s
authoring teams, serving as the lead author of technical books for Pearson’s Que and SAMS labels. These
book titles include: Building Enterprise Solutions with Visual Studio 6, and Special Edition Using Microsoft
BackOffice (Editions 1 & 2). Don would like to thank Diane and Andy.

Eric Brown spends most of his time helping G. A. Sullivan's customers and developers architect, develop,
and design large scale e-Business systems. Eric is an accomplished developer with over eight years of
experience building distributed systems using various languages. Eric spends time as a presenter and
author educating both customers and developers on .NET technologies . He has contributed to three
previous publishing efforts, including G. A. Sullivan's previous title, Building Enterprise Solutions with
Visual Studio 6.

Eric thanks Rebecca and Emily, as well as Larry, Curley, Moe, Shemp, The Pirates Who Don't Do Anything,
and The Yodeling Veterinarian of the Alps.

As a Senior Consultant for G. A. Sullivan, David Burgett helps determine the technical direction of clients
by identifying business challenges and educating and assisting the client with the implementation of the
technology best suited to meet the challenge. David has extensive web development experience, creating
solutions on both the server- and client-side, with a variety of languages and platforms. David also
evangelizes technology within the G. A. Sullivan community, with topics ranging from Dynamic HTML
to .NET development. David is an active author and technical presenter; he has contributed to three books
and two technical white papers and has recently presented at the TechEd conference and the Office XP
launch. David is an MCSD and an MCDBA.

David would like to thank Susan for encouraging him to contribute to this book, for putting up with him
while he worked on it, and for sticking by him as he finished it. Also to Sable, Sashka, and Chloe for always
making him smile.

As a Managing Consultant in G. A. Sullivan's Line of Business Financial Services, Remco Jorna helps
financial institutions identify and design technology solutions based on the Microsoft .NET Platform. David
has extensive systems and web development experience, creating solutions on both the server- and
client-side, using different database management systems, languages and platforms. Remco is and MCSD
and has recently completed the logical and technical design of two .NET Framework applications for
Employee Benefit and Knowledge Management solutions which use ASP .NET and Visual Basic .NET.

As a Senior Consultant for G. A. Sullivan, Chris Koenig works with clients to help them discover and solve
their business problems using the latest technologies on the Microsoft platform. Chris has extensive
software development experience including large scale Client-Server and Multi-tier Web applications. Chris
is also an active technical evangelist for G. A. Sullivan and helps to educate their clients and consultants
about .NET and Web Development. Chris is a Charter Member of the MCSD community and an MCDBA.

Chris would like to thank Laura, David, Christine, Stephen, and Brian for their patience and understanding,
and to Shawn for the opportunity...

As a Technical Lead for G. A. Sullivan's Dutch office, Cor Kroon helps translate clients’ needs into a
technical design and implementation that best suits their business goals. Cor has extensive web
development experience, covering all layers of the Windows DNA model. Cor is an MCSD in Visual Basic
and web development, but his experience also includes other platforms and languages like UNIX and C. His
recent contributions to the G. A. Sullivan community include the design and implementation of an
XML-based multi-lingual version of the company web-site, targeted towards the European market.

Cor would like to thank his wife Jolanda and his sons Niels and Lars for their support and encouragement
during his writing efforts.

As a Senior Consultant in G. A. Sullivan's Nashville office, Richard Lassan is focusing on learning and
evangelizing about the benefits of the .NET platform. Richard’s authoring credits include “ASP+ Validator
Controls” for ASPToday, he also authored “Working with DataGrids” and “Validating User Input” in a
forthcoming book on ASP.NET. Richard is also currently contributing to a forthcoming book on the C#
language. Richard can be reached at rickl@gasullivan.com

Richard would like to thank William & Eleanor Lassan, Billy, Ed and Steve, and his wife Karen, for her
patience and encouragement while contributing to this book.

As a Senior Consultant for G. A. Sullivan, Roger Miller helps architect, implement, and deploy
enterprise-wide solutions for clients. Roger manages and mentors large teams of consultants to produce
high quality, on-time solutions. Roger recently presented a Microsoft Solution Series on BizTalk across the
Midwest. Roger has worked with a variety of languages and platforms, ranging from hand held devices to
web sites to F-15 fighter jets. Roger holds both a B.S. and a M.S. in Computer Science.

Roger would like to thank his wife Melissa and his children Hayden and Gwendolyn for their support and
patience during the development/authoring process and says, “l promise | won't lock myself in the
basement ever again.”

Brian Mueller is a senior developer and architect for G. A. Sullivan who specializes in developing
Web-based n-tier business systems utilizing a variety of technologies, and is presently leading the
development of a large VB.Net and ASP.NET portal solution. He also has extensive experience migrating
existing applications to new technologies and architectures. Brian is an MCSD, MCDBA, and MCSE.

As a software consultant, Baya Pavliashvili has worked on a number of projects specializing in database
development and administration. Baya has authored articles about developing in Transact-SQL,
configuring replication, building and maintaining data warehouses with SQL Server. He has assisted with
editing and reviewing several technical titles. Baya is the president of the Nashville SQL Server Users
Group, and holds the MCSE, MCSD, and MCDBA certifications.

Baya would like to thank Jerry Post and Thomas Baldwin for their tireless efforts, and for developing
world-class professionals.

Bry Pickett is a software engineer with G. A. Sullivan and has over six years experience designing and
developing distributed applications using Microsoft tools and technologies. He contributes development
skills to a wide variety of projects using various languages and platforms including the Microsoft .NET
Enterprise Solutions Platform. Bry is an MCSD, MCSE, and MCDBA focusing his work on middle tier
business logic and data access components as well as user interface logic components.When not working,
Bry enjoys spending time with his wife, Layne, their two cats, Hana and Daisy, and reading books about the
history of World War I1.

Bry would like to thank Layne for being here, and Betty and John for getting him here.

John Pickett has spent most of the last ten years applying new technologies to a wide range of industry
solutions. While serving as a Senior Architect in G. A. Sullivan's e-Business group, his primary role is to
provide technical leadership to G. A. Sullivan's customers, project teams, and sales staff. John's leadership
participation extends to all phases of the software development process, from envisioning to development
through stabilization. John has been involved with several previous publishing efforts, and recently
presented the gasTIX application at TechEd 2001 Europe in Barcelona, Spain.

John would like to thank his parents, John and Betty, as well as Kathy, Jennaka, and Giovanni.

As a Senior Consultant for G. A. Sullivan, Jody Socha helps clients with all facets of software development
from requirements to project management to design and implementation. He has over five years in
developing applications for the financial services industry with a focus on enterprise-class applications and
business integration strategies. Jody’s authoring credits include a white paper entitled Using Visual
Component Manager and the Microsoft Repository, and chapters in both of the last two books from G. A.
Sullivan on Microsoft Visual Studio.

John Alexander
Mark Benatar
Chris Brauss
Gary Dzurny

Bill Edwards
Stefanie Gavornik
Richard Gower
Shelley Hawkins
Erik Howard
Tom Klein

Mike Lichtenberg
Gary Loberg

Tom Luther
Steve Miller
Mark Munie

Dan Norton
Brian Pursley
Greg Sullivan
Debb Wiedner
Kim Williamson
Deana Woldanski

Bryan Alsup
Craig Jaris

Judy Kolde
Dave Mendlen
Cathy Menees
Piet Obermeyer
Erik Olson
Shannon S. Pahl
Brad Rhodes
Marius Rochon
Merrill Schebaum
Kent Sharkey

Leah Kirkpatrick
Grant Munroe
Karen Wachs

Eddie Gulley
Kenny Hall
Mark Sundt

.NET e-Business Architecture is meant to be read by technical architects and software developers
responsible for designing and building Internet-based applications for the .NET platform. It provides
detailed information on implementing a .NET system design, and presents the best practices and lessons
learned along the way. Coding techniques using the Visual Studio .NET tool suite are demonstrated
throughout the book. The sample code is based on the actual implementation of an enterprise-scale
sample application, gasTIX.

.NET e-Business Architecture is also appropriate for information system managers faced with planning
issues. This book explains the key concepts behind the most important technologies in the .NET platform.
Visual C# .NET, Visual Basic .NET, ASP.NET, ADO.NET, SOAP, and XML-based Web Services are all covered.
More importantly, this book provides practical examples of how to effectively implement these
technologies, as well as when and why they should be considered.

This book is organized to follow an application development cycle, beginning with a look at the basics of
the .NET platform. An introduction to the sample gasTIX application is given, along with an overview of the
business and technical goals of this fictional company. Subsequent sections cover design and
implementation details, and the final section explores .NET testing and deployment issues.

The chapters in Part I, "Preliminaries and Planning," introduce the concepts behind the .NET Framework.
They discuss how the Internet and the pervasiveness of XML enable us to begin offering a new generation
of software applications. The sample application referenced throughout the book is introduced, along with
a chapter covering the communication mechanisms between the multiple layers of a .NET e-Business
application.

The chapters in Part II, "Designing .NET e-Business Solutions," cover .NET application design
considerations from each of the three logical tiers: presentation, business, and data. Security topics are
explored, which are an area of primary concern for architects, managers, and administrators alike. Issues
relating to integration with COM+ services are also covered in this section.

The chapters in Part III, "Building the .NET e-Business," consider the implementation of the sample
gasTIX application from a functional point of view. A chapter is devoted to each of the main site functions
(event searching, ticket purchasing, fulfilment/order processing), from the top tier to the bottom tier,
demonstrating how data is passed between application layers. An abundance of code samples provides
you with ideas and techniques that you can include in your own .NET applications.

The chapters in Part IV, "Testing and Deploying .NET Sites," explore the necessity of debugging and
performance tuning a .NET e-Business application prior to release. An entire chapter is dedicated to the
issues surrounding deploying a .NET application. This section rounds out a complete discussion of the
software development life cycle for a .NET e-Business application.

Part I: Preliminaries and Planning

Chapter 1, ".NET—The Big Picture," provides a high-level overview of the major features of the .NET
Framework and the Visual Studio .NET programming tools. An introductory chapter is necessary because
of the true evolutionary nature of the .NET release. The central role of the Internet and standard protocols
such as XML and SOAP are discussed, along with the importance of designing loosely coupled systems.
This chapter prepares the reader to drill down to the more solution-focused chapters that follow.

Chapter 2, "gasTIX: A Sample .NET e-Business," introduces the sample application referenced
throughout the remainder of the book. The sample application is an online ticketing web site that sells
tickets to major sporting and concert events across the country. The chapter provides an overview of the
requirements and business drivers behind the technical approach chosen. Thoughts on team composition
and effective project management for a .NET e-Business implementation are also included.

Chapter 3, "Enabling Inter-Application Communications," discusses how independent applications can
work together in a .NET collaborative environment. Concepts such as XML, Web Services, SOAP, and
Orchestration in BizTalk Server 2000 are covered.

Part II: Designing .NET e-Business Solutions

Chapter 4, "Tools of the Trade," discusses the various architectural, language, and productivity tools at
the disposal of designers and developers programming for the .NET platform. The .NET Framework is
covered in more depth, along with the two major .NET languages, Visual C# .NET and Visual Basic .NET.
New productivity features in the Visual Studio .NET integrated development environment (IDE) are
explored.

Chapter 5, "Implementing .NET Presentation Services," covers the design considerations for the Web
user interface in .NET. ASP .NET Web Forms are introduced, along with the new state management options.
Approaches for how HTML can be separated from ASP .NET code are given, and server-side vs. client-side
rendering issues are also covered.

Chapter 6, "Implementing .NET Business Services," discusses approaches to designing the middle tier in
a .NET e-Business application. The design of the gasTIX business services is discussed, as well as new
issues for component developers, including ADO .NET and .NET Remoting. A discussion of the gasTIX
Web Services is another important topic covered in this chapter.

Chapter 7, "Implementing .NET Data Services," looks at design considerations for the data tier in a .NET
application. This chapter explores some of the new features of SQL Server 2000 and how they integrate
into the gasTIX website. Issues related to the use of stored procedures, XML, and indexes in SQL Server
2000 are explored through evaluating the implementation choices made in the sample application.

Chapter 8, "Handling Security,"” discusses application security issues and how .NET handles them. Role
based security is explored, including authentication and authorization using cookies and certificates. Code
access security through assembly signing is also covered, along with the different tools used in this regard.

Chapter 9, "COM+ Integration,” shows how interaction with COM+ legacy components can be
accomplished. This chapter provides a discussion of the issues encountered when we consider porting a
COM+ application to .NET managed code. It also presents an overview of how to best leverage your
current investment in existing COM+ components.

Part III: Building the .NET e-Business

Chapter 10, "Event Searching," discusses how a user can browse the gasTIX site to find a specific event.
One of the search methods is discussed in detail by focusing on ASP .NET implementation techniques using
several of the Web Controls, along with a custom User Control. An advanced User Control is also built for
use on the home page of gasTIX.

Chapter 11, "Purchasing a Ticket," presents the area of the site where a user actually purchases a ticket.
The focus of the chapter is a walkthrough of purchasing a ticket on gasTIX, and its implementation as a
web service. The gasTIX purchasing web services, consumed by the gasBAGS website (a fictional band
who wishes to offer its fans event ticket purchasing functionality), are discussed in this chapter.

Chapter 12, "Fulfillment,” demonstrates how communication is handled between the main gasTIX site
and a site run by a third-party responsible for printing and shipping tickets. BizTalk issues are discussed,
including message queuing, routing, and workflow orchestration.

Chapter 13, ".NET Remoting," discusses the important concepts for developing and hosting .NET objects
remotely. The use of remoting in the gasTIX application is examined, along with the differences between
providing application functionality via remoting and via SOAP web services.

Part IV: Testing and Deploying .NET Sites

Chapter 14, "Debugging a .NET Application,” discusses tools and techniques developers can use to
efficiently debug a .NET application. The major debugging enhancements in Visual Studio .NET are also
explored.

Chapter 15, "Performance Tuning in .NET," covers general performance testing concepts, along with the
various performance mechanisms in .NET, such as ASP .NET output caching. The main .NET tuning tools,
Application Center Test (ACT), Visual Studio Analyzer (VSA), and SQL Profiler, are all discussed. These
tools help you find and eliminate system bottlenecks.

Chapter 16, "Deploying the Application,"” walks the reader through the steps required to deploy a .NET
application to a production environment. Important issues that should be considered for proper application
configuration are addressed. Specific consideration is given to configuring and managing the sample
gasTIX application in Application Center 2000.

As the reader of this book, you are our most important critic and commentator. We value your opinion and
want to know what we're doing right, what we could do better, what areas you'd like to see us publish in,
and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams Publishing, | welcome your comments. You can fax, email, or write me
directly to let me know what you did or didn't like about this book--as well as what we can do to make our
books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and that due
to the high volume of mail | receive, | might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and phone or
fax number. | will carefully review your comments and share them with the author and editors who worked
on the book.

Fax: 317-581-4770
Email: feedback@samspublishing.com

Mail: Linda Engelman
Sams Publishing

201 West 103rd Street
Indianapolis, IN 462

Change is constant in our lives. In every area of human endeavor the ongoing flow of progress continues,
and computer technology is no exception. Just as we begin to feel comfortable with a particular platform
and toolset, another is introduced and the learning process begins anew. Though we may occasionally
lament the effort required to keep up with the latest advancements in technology, the constant pace of
innovation is also very exciting.

The term “.NET” carries multiple meanings. It is first and foremost an umbrella marketing term used to
describe the entire Microsoft platform, much as Windows DNA described the previous platform. But the
astute observer will notice that .NET is also used to refer to one or more elements of the overall platform
in addition to the entire platform as a whole, which can lead to confusion. The exact meaning of the term
depends on the context, and what is most important to the speaker. Here is a short list of different
elements that are described by the term .NET, which are described in detail in this book:

e the collection of Microsoft’s Enterprise Servers
e the Common Language Runtime (CLR)
e the .NET Framework

e an approach to software development emphasizing the role of “web services” and the use of standard
Internet protocols

e the collection of Microsoft’'s “core” web services codenamed “"Microsoft My Services”

The Microsoft .NET platform is a comprehensive overhaul in the evolution of their software development
toolset. Some elements of the platform have been under development for four years, and almost every
facet has been changed is some way. This book is designed as a thorough introduction to .NET, and how
to use it to create e-Business applications and web sites. The authoring team also acted as a software
development team, creating a comprehensive sample comprising two web sites, and then describing the
techniques that were used in the following chapters. Welcome to the world of .NET.

As organizations of all sizes and descriptions capture and analyze information, formulate strategies, and
ponder their futures, it is clear that the Internet has changed everything. The impact that this multifaceted
entity has on our businesses, our schools, our governments, and our lives is profound. This has been
stated so often it has already become a cliché, barely worth mentioning.

We are not here to prognosticate on which way the wind is blowing, or the fate of "the dot coms." But to
understand the significance and the impetus of .NET you must begin here: The Internet is the thing. It has
become a major factor in the way that businesses interact with suppliers, with customers, and with
business partners. It has dramatically altered the availability of information, accelerating the pace of
information flow, and increasing customer expectations. It's impact is sometimes obvious, but it has also
caused pervasive and subtle changes in the way we think about the world which are only beginning to be
fully understood.

A Level Playing Field

What makes the Internet so important? One reason is that -the Internet offers a reasonably level playing
field for a large number of participants. The Internet operates with no single organizing force, no single
group or individual holding ultimate power. English is not a standard on the worldwide web, but Hypertext
Transfer Protocol (HTTP) and Hypertext Markup Language (HTML) are, as well as Extensible Markup
Language (XML). Large corporate entities from leading industrialized nations certainly exert a great deal
of influence, but no conglomerate owns the Internet, and it is not governed by the laws of any single
country. Of course there are political maneuverings, and people from all over the world engaging in
debates and machinations aimed at a favorable outcome for their constituencies and themselves. But by
and large the Internet is a place with very low barriers to entry, very little regulation, and lots of
opportunity.

Standards--So Many to Choose From

A wise man once said, "The nice thing about standards is there are so many to choose from!" This is true
even if we limit our investigation to web-based protocols, or even those primarily associated with
application development and deployment. There are many standards. We like to think of this in a positive
way, looking at these standards as many technologies in our toolkit, waiting for the appropriate situation
to be used.

Why are standards so important? With so many people participating in this shared endeavor, we must
agree on some rudimentary approaches to conducting our conversations, our transactions, our business.
Absolute anarchy serves only the nihilist. If we wish to accomplish something constructive, we need
building blocks with which to work. Standard Internet protocols serve as these building blocks.

As a guiding principle, we'd prefer to "be one of the many, not one of the few." In other words, we'd
generally like to select mature technologies that are used by many other organizations. And, in general,
we'd like standards that are controlled by an independent organization that is not primarily a profit-making
entity.

This chapter won't delve deeply into specific protocols, but it will make a few key points about XML and
Simple Object Access Protocol (SOAP) because of the central role they play in .NET.

XML

Among its many benefits, XML is a primary enabling technology when we wish to build loosely coupled
systems. To appreciate this benefit, some history is in order.

Among the lessons we've learned over the past ten years is the value of building our systems to be resilient
in the face of change. Things always change, usually before we can deploy Version 1.0 of a new system!

As we have struggled to deal with this constant need to adapt we have learned that if the interface between
two systems is highly constrained, any changes must be made at the same time to both systems. This is
bad enough, but if we have a single system that connects to many other systems, the result is particularly
pernicious. Changing all the related systems in synchronization with one another is nearly impossible.
Things become so difficult to change we may decide instead to institutionalize the current practice. XML
provides a flexibility that can solve this problem.

In the past, it was common practice to define a highly structured data transmission protocol. If one
application needed to transmit information to another application, the information was often represented
in a compressed, binary format. This was done in an effort to reduce the size of the transmission to
maximize the use of relatively scarce bandwidth. An unwelcome offshoot of this approach is a tight
coupling between the two applications communicating with one another. If we need to change the content
of the transmission, we must change both applications at the same time. Software designed, for example,
to interpret the first six characters of a data transmission as an inventory number is, by its design, going
to yield a tightly coupled system.

But suppose we don't build a preconceived notion of the exact positioning of the invoice number into our
software. Suppose, instead, that we look for the invoice number between two tags, <invno> and </invno>,
that must appear somewhere within the data stream. Now that's being a bit more reasonable. We might
wish to define a schema that represents, for us, the proper syntax for a valid invoice. We might be willing
to consider a subset of the information optional. This would allow us to make changes to one system
without the other being affected--loose coupling!

So, we've seen how the design of XML allows us tremendous flexibility and power in the exchange of
business documents. The same approach can obviously be used with information of all kinds. This is one
of the primary reasons that the use of XML has attracted so much attention. Is there another way to
leverage this simple but elegant protocol? Yes, and that way is SOAP.

SOAP

Let's assume we have a distributed system made up of two or more computers, each running its own
operating system, that are connected by various networking protocols (predominantly TCP/IP). For some
years there have been passionate debates about object models, application development models,
software architectures, and related technologies. As distributed computing and component-based
approaches grew in popularity, the competition grew for the hearts and minds of developers. The major
vendors involved in providing tools for building enterprise-class applications are often bitter enemies, and
compete vigorously against one another. The playing field is replete with acronyms representing various
approaches: CORBA versus COM/DCOM, Enterprise Java Beans (EJB) versus Windows DNA, J2EE

versus .NET.

Of course, under the surface there are many similarities in all of these approaches. In particular, all of
them offer a way for a process executing on a particular computer to call a remote procedure executing in
another process on the same machine, or on an entirely different computer. We need a way to specify the
procedure, send one or more arguments, and receive results in the form of return arguments. And every
Remote Procedure Call (RPC) should be uniquely resolveable in an unambiguous way, leading us to the
correct executable module on the correct computer.

Every platform finds a way to do this, and the differences in implementation are perhaps less interesting
than the similarities. And yet they are different. Systems built with one platform are incompatible with

others. This gave rise to such things as COM/CORBA gateways that provide interoperability between two
different platforms. But such gateways, living with one foot in each world, suffer from the problems of both,

and are nearly always an undesirable compromise. There are frequent inconsistencies in how either side of
the gateway deals with data types and parameters, as well as the inevitable performance hit incurred by
the translation process.

Enter the web, and expectations have changed. The message being sent by the marketplace is this:
whatever we build, it must work on the web. And it must interoperate with other systems. If difficult and
capricious requirements exist for interacting with a given system, the time and expense of doing so will
become too great. All systems must adhere to a reasonably straightforward way of interoperating with
external systems. This is the way organizations wish to conduct business today.

And so we see something happening that was unanticipated by most, professionals and pundits alike. An
elegant protocol has been devised for calling a remote procedure that runs over standard Internet
protocols, is firewall-friendly, and is not "owned" by any single vendor. Take the contents of a remote
procedure call, format them with XML, and send this payload over HTTP protocols. What could be simpler?
Forget your COM/CORBA gateways, your facade classes wrapping remote, dissimilar systems and
architectures. Let's all speak SOAP!

Enterprise-Level Attributes

Offering a high degree of interoperability through the use of standard web-based protocols is clearly a
good thing. It is not enough, however. In this age of e-Business, and the rise of the "dot coms," sites must
be prepared to deliver more. What if we decide to invite the whole world to visit our site following the NFL's
Super Bowl or the World Cup soccer finals? What if we want to service a worldwide clientele, in multiple
time zones?

The characteristics we need are sometimes described as the "ilities", or more eloquently as enterprise
class attributes. We've already discussed interoperability. What are the other "ilities"? They include:

e Scalability
e Reliability
e Manageability
e Flexibility

When we say a site should be scalable, we are referring to the ability to handle a large "load"-to perform
lots of work. This usually means a large number of concurrent clients, but may also mean relatively fewer
clients each engaged in tasks that require the system to perform a lot of work on their behalf. We need
reasonable performance for the first user to visit our site, and as the amount of work increases, that
performance should not degrade below a well-defined minimum acceptable level.

The site should also be reliable. Depending on the nature of the site we may even wish to approach the
elusive "five nines", 99.999% uptime. Since many of the elements we use to build sites do not typically
offer this level of reliability, we must usually incorporate redundant elements. By eliminating any single

point of failure, an individual element whose failure will bring down the entire site, we can dramatically

improve reliability. This goal also impacts our ability to perform scheduled maintenance. No longer can we
use late night hours after the close of business for operations that will have a major effect on performance.
Our business may not "close"!

Large organizations are subject to many outside influences. There are regulatory and statutory
requirements imposed by governments, and competitive pressures exerted by other organizations. The
life cycle of a typical automated system has shrunk steadily over the past few decades. Everyone is in a
hurry. In order to respond quickly to change, we must design our systems with from the very beginning to
support change. We must select an architecture that enables change. Earlier in the chapter we discussed
loose coupling as a technique to enable change. Building a system out of discrete components that
encapsulate their functionality is another approach that supports this goal. If we don't address this need,
our system is doomed to a very brief useful lifespan.

Perhaps flexibility isn't enough. In many situations, our systems need to go beyond being flexible-they
must be agile. As our site operates day-by-day, supporting the needs of our organization and navigating
the competitive landscape, we may need agility to be successful. This combines the idea of flexibility with
an element of timeliness, and also connotes the ability to be nimble, to be sure-footed. We can make
changes with confidence and land on our feet when faced with the need to change.

As system architects and developers have pursued these lofty goals, the tools and techniques they use
have undergone a constant evolution. The Microsoft .NET platform is seen in this light as the current
incarnation of an evolving process, one that continues to this day and beyond. An understanding of how
this process has unfolded and its major milestones can be helpful in developing a complete understanding
of our current status. Therefore, a brief summary of this process is provided in the next section.

Developers must learn many things during the course of their career. The first of these is, obviously, at
least one programming language. In addition to this, there are broader issues that must be mastered.
What are the characteristics of the target platform? What operating system will be running on the
computers making up the system? What are its capabilities, and how should they be leveraged to deliver
the desired application specific features? Also of interest is the development platform. What editor or
environment will be used? What Application Programming Interface(s) (API) or object model(s) are
relevant? In other words, what is the programming model?

The .NET Framework has the benefits of Microsoft’s many years of experience building both low-level and
rapid application development (RAD) languages and environments. The .NET Framework has been
specifically designed to handle the challenges faced by today’s developers.

Clients and Servers

Not so long ago, developers who wrote applications for PCs were targeting individual users sitting at
disconnected computers. If they were connected to a network, they might load and save files from a
shared server, or print on a shared printer, but very little was required of the developer to utilize these
services. Networking system software intercepted calls directed at the local operating system and
redirected them to shared devices.

Microsoft Windows and other similar operating environments offered a Graphical User Interface (GUI) that
gave developers a whole new programming model-event-driven programming. The application was
essentially a loop that watched for messages sent by the operating system to notify the application of
events as they occurred: keyboard activity, mouse movement, mouse clicks, etc.

Over time, networked PCs were increasingly used to deliver applications for groups of users, perhaps a
department within an organization. The need for large amounts of structured data grew, and Database
Management Systems (DBMS) became popular. This led to the creation of client/server computing, a
different way of building applications (see Figure 1.1). For the first time executable modules making up the
application executed on more than one computer-the birth of distributed computing. Client/server
computing offered important advantages. Server-based databases were capable of enforcing centrally
defined business rules (for example, "Don't allow anyone to delete a customer that still owes us money!"),
and allowed more computing power to be applied to a problem.

=

Laser printer

i

D

Ethernet A
)

=1

Client Client Client

il
-
[1]

il
-

Figure 1.1
The client/server programming model was a significant departure from monolithic, single-module applications.

As the use of this programming model increased, new problems arose. Among the most serious was the
cost of deploying the client portion of the application. In fact, in some cases, the cost of deployment was
greater than the cost of creating or acquiring the application. It was very expensive to install a collection
of executable modules and configuration settings on dozens or hundreds of computers. In addition, the
protocols that were used for connecting client and server were not designed to work well in a highly
distributed environment like the Internet. The growing use of firewalls presented significant challenges.

For these and other reasons, application developers began exploring the use of web browsers such as
Netscape Navigator and Microsoft's Internet Explorer. At first, using a browser as a "container" for the
client-side application meant serious compromises in the feature set available on the client. Far fewer bells
and whistles were possible for clients hosted in a browser. Compatibility differences among rapidly
changing browsers from different vendors were also a challenge.

Perhaps more importantly, the limitations of using Structured Query Language (SQL) to implement
business rules were increasingly apparent. SQL is a non-procedural, set theory-based language ideal for
specifying data-centric operations on a database. It is not designed to provide the services of a general
purpose programming language.

As these developments were taking place, another paradigm shift was unfolding-the growth of Object
Oriented Programming (OOP). OOP offered a programming model with important advantages such as
encapsulation and inheritance. Many problems facing developers were easier to solve when viewed from
this perspective. And OOP also offered a greater opportunity to achieve one of the most elusive goals of
large-scale software development-reuse.

Applications Become Sites

Combining elements of client/server and OOP, yet another programming model emerged.
Component-based development viewed the application as a collection of modules that could be deployed
on networked computer systems. But instead of a 2-tier client/server approach, applications were
separated into three logical tiers (see Figure 1.2). These were usually referred to as presentation services,
mid-tier business logic, and data services. Called 3-tier or, in more complex arrangements, N-tier or
multi-tier, this programming model is ideally suited for web-based environments, as well as standard
application developments. It is arguably the predominant programming model for non-scientific
applications at the time this book is being written.

HE'I:! Dhsgran Logical Vies / Theee Teied Seivice Mol

Uger Services Huginess Services Uats Services I
4
brasteiamy]
[T s T e BigBee] o B o e
ahem BuoSeal | | g |un DrtaSseny |
¥ 1 “q—i‘.'\- il 1
. 1
o | Bt 1) Wrirl rosa Dy L et) Rigatliyl s [|
o T -
, | ¥
; |
i i . AeFIFE]
| b auate uliRalaPipalra i:._“,_: 7 o Burls S e
T - | ¥ —— weh = -
| ...n-...-n:j_ e] g R rte il i I e [skaGaid i o
| s — LTI
C 1 |- Wy B BT A7) e, | sl i B sy i) | . L W n RS cef et
BT T e T o | Wi Wrgalbalancan]
O
| 5 -
| T~y
-
" - | = ik durds
=Aifrem Burbau) Mam DrlaSee} |
L —— g siDp S amackly
gl gt el
R e
BBy ot D | - T =g
o] T - dieling
ud_oms i gt CR et il JLCHEZE
- Mam DalaTec |
- = pobrcen Crarla Sead
i i ol ot sl et
Bglicabiy | I
Bolicasan | = Wpisssbes])
i W ordimm B
- | L T 1 s]
L _TE 1T ¥
Sgubplamity| | SertmCaneg
-
<] | '
Figure 1.2

A logical three-tier architecture provided a separation of the business rules embedded in a system.

Presentation services are delivered by the combination of web browsers and web servers working in
concert with one another. Microsoft's Active Server Pages (ASP) and similar technologies allow application
logic on the web server to execute, ultimately producing HTML for delivery to the browser where it is
rendered. Optionally, client-side logic can also be created for execution directly on the client computer.
Presentation services are primarily concerned with allowing the user to navigate through the various
screens and dialogs that make up the application, accepting input from the user, and presenting results on
the client computer's display.

In the middle tier, the rules that define how an organization operates are implemented. We might, for
example, create components that calculate taxes and apply those taxes only when appropriate. Mid-tier
business logic is most often implemented using component-based techniques, which rely on system
software to provide services for creating, managing, and destroying components on a server. Microsoft's
first offering in this area, the Microsoft Transaction Server (MTS), has evolved into a set of services
provided by COM+ for managing components and transactional behavior. This allows the use of object
oriented approaches and leaves the database to do the things for which it is best suited.

Data services are concerned with the storage and retrieval of information in a persistent store, usually a
relational database. Data service components often are designed to encapsulate the exact details of
physical data storage and present a "friendly" facade to mid-tier services. This allows the developers of
business logic to simply request customer information, for example, and not worry about what tables the
information is stored in, the relationships between various tables, and how they are indexed.

It is important to note that there is a distinction between logical tiers and the physical implementation of
these elements. It is tempting to think of presentation services occurring on a client computer, mid-tier
services executing on a web server and/or application server, and data services on a database server. In
reality, it is a bit more subtle and complicated than this simplified picture, as shown if Figure 1.3.

Web Farm Database Cluster
<

z
T i
0000 0000000)

rver Database Server Database Server

[0
[T
(WA

=
@
o

f
@
=
<
@
=
=
@
o

f
@

Server Web §

o

C

Ethernet
| |

Client

Client

Figure 1.3

The physical architecture of a large web site may be made up of many servers working together to function as a single
system.

Scale Up versus Scale Out

A central and ongoing debate focuses on the issue of how to deliver the maximum computing power to a
particular application. Is it better to build very large multi-processor systems with massive amounts of
memory, or should collections of relatively normal sized, commodity-priced servers be used? Both
techniques are now possible, and they are referred to respectively as scaling up and scaling out.

Scaling up is the most common approach to providing maximum power with the database. This is primarily
due to the complexity associated with partitioning a large database made up of many tables, indexes,
views, triggers, and other elements into a collection of more or less uniform servers. It is possible for any
reasonably talented database administrator to do this job manually, but when the partitioning scheme
needs to be adjusted (and sooner or later it always will) you are faced with a difficult and time-consuming
job almost certain to require scheduled downtime. SQL 2000 offers new support for partitioning a database,
and for some applications this makes sense, but as a general rule it is easier to scale the database up, not
out. Scale up approaches also match up well with failover clustering for reliability, particularly important
for the transactional nature of most databases.

A scale out approach is most often used for web servers, grouping them into a load-balanced web farm.
The elements that make up the web server's portion of a distributed, component-based application (for
example, scripted web pages, graphics, and configuration files and settings) are deployed in a uniform
fashion to each server in the farm. Once this is accomplished, incoming HTTP requests are distributed to
one of the servers. Ideally, the amount of work performed by any given server is very close to the amount
of work performed by each of the other servers-an equal load.

Balancing the Load

There are a number of approaches to load balancing, some hardware-based and some software-based.
One of the first approaches was a simple "round robin" distribution that can be provided by the same
Domain Name System (DNS) that directs traffic for the Internet. Instead of configuring only one entry in
the DNS table for a particular domain name, a group of IP addresses could all be associated with a site
name (for example, www.gasullivan.com). This worked, but didn't offer much resilience when one of the
servers went down. DNS would continue to send an equal share of incoming requests to the down (and
unavailable) server, causing the client to experience a long wait and eventual timeout of the application or
worse.

Networking and router vendors such as Cisco and F5 have offered products for several years that address
this problem. In addition to distributing incoming requests, these products will typically sense when a
server has gone down and remove it (temporarily) from the web farm. Microsoft acquired and refined
similar software-based technology. The Windows Load Balancing Service (WLBS) was first offered as a free
download from Microsoft's web site, then was subsequently renamed and incorporated into Windows 2000
as Network Load Balancing (NLB). A number of industry pundits have predicted that load balancing a web
farm is rapidly on its way to becoming a commodity service, and the pricing for this capability continues to
drop as additional features are added and performance improves.

Load balancing is not necessarily a trivial task, however. For example, certain applications may perform a
great deal of work using mid-tier components. Such an application might warrant a multi-tier approach
that implements a physically distinct collection of mid-tier servers (in other words, the mid-tier

components are not run on the web servers). Now we are faced with a more difficult task than equally
distributing incoming requests across the server farm. Ideally, we would equally distribute the actual work,
not just the component requests.

The algorithms for providing this capability are non-trivial. Among the problems that must be faced is the
need to measure and characterize the load being sustained by a given server. What exactly should be
measured? Clearly you want to measure the use of one or more of a server's resources such as the Central
Processing Unit (CPU), memory, or disk access, but which and in what combination? Also, it is clearly
important not to just look at resource utilization at some particular instant, but to measure load over time.
But we need to be careful or we will waste precious resources in order to accomplish the measuring.

Finally, there is the question of how to distribute the load. Assuming we know at any given instant which
server should receive the next request, what is the actual mechanism that accomplishes this task? Do we
send a multi-cast request and depend on the least busy server to answer first? Or do we provide a traffic
manager (potentially a single point of failure) to dole out work? Microsoft has grappled with these issues,
and offers a Component Load Balancing (CLB) capability in addition to NLB.

A Matter of State

The multi-tier programming model helped solve many problems faced by developers and system
architects, but also brought some new challenges. The use of a web farm to handle very large numbers of
users is a great benefit, but as these systems were deployed, tested, and tuned it became obvious that
state management was an issue. Most web server platforms offer an object model with some type of
Session construct for managing interaction with a particular user. It is possible to use session variables to
store information about a particular session-choices made by the user, user preferences, and other
information collectively referred to as "the current state." Doing so, however, can put a considerable
burden on the resources of the server.

An even more difficult problem arises when we allow each request for a new page to be load balanced. If
we force a particular client session to "stick" to a particular server, creating what is called server affinity,
we must do extra work to provide this session capability over HTTP, which is essentially a session-less
protocol. Furthermore, this will almost certainly cause a less even distribution of the load.

It would be easier in some respects to allow each request for a new page to be serviced by any server in
the web farm. This would likely provide a more uniform distribution of load, and simplify our session
management chores. But, what about state? If there is any current state information that should be
maintained, how is it to be managed when the user is redirected to an entirely different server? As we will
explore in some detail in a later chapter, the .NET platform offers several alternatives to address this
dilemma:

e Use session variables as in the past. Though this limits scalability, it is the fastest alternative with a single
web server.

e Configure a "state server" running as a Windows NT service. A single state server can provide state
management for an entire web farm, providing a balance between performance and scalability. This
potentially introduces a single point of failure.

e Configure the web farm to store state information in SQL Server. Though this adds the most overhead, and
hence compromises performance somewhat, it is the most reliable. The admittedly slower performance will
continue to be a problem as the number of users grows very large.

In addition to maintaining state information for a user session, it is also clearly important to be able to
identify a particular session. This can be done in a variety of ways, each with its own strengths and
weaknesses. The most common method is to use HTTP "cookies", strings of specially coded information
that is stored directly on the user's computer and passed to the server with each request. Cookies are seen
as invasive, and a privacy concern by some users, and most browsers can be configured to disallow the use
of cookies. Therefore an alternate method must be provided.

The most widely used alternative to cookies is to imbed the same information directly into the Uniform
Resource Locator (URL) that is passed from client to server. Although this circumvents the problem with
cookies, it is not as reliable since all session information is lost if a server goes down.

The metamorphosis from applications to sites becomes even more interesting when we introduce the
concept of XML Web services, as described in the previous section, “SOAP.” XML Web services blur the
definition of the term "site." We will explore the concept of software as a service in detail in the next section,
but for now we will introduce the idea with a simple example. To avoid confusion, it is perhaps best to note
immediately that this use of the word "service" is similar to, but distinct from, its normal English
definition-the act of helping or doing work for another or for a community. It is also distinct from a
Windows NT-style service, which refers to a specific type of process running on a Windows NT or Windows
2000 computer (similar to a Unix daemon).

Suppose we are creating a web site whose purpose is to sell an inventory of items that vary in size and
weight. We wish to charge our customers for the items they order and offer a range of shipping
alternatives including overnight delivery as well as normal delivery that may take several days. How do we
calculate the charge for shipping?

We could, of course, review the process a person would use to manually calculate shipping charges for
using a particular carrier. We could create a database table representing the current rates for various sizes,
weights, and distances. Then we could create one or more business rule components that calculate
shipping charges according to the current rules for that carrier. We could then repeat this process for each
carrier we wished to use.

The information in these tables, and the rules expressed in the components, will need to be changed
periodically, perhaps frequently. A multi-tier approach facilitates this process, but we don't really wish to
become quite so intimate with the calculation of shipping charges. Perhaps the main concern is that this
effort does not represent our core competency. Getting this right is not our primary concern. We want to
sell our inventory; we are not in the shipping business.

It would be very nice if we could somehow outsource this calculation to those for whom it is a primary
concern, namely the carriers themselves. What if we could send an electronic request for the calculation of
a shipping charge to send an item of specified size and weight from a particular location to another location,
and quickly receive a response containing the cost? This is the central idea behind a web service.

Services

Our shipping calculation example leaves many important details of web services undefined. Which
shipping companies offer such a web-based service, if any? Exactly what do | send in the request? Do |
specify the to and from locations using a street address, Global Positioning System (GPS) coordinates, or
latitude and longitude? In what form will the results be returned? Can | ask for optional information or
must I make multiple requests? And what protocol do | use to send the request?

We could use a variety of protocols to implement XML Web services, but a standard way of doing the job
would make sense in this cooperative endeavor. SOAP seems like a natural fit for much of the job we need
to accomplish. Our request for a shipping calculation is essentially a remote procedure call. With the
addition of a few additional elements, we have the foundation for a powerful new way to build web-based
applications.

A directory of XML Web services would be useful, one we could consult to see which shipping carriers
offered such a service, for example. It is beyond the scope of this chapter to provide a comprehensive
description of the work in this area, but one effort leading to such a directory is known as Universal
Description, Discovery, and Integration (UDDI). UDDI was created through the collaborative efforts of
Microsoft, Ariba, and IBM. It encompasses a process for the definition and creation of the UDDI Business
Registry (UBR) and related artifacts, the operation of the UBR itself, and the eventual licensing of the
intellectual property and control of the UBR and future directions to an independent third party.

The benefits of UDDI include:
e all XML Web services are described in a similar fashion
e UDDI only describes XML Web services, so it does it well

e uses standard HTTP, so it is available anywhere on the Internet, including through firewalls.

The Passport Service

Back-end "megaservices" are a key component to making web services an attractive way to build
applications. Megaservices are simply services designed to handle a huge number of services calls every
day. Microsoft has already delivered one such megaservice in the form of Passport. Already, several
hundred partners have rid themselves of the problems of building and maintaining their own
authentication systems. This enables them to reduce administrative overhead. They can cut their time to
market significantly and in a fast moving age, this is important. They have outsourced the building and
debugging of the software. It also means that the users have a single sign-on to any site that uses Passport
authentication. They don't have to worry about remembering the sign-on to your web site.

Passport consists of three main services:

e Passport Single Sign-in service. Site developers can map sign-in names to information in their databases,
which will allow them to offer Passport members a personal web experience through targeted ads,
promotions, and content. Using Passport in this way can help increase customer loyalty, sales, and
advertising revenues.

e Kids Passport Service. This service is an optional part of Sign-in service and helps parents protect their
children's online privacy by allowing them to determine whether their child can use participating web sites'
services that collect personally identifiable information. Kids Passport is the first turnkey solution available
to web sites for managing parental consent and helping sites comply with the Children's Online Privacy
Protection Act (COPPA), which requires web sites to obtain parental consent before collecting and/or
disclosing a child's personal information.

e Passport Express Purchase Service This allows Passport members to store credit card and shipping
information in one secured electronic wallet. The purchase process is streamlined because members do not
have to retype this information. To make purchases, members click an express purchase button or text link
next to the products they want to purchase. Then, they simply click to select the credit card and shipping
address to use for the purchase, and the information is sent to the supplier's site to complete the

transaction.

Businesses can implement the single sign-in service, the express purchase service, or both. On our sample
site we will be implementing Passport services.

The Role of SOAP

Earlier in this chapter, we talked about what SOAP is. It is also important to understand what SOAP is not.
e It does not perform distributed garbage collection.

It has no type safety, or versioning, or boxcarring or pipelining of messages.

It does not use objects-by-reference.

e It has no activation (which requires objects-by-reference).

It builds on HTTP security, both HTTPS and X.509 certificates. We can choose which methods to expose
explicitly. There is no application code included in SOAP messages. It is also firewall-friendly.

SOAP on a ROPE (The SDK for VS6)

If you have an existing COM component, the web services SDK makes it easy to turn it into a web service
and to consume it in VB. It includes a tool that will extract the type library from an existing COM
component and turn it into an XML "contract" that represents that component's capabilities. (You can also
generate this contract by hand.) Once you have a contract, it includes an extension for VB that will
automatically turn the contract into a proxy that you can program against just like a local COM component
(complete with VB features such as IntelliSense). The SDK also contains a "listener" that will receive SOAP
calls that come in and direct them to the appropriate service.

This Toolkit enables you to:

e Expose a service. If the service you want to expose is a COM component, you can just run the Toolkit's
"dehydrator,”" which extracts an XML service description. Otherwise, you can hand code your service
description according to the rules published in the SDL specification.

¢ Consume a service. Once the service description is generated, the Toolkit's automatic Remote Object Proxy
Engine (ROPE) pulls it down into Visual Basic and instantiates it as a VB proxy that the programmer can
treat as though it were a local COM object.

¢ Run against a service. When you then run the client application, the proxy makes calls across the network
using SOAP to the Toolkit's Listener application (either the ASP or ISAPI version). The Listener then
handles starting up the XML Web serviceand interacting with the actual application.

DISCO and UDDI

The Discovery of web services (DISCO) and UDDI are both concerned with finding what services a web site
can offer.

Before you can access a web service, we need to know where it is, what its capabilities are, and how this
is formatted. Web service discovery is the process of locating and interrogating web service descriptions.

We can use a program to carry out the discovery when a web service publishes a discovery (.disco) file,
which is an XML document that contains links to other resources that describe the web service. The
following shows an example of the structure of a discovery document:

<?xml version="1.0" ?>

<disco:discovery xmlIns:disco="http://schemas.xmlsoap.org/disco

xmIns:scl="http://schemas.xmlsoap.org/disco/scl">
<scl:contractRef ref="http://MyWebServer/UserName_asmx?SDL"/>

</disco:discovery>

Note: The discovery document is a container for elements that typically contain links (URLs) to resources that
provide discovery information for a web service. If the URLs are relative, they are assumed to be relative to the
location of the discovery document.

However, a web site that implements a web service need not support discovery. Either another site could be
responsible for describing the service, or there may not be a public means of finding the service, such as when
the service has been created for private use.

As electronic businesses grow and expand, it becomes more important to have standards. Standard
descriptions of the business services that a web site offers and how they can be accessed are needed.

A service registry architecture is needed that presents a standard way for businesses to build a registry,
query other businesses, and enable those registered businesses to interoperate and share information
globally in a distributed manner, just as the Internet was intended to be used. A web services framework
and public registry will enable buyers and sellers and marketplaces, to share information, to connect web
services at low cost and to support multiple standards.

To address this challenge, a group of technology and business leaders have come together to develop the
Universal Description, Discovery and Integration [UDDI] specification--a sweeping initiative that creates a
global, platform-independent, open framework to enable businesses to: (1) Discover each other, (2)
Define how they interact over the Internet, and (3) Share information in a global registry that will more
rapidly accelerate the global adoption of B2B eCommerce.

The Organization

The BizTalk organization was formed several years ago. It is an independent organization, but it was
founded at Microsoft's initiative. Its goal is and was to be a resource center for business and software
communities for learning about and using XML in document and information sharing over the Internet. It
is an online resource rather than a consortium or a standards body.

This site is a library where XML and XSL schema can be located, managed and published. It contains
information models and business processes supported by applications that support the BizTalk
Framework.

When two companies want to communicate electronically over the Internet, documents such as purchase
orders, order acknowledgements, shipping documents and so on can be defined in XML. The problem is
that the two companies that want to communicate need to agree on how the documents are to be
expressed in XML, and this definition is a scheme. Here, people are actively encouraged to publish your
own schema.

The Initiative

The Biztalk Initiative is made up of the Microsoft BizTalk Framework, various cross-industry
investments including the BizTalk.org business document library, as well as Microsoft BizTalk Server 2000.
These investments are being made with industry standards groups, technology and service providers, as
well as key global organizations. The first set of investments surround the BizTalk Framework, and this is
a set of implementation guidelines that any organization can use to define and route business data using
XML.

The BizTalk Framework itself is not a standard. XML is the standard. The goal of the BizTalk Framework
is to accelerate the rapid adoption of XML. The BizTalk Framework implementation guidelines are
documented and accessible on www.biztalk.org. Since the BizTalk Framework is 100 percent compliant
with the World Wide Web Consortium (W3C) XML 1.0 standard, it is operating system, programming
model, and programming language independent. BizTalk documents are being used by applications on
many different platforms today. The framework provides the implementation guidelines for XML-based
document routing.

The BizTalk Steering Committee drives the BizTalk Framework. The steering committee is made up of
more than 20 industry standards organizations, large software companies, and multinational corporations
that share the interest of promoting the use of XML to provide better interoperability between applications

and processes. Members of the steering committee include American Petroleum Institute, Ariba, Baan,
Boeing, Clarus, CommerceOne, Compaq, Concur, Data Interchange Standards Association (DISA), Dell,
EXE, Extensibility, Extricity, Ford, GE Information Systems (GEIS), Harbinger, 12, Intelisys, JD Edwards,
Merrill Lynch, Microsoft, Neon, Open Applications Group, PeopleSoft, Pivotal, Reuters, SAP, Siebel,
Sterling Commerce, UPS, U.S. Department of Defense, and webMethods.

The Server

BizTalk Server 2000 is basically a rules-based business document routing, transformation, and tracking
infrastructure. This infrastructure enables companies to integrate, manage, and automate business
processes by exchanging business documents among applications within or across organizational
boundaries. BizTalk Server 2000 also provides a powerful visual design environment for building dynamic
business processes and an advanced execution engine for automatically running them. For a more detailed
description of BizTalk Server 2000 see “BizTalk Server 2000” later in this chapter.

Complete the Picture with BizTalk Orchestration

Every business process is comprised of well-defined steps. Each step started by the receipt of a message,
in a certain pre-defined format and from a particular location. Each step ends also by the sending of a
message, again in a certain format, to a particular location. Automating these processes, and conversation
is called orchestration.

The .NET Framework and platform consists of a motley cast of characters ranging from new one like the
Common Language Runtime to old veterans like Windows and Message Queue. It is important to
remember, however, that the .NET Framework is not limited to those players listed here and will continue
to be expanded in the future to adopt new technologies, platforms, and even programming languages.

CLR: The Common Language Runtime

One of the most important benefits of the Common Language Runtime (CLR) engine is that it provides
high-level services to developers that are not restricted to a particular hardware platform or Operating
System. Code written to the CLR does not need to be re-written to run on different platforms and under
different Operating Systems. One immediate benefit is that the same code can run on all of the various
flavors of 32-bit Windows and also 64-bit Windows. It extends the familiar ideas of runtime libraries,
template libraries and the Java Virtual Machine. It means that developers can reuse more code and have
to develop less in the way of the more basic services themselves. The CLR and .Net simplify the
programming model and makes it more consistent.

The CLR has several key new features. These include cross-language integration, self-describing

components, simple deployment and versioning, and integrated security services. Using the CLR moves
away from an idea of scripted languages compiled at run time to the concept of Managed code. Managed
code is means that there is a clearly defined level of cooperation between natively executing code and the

CLR itself. Responsibility for tasks like creating objects, making method calls, and so on is delegated to the
CRL, which enables it to provide additional services to the executing code.

Source code is compiled into Microsoft Intermediate Language (MSIL) that is then used by the CLR.
Through the use of MSIL, code written in one language can be debugged in another. Exceptions produced
by code from one language can be dealt with using code produced from another language. Reusable class
libraries need no longer be produced in language specific versions. Together with the MSIL, the .Net
compiler also produces metadata. This is information that the CLR uses to carry out a variety of new
features such as locate and load class types in the file, lay out object instances in memory, resolve method
invocations and field references.

The metadata that the .Net Framework compliers produce along with the MSIL code includes class
definitions and configuration information. It allows an application to describe itself totally. The metadata
provides information about how to access a component written in another language. Since the metadata
is produced at the same time as the MSIL, and is stored with the executable code, the two are never out
of synch. It also includes information about dependencies that can be used as part of versioning policies to
indicate which version of a particular component should be used when running a particular piece of code.
This greatly eases the complexities of application installation and DLL versioning.

The .NET Framework introduces the concept of an assembly. An assembly is a group of resources and
types, along with metadata about those resources and types that is deployed as a unit. The metadata is
called an assembly manifest and includes information such as a list of types and resources visible outside
the assembly. By using manifests, the developer has support for per-application policies to control the
locating and loading of components. Assemblies can be made private to an application or can be shared by
multiple applications. Multiple versions of an assembly can be deployed on a machine at the same time.
Application configuration information defines where to look for assemblies, thus the runtime can load
different versions of the same assembly for two different applications that are running concurrently. This
means that installing an application now becomes as simple as copying the necessary files to a directory
tree.

CLR Security

Finally, the CLR also supplies both code access security and role-based security. Since the CLR is used to
load code, create objects, and make method calls, it can perform security checks and enforce security
policy as managed code is loaded and executed.

Code access security defines the required permissions that a piece of code needs to execute. The
developer specifies these permissions. For example, code may need permission to write a file or access
environment variables. This information is stored at the assembly level, along with information about the
identity of the code. At load time and on method calls, the CLR verifies that the code can be granted the
permissions it has asked for. If not, a security violation is reported. Policies for granting permissions, called
trust policies, are established by system administrators, and are based on evidence about the code such
as who published the code and where it was obtained from, as well as the identity and requested
permissions found in the assembly. Developers can also specify permissions they explicitly don't want, to
prevent malicious use of their code by others. Programmatic security checks can be written if the
permissions required depend on information that isn't known until runtime.

In addition to code access security, the runtime supports role-based security. This builds on the same
permissions model as code access security, except that the permissions are based on user identity rather
than code identity. Roles represent categories of users and can be defined at development or deployment
time. Policies for granting permissions are assigned to each defined role. At runtime, the identity of the
user on whose behalf the code is running is determined. The runtime determines what roles the user is a
member of and then grants permissions based on those roles. This will prevent unauthorized users trying
to execute code.

Initially, the CLR will support four languages: Visual Basic .NET, Visual C++ .NET, Visual C# .NET and
JScript .NET. There are also many companies working on other compilers that produce managed code for
languages including Cobol, Pascal and Perl.

Windows 2000

The distinction between an application and a web site will become finer and there will be a lot more overlap
between the two. Under .Net, everything will tend towards being a web site with application services. The
basis of .Net is the easy exchange of data between disparate businesses and enterprise systems, wherever
there are. XML has become the standard for information exchange. Windows 2000 is a stable, reliable, and
extendable foundation upon which to base the .NET concept. It is the first operating system with
integrated, high-performance XML support. Windows 2000 is the cornerstone of the .Net concept because
it provides the server base upon which the next generation of distributed applications are hosted and the
clients which will run these applications.

XML support is found throughout Windows 2000, and includes a built-in, high-performance parser, support
for XML streaming and persistence, XML record set translation, and support for building XML data islands
in Internet Explorer. The Microsoft XML Parser is a high-performance, validating parser fully compliant
with the W3C XML 1.0 standard. Since its design is built up from components, it is easily integrated with
any Windows operating system-based application and programmed using any programming or scripting
language such as ECMAScript, Java, Perl, Python, SQL, the Visual Basic, the Visual C++ or Visual Basic
Scripting Edition (VBScript). Furthermore, it supports the W3C XML Document Object Model (DOM), the
XML Stylesheet Language (XSL) W3C working draft and the XML 1.0 Namespaces Recommendation.

DataCenter Server 2000

Windows 2000 Data Center Server is the best platform for hosting mission critical applications and for
server consolidation. It is delivered only through OEM vendors who have to pass a stringent "gold"
certification program with long-haul system testing. It supplies all the Internet and network operating
system (NOS) services of the other versions of Windows 2000 Server. However, it is optimized for large
data warehouses, online transaction processing (OLTP), and server consolidation. It is designed for
enterprises that need very reliable high-end drivers and software. It was developed to work optimally in
high-traffic computer networks. It supports up to 32 processors and up to 64 GB of RAM. In addition to
providing all the services and features of Windows 2000 Server and Advanced Server, it provides:

e Service Pack 1 embedded.
e Four-node clustering support based on a "Shared Nothing" model.

e Process Control. This is a new tool in Datacenter Server that uses job objects to organize, control, and
manage the processes on a system, along with the resources they use.

e Enterprise Memory Architecture (EMA). EMA supports two types of memory enhancement:
e Application-Memory Tuning-also known as 4-gigabyte tuning (4GT).

e Physical Address Extension (PAE). This allows the operating system kernel to automatically take full advantage of all
available physical memory, including memory above 4 GB (up to 64 GB) for existing applications. This will result in a
significant reduction in paging operations, and improve the performance of multiple applications hosted on a Windows 2000

consolidation platform.

e Winsock Direct, a feature of the Windows 2000 Datacenter Server network architecture. It enables
unmodified Winsock applications that use TCP/IP to exploit the performance benefits of system area
networks (SANs). Compared to a standard TCP/IP protocol stack on a local area network (LAN) of
comparable line speed, deploying Winsock Direct enables efficient high-bandwidth, low-latency messaging
that conserves processor time for application use. High-bandwidth and low-latency inter-process
communication (IPC) and network system I/0 allow more users on the system and provide faster response
times and higher transaction rates.

Server and Advanced Server

The Microsoft Windows 2000 Server family of operating systems share a core set of architectural features.
This family of operating systems builds on the strengths of Windows NT technology, and integrates
standards-based directory, web, application, communications, file and print services with high reliability,
efficient management, and support for the latest advances in networking hardware. Drivers for Windows
2000 Server systems were written and thoroughly tested specifically for this environment to minimize the
hardware causing down time. In the business world, company networks can be, and often are extended to
include partners and customers. It is vital nowadays that network and Internet resources are as available
and reliable as possible.

Windows 2000 Server is the entry-level version of the family. It supports between one and four processors
and a maximum of 4GB of RAM. As the amount of memory in the system increases the performance given
by Windows 2000 family of operating systems scales almost linearly. As with all members of the Server
family, Windows 2000 Server includes:

¢ New features designed to protect your system, such as preventing new software installations from
replacing essential system files or stopping applications from writing into the kernel of the OS. This greatly

reduces many sources of operating system corruption and failure.

e Fast Recovery from System Failure. If your system does fail, Windows 2000 includes an integrated set of
features that speed recovery.

e A greatly reduced number of operations that require a system reboot in almost every category of OS
functionality: file system maintenance, hardware installation and maintenance, networking and

communications, memory management, software installation, and performance tuning.

Windows 2000 Advanced Server extends the functionality and reliability of the standard version of
Windows 2000 Server, and includes additional features for applications that require higher levels of
scalability and availability. It allows the deployment of highly available and scalable applications on
industry-standard PC hardware. It supports up to 8 processors and up to 8 GB of RAM. Among the
additional features are:

¢ Two-node clustering support. Two systems share a hard disk subsystem. The machines need not be
identically configured or be running the same tasks. One could be a IIS server and the other an Exchange
server. When one server fails, the other picks up its load.

e Up to 32-node network load-balancing support. This can be utilized with multiple database servers or with
middle tier COM component machines.

e Rolling Upgrade Support. Using the Cluster service and NLB, downtime caused by planned maintenance or
upgrades is avoided by using rolling upgrades. The applications or other workload are migrated onto one
node. The first node is then upgraded and the workload is migrated back. All without taking the application
off line.

Microsoft Message Queue

Microsoft Message Queue (MSMQ) is a technology introduced in Windows NT 4.0. It complements the
capabilities inherent to COM and transaction services. Because all the steps of an application process may
not need to be completed at one time, many distributed applications need the ability to handle delays
between a request and a response. MSMQ allows applications to use components that communicate with
one another using queued messages. Quite simply, the application can send its message to MSMQ, and
carry on with other tasks, returning to pick up any responses when convenient and if necessary. On the
other side, an application can take incoming messages from a queue and process them at its leisure.

Being able to write applications that don't require immediate responses from either clients or servers lets
developers provide the flexibility required to handle routine pauses within business processes. Using this
service also helps developers write applications that are more readily available and more scalable.

MSMQ features include:

e COM-based access. The services of MSMQ can be accessed through a simple interface provided by COM
components. This setup makes it straightforward to send and receive messages from within an Internet
Information Service Active Server Page script, a transactions-based application or any software that can
use COM.

¢ Integration with transactions. MSMQ operations can automatically enlist in transactions to preserve data
integrity.

¢ Automatic message journaling. If requested, MSMQ will keep copies of messages sent or received by
applications. Journals provide audit trails and can also make recovering from some kinds of failure easier.

e Automatic notification. If requested, MSMQ can notify a sending application that messages were (or were
not) received and processed correctly. This service lets sending applications know when they can treat
messages as delivered or, if failures occur, when they must take corrective action.

e Built-in data integrity, data privacy, and digital signature services. MSMQ can digitally sign and encrypt
messages for transfer across the network. This capability protects messages from being viewed or
changed during transmission, even when sent over public networks such as the Internet, and ensures that

servers do not receive messages from unauthorized senders.

e Message priority support. MSMQ allows priorities to be assigned to messages and queues, then routes and
delivers messages based on these priorities. Priorities let applications handle the most important
messages first.

e Simplified application integration. MSMQ greatly reduces synchronization requirements between
applications because message contents are easy to translate, and message-based interfaces hide the
differences between different application architectures and database technologies.

¢ Network protocol independence. All MSMQ features and functions operate independently of network
protocols. Any application that knows the name of another application request queue can send requests
and receive responses regardless of network type.

By providing flexible, reliable asynchronous communications between component-based applications,
MSMQ plays a critical role in Microsoft component services for Windows NT 4.0. With Windows 2000,
MSMQ services are even more tightly integrated with the COM programming model.

Both COM+ and MSMQ are integrated into the operating system. This not only means that performance
and reliability are improved, but developers can leverage the other services that the operating system
provides. For example, COM components can be written to make use of Active Directory with its enterprise
wide security model. Only certain users can run a component, for example. Only a member of the
Managers user group can commit a financial transaction to the accounting database.

Internet Information Server

Internet Information Server is fully integrated at the operating system level in all versions of Windows
2000 Server. It includes Support for Web Distributed Authoring and Versioning (WebDAV). This is an
Internet standard that lets multiple people collaborate on a document using an Internet-based shared file
system. It addresses issues such as file access permissions, offline editing, file integrity, and conflict
resolution when competing changes are made to a document. WebDAV expands an organization's
infrastructure by using the Internet as the central location for storing shared files. 11S lets users navigate
to a WebDAV-compliant server and view the content as if it were part of the same namespace as the local
system. Users can drag and drop files, retrieve or modify file property information, and perform other file
system-related tasks.

Using host headers, IIS allows an organization to host multiple web sites on a single computer running
Microsoft Windows 2000 Server with only one Internet Protocol (IP) address. This lets Internet service
providers (ISPs) and corporate intranets host multiple web sites on a single server while offering separate
user domains for each site. Process throttling lets administrators limit the amount of CPU time a web
application or site can use during a predetermined period of time to ensure that processor time is available
to other web sites or to non-web applications. Per web site bandwidth throttling lets administrators
regulate the amount of server bandwidth each site uses. This lets an ISP, for example, guarantee a
predetermined amount of bandwidth to each site.

The Windows 2000 Server web services are fully integrated with the Kerberos security infrastructure. The
Kerberos Version 5 authentication protocol, which provides fast, single logon to Windows 2000 Server,
replaces NTLM as the primary security protocol for access to resources within or across Windows 2000
domains. Users can securely authenticate themselves to a Windows 2000 Server web site and will not
have to undergo a separate authentication (logon) to use other resources. In addition, Windows 2000

Server now also supports the following standard authentication protocols, which are applicable to
web-based users and ordinary network users alike:

e Digest Authentication: The latest authentication standard of the World Wide Web Consortium (W3C), the
organization that sets standards for the web and HTML.

e Server-Gated Cryptography (SGC): A system used by financial institutions to transmit private documents
via the Internet.

e Fortezza: The U.S. government security standard.

Secure Sockets Layer (SSL) 3.0 and Transport Layer Security (TLS) provide a secure way to exchange
information between clients and servers. In addition, SSL 3.0 and TLS provide a way for the server to
verify who the client is before the user logs on to the server. In 1IS 5.0 programmers can track users
through their sites. Also, 11S 5.0 lets administrators control access to system resources based on the client
certificate.

Digest Authentication enables secure authentication of users across proxy servers and firewalls. It offers
the same features as basic authentication, but improves on it by "hashing" the password traveling over the
Internet, instead of transmitting it as clear text. For those who choose not to use Digest Authentication,
Anonymous, HTTP Basic, and integrated Windows authentication (formerly called Windows NT
Challenge/Response authentication) and NT LAN Manager (NTLM) authentication are still available.

The Microsoft .NET Enterprise Servers

As proof that Microsoft is betting their entire business on .NET, not just their development technologies,
each of their core business server products are being retooled with .NET. This includes existing products
such as SQL Server, as well as new products like Application Center Server.

SQL Server 2000

Microsoft SQL Server 2000 is the latest release of the SQL Server family. It was designed to provide all the
tools needed to build powerful e-commerce applications. It includes built in support for XML, simplifying
back office system integration and data transfer. Data can be retrieved directly as XML and XML can be
stored relationally. This XML functionality allows web developers, for example, to use technologies like
XPath, URL queries, and XML updategrams instead of needing in-depth knowledge of relational database
programming. Similarly, database developers are not required to learn an object-oriented language or
understand all the facets of XML. They can provide XML access to an existing relational database with the
FOR XML clause that returns XML data from a SELECT statement and the OPENXML T/SQL keyword.

OpenXML provides a relational view on XML data that, with T-SQL, can be used to query data from XML,
join XML data with existing relational tables, and update the database. SQL Server enables queries to
return data as XML (rather than a standard rowset) from a standard SELECT statement through the FOR
XML clause. This also means that tasks such as passing the data stored in the database as XML onto other
systems, through tools such as BizTalk Server 2000 are made very much easier.

As well as retrieving data as XML, it is important to be able to store data efficiently as XML, maintaining the
relationships and hierarchy of data while taking full advantage of the speed offered by the database. SQL
Server 2000 can provide an XML View of relational data as well as map XML data into relational tables.

Whereas XML Views enable relational tables to be accessed as if they were XML documents, OpenXML
allows XML documents to be addressed with relational SQL syntax. OpenXML is a T-SQL keyword that
provides an updateable rowset over in-memory XML documents. The records in the rowset can be stored
in database tables, similar to the rowsets provided by tables and views. OpenXML can be used in SELECT,
and in SELECT INTO statements wherever rowset providers such as table, view, or OPENROWSET can
appear. These features are important because they allow applications like that described in this book to be
simpler to build, to be more efficient and to provide faster responses to end users.

Significant upgrades to the querying tools make it easier for developers to, for example, build natural
language queries using Microsoft Visual Studio®. The new services engineered into this latest version
make SQL Server 2000 more scalable and easier to program. Analysis Services offers built-in data mining
tools and storage options that make it possible to build and analyze data warehouses of any size. They
have been expanded to allow OLAP cubes to be accessed and analyzed over the web using HTTP, offering
remote users, including suppliers and trading partners outside the intranet, the ability to use SQL Server
analysis tools.

SQL Server also includes new features that allow the workload to be partitioned giving increased scalability.
This is done by horizontally partitioning the SQL Server data across multiple servers. These servers
manage the partitioned data together, but operate autonomously. The partitioning of data is transparent
to applications accessing the database. An application "sees" a full copy of all tables no matter what server
in the group the application accesses. All servers accept connections and process, both queries and
updates, distributing scans and updates as needed. The SQL Server 2000 query processor contains a
number of enhancements so that these views can be updated, and increase performance when doing
distributed queries to pull data from other member servers.

SQL Server incorporates many important security and availability features. It includes the ability to
perform differential backups. A differential backup makes a copy of all the pages in a database that have
been modified since the last database backup. This sort of backup run relatively quickly and backup data
is smaller in size than other types of backups. Moreover, differential backups may be performed while
users access the database. Because of their speed and low server impact, differential backups can be
made more frequently than other types of database backups, decreasing the risk of data loss. It has been
enhanced with security features built on the Windows 2000 security model and incorporates flexible
role-based security for server, database, and application profiles; integrated tools for security auditing;
and support for file and network encryption. This augments the operating system security and helps to
fulfill the legal requirements concerning holding personal information on our application site.

SQL Server 2000 is tightly integrated with many of the other members of the .Net Enterprise Server family.
Microsoft Commerce Server 2000 provides services that include user profiling, product catalogs, and
Business Internet Analytics (BIA)-the analysis of customer web click-stream data to make predictions
about customer behavior and drive personalization. These services are built on SQL Server 2000.

SQL Server Windows CE Edition extends the SQL Server 2000 to handheld devices and mobile phones. It
provides developers experienced with the SQL with a consistent platform and API set and the offers full
relational database functionality in the small footprint necessary for the memory limitations of handheld
and portable devices. Using tools such as Embedded Visual Basic and ADOCE developers can build
Windows CE applications using their skills and experience from the SQL platform. An important part of
the .Net Framework is that code developed for one platform can be used on others. While the tools used
here are slightly different, the APIs, features and functionality of SQL are carried to different hardware

platforms. In addition, SQL CE Edition includes synchronization tools, which means that data manipulated
or entered in a handheld PC can be included in the data sets on a Windows 2000 Server/SQL Server data
set.

Microsoft BizTalk Server 2000 also runs on Microsoft SQL Server. BizTalk Server 2000 provides the
infrastructure and tools to enable e-commerce business communications. SQL Server 2000 and BizTalk
Server 2000 support the same XML data-reduced schema. This allows documents to be transmitted
directly from SQL Server to BizTalk Server and vice versa.

Application Center Server 2000

Application Center Server 2000 is a tool for deploying and managing web applications and is built on
Windows 2000. It allows us to deploy and manage web applications across clusters of servers. It provides
software-scaling services that allow applications to achieve on-demand scalability and mission critical
levels of availability. It also reduces operational costs and complexity. It provides tools that we can use to
manage our application simply. It provides a system with mission critical availability.

Application Center Server allows us to manage our applications as a single high-level definition. This
definition includes all of its content, components and configuration settings. All configuration changes are
made through a standard integrated Management Console snap-in. Performance and event log data from
one or all the machines can be viewed from one place. It keeps the application content and the
configuration settings consistent and synchronized across all the servers in the cluster. The
synchronization can be automated, timed or on demand.

Application Center Server took care of the change management of our ticketing application. We deployed
versions from our development cluster to testing, then to staging and finally to production automatically.
We were able to roll out to production without introducing downtime. The system allowed us to manually
rollback a failed deployment, and when necessary, we could replicate the "last know good" application
image. This meant that we were able to recover from failed deployments quickly and our site would be
off-line for a minimal amount of time.

Windows 2000 Advanced Server contains Network Load Balancing services and that balance network
traffic across multiple servers according to the clients IP addresses. Application Center Server configures
and controls NLB automatically. It also configures and controls our COM component execution across
multiple servers through its Component Load Balancing services. Both are set up and managed using
simple to use wizards.

Application Center Server provides advanced fault tolerance. It can withstand software and hardware
failures at any point in the system without disrupting application service. The performance and health of
the system can be monitored from a single console. Performance data for any server in the cluster, or for
the entire cluster as a single aggregated source and be gathered and analyzed. This allows us to ensure the
availability of our application. Our administrators pre-configured the necessary responses to system
failures and thus allowed the system to fix problems before users are affected.

Biztalk Server 2000

BizTalk Server 2000 is a new server platform designed to make it easier to integrate and interoperate
business processes using W3C standard XML. It allows secure and reliable company relationships to be
quickly implemented independent of operating system, programming model or programming language.

The foundation of BizTalk Server 2000 is its rules-based business-document routing, transformation, and
tracking infrastructure. This infrastructure enables companies to exchange business documents among
applications within or across organizational boundaries. SQL Server provides high-performance storage
and easy-to-schedule transformation capabilities for data from Microsoft BizTalk™ Server.

BizTalk is a set of guidelines that are used to define the structure of business documents, such as purchase
orders, consignment notes and invoices. Each business document definition is called a scheme. The way
one company lays out the information on its purchase order forms will be totally different to the way the
supplier expects them. A scheme is a standard definition of the information that is included on a business
document. Using XML, the information contained on a form is easily extracted and can be sent to the
partner company, and incorporated into that company's IT system.

BizTalk Server 2000 contains a host of rich graphical tools for building XML schema, performing schema
transformation, establishing trading partner relationships over the Internet, and tracking and analyzing
data and documents that are exchanged. It also contains graphical tools that make it easy for business
analysts and application developers to model and implement company specific solutions. BizTalk Server
2000 is built on a foundation of public standards and specifications. These include XML, HTTP, EDI and
even flat text. It incorporates security standards such as public key encryption, digital signatures, and
encryption. Biztalk Server 2000 can take an EDI data stream, translate the information it contains into XML
and sends it to a trading partner. This makes it an ideal tool to use to quickly set up a connection with
another company.

Our ticket sales application needs to be highly available. If visitors access a site to buy things, and the site
is not reachable, then there are plenty of other places that can easily be found that they will use instead.
Market research has shown that people re-visit sites that they are happy with and that they are familiar
with. And we want people to come back. We also want to avoid visitors not being able to access the site
because the servers have reached their maximum load. This of course means we need to carefully design
the infrastructure around which we will build our site.

Exchange Server 2000

Exchange Server 2000 is the latest release of the Exchange messaging platform. It is closely integrated
with the Windows 2000 operating system. It uses the new Microsoft Web Storage System that combines
the reliability and scalability of Exchange with the accessibility and openness of the web. Exchange 2000
Conferencing Server provides a platform for complete data, audio, and video conferencing services,
establishing a foundation for new avenues of collaboration. Its native support for XML and HTTP mean that
it fits easily into the eCommerce infrastructure. It includes full support for OLE DB 2.5, and so integrates
with SQL Server™, and other OLE DB compliant products.

The Web Storage System includes built-in indexing for high-speed, accurate, full-text searches, enabling
users to find content quickly and easily. Users of Outlook 2000 can search for documents in Microsoft Web
Storage System as easily as they can search for e-mail messages, increasing user productivity. All content
in Microsoft Web Storage System is indexed, including messages, standalone documents, contacts, tasks,
calendar items, and collaboration data. Indexing is accomplished by an indexing "crawl" of the content in
Microsoft Web Storage System, using the same technology used in Internet Information Services (11S) and
SQL Server 7.0.

Exchange 2000 includes two OLE DB providers, a remote provider for server access from client
applications, such as Outlook 2000 and a local provider implemented natively in Exchange for

high-performance COM access from applications such as virus scanning programs and workflow engines.
OLE DB also allows combined SQL and Exchange data manipulation. Application designers can also use
ADO to navigate, query, filter, and sort Exchange Server data. This allows developers familiar with
developing SQL applications to easily write applications that use data stored in Microsoft Web Storage
System using the same expertise and tools.

Commerce Server 2000

Commerce Server 2000 is a tool for managing e-commerce web sites. It allows an e-commerce site
operator to attract and engage customers through the use of online marketing and advertising campaigns
and targeted promotions. It allows him or her to manage the transactions generated on the site. Finally,
it analyzes the usage, customer patterns and the way the customers react to the content on the site.

Commerce Server 2000 has tools that allow the site to be personalized for particular customer types in
various ways:

¢ Marketing actions and promotions can be easily built to reward frequent shoppers for example with extra
discount. Two-for-the-price-of-one actions can easily be set up. The end user experience can be modified
to greet returning customers personally.

e Product catalogs and price lists can be built and used for business partners. Millions of products can be
simply and easily managed.

e Customer profiles can be easily built and maintained and knowledge of your customers buying habits can
be used to improve the site.

e Business process pipelines that is a framework for defining and linking together stages of a business
process. This allows tailored processing of orders, advertising, merchandizing, content selection and
direct mailing.

e Decision support tools are available to enable business managers to understand and refine their online
business. This incorporates all the relvant information, not just click-stream data.

e Provides aA secure and scalable environment is provided for order capture and management. It works
with BizTalk Server and Host Integration Server to route orders and transactions to the existing business
systems of suppliers and partners. And of course, it does this while providing the highest levels of security
and encryption. The decision support tools are built around SQL Server.

As with any business, it is very important to figure out what sells and what doesn't. Which of the various
product lines on offer are visitors interested in? Commerce Server actively manages the web content and
analyzes the usage data, providing answers to this sort of question. Pre-configured analysis reports can be
used or site managers can build custom reports for mining usage data to uncover important trends about
activity on the site.

SharePoint Portal Server 2000

Share Point Portal Server is a new document management portal solution. It allows users to find, share
and publish information easily. It integrates with Microsoft Office and Microsoft Windows 2000

environments. It provides features such as document management, search, subscriptions and online or
in-line discussions. It becomes the single place for information, combining normal office documents with

web pages and emails. New documents are saved and checked in and out document stores capturing
relevant metadata. It allows changes in multiple drafts to be tracked as the document is edited, reviewed
and approved. SharePoint Portal Server is designed around industry and Internet standards, such as OLE
DB, Microsoft ActiveX Data Objects (ADO), Extensible Markup Language (XML), and Microsoft Web
Distributed Authoring and Versioning (WebDAV). This makes it intuitive to adapt and customize.

Host Integration Server 2000

Host Integration Server is the latest release of Microsoft SNA Server. It includes a comprehensive set of
integration components for connecting host-based data and transactions with new applications and web
based applications. Developers can now choose the appropriate technology for the appropriate task. Host
Integration Server provides traditional gateway integration, data access and database replication as well
as integration of both tightly and loosely coupled systems. It consists of Windows only code and therefore
no host footprint, that gives a more consistent development environment.

HIS provides a wide variety of integration technologies that enables developers to quickly and easily
integrate various host technologies. It provides services that extend a Microsoft interface to traditionally
non-Microsoft platforms, including:

e COMTI (COM Transaction Integrator) allows customers to expose mainframe CICS and IMS transaction as
COM objects. It effectively utilizes COM automation to drive these transactions, which even includes
support for distributed two-phase commit. All this is done without requiring any changes to the host
applications. (This technology has been shipping in Microscft SNA Server since 4.0 in Nov. 1997.)

e The OLE DB for DB2 Provider that provides COM+ objects with data access and distributed transactional
integration with DB2. These give developers the flexibility to quickly and easily build n-tier applications
that integrate COM+ with IBM's DB2, CICS and IMS transactions. Integrating MSMQ with MQ Series-HIS
2000 features the MSMQ Bridge which is responsible for routing application messages between Microsoft's
MSMQ and IBM's MQ Series. The bridge allows Microsoft's messaging technology (MSMQ) to communicate
and exchange messages directly on all 30 MQ Series platforms.

e SNA or TCP Protocols-HIS inherits the strengths of predecessor SNA Server for gateway connectivity.
While the protocol trend is clearly towards TCP, many host shops still require support for SNA-based
applications.

HIS 2000 provides these services either via SNA or TCP/IP, without requiring any changes to the host or
any host code to be loaded. HIS 2000 supports the native host interfaces and standards. HIS 2000 is
therefore non-intrusive.

XML integration in HIS is provided via the integration with BizTalk. BizTalk has the ability to transform and
manipulate documents. Once the incoming information is transformed, BizTalk can utilize HIS 2000 for
either of the two following integration methods:

e Synchronous or COM+-based Integration: For COM or synchronous-based integration, BTS 2000 supports
a COM interface (Ipipeline) that would invoke at COM+ business process that in turn executes either a
CICS and a IMS transaction via COMTI or a DB2 SQL statement via OLE DB.

¢ Message-Oriented Middleware (MOM)-based Integration: For messaging-based integration BizTalk
supports Microsoft's MOM, MSMQ. However IBM's legacy systems support IBM's MOM, MQSeries. HIS 2000

provides a MSMQ to MQSeries Bridge to allow BizTalk to easily and effectively exchange documents
asynchronously via MOM.

As an SNA gateway solution, HIS 2000 runs on Windows NT Server and Windows 2000 Server to connect
PC-based local area networks (LANs) to IBM System/390 mainframe and AS/400 midrange systems. HIS
2000 enables users of the leading desktop systems-including Windows 2000 Professional, Windows NT
Workstation, Windows 95, Windows 3.x, Macintosh, UNIX, MS-DOS, and IBM OS/2-to share resources on
mainframes and AS/400s without installing SNA protocols on the PC or deploying any software on the host.
The HIS 2000 gateway functions handle the translation between the PC LAN transport protocol-whether
TCP/IP, Banyan VINES, Novell IPX/SPX, NetBEUI, or AppleTalk-and the SNA LU protocols running to the
IBM mainframes and AS/400 systems. By allowing each machine to run its native protocols, SNA Server
minimizes resource requirements on each PC and on the host system. The configuration also reduces
administrative costs by enabling centralized management of the gateways.

Internet Security and Acceleration Server 2000

Internet Security and Acceleration Server 2000 (ISA Server) is Microsoft's new enterprise firewall and web
caching server built for Windows 2000 Server. The main problems that need to be addressed by system
administrators and business managers alike include:

¢ How to prevent hackers and unauthorized persons from accessing the internal network.

e Who has access to the internal network? Who has access to the Internet? How are they using it? Is the

internal network exposed?

¢ How to provide faster Internet access to improve worker productivity as well as serve e-commerce

customers quickly?

¢ How to control bandwidth usage and costs? When thousands of requests go out to the Internet for the
same static content it is inefficient and costly. When users listening to streaming media for non-work
related media corporate network usage and connection costs go up.

¢ How to manage a network as simply as possible? Managing a network and keeping it secure are complex
issues. Solving some of the above points can lead to more problems. If you add a cache to improve
performance and reduce connection costs, a separate set of resources and expertise are required to
manage it.

ISA Server includes the following major capabilities:

e It securely routes requests and responses between the Internet and client computers on the internal
network. It serves as a firewall, separating a protected "internal" network from the "external" network. It
can help defend your network from external hackers, unauthorized access and virus attacks by filtering
and analyzing traffic as it passes through it.

e It provides a high-performance Web Cache Server. This improves web site access performance for network
clients by storing frequently requested Internet sites locally. It can be used to speed up performance for
internal users accessing the Internet or external clients accessing your web server.

e It combines the benefits of both a firewall and a web cache with integrated management. It applies the
same access policies to the firewall and the cache. It takes advantage of Windows 2000 features such as
QoS, VPN, advanced authentication, NAT and Active Directory.

Mobile Information Server 2001

Mobile Information Server 2001 is a new platform for extending the reach of Microsoft .NET Enterprise
applications, enterprise data, and intranet content to the mobile user. This server product will allow mobile
users to stay connected to their corporate intranets and applications using devices such as hand held PCs
or mobile phones. They will be able to securely access their e-mail, contacts, calendar, tasks, or any
intranet line-of-business application in real time. Mobile Information Server integrates with the .Net
Enterprise Servers with multiple hardware platforms. It will also integrate with new speech technologies,
allowing the voice to become a new user interface. At the time of writing of this book, Mobile Information
Server is about to be released.

You are on your way to developing a full understanding of .NET, and learning how to build E-Commerce
applications using this new technology. The next chapter introduces the sample application that will be
used throughout the remainder of the book to illustrate most of the concepts and techniques that are
important when building .NET applications.

This chapter introduces the gasTIX corporation. It includes the high-level vision and business goals of the
planned development effort, a discussion of the high-level conceptual architecture of the system using
the .NET framework, and a presentation of the approach for designing and developing that system.

The sample application being showcased for this book is a Web site handling ticket-selling operations for
a fictitious company, gasTIX. This section introduces this company and the requirements of the system to
be developed.

Background

gasTIX was created as a merger of several other fictitious regional ticket sellers joined together to form a
national presence in the ticket-selling market. As part of this newly formed organization, the company
decided it needed a new ticket selling system to meet these needs:

e Move each of the disparate companies to a standard platform.
e Aid in streamlining business processes in a standard set of procedures.
e Promote a new single brand and identity for the ticket seller nation-wide.

The company has managed to sign exclusive deals for selling tickets to major venues throughout the
country. To maximize profits, this company wants to make the ticket sales available through the largest
number of outlets available, including a Web site. Potential sources for selling the tickets are as follows:

e Internet users--The new company Web site should enable users to purchase tickets for any of the venues
for which the company sells.

° Phone sales--Customers should also be able to call a central phone number to purchase tickets.

° Kiosks--Customers could purchase tickets from kiosks located in key locations such as nightclubs and
airports. These kiosks could also include information about events.

e Venue box offices--Many users will want the ability to purchase tickets directly at the venue.
e Retail box offices--Various retail stores can provide additional outlets for buying tickets in person.

e Internet partners--gasTIX plans to actively look for partners on the Internet so that tickets can be
purchased from other sites than just the gasTIX main site.

e Wireless services--The company also wants users to be able to buy tickets using devices such as cell
phones.

Problem Statement

The problem statement identifies the business issue that the potential solution is trying to solve.

gasTIX currently uses several ticket-selling and administration systems resulting in the following problems
for the company:

e Information is distributed across each of the systems, which limits the company's ability to perform
centralized progress and financial reporting.

o Different business processes are used throughout the company, which limits the company's ability to
streamline operations.

e Because of limitations in each of the current legacy systems, the ability to expand ticket sales to a larger
number of alternative outlets is limited.

e Future plans for expanding the company oversees or into merchandise sales are on hold until a more robust
system architecture is established.

Vision Statement

The vision statement provides a short description of the solution that this project is promoting. The vision
statement for gasTIX is as follows:

To build a state-of-the-art Web site and ticketing engine to provide gasTIX with a single application for
managing ticket sales while opening up sales to the largest number of outlets possible.

Solution Concept

The solution concept presents the general approach planned for implementing the vision statement. The
solution concept for gasTIX is as follows.

The gasTIX team has elected to build a new system from scratch to take advantage of all that the Internet
has to offer. Not only would it allow potential customers the largest variety of options for purchasing the
tickets, but it would also provide the most flexible implementation for combining disparate systems to
provide gasTIX with an enterprise-wide solution. In general, the following steps were planned:

Develop a gasTIX ticketing engine that can support ticket purchases from a variety of sources.
° Develop an interface for each of the various ticket purchasing options to take advantage of the engine.

e Interface with a separate fulfillment system that handles printing and mailing tickets to online customers.
Box offices will have their own ticket printing system locally. Also, the ticket needs to be available at the
box office rather than through mailing when there is not enough time to mail the ticket to the purchaser.

e Interface with an accounting system in order to trackgeneral ledger information.

A key to successfully planning this project is trying to understand gasTIX's overall priorities. One useful
technique for discussing those priorities lies in the use of a project trade-off matrix (see Table 2.1). The
following matrix defines the trade-off expectations for the development project and is used to guide the
change management decision process. To properly fill in the matrix, the following rules must be followed:

e One column must be checked in each row indicating how that attribute will be managed.
e No column can be checked more than once in order to avoid conflicting strategies.
Table 2.1

Project Trade-Off Matrix

Constrained Optimized Negotiated
Resources v
Ship date v
Features v

Here are definitions of the trade-off terms listed in Table 2.1:
e Resources--Cost of the project

e Ship date--The date the system goes online

e Features--The capability of the system

e Constrained--The parameter is tightly specified

e Optimized--The parameter is bound within a range

e Negotiated--The parameter is free for negotiation

In Table 2.1, the project's ship date is constrained, which means that gasTIX corporation has decided that
rolling out a new system in a timely manner is its highest priority. Its need to get its business units on a
common platform is important enough that there is limited room for negotiation on the final ship date. As
always, costs are important for the company to control. As a result, the costs of the project needed to be
as low as possible, but there is room for negotiation if the additional cost is justified to help meet the ship
date. In return for these requirements, gasTIX recognizes that there must be room for negotiating the
feature set and that not all the desired functionality will likely be on the site.

Inevitably, some features will not be implemented in each of the product increments. The benefits
delivered by releasing the product in a timely manner outweigh the opportunity cost lost to a feature's
absence. This strategy is sometimes characterized by the phrase "shipping is a feature."

Business Goals

The business goals of a project define how the project will benefit the company. The overall business
objectives that this project addresses are as follows:

To position gasTIX.com as the premier ticket provider for venues in the United States.

e To provide customers the greatest flexibility in terms of locations for obtaining tickets for a concert or
event of their choice.

e To enable partnering with outside companies to provide additional outlets for ticket sales.

e To reduce administrative costs across the company by providing a common platform for purchasing tickets
and administering the ticket system.

e To position the company to easily branch out into new ventures, including overseas operations and selling
of event-related merchandise and memorabilia.

e To build the foundation for using historical data to track, analyze, and predict sales trends across the
enterprise by regional sales, seasonal patterns, and so on.

Design Criteria

Design criteria identify constraints that limit how a project can be developed. Such constraints can be
technical, operational, or organizational in nature. The following lists outlines the overarching design
criteria used to guide this project:

e Demonstrate how to use .NET in building a fully functioning application.

e As this is a public-oriented Web site with customer credit card information, ensure that the system is as
secure as possible.

e Ensure the capability to scale in order to handle high demand when popular concerts go on sale.

e Ensure code base is effectively managed and versioned to reduce maintenance and administrative costs
including all source code, database schemas, and implementation plans as a minimum.

e The application will have to interface with several external systems. Ensure that the interfaces are
prepared to reduce the costs associated with maintenance and interoperability.

e Design the system so that the major components are as loosely coupled as possible so that portions of the
system can be replaced or upgraded without having to rewrite the whole application.

Although there are many advances to the .NET environment--including the Common Language Runtime
and strong typing--the main thrust of .NET is to enable the creation of loosely coupled, service-based
applications that will become common as we move forward into the Internet age. This section provides a
brief overview of this concept and how the gasTIX architecture functions on top of that foundation.

The .NET Architectural Foundation

With the advent of Microsoft Transaction Server (MTS) and its successor, COM+, Microsoft created an
environment in which components can interact when carrying out various transactions on behalf of one
client or another. MTS provided the framework for many key application functions such as security and
transaction management. This frees the developer to focus on business functionality. An environment was
created in which applications can truly be implemented using a set of reusable, business-oriented
components--a huge improvement over the previous structured approach for building applications.

Unfortunately, there was a problem with deciding how to take advantage of these components in rolling
out enterprise-wide applications. In order t get components on remote MTS servers to work together,
developers need to know where those components were located. Furthermore, to take advantage of those
components, developers have to write to a COM-based interface, which introduces several
middleware-related issues in communicating with legacy, CORBA, or EJB-based systems.

In the Internet age, the need for data exchange between applications will become more important than
ever as the different components of an enterprise's supply chain become more strongly integrated. You
cannot assume that these disparate systems will be located in the same country, let alone on the same
network backbone. You also can't assume that these applications will be built using the same technologies.
Because of this, the applications will require some type of middleware to glue it all together.

So, how does .NET position its applications for the Internet age? There are three basic components:

e Establishment of the .NET platform and its suite of servers to provide a secure, stable, and scalable
platform upon which to build sites

e Introduction of Web services to provide an implementation-independent method for interaction between
systems

e Providing a framework via BizTalk for enabling messaging and workflow between these various sites and
services

A much more thorough discussion of the .NET concept can be found in Chapter 1 of this book.

gasTIX Conceptual Architecture

With the new .NET concepts in mind, gasTIX decided to imagine the site as a set of as many interactive
sites and services as possible to provide the greatest flexibility for implementing, and later extending, the
site. Each major application is viewed as a site that provides a set of services for the other sites to
consume.

Furthermore, this site and service concept ensures the most flexibility in adding new outlets and new
functionality. For example, if another Web site expressed interest in linking to gasTIX for ticket information,

the presence of the service concept provides an existing and quick means for interfacing with this other
site. This concept even spilled over into recasting traditional applications as services to provide greater
flexibility in how certain functionality is provided. For example, by breaking the printing and shipping of
tickets into a separate fulfillment service, greater flexibility was provided in determining when and where
the tickets were developed. Obtaining a third party to provide the service became a possibility.

The rest of this section provides a description of the sites and related service categories required to
support gasTIX. Figure 2.1 provides a depiction of these services and how they are related.

Address .
Verification Fulfillment MS Paflsport/ Credit Card
Service System Wallet Processor
Accounting E-mail App

Ticketing Engine

Login User Administration Personalization
Event Searching Seat Inventory
Payment Processing Fulfillment

Ticketing Interface

Web Server Web Services
Internet User Wireless User
Kiosk Box Offices Internet
Partner

Figure 2.1

The gasTIX architectural environment.

Purchasing Mechanisms

To maximize potential ticket sales, gasTIX will allow purchases from a variety of sources. The sources that
gasTIX will support are as follows:

e Internet users--Represents the set of users attempting to purchase the tickets using their Web browser
through the gasTIX Web site.

e Kiosk--In some cases, gasTIX will want to place stands in appropriate locations to allow people to purchase
tickets on the spot. Examples of potential locales for the kiosks include venue sites, outside of box offices
for after-hours purchases, or at various promotional events.

e Box offices--These are traditional outlets for purchasing tickets. Examples of locations included in this
category include box offices located at the various venues, retail stores that are partnering with the main
ticket distribution company, and centers set up to handle telephone purchases.

e Internet partners--In some cases, gasTIX might partner with outside Web sites to provide a mechanism for
allowing their site users to purchase tickets.

e Wireless users--As soon as possible, gasTIX wants to handle users interested in obtaining tickets from a
mobile device of some kind.

Ticketing Interface

There are several mechanisms for allowing users to access the site. The service needed depends on the
users' location and to what extent they will have to use the site. The following two mechanisms are
available for providing that access:

e Traditional Web server--Access to the system is provided through a traditional Web server. This technique provides
enhanced performance and additional functionality.

e Web services interface--Access to the system is also provided through a new set of services through which other Web
sites or similar consumers can access the system. These interfaces will be limited in functionality compared to the

internal interfaces.
Ticket Engine

This is the heart of the site and provides the ticket sales and processing on behalf of any service through
which a customer can purchase tickets. Through these interfaces, the engine provides a set of base
functionality that these consumers can access. This functionality is divided as follows:

e Login and security--Provides a means to validate the users and control their access to site features
accordingly.

e Site administration--Provides the mechanism for managing and configuring the users, sites, events, and
performers of the system.

e Event searching--Provides the capability to find an event of the user's choice through a variety of criteria.

e Seat inventory--Provides the capability to find seats available for the given event and to reserve those
seats for potential purchase.

Payment processing--Provides for obtaining and charging the user's credit card to handle actual
purchasing of the seats.

Personalization--A certain amount of limited personalization of the site allows the users to specify their
favorite categories.

Fulfillment--Provides the mechanism for having the tickets shipped to the purchaser as well as reporting
information about the shipment status.

Back Office Support

Not all functionality is directly provided by the ticket engine. Where possible, gasTIX looked for partners to
provide functionality for the site. The following services are to be used by or interfaced with the gasTIX
system:

Accounting--Financial information is fed to the company's accounting system on a regular basis.

Address verification service--An outside service ensures that address information provided to the site is
accurate.

Fulfillment system--An outside service actually prints and ships the tickets to the purchaser. In some cases,
the printing portion of the system is located at the various box offices so they can be given to the purchaser
directly. The fulfillment system also must be able to tell the ticket engine when the tickets have been
printed and shipped.

Microsoft passport/wallet--Maintenance of user information is performed by an outside service that can
make that information available to gasTIX on an as-needed basis. An example of such a service is the
Passport site from Microsoft, which allows Web users to centrally store personal data.

Credit card processor--Authorization and actual charging of credit card transactions are provided by an
outside agency. The credit card information is first obtained from the user or from Passport and then run
through the processor.

Email application--A service is required for sending emails to customers as necessary.

Future Considerations

There are several other requirements for gasTIX that, although not implemented initially, are important to
consider when architecting the site to allow for adding these options. Following is a list of several such
enhancements for gasTIX that can be made in the future.

Advanced personalization--Develop a whole suite of services that allow users to customize the
functionality of the site as well as obtain specific data of interest on an as-needed basis.

Extended product line--Eventually the company might want to sell (or link to someone who sells) related
merchandise such as posters and t-shirts.

Internationalization--The company is planning to branch out into selling overseas and will therefore need
to handle multiple languages and currencies.

gasTIX Use Cases

The following use case diagram, shown in Figure 2.2, and related descriptions provide an overview of the
requirements for the gasTIX Web site. The descriptions provided here are not intended as detailed task
lists, but, rather, provide a general overview of the Web site functionality from a user point of view. This
section first provides definitions of the various actors and then covers each use case in turn.

The use case descriptions are organized into the following headings:

e Actor--Lists the user(s) and system(s) responsible for carrying out the functionality described by the use

case.

e Assumption--Specifies the conditions that should have occurred before the functions in the use case can be

carried out.

e Purpose--Defines the basic objective that the use

case accomplishes.

e Outputs--Presents the expected outcome of the use case function.

e Description--Provides the detailed explanation of the tasks involved in the use case.

View Seating

Chart

Xtends

/X Y
Select Event
by State

[>

/\

o
ent

xte

Display
Main Page

Custo

Set Personal
Options

0
i

xtends

Check Pricing
and Availability,

etup Personal

xtends
Account <

.4

Microsoft Passport Service

Select Event
by Category
4\

GASTix

Select Event
by Name
<

A xtends

Purchase Ticket

VA xtends

Request Ticket
Delivery

Report
Financial
Data

-

Accounting
System

Address Verification Status

)

E-Mail System

ﬁ

Credit Card
Processor

Check Shipment
Status

Figure 2.2

The gasTIX Web site provides a variety of services.

pdate Shipment
Status

>i

Fullfillment Service

Actors

The actors involved in the various use cases are described here. Several of the actors represent outside
systems with which gasTIX will operate. These are:

e Customer--Includes a user attempting to purchase tickets through the site.

e Microsoft Passport Service--Includes both the Passport and Wallet sections for providing information
about registered customers and their credit information.

e Accounting system--Provides general ledger processing on behalf of gasTIX.

e Address verification service--Provides a check of user-supplied address data to ensure there are no
irregularities.

e Email system--Provides forwarding of email messages as required.

e Credit card processor--Provides the services for authorizing and charging credit cards for purchases made
on the site.

e Fulfillment service--Includes the capability to print and deliver tickets to the customers. This can include
mailing the tickets as necessary.

Display Main Page

Actor: Customer, MS Passport

Assumption: None

Purpose: To show the main page according to the customer's defined preferences.
Outputs: The main page is shown.

Description: Whenever customers visit the main page, the Web site checks to see whether the users have
successfully logged into MS Passport. If they have, the site checks to see whether the associated username
is stored in the database along with the customer's selected preferences. If the preferences have been set,
the list of the user's preferred categories is retrieved from the database. The main page is then displayed
with only the customer's preferred categories displayed. If no Passport account is found or no preferences
have been set, the main page defaults to showing all categories.

Select Event by State

Actor: Customer

Assumption: The actor can cancel this use case at any time.

Purpose: To select an event based on the state in which the event is located.
Outputs: Detailed information about a specific event.

Description: A list of states along with a graphical US state map is displayed to the customer. The
customer selects a state, and a list of artist or team names with events in the state is displayed, ordered

by category. The customer selects an artist or team name and the system displays a list of events for the
selected name. The customer then selects a specific event and the system displays detailed information
about that event.

Select Event by Venue

Actor: Customer

Assumption: The actor can cancel this use case at any time.

Purpose: Select an event based on the venue in which an event is being held.
Outputs: Detailed information about a specific event.

Description: The customer decides whether to search for the venue by name or by state/city and
proceeds according to one of the following two paths:

e 1. Venue search

. The customer inputs the name of a venue and issues the search for a venue command. The system
determines that the number of characters input is greater than or equal to one character in length. If not,
the customer is prompted to enter a venue name and must restart the process.

° Upon successful venue name entry, the system searches for the venue input by the customer. A list of
venues is displayed to the customer if matches are found. A "no venues found" message is displayed if no
matches are found.

. The customer picks a venue from the list of matches and a list of events at that venue with summary
information is displayed. The actor then selects a specific event and the system displays detailed
information about that event.

2. Select venue by state/city

° A list of states along with a graphical US state map is displayed to the customer, who then picks a state.
A list of cities with a covered venue is displayed. If no covered venue cities are found for the selected state,
a "no venues found" message is displayed.

° Next, the customer selects a city and a list of venues is displayed. The customer picks a venue and a list
of events at that venue with summary information is displayed. The customer then selects a specific event
and the system displays detailed information about that event.

Select Event by Category

Actor: Customer

Assumption: The actor can cancel this use case at any time.
Purpose: Select an event based on the category of the artist/team.

Outputs: Detailed information about a specific event.

Description: The customer picks a category and a list of subcategories for that category are displayed.
The customer then picks a subcategory and a list of artist or team names with events fitting the category
is displayed. The customer then picks a specific artist or team name, and a list of events for that artist or
team with summary information is displayed. The customer next selects a specific event and the system
displays detailed information about that event.

Select Event by Artist/Team Name

Actor: Customer

Assumption: The actor can cancel this use case at any time.
Purpose: Select an event based on the name of the artist/team.
Outputs: Detailed information about a specific event.

Description: The customer inputs the name of an artist or team name and issues the search for
artist/team name command. The system determines that the number of characters input is greater than
or equal to one character in length. If not, the customer is prompted to enter an artist or team name and
must restart the process.

Upon successful artist/team name entry, the system searches for the name. A list of names is displayed if
matches are found. A "no artists/teams found" message is displayed if no matches are found.

The customer picks an artist/team name from the list, and a list of events for that name with summary
information is displayed. The customer then selects a specific event and the system displays detailed
information about that event.

View Seating Chart
Actor: Customer

Assumption: The actor can cancel this use case at any time. A venue must be selected in order to proceed
with this use case.

Purpose: To provide the actor with a graphical view of the seating chart for a specific venue.
Outputs: A graphical display for the selected venue.

Description: The customer picks the view seating chart option for a specific venue. If a seating chart is
available for the venue, it is displayed. If no chart is available, a "no seating chart available" message is
displayed. The customer can view the different seating configurations for the venue, if available.

Check Pricing and Availability
Actor: Customer

Assumptions: The actor can cancel this use case at any time. A specific event has been selected in order
to run this use case.

Purpose: Determine which seats are still available for a specific event and the price for those seats.

Outputs: A list of available seats and prices for a specific event. The Purchase Tickets Use Case begins
immediately.

Description: The customer selects the section in which they want to sit along with the number of seats
desired. The system then looks for the best available seats meeting the criteria. If the system does not find
seats available, it will return a message indicating no seats found. If the system does find seats, it returns
a message showing the seats and section numbers found. At this point the seats are marked as reserved
by the system. A button is shown giving the customer the option to purchase the tickets at this time.

Purchase Tickets
Actor: Customer, MS Passport Service, Address Verification Service, Email System

Assumptions: The actor cannot cancel this use case after the final purchase has been submitted.
However, the actor can cancel at any time prior to final purchase. A specific event has been selected, and
a pricing/availability check has been run for this event.

Purpose: Enable the actor to purchase a specific number of tickets at a specific price for a specific event.
Outputs: A confirmation of purchase for the selected event, pricing, and seating.

Description: The seats are collectively reserved for no more than five minutes to allow the customer the
opportunity to provide the necessary purchase information. The reservation is lifted if the five minutes
expire, if the customer conducts a new search, or if the customer closes his/her browser.

If the customer presses the purchase button, he or she is taken to the purchase screen. At this point, the
customer enters the shipping option, billing address, and credit card information. Optionally, if this
customer is logged in through MS Passport, the billing information is read from the personal account profile
contained in Wallet and the fields are populated automatically. The customer will have the option to log
into Passport at any time during this process. The customer will have the ability to edit the populated data.

When the customer selects the purchase button, the information is verified. The system verifies that a
shipping option is picked, that required billing address fields are completed, and that credit card
information is complete. If any of these items fail, the system displays an error message to the customers
and provides them with an opportunity to fill in the required fields.

The customer's address data is also validated with the outside address verification service. If a success
indicator or no response is received from the service, the address is considered acceptable. If an error is
returned, a message is displayed stating that there might be an issue with the address data. The customer
will have the opportunity to correct the data or to accept it as is.

The customer is then taken to a confirmation page detailing the purchase information. The customer can
now accept or cancel the order at this time.

Once the system determines that all the information is entered correctly, the system calls the purchase
ticket function. The credit card information is processed and the appropriate data is sent to the financial
system. The system removes the seats purchased from the available list for the event. The system
displays a confirmation and generates an email with the same information to the customer. If any errors
are encountered during the purchasing process, the purchase is rolled back and aborted. Any error
messages are displayed to the customer, who is given the opportunity to resubmit the purchase if
appropriate.

Request Ticket Delivery

Actor: Fulfillment Service

Assumption: A ticket purchase has been successfully processed by the system.
Purpose: Generates the request to deliver the tickets to the customer.
Outputs: A message to the fulfillment service.

Description: Upon completion of a successful sale, a request is generated to the fulfillment service to
print and deliver them to the customer. The request must be confirmed by the fulfillment service as having
been received. Otherwise, the request will need to be resent until it's successfully delivered.

Update Shipment Status
Actor: Fulfilment Service

Assumption: A ticket purchase has been successfully made and the ticket delivery request message has
been sent to the fulfillment service.

Purpose: To update the system with the status of a ticket delivery request.
Outputs: An updated status in the system.

Description: The fulfillment service is required to inform gasTIX of the status of a ticket purchase. The
status is sent on two occasions:

e A message is sent when the ticket is shipped to the customer.

e Alternatively, if the ticket has not been shipped within a preset number of days, a status is sent providing
an expected ship date. This message is resent according to an agreed-upon schedule until the tickets are
successfully shipped. The purpose of this message is to ensure that the ticket delivery request has not been
lost.

Delivery of this message must be guaranteed. Therefore, gasTIX must acknowledge receipt of the
message to the fulfillment system.

Set up Personal Account
Actor: Customer, Microsoft Passport

Assumption: The actor can cancel this use case at any time.

Purpose: Enable the actor to create a personal account for holding billing and contact information.
Outputs: A confirmation of the personal account creation.

Description: The customer picks the Create New Personal Account function. The customer is then taken
to the MS Passport area where he or she will be prompted to either log in or modify their account
information as appropriate.

Once the customer exits the Passport site and returns to gasTIX, the actor's Passport username is returned.
At this point, if the actor's username is not already stored, it is added into the system and a "personal
account created" message is displayed.

Set Personal Options
Actor: Customer

Assumption: The customer selects the set personal preferences option. The customer can cancel this use
case at any time. The user has successfully logged into the Microsoft Passport site.

Purpose: Allow the customers to set up their personal preferences for how the site behaves.
Outputs: A confirmation of the personal account update.

Description: The customer selects the set preferences option. A screen then shows all the categories
available. The customer can then select those categories in which they are primarily interested. Once the
selections are made, the customer commits the selection. The system then saves the personal account
information and a "personal account updated" message appears.

Check Shipment Status

Actor: Customer

Assumption: None

Purpose: Allow the actor to see the status of a shipment.
Outputs: Shipment status

Description: The actor selects the check shipment status option. A screen prompts the customers for an
order number. If the order is found, the status of the shipment is then provided. Otherwise, an error
message is returned indicating that the order number is invalid.

Report Financial Transactions

Actor: Accounting System

Assumption: None

Purpose: To provide information about financial transactions for accounting purposes.

Outputs: An export of financial data for general ledger processing.

Description: At regular intervals, gasTIX will compile data about all purchases since the last extract to the
accounting system.

The final of the gasTIX requirements was to lay out a site map showing expected Web pages and how they
interrelate (see Figure 2.3). This section describes each of those pages along with how they relate to the
use cases discussed previously.

Home Page > =l Artists / Teams
by Name
Subcategories by > Artists by
Category Subcategory
State List / Artists
US Map by State
’ Venue
Search Page
Cities with Venues
Venues List by Name
Venues by Events
City / State by Venue
[« Events b
q vents by
Event Details Artist / Team
Y RS
- {/
® ¢ spor
Seating Chart
Event Pricing “| Ticket Purchase
Details
"1 update Your @
Profile Purchase
Confirmation
R ®
Shipment Status
Figure 2.3

Map of the pages for the eb site.

Home Page

The main page is the base starting point for the gasTIX site. It presents a variety of options for searching
the site for an event of the customer's choice. These options include presenting the set of categories
available in the system. Upon visiting the main page, if the user is determined to have been logged into
Passport, the list of available categories is modified based on the user's stated preferences. Also from here,
the user can sign in to Microsoft Passport and access profile settings.

This Web page supports the following use cases:

Display Main Page

e Select Event by State

e Select Event by Venue

e Select Event by Category

e Select Event by Name

Artists/Teams by Name

This page lists all artists, groups, or teams found in the system as the result of a name search. The artists
are listed down the center of the page with a link to gather more information about the artist.

This Web page supports the following use cases:

e Search Event by Name

Subcategories by Category

This page lists all subcategories of a given category. The subcategories are linked to find all events for that
subcategory.

This Web page supports the following use cases:

e Select Event by Category

Artists by Subcategory

This page lists all artists found in the system for a given subcategory. The events are linked to provide a
list of events for that artist.

This Web page supports the following use cases:

e Select Event by Category

State List/US Map

This page provides a map of the United States. Each state is linked to show all artists performing in that
state.

This Web page supports the following use cases:

e Select Event by State

Venue Search Page

This page also provides a map of the United States from which to select. Each state is linked to show all
venues available in that state. Optionally, the customer can enter a string to serve as search criteria for a
venue name.

This Web page supports the following use cases:

e Select Event by Venue

Cities with Venues List

This page lists all cities with known venues for a given state. Each city is linked to provide a list of venues
in that city.

This Web page supports the following use cases:

e Select Event by Venue

Venues by City/State

This page lists all venues located in a given city and state. Each venue is linked to provide a list of events
in that venue.

This Web page supports the following use cases:

e Select Event by Venue

Venues by Name

This page lists all venues that match the given criteria for the venue's name. The customer can then issue
another search. Alternatively, each venue is linked to provide a list of events in that venue.

This Web page supports the following use cases:

e Select Event by Venue

Events by Venue

This page lists all events occurring at a given venue. Each event is linked to provide detailed information
about that event.

This Web page supports the following use cases:

e Select Event by Venue

Events by Artist/Team

This page lists all events associated with a given artist or team. Each event is linked to provide detailed
information about that event.

This Web page supports the following use cases:
e Select Event by State
e Select Event by Category

e Select Event by Name

Seating Chart

This page shows the seating chart of a given venue. This Web page supports the following use
cases:

e View Seating Chart

Event Details

This page provides detailed information about a given event, including performer, location, and event
times as a minimum. The customers can check for available seating by specifying the section and number
of seats desired within the venue.

This Web page supports the following use cases:
e Select Event by State

e Select Event by Venue

e Select Event by Category

e Select Event by Name

e Check Pricing and Availability

Event Pricing Details

This page shows the customer the best seats available for the criteria provided. The customer sees a
message indicating that he or she has five minutes (or some other agreed-upon time frame) to purchase
the tickets. The user can then elect to begin the purchase process.

This Web page supports the following use cases:
e Check Pricing and Availability

e Purchase Tickets

Ticket Purchase

This page prompts the customer to provide data to complete the purchase including shipping and billing
information. The customers have the option to use the express purchase option where they will be taken
to the MS Passport site to log in and confirm their data. Passport will then provide the customer data back
to gasTIX to populate the given form. The user then elects to confirm the purchase.

At this point, the customer receives a confirmation of the purchase by email and the shipping request is
made to the fulfillment service.

This Web page supports the following use cases:

e Purchase Tickets

e Request Ticket Delivery

Purchase Confirmation

This page provides the customer with a confirmation that the purchase was processed successfully.
This Web page supports the following use cases:

e Purchase Tickets

Update Profile

This page provides the customers with the capability to define their display preferences when visiting the
site. Basically, the page lists all categories available and the customers can select which ones to display.
Once the profile is updated, the customers see a message indicating the changes are complete.

The customers must have successfully logged into Microsoft Passport before being allowed to visit this
page. If they have not, they will be redirected to Passport where they will log in or set up an account, as
appropriate.

This Web page supports the following use cases:

e Set up Personal Account

Shipment Status

This page provides the customers with the capability to check on the status of any shipment. The
customers are prompted to provide an order number, at which point they are provided with the shipping
date (or expected shipping date if not already shipped) and shipping destination.

This Web page supports the following use cases:

e Check Shipment Status

The success of most technology projects depends on proper planning and the adoption of a formal
methodology to fulfill the business objectives through effective project management and development.
The use of a framework within which to operate is even more important as larger development efforts are
undertaken. Therefore, care was taken by the authoring and development team to implement the sample
application within a development framework that would ensure the quality of the resulting application.

For that framework, the team used the Microsoft Solution Framework (MSF). MSF presents a collection of
industry-wide best practices, concepts, and models that help lay the foundation for planning, constructing,
and administering development efforts. This foundation aids an organization in defining required resources
and timetables for meeting key project objectives and deliverables.

There are actually several models included within MSF:
¢ Team model--Presents the key roles and responsibilities of development team members.

e Process model--Presents the main phases and deliverables included within the software development
lifecycle.

e Applications model--Presents the basic structure for best implementing applications.

However, for purposes of this book, only the process model is discussed. The remainder of
this section provides a brief overview of that development process and provides a foundation
for understanding the overall sectional structure of the book.

Development Process Overview

The MSF process model presents the basic steps involved in a software development project. According to
the framework, as presented in Figure 2.4, development is divided into four basic phases. These are:

e Envisioning

e Planning

e Developing

e Stabilizing

Borrowing from the spiral approach to software development, the process model calls for each of the four
phases to be repeated in an iterative manner as often as necessary. Each iteration results a new, fully
functional version of the software. This is the reason why Figure 2.4 shows the end of the stabilization
phase leading into the envisioning phase of a new version of the product.

Vision/Scope

Complete/ Approved

First Use

N
\
Vo ,
Project Plan
Approved

The MSF process is circular.

Figure 2.4

Each of those phases consists of a set of intermediate milestones discussed in the subsections that follow.
Envisioning

This phase concludes with the "Vision/Scope Approved" milestone, which represents an agreement on
long-range vision motivating the effort, as well as short-range scope of what will be accomplished. At this
time, the team members share opportunities, risks, and assumptions.

In relation to this book, Section 1, "Envisioning," consists of chapters outlining the .NET architecture and
presents the high-level requirements of the application.

Planning

This phase concludes with the "Project Plan Approved" milestone, which represents an agreement on
project deliverables, features and priorities, and the targeted release date. All team members buy into and
commit to the delivery schedule.

Section 2 of this book, "Planning," focuses on the architectural options available in configuring an n-tier
application under the .NET architecture. Hence, the chapters are focused on the technical design of the
overall system that is part of the overall planning phase and not on program management issues.

Developing

This phase concludes with the "Scope Complete/First Use" milestone, which represents an agreement that
all features have been built to specification, yet accepting that the solution is not completely stable.

Section 3 of this book, "Development," presents code examples of how specific aspects of system
functionality were implemented using .NET. The goal is to highlight examples of how different tools
within .NET are used to meet specific business or design criteria. This chapter is not concerned with
program issues of how to best develop code and it does not discuss use of unit tests, code reviews, or other
such best practices. This subject matter is outside of the scope of this book and has been well documented
in numerous other books.

Stabilizing

This phase concludes with the "Release" milestone, which represents an agreement that all outstanding
stability issues have been addressed, and that the support and operations organization is sufficiently
prepared to deploy and manage the solution.

Section 4 of this book, "Stabilization," focuses on technical issues associated with testing, debugging, and
deploying applications within the .NET framework. The focus is not on how to best track bugs or reach a
"golden release" as, again, such subject matter is outside of the scope of this book and has been well
documented in other books.

A Note on the Sample Application

For the purposes of this book, not all aspects of gasTIX were developed by the development team. Only a
subset of the entire system has been implemented. Aspects that were necessary to demonstrate the
principles of building a .NET application were implemented here.

This does not mean that the sample site is not robust. On the contrary, the site has been rigorously tested
to ensure the highest stability and scalability. Rather, not all functionality has necessarily been
implemented. The following list shows the overall gasTIX company infrastructure provided in the sample
application:

e gasTIX site--This is the main site in support of the Internet users. The complete site includes the Web
server code, the ticketing engine, and the supporting database.

e gasBags site--This is a mockup site for a fictitious partner site supporting a bagpipe band called the
gasBags. The objective of this site is to demonstrate consumption of Web services provided by gasTIX.

e Fulfillment site--The fulfillment site is a simple set of services implemented purely to show the use of
BizTalk in communications. The site exists primarily to implement the fulfillment side's interface and does
not actually print or handle the shipping of the tickets.

e Address verification--This is a simplified version of what a full-blown address-verification site provides.
This site was created to demonstrate consumption of services needed by gasBags and to simulate a
large-scale database application for Microsoft Data Server analysis.

e Microsoft Passport--Interfacing with Passport was implemented to demonstrate the techniques involved in
accessing this key service from Microsoft.

The online version of gasTIX will continue to evolve this functionality over time. Visit it often at
www.gasTIX.com to see the latest implementation surrounding the service.

Now that you are familiar with the concepts and requirements behind the gasTIX system, the rest of this
book takes you inside the design and implementation decisions used to build gasTIX. The study begins in
the next section, which focuses on design issues.

Problems stemming from independent software applications not communicating well with other
applications have an extraordinary cost for companies in both time and money. These cost more to
develop and integrate, consume more personnel resources, and hinder built-in features of peer
applications by not providing the necessary interfaces to implement a particular application feature set.
The result of this is that many software engineers spend their time thinking of complex ways to link
stand-alone systems together, instead of planning and building tightly integrated distributed software
applications.

This chapter introduces you to the tools and technologies available today that make it possible to produce
great distributed software systems using the Microsoft .NET Enterprise Solutions Platform. We will discuss
industry-standard technologies such as XML and SOAP, and learn about the tools available to create
distributed software systems.

In this chapter, you will:

e Come to understand industry standard technologies used to enable communication between different
software applications.

e Learn about the tools provided by the Microsoft .NET Framework to solve inter-application communication
challenges.

e Acquire a foundation for building your own solutions for application communication business problems.

We will start by taking a look at the challenges and benefits of inter-application communications,
addressing the topics of distributed software systems, incompatible protocols and data formats, then
move on to discussions about industry standard technologies such as XML and SOAP. Next we will cover
the tools that Microsoft provides to develop software that targets the Microsoft .NET Enterprise Solutions
Platform. The goal of this chapter is to establish a base understanding of these concepts which can be
extended to meet your own application integration challenges.

The problem of application integration stems from the fact that different applications use dissimilar
protocols and data formats. Traditional client/server applications are usually built with the same
underlying protocols and data types. As a result, application integration is straightforward because
client/server systems are designed from the start to work together.

Unfortunately, as most developers have seen, applications usually evolve into something that wasn't
originally seen or planned for as new products become available or the organizational structure of the
company changes. Enabling this communication between dissimilar systems is much more difficult than
doing so between systems that were designed from the ground up to co-exist. Different communication
protocols, operating systems, data types, and many other factors must all work together to produce a
cohesive distributed software system.

In many organizations, multiple applications may execute independently of one another. For example,
consider a hospital. A hospital may have a system for registering patients, a system for managing
radiology services, a system that controls surgery scheduling, and other systems for billing and inventory
control. Since these systems were likely developed and deployed at varying times , each one might
describe patient demographic information in a different way. Each system may be built in a different
programming language, or run on a different operating system. Each application must fluidly communicate
with the others in order to achieve any amount of patient satisfaction.

Taking this scenario a bit further, our inventory control department needs to integrate with external
suppliers in order to maintain acceptable stock levels of bandages and medicine. This introduces systems
beyond the immediate control of the hospital staff. The situation becomes even more complex as different
corporate cultures and business philosophies are introduced.

We are now beginning to understand the necessity of enabling application-to-application communication
within one organization, as well as across multiple organizations. The following sections discuss the .NET
set of tools derived from technologies that help enable inter-application communication.

XML provides the foundation for enabling inter-application communication between disparate software
systems. XML is a general-purpose markup language which allows developers to structurally describe data
independent of specific software applications. The ability to independently describe data facilitates
information exchange across organizations by making software applications easier to design, build, deploy,
and maintain. Since XML is self-describing, the applications that use it to communicate do not need to
worry about specific formatting.

It is easy to learn how to create and read XML documents. They are similar in appearance to HTML and
typically include standard English terminology instead of code language. Listing 3.1 shows an XML
document that describes several pets found in a typical family household.

Listing 3.1
An XML Description of Household Pets

<household>

<pets>

<pet type="‘cat''>
<breed>Domestic Short Hair</breed>
<name>Daisy</name>
<color>Brown</color>
<weight>16 pounds</weight>

</pet>

<pet type="‘cat''>
<breed>Domestic Short Hair</breed>
<name>Hana</name>
<color>BrownishBlack</color>

<weight>6 pounds</weight>

</pet>

<pet type="dog'>
<breed>Australian Shepard</breed>
<name>Nel lie</name>
<color>Blue Merle</color>
<weight>24 pounds</weight>

</pet>

</pets>

</household>

The listing above shows that XML documents are comprised of elements and attributes to create a
structured representation of data. This particular set of data describes three household pets, two cats and
a dog, and contains four pieces of information for each pet. The <household> element is the root element
and contains all other elements and attributes in the household pet document. The <pets> tag is a
collection of individual <pet> tags, each describing an individual pet. The type attribute on the <pet>
element allows us to further describe a pet using simple name-value pairs. Each XML tag can have zero or
more name-value pairs to indicate the specific properties of the tag instance.

When authoring your own XML documents there are a few key guidelines to follow in order to create
well-formed XML:

e Each element must have an end tag.

e Elements cannot overlap.

e Attribute values must be enclosed in quotation marks.
e Documents must have a unique root node.

By following these four simple rules you can create highly descriptive and well-formed documents that
represent a variety of business data. Many companies have already published XML schemas for use in a
specific industry or with specific types of data.

XML and HTML

As shown above, XML is used to describe the content of data. Contrast this to HTML, Hypertext Markup
Language, which details how to display data in a web browser. Using HTML, we can tell a browser to display
data using a particular font type and size, or act as a hyperlink for site navigation. Using XML together with
HTML, we can extend the value of business data by separating content from presentation. This allows a
single set of data to be reused in multiple presentations and a single presentation to display multiple sets
of data.

One of the benefits of using a standard markup language such as XML to represent our data is that we can
easily integrate data from different sources. For example, we can aggregate content from relational
databases, spreadsheets, text files, or legacy corporate applications, into a single XML document. This
document can then be merged with HTML for robust presentation in a web browser. Instead of displaying
in a web browser, we could also deliver the XML to a software application in a different enterprise thus
providing a link between the two stand alone applications and producing a truly distributed software
system.

As we shall see shortly, XML is the technology which provides the infrastructure for distributed software
concepts like SOAP and Web Services.

Note: A complete discussion of XML is beyond the realm of this chapter, as entire books have been written
about XML. Our intention isn't to create XML experts but instead merely to provide a basic introduction to XML.
For those interested in learning more please visit the following web links for additional information on XML:

e Microsoft XML Developer Center: msdn.microsoft.com/XML
e W3C Extensible Markup Language: www.w3.org/XML

XML-Zone: www.XML-Zone.com/

XSD Schema

One question we need to address is, "How do we define our own XML document and data structures?" The
answer is XSD schema. The XML Schema Definition (XSD) is a language, based on XML, that allows you to
define the structure and data types for XML documents. When you author an XSD schema you actually use
a set of elements, attributes, and data types that conform to the World Wide Web Consortium (W3C) XSD
Schema Definition language. This specification serves as the blueprint for authoring XSD schemas, and in
turn, schemas serve as blueprints for XML document instances.

XSD schemas are a bit more difficult to create than simple XML documents, since XSD schemas serve as
blueprints for XML documents. The relationship between XSD schemas and XML documents is similar to
that between classes and objects. XML documents are instances of XSD schemas just as objects are
instances of classes in object oriented programming.

Since XSD schemas are defined using XML, all schemas must have a top-level node. The W3C specification
states this node must be the <schema> eiement and its definition must include the
www.w3.0rg/2001/XMLSchema namespace.

element types attribute names

http://www.w3.0org/TR/REC-xml-names/

Since <schema> is the top-level node, all elements and attributes used to author a schema must appear
between the begin and end <schema> tags. The specification also describes the exact elements and
attributes authors may utilize to develop XSD schemas.

Let's work by example. Listing 3.2 shows the XSD schema that defines the household pet XML document
that was studied earlier in the chapter.

Listing 3.2

Household Pets XSD Schema

<xsd:schema id="household” targetNamespace="" xmlns=""" xmIns:xsd=http://www.w3.0rg/2001/XMLSchema

xmlIns:msdata=""urn:schemas-microsoft-com:xml-msdata'>

<xsd:element name="household"™ msdata:lsDataSet=""true'>
<xsd:complexType>
<xsd:choice maxOccurs="unbounded'>
<xsd:element name="‘pets'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="pet" minOccurs="0" maxOccurs="unbounded'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="breed" type="'xsd:string' minOccurs="0"_
msdata:Ordinal="0" />
<xsd:element name="name" type="'xsd:string"” minOccurs="0" msdata:Ordinal="1" />
<xsd:element name="color" type="xsd:string" minOccurs="0" msdata:Ordinal="2" />
<xsd:element name="weight" type=''xsd:string"” minOccurs="0" msdata:Ordinal="3" />
</xsd:sequence>
<xsd:attribute name=""type" type="xsd:string" />
<xsd:attribute name="pets_Id" type="'xsd:int" use="prohibited" />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="pets_Id" msdata:Autolncrement=""true' type="xsd:int"_
msdata:Al lowDBNull="false" use="prohibited" />
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
<xsd:unique name="Constraintl"” msdata:PrimaryKey=""true'">
<xsd:selector xpath="_//pets" />
<xsd:field xpath="@pets_Id" />
</xsd:unique>
<xsd:keyref name="'pets_pet" refer="Constraintl” msdata: IsNested=""true'">
<xsd:selector xpath="_//pet" />
<xsd:field xpath="@pets_Id" />
</xsd:keyref>
</xsd:element>

</xsd:schema>

As we can see, the schema is more complex than its instance. Our household pet schema, like all schema,
begins with the <schema> element. Looking through the listing we find <element> declarations for our
household, pets, pet, breed, name, color, and weight elements as well as an <attribute> element that
defines the type attribute of the <pet> element. Properties such as MinOccurs and MaxOccurs define the
minimum number of times a tag can occur. For instance, the <pet> tag has a MinOccurs value of O and an
unbounded MaxOccurs value, indicating that for any household, there can be O or more pets.

Up to this point we've discussed XML and studied a simple document instance. We've learned how the
separation of content and presentation is important in bringing together data from different sources. We
talked briefly about XSD Schema and looked at an example declaration for our household pet example. In
the next section, we will discuss technologies that extend XML to create a new set of tools that facilitate
inter-application communications.

The Simple Object Access Protocol (SOAP) and Web Services play a major role in the Microsoft .NET
Enterprise Solutions platform. A Web Service is a piece of application code made available over the Web
via standard Internet protocols such as HTTP and TCP/IP. SOAP is a lightweight protocol that travels on top
of HTTP. It provides the information transport layer for application communication via Web Services.
Software engineers developing solutions that target the Microsoft .NET Enterprise Solutions Platform build
applications that exchange data between various Web Services producing a single, cohesive distributed
software application.

Simplicity is the fundamental principle behind the development of SOAP. SOAP does not introduce new
technological innovations but instead builds upon reliable, well known Internet standards like XML and
HTTP. As a result, software engineers can leverage existing knowledge of the Internet to develop
SOAP-based Web Services targeting the Microsoft .NET Enterprise Solutions Platform.

That said, we can formulate three important points about what SOAP is:

e SOAP is formatted using XML and transported through HTTP requests. A client sends a SOAP message to
a server via HTTP and the server performs application logic based on the client request.

e SOAP needs HTTP, nothing else. SOAP is not concerned with operating systems, development languages, or
application object models.

e SOAP works with existing firewalls, routers, and proxy servers. A network administrator does not have to
go out and buy new hardware to support SOAP-based software systems.

Now that we have covered what SOAP is, we will discuss the two distinct types of SOAP messages: 1)
Clients sending SOAP messages to a server do so using a Call message, and 2) Server responses sent back
using a Response message. Listing 3.3 illustrates a Call SOAP message.

Listing 3.3

SOAP Call Message

POST /RegisterPets HTTP/1.1

Host: www.gasullivan._com
Content-Type: text/xml
Content-Length: Xxxxx

SOAPMethodName: http://www.gasullivan._.com/PetService

<SOAP:Envelope xmlns:SOAP=""urn:schemas-xmlsoap-org:soap.v1'>
<SOAP :Body>
<AddPetsToRegistry>
<XML Payload Goes Here!>
</AddPetsToRegistry>
</SOAP :Body>
</SOAP:Envelope>

The first four lines in Listing 3.3 are common HTTP syntax. POST is the request type. Hostname,
Content-Type, and Content-Length are required for all HTTP messages. Notice the Content-Type of
text/xml. XML keeps popping up everywhere! The text/xml value indicates that the payload of this HTTP
request is XML. In fact, the SOAP message is a well-formed XML document comprised of a required
<SOAP:Envelope> element, a required <SOAP:Body> element, and an optional <SOAP:Header> element.
The <SOAP:Header> is not shown in the listing but would exist between the Envelope and Body elements.
A server receiving this message sees the SOAPMethodName in the HTTP Header and executes an
AddPetsToRegistry procedure call to add our household pets to a fictitious pet repository at G.A. Sullivan.

Listing 3.4 below shows a response to the SOAP Call message above.
Listing 3.4
SOAP Response Message

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: Xxxxx

<SOAP:Envelope xmlns:SOAP=" urn:schemas-xmlsoap-org:soap.v1"
<SOAP :Body>
<AddPetsToRegistryResponse>
<return><XML Payload Goes Herel><return>
</AddPetsToRegistryResponse>
</SOAP:Body>
</SOAP:Envelope>

Here we see a typical HTTP 1.1 response with an XML document as the response body. The top three lines
are similar to the SOAP Call request. The first line is the HTTP response code and the second and third lines
describe content type and length. Again we see the XML based SOAP message with the
<AddPetsToRegistryResponse> element containing a <return> element. The actual payload of the
response would be an XML document traveling as a child of the <return> element.

We previously discussed how SOAP transports XML documents between Web Services. By understanding
this simple call/response model, we are now starting to realize why Web Services, together with XML and
SOAP, are so fundamentally important to the Microsoft .NET Enterprise Solutions Framework. Web
Services allow communication between disparate applications, anywhere on the Internet. Since they
utilize the industry standard XML protocol, Web Services even enable communication between different
web servers and platforms. For more information on building and consuming web services, see Chapter 11,
"Purchasing a Ticket".

WSDL, DISCO, and UDDI

A Web Service accepts messages from a client, performs work based on information contained in the
message, and sends a response back to the client. How does a client, or Web Service consumer, learn
about the methods a Web Service exposes? This process is enabled through WSDL, the Web Service
Description Language. This section explains WSDL and how it fits into the Web Services picture.

WSDL is an XML specification that developers use to detail which methods, parameters, and protocols a
Web Service exposes. WSDL can be loosely compared to a text-based COM type library that is not specific
to any particular operating system platform and acts as a contract between a Web Service consumer and
the Web Service itself.

Imagine a set of cool web services that exist at a site called gasTIX.com. The gasTIX Web Services allow
customers to search for tickets to upcoming concerts and sporting events. As a developers, all we know
about is gasTIX.com and not specific endpoints at the site that expose WSDL documents for you to develop
against. The Discovery Protocol (DISCO) defines an XML-based discovery document format, along with a
protocol, giving you the ability to scour gasTIX.com for services of interest. The discovery page lists all
Web Services and the methods available for those services. It also details the expected parameters for
each method and a description of the return value.

Taking this one step further, pretend we do not know the specific URL for the Web Services we are
interested in. The Universal Description, Discovery, and Integration (UDDI) specification allows Web
Service authors to advertise the location of their services and gives Web Service consumers the ability to
find these services.

Note: For more information on SOAP and Web Services, see the following web links:
e Microsoft Web Services Developer Center: msdn.microsoft.com/webservices/
e SOAP Specification Version 1.1: msdn.microsoft.com/xml/general/soapspec.asp

Web Services Description Language 1.1: msdn.microsoft.com/xml/general/wsdl.asp

Microsoft BizTalk Server 2000 is a .NET Enterprise Class server product with powerful development and
execution features capable of orchestrating business processes within one organization, as well as among
many organizations. BizTalk Server 2000 provides us with the ability to define XML-based business
document specifications, and to configure what transformations must take place on these documents as
they travel between software applications. BizTalk facilitates application development by allowing both

software developers and business analysts to participate in the development of business process software
applications.

BizTalk is designed to provide us with a comprehensive interface for managing the types of application
interoperability issues that we have been discussing, which can often become quite complex. BizTalk is a
technology that helps enable the efficient implementation of business processes and workflow within an
organization. It can import XML and XSD schemas after initial configuration customized for a company's
e-Business requirements has been completed. As a member of the .NET Enterprise Server family, BizTalk
can communicate with SOAP web services.

The sections below are an introduction to the primary application-level features of BizTalk Server and are
intended as a foundation for later chapters about gasTIX.NET and Microsoft BizTalk Server 2000. For more
information on the implementation of BizTalk in the gasTIX application, refer to Chapter 12, "Fulfillment."

Business Document Exchange

Microsoft BizTalk Server 2000 provides a powerful execution engine that enables business document
exchange both within and between enterprises. A business document is a text document, or message, that
drives a business process.Examples include purchase orders, receivables statements, product
specifications, or any other critical pieces of information on which businesses depend for their operations.
Different software applications utilize different document formats. BizTalk Server 2000 helps integrate
different applications by supporting both XML and common flatfile formats. These message formats are
described below:

¢ XML documents. Any XML document that conforms to the XML 1.0 specification can be exchanged using
Microsoft BizTalk Server 2000.

e Delimited flatfiles can also be used with BizTalk. The data fields of delimited flatfiles are separated by a
specified character delimiter. Common delimiters are commas, colons, pipes, and tab characters.

¢ Fixed-length data fields comprise positional flatfiles. A collection of data fields on one row in the flatfile is
called a record. Flatfile records can either be fixed or variable length depending the structure of the data.

In order for BizTalk to comprehend the content of these different data formats, we must create message
specifications. BizTalk message specifications are similar to the XSD Schema we learned about earlier in
this chapter. They are blueprints for what type of information a message can contain, and thus enable
BizTalk to understand specific rules for business document exchange.

BizTalk Orchestration

The highest layer of abstraction in BizTalk Server 2000 is Orchestration. BizTalk Orchestration is used to
design business processes that manage overall application business logic.

In the past, the design and implementation of a business process have occurred in two separate pieces.
First, a business analyst would gather business requirements and construct some type of diagram, like a
flowchart or interaction diagram, describing the business process in a graphical manner. Next, a software
developer would review the business process diagram and map requirements to an implementation model
and perform the coding and testing to produce the required software solution.

The BizTalk Orchestration Designer gives both the business analyst and software developer a common tool
for using when designing and implementing business processes. Business process design using BizTalk
Orchestration generally follows four distinct steps. These are:

e Business analysts create an XLANG Schedule drawing using a set of well known flowchart-like shapes. Each
shape represents a logical step in the business process.

e Software developers provide an implementation for the XLANG Schedule by attaching each shape in the
drawing to software which implements that shape.

e Orchestration Designer provides a way to visually define the flow of data between different shapes in the
diagram and this work can either be accomplished by a business analyst or software developers.

e The XLANG Schedule drawing is then compiled into an XLANG Schedule. XLANG Schedules are executable
business process files used by the BizTalk runtime to complete the business process.

A neat feature of Orchestration Designer is its ability to create long-running business processes. When
designing an XLANG Schedule, we can configure it to stay alive for as long as it takes to complete the
business process. For example, a book ordered over the Internet may have to be ordered directly from the
publisher which could take weeks to complete. BizTalk Orchestration treats this as a loosely-coupled
process and is able to compensate for added work required to complete the book order.

BizTalk Messaging

BizTalk Messaging Services provide us with the ability to receive messages and route them into a business
process, or to send out messages as a result of a process. Messaging enables business partner integration,
as well as integration of existing applications by acting as the low-level transport and support layer for
BizTalk Orchestration Services. Messaging and Orchestration are designed to be used closely together,
with Messaging providing the receipt and delivery capability that Orchestration relies on.

The major features of BizTalk Messaging include the following:

Transport services

e Data parsing

e Data validation

e Reliable document delivery
e Security

Transport services represent the different protocols and applications that transmit business documents to
their destinations. BizTalk Messaging supports standard Internet protocols like HTTP, SMTP, and HTTPS,
as well as file-based document delivery. Custom software, termed Application Integration Components,

can be also be used by BizTalk Messaging, as well as Message Queuing technology.

All documents that pass through BizTalk Messaging are XML-based. We all know that a business process
may consume data that conforms to a variety of industry standard formats like ASNI X12, EDIFACT, or
even use flat-file formats. BizTalk Server provides a set of data parsers (converters) that translate these

non-XML formats to XML. BizTalk Messaging even allows you to customize its services and develop your
own parsers for use with proprietary data formats.

BizTalk enforces data integrity rules by validating each document instance against a specification. If a
document instance does not conform to specifications, it is transferred to a temporary holding queue for
additional inspection.

Reliable document delivery ensures a document reaches its intended destination in a reasonable amount
of time. BizTalk Messaging stores each document in a central repository. In the unlikely event of server
failure, BizTalk allows other servers to take control and process orphaned documents from the central
repository.

BizTalk Server supports public key encryption for documents transmitted using BizTalk Messaging
Services. On the receive side of messaging operations, BizTalk supports decryption as well as signature
verification.

In this chapter we explored XML, SOAP and Web Services, and Microsoft BizTalk Server 2000. We
discovered the ways XML is the underlying data format for technologies like SOAP, Web Services, and
BizTalk Server and how XSD Schema can be used to create blueprints for XML documents. We studied how
SOAP and Web Services enable application to application communication using standard Internet protocols
like TCP/IP and HTTP. We introduced the basic features of BizTalk Server 2000. We discussed the flow of
events for creating business process drawings using BizTalk Orchestration. Also, we talked about the
features of Business Document Exchange and BizTalk Messaging Services.

To learn more about building Web Services and the gasTIX example, see Chapter 11, "Purchasing a
Ticket." For more information on how BizTalk Server is used to integrate the gasTIX website with a
third-party fulfillment company, see Chapter 12, "Fulfillment." For a more detailed discussion of the XML,
SOAP, or UDDI standards, please visit the websites noted in this chapter.

Microsoft's release of the .NET platform marks an important step forward in software development.
Several years in the making, the framework includes a comprehensive set of class libraries that provides
a robust toolset for developers, built from the ground up with the Internet, XML, and distributed processing
in mind. Strong language interoperability, easier application deployment and versioning, automatic
memory management, and SOAP Web Services support were all key design goals for the .NET
Framework. .NET delivers on these goals, providing an improved development environment that will
make developers much more productive for years to come.

Although JScript and Visual C++ have been updated for .NET, the primary languages targeted for the .NET
Framework by Microsoft are Visual C# .NET and Visual Basic .NET. These languages both fully meet the
stated design goals of .NET. C# is a new language from Microsoft, marketed as providing the Rapid
Application Development (RAD) features of VB, combined with the power of C++. The C# language
syntax will feel quite familiar to C++, Java, and even JavaScript developers. C# was designed and built
with the .NET Framework in mind, and is thus the de facto .NET language of choice. This new language
is already garnering a great amount of interest in the development community, and is also attracting Java
developers who want to target applications for the .NET platform. Visual Basic .NET is a significant
overhaul of the popular Visual Basic 6.0 programming language. Many major improvements have been
made to the language, greatly enhancing the robustness of the tool.

This chapter explores the most important features of the .NET platform from an architectural perspective.
It examines how .NET solves the challenges particular to the distributed Internet-based systems being
developed today. It then provides an overview of the two premier .NET languages, Visual C# .NET and
Visual Basic .NET, along with thoughts about which language to select for your own development. Visual
Studio .NET, the latest and much improved release of Microsoft's integrated development environment
(IDE), will be reviewed in depth.

With the introduction of XML, SOAP, and Web Services, applications can now be easily integrated without
regard to geographical location or the underlying operating system. This should bring about a better online
experience for end-users because applications that we build can now comprehensively gather and process
data that might, in part, live on servers that someone else owns and maintains. Without XML Web Services,
users are often forced to manually work with data from our site, and then go to several other sites to
complete a high-level task. Indeed, this idea of system integration and data sharing via XML is central to
Microsoft's .NET vision. Microsoft believes that vast integration will drive application development over
the next several years, transforming the common user experience and bringing about the "third
generation" of Internet applications.

Myriad challenges face the application designers architecting and implementing the distributed,
Internet-based systems that have exploded onto the scene in the last few years. The same architectural
design goals that drove Windows DNA development (scalability, maintainability, reliability, interoperability,
extensibility) remain relevant in this new landscape. By design, Microsoft continues to provide more
robust tools for architects and implementation teams in order to help meet these goals. .NET represents
a major step forward in the evolution of Internet-based application development, and this section explores
the enabling foundational architecture of this new platform.

.NET Framework Classes

Although the .NET platform includes a great number of different pieces, a large collection of classes called
the .NET Framework is one of its most important features. Developers can take advantage of a
tremendous variety of functionality through this framework, ranging from file 10 and data access, to
threading and web Ul construction. The .NET Framework classes are the single APl used to program

in .NET. Anything and everything we might want to accomplish programmatically in a .NET application,
we will do through some class in this framework.

Because the .NET Framework contains hundreds of classes, it can be overwhelming at first. However, it
is vital that we gain a solid understanding of the framework in order to develop applications effectively
for .NET. To help organize the framework into logical groupings, the designers of .NET have categorized
the classes into namespaces. This makes the scope of the .NET classes more approachable when we are
first learning about them.

Table 4.1 shows the namespaces that are the most widely used in constructing e-Business applications
with .NET. Many different functions occur in a typical e-Business application: dynamically constructing
and serving Web pages, accessing databases, wrapping a transaction around a set of functions, and calling
SOAP methods on external servers. Such functionality is implemented through the following

important .NET namespaces:

Table 4.1
The main .NET namespaces for e-Business applications
Class Name Functional Description

System.Configuration Supports a variety of application install and uninstall classes;
compatible with Windows Installer.

System.Data Use this namespace to access relational databases such as
SQL Server 2000 through ADO .NET classes. An improved
construct called a DataSet provides the equivalent of an
in-memory database, allowing operations on hierarchical
representations of tables.

System.Diagnostics When something goes wrong in our application, we usually
want to write an exception to the event log. We may also

System.DirectoryServices

System.EnterpriseServices

System.IO

System.Messaging

System.Net

System.Runtime

System.Security

System.Text

System.Threading

System.Web

System.XML

want to examine system performance counters, or create our
own. Both types of functionality are found in this namespace.

Features support for interacting with Active Directory
Services (ADSI).

This namespace is used when we need to enlist COM+ services
such as transactions and object pooling. (In .NET, Microsoft
still relies on the COM+ infrastructure built into Windows
2000.)

This namespace includes file I/0 and
StreamReader/StreamWriter classes, used for reading and
writing data to disk.

This namespace is used when our application requires
asynchronous processing based on Microsoft Messaging
technology (formerly MSMQ).

WebRequest and WebResponse classes are included in this
networking namespace, along with support for other
protocols such as TCP/IP and Sockets. This functionality is
used to open networking ports and perform specific tasks over
them.

Serializaticn methods such as the SoapFormatter and the
BinaryFormatter are implemented in this namespace.
Intercoperability with unmanaged COM components is also
facilitated by this namespace.

This namespace includes Cryptography and Policy classes for
helping to lock down a .NET application.

Classes in this namespace provide functionality for dealing
with text-based data. StringBuilder can be used for efficient
manipulation of strings, and RegularExpressions provide
powerful string validation functionality.

This namespace includes classes for building multi-threading
support into a .NET application.

This large namespace includes support for the creation of Web
Services, Web Forms, and for mechanisms such as output
caching to improve the performance of a Web application.

XML and XSL functionality, increasingly prevalent in Web
applications, is found in this namespace. Support for XPath is
also included.

The following diagram presents a high-level view of potential e-Business application functionality mapped
to the corresponding .NET Framework base class. We can use Figure 4.1 to locate the top-level
namespaces that we need to program against when we have a specific e-Business requirement to meet:

COF+ 1.0 Senidces

Fife Systamn
e
e
e e)
T Production
s e
[R T
i
ClLgad
h-llﬁu'_,-
' [-k
[N S
rrl:tr:':c< H

piseServices

anfiguration

Microsoft,
Net
application

(System.Texi)
{System.Threading |

.aspx Web Forms,
asho Web Senvices

XL /XSL L e
ired Dwswﬂes 5!-.]:::.?'..?;.).--.1 ;E?l:_“‘ |l-:-l:: -
(T S at
Sl e
e PR
” o, for w4
age fﬁ'\ st '\‘ Event L og,
Queuing “j_‘——r__"—_\ Performance Counters
Active D¥rectory Sendces
Figure 4.1

A graphical view of the main .NET e-Business namespaces.

One approach to proficiency with the .NET Framework classes is focusing on fluency with the namespaces
listed above. We will probably use functionality provided by these major namespaces in nearly

every .NET e-Business web application that we build. Specialized functionality required by a specific
application can then drive further exploration into the less frequently used namespaces. If we
concentrate on these few namespaces and learn them inside and out, they should provide us with almost
everything we need for building business applications on the Web.

Offering a single API for developers of all .NET languages is a big step forward. Previously, Visual C++
developers either programmed directly against the Win32 API, against the ODBC API, and against MFC or
ATL. Visual Basic developers had their own language-specific class library (VBRun), RDO and ADO for
data access, and only occasionally programmed directly against the Win32 API, with some caveats. In
the .NET world, no matter whether we program in the Managed Extensions for C++, Visual Basic .NET,
Visual C# .NET, or even a third-party language such as COBOL .NET, we now only need to learn a single
API. This is a significant and welcome shift in developing on the Microsoft platform. Programming
against a single API will help facilitate better communication between teams working in different
languages. Although syntactical implementation may differ across languages, the .NET Framework class
library will now serve as a common point of reference.

When developers create the functionality custom to the application they are implementing, they categorize
the various components in classes within an application-specific namespace. This allows clients to
declare and use the application code in the same manner as the .NET Framework base classes are used.
For example, in the gasTIX sample application, all classes providing business functionality specific to our
application are implemented in a namespace we have called "gasTIX":

namespace gasTIlX.Data

using System;
using System.Data;

using System.Data.SQL;

public sealed class Category : DataAccess

C++ and Visual Basic developers will now have much more in common than ever before, increasing the
potential for knowledge sharing and for helping each other and the projects they are working on succeed.
The contention between these two camps has often been acrimonious, and has sometimes undermined the
success of projects because of language bias. It has long been time for these groups to work productively
together, and .NET facilitates this important transition to mutual respect and co-productivity.

Common Language Runtime (CLR)

The Common Language Runtime (CLR) is at the heart of the .NET platform. The CLR is a run-time engine
that compiles IL code into native machine-language code when a Web page or middle-tier method is
invoked. It catches system exceptions, manages memory, and loads and unloads application code.

A major feature of the CLR is its "write once, run anywhere" execution model. Prior to being run by the
CLR, the code we write in C# or VB.NET is compiled into Microsoft Intermediate Language, as shown in
Figure 4.2. Better known as IL, this low-level language is roughly similar to assembly language.

Visual C# .HET Visual Basic .MET

source code source coide
. b . .
Visual C# .NET compiler — Visual Basic .NET compiler
(CSC.exe, Visual Studio .NET) @ (WVBC.exe, Visual Studio .NET)

Platfom-independent
IL code assemblhy
(DLL)

deployment

production server

Figure 4.2
.NET compilation step 1, converting source code to IL.

When IL code is first executed on a target machine, it is compiled into native machine language code for
that platform by an important component of the CLR, the .NET Just-In-Time (JIT) compiler. Figure 4.3

shows how code is JIT-compiled to native machine language for each method that is called, and is then

cached for quick execution.

Microsoft may choose to release JIT compilers for platforms other than Windows. This will allow .NET
code that we write in C# on a Windows 2000 machine to not only run on Windows 2000 Servers, but also
on Linux boxes if a JIT compiler is available for that platform.

There is no longer a separate runtime for VB, C++, and C#. No matter in which language we choose to
code, all source gets compiled to IL. Theoretically, the IL produced by the VB.NET compiler should be the
same as what is produced by the C# compiler. (Microsoft comes close, but there still remain differences
in the IL generated by the two compilers.) A single runtime is needed to JIT-compile and then execute the
managed code, regardless of the language in which the code was initially written. Again, this should help
facilitate communication by developers across languages, since they are all targeting the same runtime,
the .NET CLR.

browser Platform-independent

IL code assembly
{DLL)

page page
request Mesponse

Platform-specific

"Windows Ji-conpiler

l

Native, machine-
language code
{executed, then cached)

CLR

Hage
response

Hage

reguest ﬁ'ﬂ@

\‘
=
—

JUIN
I

0000000 -—.__

production server

Figure 4.3

.NET compilation step 2, converting IL to native code.

The CLR features automatic memory management, called Garbage Collection. The .NET runtime decides
when to release object references based on usage patterns. No longer are developers explicitly required
to release object references or free memory. This should mean improved application reliability because
fewer memory leaks can occur. Tracking down memory leaks can be a long, arduous task, and having the
CLR automatically manage this marks a big improvement in application reliability.

Caution: Remember that only memory resources are automatically managed by the CLR. We must still
explicitly release other resources such as file handles and database connections.

Common Type System (CTS) / Common Language Specification (CLS)

Another powerful architectural feature of the .NET platform is the Common Type System (CTS) that all
languages share. We are no longer forced to perform a special cast on a VB member when calling a
method imported from a C++ class. All languages now share the same types, shown in Table 4.2
(although aliases to these base types may differ per language). The CTS enables the cross-language
interoperability that is a major feature in .NET. As long as a language complies with the Common
Language Specification (CLS), base types can be passed to and from objects written in that language
without incompatibilities.

Table 4.2

The .NET base types, with VB.NET and C# aliases

Visual Visual C# .NET
Type Name Description Basic .NET Alias Alias
Byte 8-bit unsigned integer Byte byte
SByte 8-bit signed integer Not supported sbyte
Intl6 16-bit signed integer Short short
Int32 32-bit signed integer Integer int
Int64 64-bit signed integer Long long
UInt1l6 16-bit unsigned integer Not supported ushort
UInt32 32-bit unsigned integer Not supported uint
UInt64 64-bit unsigned integer Not supported ulong
Single single-precision (32-bit) floating-point Single float
number
Double double-precision (64-bit) floating-point Double double
number
Char Unicode character (a 16-bit character) Char char
String immutable, fixed length string of Unicode String string
characters
Decimal 12-byte decimal value Decimal decimal

Boolean Boolean value (true or false) Boolean bool

DateTime 8-byte date and time value Date no alias (use
DateTime)

Objects can also be inherited across languages because of the CTS and the CLS. This offers developers
the powerful ability to implement in C# an inherited abstract base class written in VB.NET. This is
because all types, even primitive types such as Boolean and Int32, inherit from the abstract base class
System.Object. At a minimum, a certain amount of functionality, including Equals(), GetHashCode(),
and ToString(), is guaranteed to be supported by each and every type, whether built-in or
custom-implemented.

Additionally, all variables are strongly-typed, meaning we define variables with an explicit type such as
Integer, rather than as a Variant. In fact, the concept of Variant does not exist in .NET. Although we can
still perform late binding when needed, the majority of time we will declare variables with an explicit type
and reap the benefits of a strongly-typed system. This should help catch more errors at compile time,
rather than having the user see them at run time. Unsafe type conversions and uninitialized variable
assignments will not be allowed to compile. ASP programmers accustomed to declaring variables with
only a Dim statement will now enjoy declaring variables specifically as Integer or String, catching any
errors at compile time if an inappropriate value is assigned.

.NET languages adhering to the CLS share many additional features dealing with types, properties, and
other class members. The CLS has been developed to ensure maximum language interoperability in
the .NET Framework, a feature that will provide new options for programmers currently working with
Microsoft technologies, and for programmers working in languages that previously could not execute on
the Windows platform. COBOL programmers, for example, will now be able to extend their reach into new
sectors and take advantage of the Internet when vendors for this language develop .NET CLS-compliant
compilers.

Caution: Because .NET languages are required to meet only the minimum specifications set forth in the
CLS, we should not expect non-CLS language features to be inheritable across language boundaries.
A language that might inherit our class may not support the language-specific feature we implement
(e.g. unsigned integers and operator overloading are valid in Visual C# .NET, but are not supported in
Visual Basic .NET).

Metadata

Metadata, information that describes various characteristics of a piece of code, is widespread throughout
the .NET Framework. Metadata is used by the CLR to locate and load classes, to allocate memory for type
instances, to check security settings, and to compile IL code to native code. Metadata enables the
richness of the .NET design, debugging, and profiling tools. Visual Studio .NET provides IntelliSense
support, and the Intermediate Language Disassembler (ILDasm) offers graphical inspection capabilities
via metadata, helping developers optimize productivity.

Metadata is compiled directly into an assembly and cannot become separated from the component that it
describes. This is a big improvement over the COM metadata model, where type libraries (TLB files),
Interface Definition Language (IDL) files, or a variety of other files were separate from the DLL
components that they described. If a TLB file was deleted inadvertently from a developer's system, the

developer would no longer get IntelliSense support for the component in Visual Studio. This situation
cannot occur in .NET.

Metadata also enables a simpler development model called attribute-based

programming. .NET classes and methods can be marked with various properties (attributes)
which are stored as metadata. These attributes tell the CLR how to handle certain aspects of execution.
Examples include SOAP-enabling a method with the [WebMethod()] attribute, and marking the COM+ 1.0
transaction requirements of a class with an attribute such as [Transaction(TransactionOption.Required)].
The following code listing, from the UpdateOrder class in the Business namespace, shows a few of the
attributes used in gasTIX:

namespace gasTIX.Business

using System;
using System.Data;
using System.Runtime.lnteropServices;
using gasTIX;
using gasTIX.Data;

using System.EnterpriseServices;

L
ComVisible(true),
Transaction(TransactionOption_RequiresNew),
Guid('13DF3124-0995-464d-A0AE-1A965A51FF70™)
]

public class UpdateOrder : ServicedComponent

public UpdateOrder()

[AutoComplete]

public void Add(OrderData order)

Attribute-based programming is another big improvement over the COM/DNA model, because attributes
are compiled into the code. In DNA, even if a class was marked with "Transaction=Required," this could
be overwritten by an administrator within the MTS Explorer. Faulty program execution could then occur
because certain conditions might be encountered that the developer did not account for or intend.

Custom attributes can also be implemented in the .NET Framework. These special attributes can be
whatever we want them to be, such as method and property documentation. Other developers that use the
components into which we compile custom attributes discover them at runtime using the
System.Reflection classes.

The .NET platform simplifies component versioning because of metadata. Problems with versioning were
a continual source of frustration in the DNA environment, because although we weren't supposed to ever
break an interface, it happened all the time.

Versioning is facilitated in .NET through a major.minor.build.revision numbering scheme at the assembly
level. Built-in to the .NET CLR is a version-checking algorithm that will look to see if a compatible
component exists.

/7

// Version information for an assembly consists of the following four values:

/7/

// Major Version

// Minor Version

// Revision

// Build Number

//

// You can specify all the value or you can default the Revision and Build Numbers
// by using the **" as shown below:

[assembly: AssemblyVersion(*'2.1.4_*")]

If the major or minor number has changed, the component will be considered incompatible and will not be
used. However, if the build or revision number has changed, but the major or minor numbers remain the
same, the source is considered to be basically the same, and will be used. Windows DNA had no such
version-checking scheme built-in.

When a shared assembly is installed into a machine's Global Assembly Cache (GAC), it will create a
subdirectory for it with a unique name. This allows two versions of the same component, identically
named, to be installed on a machine. Clients that are dependent on the first version can still use that
version, while newer clients can take advantage of the new functionality in the second version.

Deployment becomes simpler in .NET due to the prevalence of metadata. Since types are self-describing
through their compiled-in metadata, there is no longer a need to register types or classes in the Registry.
File locations are specified in the assembly manifest, and this metadata cannot become separated from the
IL code it describes (whereas with COM, registry entries could be inadvertently deleted). See Chapter 16,
"Deploying the Application," for more information on deployment in .NET.

Remoting in the .NET Framework is also enabled through metadata. Remoting is the concept of
instantiating a method on some object on a remote machine. The CLR uses the metadata of the type and
method signature to allocate the proper amount of memory for the method call before it is serialized. For
a detailed discussion of remoting concepts, see Chapter 13, ".NET Remoting."

Server Integration and Device Independence

Microsoft believes that XML and Web Services, standardized in the SOAP protocol, will transform the way
the Internet is used over the next few years. The ability to call functions on a server somewhere on the
Internet is a powerful model (see Figure 4.4). Instead of designing, writing, and debugging a thorny tax
calculation algorithm, we can now search at a site such as www.uddi.org for a trusted authority that

already provides such a calculation, callable through a SOAP Web Service. This lets us focus on what we

do best (implement the business functionality custom to our application's needs), and lets others focus on
what they do best (worry about things like thorny, ever-changing tax calculations).

Server Integration
Dewice Independence -~ e —

- B |
| | Credit Card “erfication
Fartner [UMIX?) |
| Up-lewe |
Brovwe=ars

. —

=mal-screen
| wireless dewicas

CoRTM,
| Ticka Fulfillment Partner

LML, | :
Dovvn-lenel CosoaR - [BizTa k Server 2000) |
| Erowsers | Web |
- Bervices |
| _ irfermefClionis | : [|
Address verification Fartner |
| [DatzCenter Server 2000)
L __ Sdernsl Snfifies
gasTIxX Weh Farm
Figure 4.4

.NET facilitates server integration and device independence.

Because Microsoft firmly believes in this evolving model, deep support for SOAP has been incorporated in
the .NET platform. XML, XSD, XPath, XSL, and other standard protocols are all built into the platform and
framework in various ways. A visual designer for XML and XSD schemas is built-in to Visual Studio .NET
(see the Visual Studio .NET section later in this chapter). Integration with BizTalk Server 2000-generated
schemas is simple, as BizTalk exports transformed XML documents. See Chapter 12, "Fulfillment/Order
History," for detailed information on how BizTalk is integrated into the gasTIX site.

Providing support for the variety of client devices that might access our web application is just as
important as providing back-end integration with other servers. Ever spent long hours trying to get an
HTML page to look and behave the same in both Internet Explorer and Netscape Navigator?
Cross-browser compatibility has been a major headache ever since DHTML support in the browsers
diverged with version 4. The designers of .NET have understood the significant cost to project budgets
related to this issue, and have addressed it in the latest release of Active Server Pages (ASP) technology,
known as ASP .NET. When constructing a page, a Web Form will read the HTTP_USER_AGENT header and
determine what type of device is requesting a page. It will render JavaScript / DHTML to more intelligent
browsers, and HTML 3.2 to "down-level" browsers (for more information, see Chapter 5,
"Implementing.NET Presentation Services™). Because this type of cross-browser programming is now
built-in to the framework, the life of the everyday web developer will be made easier.

Part of the long-term vision for .NET is to provide the information a user might want on any device.
Wireless device usage continues to grow rapidly, and Microsoft has released support for these devices and

for the Wireless Markup Language (WML) in the .NET Mobile SDK. This technology will detect the type of
mobile device requesting the page and render accordingly, similar to the intelligent rendering capability of
ASP .NET. This enables our .NET applications to be accessible from "any device, any time," meeting part
of the primary .NET vision.

During the design phase for a typical e-Business application, we should think about the functionality we
want to offer to our end users in two very different ways. First, consider the normal Web browser client
that will be accessing our application, probably at a resolution of 800x600 or higher. This implementation
should be very rich and full-featured, offering the most powerful online experience. Next, consider how
to present the application to mobile device users. We might port a lot of functionality to the mobile space,
or perhaps a scaled-down subset of the application would be more appropriate. Because we need to
design for small-screen wireless devices, we will likely end up providing users with a significantly different
experience.

More and more people will soon be browsing our sites with Pocket IE or some other mobile browser, so any
new application we develop should remember these users. .NET helps us target these users by providing
a toolset that makes this aspect of Web development easier.

Security and Authentication

All platforms must incorporate strong security measures to obtain widespread adoption. Microsoft has
learned this lesson, sometimes the hard way, over the course of the last few iterations of its Windows
operating system and IIS web server. .NET includes robust security features such as public key signing
of .NET components, role-based security support, and run-time managed code verification checking.

Passport, Microsoft's identity technology that enables users to login to a variety of partner sites with a
single ID and password, is fully integrated into the .NET Framework. Passport is a key strategy for
Microsoft in offering software as a service (the Windows XP operating system even supports Passport as a
login option). Because of its central role and importance to forthcoming technologies, we should strongly
consider implementing Passport Single Sign-In (SSI) technology into our e-Business applications. This
will set the stage for taking advantage of the services collectively known as "HailStorm."

HailStorm services will be hosted by Microsoft and will be accessed via Passport. Basic services such as
MyCalendar, Mylnbox, MyLocations, MyNotifications, and others will be included. Microsoft is committing
large resources to stabilizing its data centers and security, hoping to convince a large number of users to
allow their data to be hosted, furthering the conceptual shift to a service model from a model in which
software is largely hosted locally.

Many computer users move from computer to computer several times during the day. Having data
residing in the Internet "cloud," accessible from any machine (or even any wireless device), is a big
usability win. No longer will we be forced to manually synchronize or update contacts and inboxes.
These services will create new business opportunities for companies, and a more powerful experience for
users. Passport is the key to this world, so investigate it further if you plan on integrating with these
services in the future.

Performance and Scalability

Microsoft has continued to make great strides in improving the scalability and performance of its products.
Many new features have been included in the ASP .NET release specifically aimed at improving web
application performance and scalability.

1S session state provides developers with the ability to maintain information about a Web site user
between page requests. It can now be utilized without scalability concerns, as session information for web
farms can be stored in a SQL Server or on a separate machine running an instance of the Session State
service.

ASP .NET is now a compiled environment, unlike its predecessor, which was an interpreted scripting
environment. Any code parsed line-by-line will implicitly be slower than the same code compiled, all
other things being equal.

ASP .NET also includes output caching, a technology that allows frequently viewed pages that are more
static in nature to be cached on the web server for subsequent requests. This way, only the first user who
requests a page will experience the full wait for page processing. Subsequent users will receive the page
in the time it takes to push it over the wire. This mechanism is configurable, so parameters can be set on
a page-by-page basis.

Because all .NET languages can be multi-threaded, any components written in .NET can take advantage of
COM+ 1.0 object pooling. This is especially helpful for components that take a long time to initially load.
Multi-threading itself greatly improves the performance of components.

Automatic error and overload detection to restart and manage applications and components is supported
for ASP .NET applications. This is a powerful feature that will prevent many applications from locking up
the server. Every 20 minutes or every 5000 page requests, a "preventive restart" is performed for each
ASP .NET worker process. The cache is cleared and memory is released, preventing problems that can
arise when applications run unchecked for hours on end.

.NET Architectural Tools Summary

The .NET Framework brings tremendous improvements in the ability to develop robust, enterprise-class
solutions. A host of architectural features simplifies common Internet development tasks, ensures
cross-language interoperability, and improves overall program execution. As a result, well-designed
applications targeted for the .NET platform will be highly scalable, maintainable, reliable, and extensible.
They will also interoperate well with other Internet applications, a feature designed into the platform from
the beginning.

Now that the most important architectural characteristics of .NET have been examined, let's look at how
the two primary .NET languages, Visual C# .NET and Visual Basic .NET, implement these concepts.

Microsoft has introduced a new language called Visual C# .NET that has been designed specifically with
the .NET Framework in mind. The popular Visual Basic 6.0 language has also been given a significant
overhaul to comply with the .NET Common Language Specification. This section explores the major
features of these two languages and provides some insights on which language to choose when beginning
a project.

Visual C# .NET

Visual C# .NET is a new language that has been in development at Microsoft for several years. Itis
gaining wide acceptance at Microsoft; in fact, parts of ASP .NET and Visual Studio .NET are written in C#.
The Visual C# .NET language was designed specifically to take full advantage of the .NET Framework. It
is a component-based language by design, with support for methods, properties, and events. It also
features full support for the object-oriented programming (OOP) concepts of inheritance, polymorphism,
and encapsulation.

C#, as its name implies, maintains many basic features of the C and C++ family of languages, but with a
new beginning. Itwas indeed time to design a new language from the ground-up with OOP, the Internet,
and components in mind. C# is the product of this new start. Internet features are available in C++, but
largely as add-on features. Java is designed for the Internet, but XML and SOAP support is lacking. C#
is now the most modern development language available, fully supporting the latest types of Internet
applications.

The overwhelming number of C++ constructs and macros proved too high a barrier of entry for most new
programmers. To remedy this, C# does away with the many anachronisms of the C++ language. It
provides newer programmers with a much more concise, integrated toolset which still enables building
robust, interoperating applications. The power of C# is provided by the .NET Framework base classes,
rather than through a variety of different APls as in C++. Novice developers will now be able to dive more
quickly into a full-featured, modern language than ever before.

Java programmers will also be attracted to the C# programming language. Because Java is a C-style
language, the syntax of C# will feel very familiar to Java developers. Interestingly enough, many web
developers who have programmed JavaScript for client-side validation in HTML pages will also feel at
home in C# because JavaScript syntax is similar to C# syntax.

Visual Basic .NET

The latest incarnation of the popular Visual Basic programming language is called Visual Basic .NET. This
is the most significant overhaul of VB to date. Support for OOP concepts such as inheritance,
polymorphism, and encapsulation are included. This marks a very different way to think for VB
programmers, and may present one of the biggest challenges for current VB developers in moving to this
new version.

Multi-threading support is also included in VB.NET. In previous versions of Visual Basic, programmers
could only write single-threaded programs, greatly limiting application performance. With
multi-threading support, Visual Basic applications can now perform on a par with lower-level languages
such as C++. This is another new way to think for VB developers--new concepts such as threading
synchronization must be mastered.

Structured exception handling is another new feature of Visual Basic .NET. Clumsy VB On Error Goto
syntax is replaced with the more logical try..catch..finally syntax. Method overloading now enables
developers to call different implementations of the same method name by passing different parameters.

Type safety is a welcome feature of Visual Basic .NET. In VB 6.0, undesired type conversions would
sometimes occur when the programmer did not intend it. With the introduction of the Option Strict
directive in VB.NET, these types of errors cannot occur, and will be caught at compile time.

With all these new features, Visual Basic .NET offers more power and flexibility than ever before to its loyal
legion of followers.

Language Choice

A great debate is currently raging over which .NET language to use on future development projects: Visual
C# .NET or Visual Basic .NET. This is an important question, but it does not have easy answers.

The decision of which language to use should be the result of carefully weighing development staff
strengths and weaknesses, along with current market trends. It is still too early in the life cycle of these
languages, and the .NET platform in general, to reach a substantive conclusion about which of these two
languages will dominate in the marketplace. However, the following thoughts provide insights which may
help with this decision.

Although the languages are named after C/C++ and Visual Basic, neither Visual C# .NET nor Visual
Basic .NET bears much resemblance to their predecessors. C# bears more resemblance to Java than it
does to C or C++. VB.NET has changed so much (primarily in order to support OOP concepts) that it
requires a significant shift in mindset for current Visual Basic programmers to make the transition. If VB
programmers make the assumption that VB.NET programs should be implemented similar to Visual Basic
6.0 programs, they will make serious programming errors.

Part of the popularity of Visual Basic 6.0 is its simplicity. Business managers have been able to put
together simple applications to meet their needs with little or no help from IT departments. Taking
advantage of the significant strides made with the release of VB.NET will require a fairly significant learning
curve. It is not certain that the business managers who used VB 6.0 so successfully will be able to use
VB.NET in a similar fashion.

There is a substantial base of VB programmers that need an upgrade path into the .NET world.
Conservative estimates state that there are over three million Visual Basic programmers today. If a
significant part of the VB world moves to VB.NET, there will be a large base of support for VB.NET
programming, regardless of its stature as a language.

Microsoft has used Visual C# .NET as their programming language of choice for constructing parts of
the .NET infrastructure. The C# compiler is likely better optimized because of the heavy focus on this new
language at Microsoft. However, consider that C and C++ were used to write most of the existing
Windows infrastructure and programs, yet VB became the language of choice for business applications,
not C or C++. Growing acceptance at Redmond, however, makes the future of the C# language more
certain.

There are a few advanced functions in C# that are not available in VB.NET. Operator overloading,
unsigned integers, and XML documentation support are a few of the more notable. Although these
features may be released in a future version of VB.NET, they are three examples of functionality that C#
provides today that VB.NET does not.

Other Languages

Although this chapter has dealt only with Visual Basic .NET and Visual C# .NET, Microsoft has also released
an update to its Visual C++ and JScript languages.

The Managed Extensions for C++ enables C++ developers to target applications for the .NET Framework,
and to call into unmanaged, "unsafe" C++ code when pointers and other constructs not allowed by the CLS
are needed. JScript is now a compiled language, with support for OOP. Although these two languages
are not garnering a great amount of interest from the development community at large, they will continue
to have their loyal devotees, and Microsoft is committed to them in the near future.

Compilers for other languages adhering to the CLS will soon be released, enabling a large variety of
languages to run on the .NET platform. Developers skilled in Ada, APL, COBOL, Fortran, Pascal, Perl,
Python, SmallTalk, and several other languages will now be able to market solutions for the .NET platform.
They will get a new lease on life by having the power of the .NET Framework at their fingertips, as far as
their respective compilers include support for .NET platform constructs.

Microsoft's upgrade path to .NET for current Visual J++ and Java developers is called the Java Upgrade
Migration Plan (JUMP). The J++ language will not be upgraded to .NET largely because of the litigation
over the past few years between Microsoft and Sun, and because the combination of C# and .NET offers
a viable alternative. Microsoft will continue to support J++ 6.0, so any solutions based on this language
will have Microsoft's support for now. However, the future of this language is uncertain, and it is quite
likely that Microsoft will not release additional upgrades. Any J++ applications should probably be ported
to C# and .NET if business requirements warrant new functionality, or if the application must live for
several more years. (See msdn.microsoft.com/visualj/jump/default.asp for more details on the JUMP
initiative.)

.NET Language Tools Summary

Both Visual C# .NET and Visual Basic .NET provide developers with the most modern programming
constructs, including support for component and object-oriented programming. These languages enable
developers to take advantage of the vast amount of functionality found in the .NET Framework base
classes.

Choosing a .NET language in which to work can be difficult, and depends on many factors. Mastering
the .NET Framework base classes should be the primary goal of any computer professional desiring to
participate in the burgeoning .NET world. The language chosen to implement the underlying constructs
does not hold the same importance as it once did because all languages now sit on top of the same API and
CLR.

The Visual Studio .NET development suite and other important utilities such as the .NET disassembler
ILDasm bring great productivity gains for developers. This section will explore the new features of Visual
Studio, along with several other important .NET tools.

Visual Studio .NET

Microsoft has significantly reworked the Visual Studio development environment. It features a single IDE
for all languages, support for debugging across language boundaries, Web Services support, XML / XSD
visual design tools, and a host of other usability enhancements.

Single IDE

The .NET release of the Visual Studio product suite finally realizes the vision of an all-encompassing IDE.
Microsoft's single IDE is enabled by the cross-language features of the .NET Framework such as the CLR
and the CLS. Whether we program in Visual C# .NET, Visual Basic .NET, or Managed Extensions for C++,
we will use Visual Studio .NET as our main development environment.

Having just one IDE to work with is a great productivity gain for developers. In past incarnations of Visual
Studio, each language came with its own IDE, with different function keys, menu bars, and various quirks.
Switching back and forth between Visual Basic 6.0, Visual C++ 6.0, and Visual InterDev was challenging,
especially for programmers new to the Microsoft world. It was hard enough trying to master a language
without having another IDE to learn--this just added another layer of unneeded complexity.

In order to maximize existing knowledge and skills, we can still choose to use the keyboard scheme or
window layout based on prior language experience. If you're a Visual Basic developer, the IDE can be
configured to respond to familiar VB function keys and to arrange windows similar to VB 6.0. As shown in
Figure 4.5, these options are configured the first time Visual Studio .NET is started, on the My Profile
section of the VS Home Page:

The Visual Studio Start page contains many other helpful sections, including a link to Microsoft's online
developer support area, MSDN. Headlines are retrieved across the Internet from MSDN, enabling the
developer to keep current with the latest patches, techniques, and tips. This integration is an effective
way to encourage developers to access the thousands of technical documents on MSDN, helping them
grow their skills and add value to projects.

Cross-Language Debugging

Having all languages in a single IDE enables another important feature of Visual Studio .NET:
cross-language debugging. It is now possible to step from Visual C# .NET code into Visual Basic .NET

code, or into any other CLS-compliant language. This powerful debugging capability should help
programmers find and correct bugs in less time than ever before.

We also now have the capability to step into SQL Server stored procedures from within the Visual
Studio .NET IDE. This enhancement makes tracking down tricky stored procedures bugs quicker. A
breakpoint must be set within the stored procedure that you want to debug in order to stop application

execution.

Hirrnsnlt Develnpment Bmarnnment [dessgn] - Stark Page =] x)
Ble [t Yew Tock Mndow e
R ey B - BB | o ipasm 114 -
= 0000 m 8| sara et o3 &
w0 | Sokiion Explone R x
| IF

vardy that the Talkewang sefings are persanalized far pau

Prafile:

|Wisual Ehudin Dwweloper |
Eayboand Soleimie: ||_|:l|!'|-\!|l.||'. Sertings] ﬂ
Wirndaw Ly out |'.I".J||l Studio Dalault ﬂ
Halp Fiker; ||r.r. fikmr} ;l

My Prafile

Show Help: ¥ Jnternal Melp T Extarnal Hslp
Al SEartupg: |h'\.-:w Skart Page 3

| R Setion Expkr..[2 s
§

.. |j4t-|!1?l| 'II'n'Il@H.lljbn"“u, &j:ﬂl He 250 nanan

Figure 4.5

The Visual Studio .NET Start page enables customization of the IDE.
Improved Usability

The Visual Studio .NET environment, while based on Visual InterDev 6.0, has been revamped and
enhanced with respect to general usability. Fly-in windows (such as the Toolbox and Server Explorer)
help keep the majority of screen real estate available for the code window. Once we drag and drop a tool
from the Toolbox onto our web form, the Toolbox "flies" back to the left-hand side.

Another user interface enhancement is multi-tab windows (see Figure 4.6). Rather than seeing just the
open window, as in Visual Basic 6.0, multiple tabs now appear across the top of the Visual Studio .NET
window, similar to worksheets in Microsoft Excel. This is a convenient method to quickly be reminded of

what windows are currently open. It also provides an easy way to navigate back and forth among several
code or form windows we're working with.

asfiiil - Hirrnsoft Yisual Ce S50 [design] - enderk i sepoe®

Ele Edt Wew Prowect Dold Debug Fomst Teble [nset Femes Took Wndow Help
@G H@ L M o G oeig » | e (passaced R -
e e Hirmean - - ="
.E‘ DlJ Piorraal I‘u"——..._._: !J!.Iﬂ,-“"f' -
t._""" g | booling ams | Sisbwy.sspa | meinbody. aec -iuthun"‘ll--;l :-cn-::l i b= Iﬂ!."!'_lm 3|
! :l — — i - :-::Tﬂ s
X -.ﬁ;;m“"dm |'=5:|imn'-;|:¢13"!'l: projects) &)
i‘ ; Tupsinass
Nf | eatAddress 1 Stvoet Address 2
E.-_ T |J| le_pddress |
Coy: |
F Biate: |Unbound =
thip 1o _cily teslop |
ﬁ ipping r]umL
Unbound =
L.
G|
@ Desgn | E1 HIML
Outpt 3 = |[Properties. __§¥ =
Wil Biisn =1 [pecuren =
2 Tk B g [B st | [1al [l =
i_‘.l'-"’ar R I i =
st |20 8 % 5 B || Ao | izimon... |[ormmnc Fjmeon.. | Hlwwed .| [HE GHEE 1oom
Figure 4.6

The Visual Studio .NET environment features multi-tab windows.

A feature that will especially benefit newer developers is Dynamic Help. Although this feature causes
some slow-down in performance, it is worth the penalty, especially when learning the Visual Studio .NET
IDE or the .NET Framework. Note how in Figure 4.7, the keyword Protected has been highlighted.
Dynamic Help searches its database for entries related to this keyword and displays matches in the
Dynamic Help window at the right.

The Visual Studio .NET Server Explorer, shown in Figure 4.8, contains any and all parts of a server against
which code can be written. Message queues, performance counters, event logs, and many other
components all live within the Server Explorer.

st S - il Yol LR R [- asridertini aapes®
fla fet fpew froes fud (e fodi dedoe Hein
EAERETE- =1 - JE BT SRR < B w | g (iswond
e ®E I 4%%NK.

ik 0 | Pehorp, s | Eeankety s [TE— —— _-.u-l.n'| i

P A= =l

- Bapespace gaal s
i

= =t g

SERSEF JESCEIPL1on LOf GEBETCLIE.
[EFATY

k] -l.nm-l--sﬂ

J public clasx ardectizx ! Systen.Bab. UI.Fege
i
proteoced Syaten, Web, V1. VebContcols. Tencbox Dill ©o
pratected !Il.rl1:l11-Ill:l-'I:II.H‘l.l:Cn:lnI:rn!l-Fllq;l.::rl.ﬂl’tl]E‘l.'lT

Bysten. Web. Ul.VebfontEnls. TextBoxg BLL1 La_=
proteoTad ByEtets. Veb. VI, Vebtonnrols. PeqeiredFie Ldvel MI.'-II:.'!- il
praceczed Syzzen. Uk Ul . UebCanten il Texelore hill Ea_ bl Sdyaciy bvlei b v
protected Systen. Ueb. U1, Veblanteols. BegeitedFieldital CasainG thes De-elopresnd Ersa ot
procecced Syatets, Ve, U1, Veblonorols. TERcBok DLE] T0_ sl Wikl Sludi NET
FrocEcT®d Sypzep.Web .Vl . Uebloncenin. Texeloxr Bill 't a_ gl St RIET

pratected Syaten. Meb. Ul.Veblantols. BeguiredFisldiial LG [aTue: ol
provecced Byezen, Ueb 11, Veblonceoia. bropdouwnlisat bil
pracecsed Syesem. Wab. U1, Veboncroie. Texsbax Bill_to_
prabtecied Syzten. Uk Ul Veblanicels RemgeiredFiesldial = .'Il—l .'I‘J

| xR I ® =
L PTT— = |
a Tawi Lir mn—dnun | \.\ crop —aimlEm

1B ;i I lles]
!-_-.Illra'mmmllsmmm-lwmu-m ([mennces - wacron— [115 RAUMR 1aven

Figure 4.7

Dynamic Help in Visual Studio .NET especially helps programmers new to the .NET Framework.

T 1 snd® winiial C8AET [deaign) - dbdeil s sy ™ _.il]j,t
O [Pew Bomc Duld [ehyg Tos Wndow Eeip
B RN = - RN R R i A - T |l (reserd @ I
AT Bl ot (LA SR A% N
EETTr | erderiinsseay® | 4 1 ¥ || DErend b & ¥l
BELET HF e
oy F o g
|= Tl -
. a ym:rrmnumm:
£ B Crevtad Seremm) fbatiigens s
B o Crimd 1 for ordsrcie b echaiogr by b Bewrt, o0 CoNEmordrs
. 1 H:thm“ Crapting [veniloo Sonoorent [retinos
= HE'H'-W Trtan. lak 0T Page WE Cowntioo ¢ r
: :MI Fﬂ“ b, = carEnl e Peenles kill =s m“m'm
R [- =.Crop
5 Sacuiy |
R C T I3
X Moot (e e
& | Pefnevanas Coanlig kb . 1. Babfoncrale AeqeiredFisLdUal
i Ry Servwe {kw. mr webconceoin, Tearsen bill to_
B [A Server .TI.WabCantrols. Texzlox bill to_

b TL - Bebfomnernle, Pegaaredf i ldls |
AL elonreals , beopBounlist bil
-Fl.Fablontrola. TexzBom bill to_

b, Tl Bebfonernle, PRgasradFis ldia]l =

| RETET
glll:'ﬂ_l!-ﬁmﬂ.l .. | qumass - racras_ Haieeios bep - Ra |mm

Figure 4.8

VS.NET Server Explorer enables "Rapid Application Development (RAD) for the Server."

A component in the Server Explorer can be dragged and dropped onto a web form, double-clicked, and
programmed against. This is a feature that Microsoft calls "RAD for the Server." It provides
programmers with a quick, visual method for incorporating non-visual components into applications.

The Task List is another helpful window that makes the overall development process in Visual Studio .NET
more robust. Not only does this window display all compile-time errors, but it will also display any TO DO
items that we mark in our code. This provides us with a quick way to mark sections of code that we want
to revisit later.

With the prevalence of XML in the .NET platform, Microsoft has introduced new visual design tools to
support XML. The XML and XSD visual designers, shown in Figure 4.9, allow programmers who are not
experts in XML syntax to generate robust schemas and files by using familiar visual tools, similar to
database design tools.

Bt - ioreeol Yol U@ sET [desige] - 0SSt] sl 1 _|E|£|
B S Wew Projer B De0ug S{ems ook Wndow Help
il _-l".-:il'-uﬂ i xR g "£'|; T = | Ol {pmvww -;'H-.Iﬂl- L
LB RS R

oo | renbiodly 55 ok A5 Ot WA B 5 El]!-:rmml..ud"“ =) Soution Eeplores - gaiBGS .

-
EXl . caeiads [Puchseceds] | B Focier secs
h PRanber Flg S e E—
A Custoerss T dyryg il Fobad aeav

[|!'\rr'\-mfu'rl'll|nr| P

2| bk e

| rinhocy. a0

;l e . S

5] i o, s

| et _weg

=] revent aspe

7| resmve 5

j [T L

3| bour_dewra. e

| boar? e
w'eh ol

__ & usDichernd. i -
CETNL 5 st e [T e

ndgast [ﬂhq.-m 3 u|
|Tnl:.|;_|i|r-ll. 1 LT E——————————" "_"J
= Tashi 3

t [Outpot | G Fiod Nesaks 1 | | crop
Ready
dlstert| | 2 8 =2 A B | Govoa [[eogmmnc ot | Mz | Bpenene | | BOMR, 1esm

Figure 4.9
The VS.NET XSD schema designer offers a way to visually create schemas.

IntelliSense, the statement auto-completion feature that we often wonder how we ever programmed
without, is improved in Visual Studio .NET. VS.NET gives auto-complete functionality when writing XML
files, generated by reading the accompanying XSD schema. IntelliSense is also supported for HTML
statement completion.

Web Services Support

The SOAP protocol is strongly supported in the Visual Studio .NET environment. Visual Studio .NET
includes productivity features that keep developers from having to know the intimate details of the

underlying infrastructure of any SOAP calls. This is achieved by adding a web reference to the Solution
Explorer, similar to how a reference to a library or namespace located on the local machine is added. The
difference is that the SOAP call will likely be going over the Internet, but the enabling infrastructure is
abstracted from the developer.

After right-clicking on the Solution and selecting Add Web Reference..., a dialog box such as the one in
Figure 4.10 is displayed. This screen allows the developer to browse to the Web Service on the Internet,
or to search for a type of service through UDDI.

rddwebRefermnce «[
R = [[¥ TS [y ey ———e—————" = ¢ m

-
chaml warsion="1.07 @ncading="uwif-B" 7> j Acplabls refwraroes
- &g friione Wil Sy e ;I
il ="l P o doeg 200 1 S EMLSehima® B8 bt Mot Fisbisanvices Farkidnent samsiwsd
hito="hitp:/ fechames wmilsoap orgy wsdlfh rs
. e="ltip: S Fschemas srmlsomp oS vesdl) ¥iess Coniract =
et ="TTELS F deros ot . com S wedl S e T el
min: yp="http:f Fschemas . smis nep . org feesal
¥ iapsic ="l f Fachsind s, dinlsmag ,ong S snd
nins: s1="hktp: flocalhost fsebservices
targatNamepace="htlp:f Nocallhos] f e bssrvbces)
mine="ltEg S Fechamas, Simlsoap.ang sl ™
ctypess
CEischoma 2
attrbuteFarmbsfault="qualiflad®
sementFamDefsuit="quall led”
targatiamespace="http:f Mocalhost feiabsarvic
c5 elament name="LEstEwenls s
<5 complexType -
L =

2
i
g

e glement
(@i " LEET E W el & R S e
<5 compbax Ty li
o2 5} B L MR 2
s akmant mnoccuws="1" [

sl e e N ol -

addpeterarce | Coneed | e |

[ERIE

35“.4 4 gcrop active window /‘ win. | | 4 BN, 20000
Figure 4.10
Adding a Web Reference in Visual Studio .NET is easy.

The developer can view a Web Service's SDL contract to get more detailed information about the service.
When the correct Web Service has been located, the developer picks it, and the Web Service is included
within the Visual Studio .NET solution. The SOAP contract is downloaded to the local machine for

IntelliSense support. This allows the developer to use IntelliSense help even for methods called over the
Internet.

The new Web Services programming model is a significant shift in mindset for many developers, but it
holds great promise for driving the creation of an entirely new generation of applications. Visual
Studio .NET abstracts enough of the SOAP protocol plumbing to make it easy for developers to begin
writing and consuming Web Services. Microsoft believes that tools like those found in VS.NET will begin
driving widespread acceptance of Web Services in the industry.

Application Lifecycle Tools

Modeling, design, testing, and source-code control tools are all tightly integrated into the Enterprise
edition of Visual Studio .NET. Having a toolset at our disposal within the VS.NET environment that covers
the entire software development lifecycle from start to finish is a big win for our project teams. No longer
is the Visual Studio development environment simply a set of programming languages. It has evolved to
become a toolset that supports the analysis, design, development, testing, and deployment phases of the
software development lifecycle.

Visual Studio .NET includes tools for the industry-standard Unified Modeling Language (UML) for
application modeling. Support is included for use cases, sequence diagrams, activity diagrams, class
diagrams, and more. The VS .NET modeling tool builds on the previous version of Visual Modeler, which
was itself a subset of the popular Rational Rose product. UML modeling is helpful for communicating
application requirements and architecture across project teams through visual representations of various
system components.

In addition to support for modeling application code, database modeling tools are also included in VS.NET.
The Database Designer provides the developer with the ability to add new tables, columns, relationships,
and more, all within the VS .NET IDE. Query Designer provides an Access-like way of visually generating
SQL queries with drag and drop. The Script Editor provides keyword color-coding when working with
triggers and stored procedures.

When an application has reached the appropriate development stage, it can be tested within the VS.NET
IDE with Application Center Test (ACT, formerly known as Web Application Stress Tool, or Homer). This
tool places a heavy load on the various XML Web Services and HTML / ASPX Web pages that comprise the
application. Test pages for XML Web Services are generated automatically by the Visual Studio .NET
environment, and these pages can be included in automated ACT stress-tests. This tool helps testers
track down potential bottlenecks before the application is ever deployed. Developers can then attack
each bottleneck until test performance metrics meet the specified business requirements.

Applications can be tested at a lower level using Visual Studio Analyzer. This tool tracks interactions
between objects, threads, and the various application tiers. Results are presented in an easy-to-use
graphical format.

Throughout the life of a project, application documents and code must be protected from inadvertent
changes, and from multiple programmers unknowingly working on the same piece of code at the same
time. Visual SourceSafe (VSS) is Microsoft's tool for solving these problems. The .NET release of VSS
brings a tighter integration with the Visual Studio .NET environment for ease of use.

The Visual Studio .NET environment also includes support for deploying a .NET application after it has been
developed and tested. See Chapter 16, "Deploying the Application," for an in-depth look at the
deployment features of VS.NET.

Enterprise Features

Microsoft continues to strive to meet the needs of enterprise-class development projects. Companies
with sizable development projects and staff often wish to standardize application architecture across many
different projects. With Visual Studio .NET, senior developers and technical architects can now develop
baseline application architectures. Templates established by these more experienced team members can

then be used as starting points by team members. This is much more effective than each developer
starting with a blank slate and coming up with his own design.

Senior developers and technical leads can also define Visual Studio .NET policies that dictate whether
certain menu items or components appear in a developer's VS .NET IDE. These policies are defined
through an XML meta-language called the Template Description Language (TDL). For example, seeing
only the relevant components on a toolbar, rather than having to choose from every component available
out-of-the-box, helps developers implement forms that are consistent with the policy laid out by those
responsible for delivery.

Support for Architectural Templates and Policy Definition within Visual Studio .NET helps senior architects
share their knowledge more effectively with team members. This will enable better application integrity
and will help ensure consistency across the work of all the developers on a project or across an enterprise.

ILDasm

The IL Disassembler, or ILDasm, is a utility used for looking at the inner workings of assemblies. It is
located in the C:\Program Files\Microsoft.NET\FrameworkSDK\Bin folder. Such a detailed view of an
assembly is possible because of the prevalence of metadata compiled into every assembly. The metadata
describes everything about an assembly: its types, its version number, its cultural locale, etc.

We might want to view the inner workings of an assembly to determine why a program is behaving like it
is, or to help us find out about all the functionality that is implemented. As shown in Figure 4.11, the parts
of an assembly that ILDasm will display include namespaces, classes, interfaces, methods, events,
properties, and more.

Ol o T e b6 8 205 Dl S Dl - T
Fils Vo= el a

& B Dol pun -

i [UiwiaFoei uidn
v E T ey PRSI T Y
i [tat gy hgrugrt verd-i e
i [Dniafioe e bon
[DosFonCwand veitlais
b B [iaFoew ke
& B DislaF ol mman
- D el

DigtaSe
L e i & L ek b o b iare
Py [i [s Do et vl i b ol il o ol g i e
wrplewwnty [pes Epview Ciarngeararibiodsl LnfSercs
modarat s | pres el T eslraea e s sbis
wpdtarei i[5 o e Dodngeresrbscsd oo istalios
wpbeerrdr | wrwit E priwm, Furime S shon | Sessicole
et relees v [e foviee Corporanieldsl Disugrastdrissie - dajreg] = |71 00 788
Pl il @ s Fprltw et Do wndbeis [n it gt anshurs v hiea] = | [0 X
EEY o3l [FF B - presin st il verg BB
L L SCHERS, - pervsls rhalc: Ml dieg
ek EREE g
W mave i | parple bou
@ olbgs orsss dan faceihlT pees Sobalvaen D ssinis

sl e A ol . - i i, i [.

bl T e Dl
]

L

0] =]%

0
HREREE

T ETTFTTEE T

L
G

e
o e ek

et] | 20 B0y (D)) gt | ebossac | Mpnes) e g oo | S BRERR s

crop active window T

Tmpacs o Hhe el

Figure 4.11

The ILDasm utility offers an inside look into assemblies.

By double-clicking on a member of a type, we can view the IL code that defines the inner workings of the
member. A sample detail view of a DataSet member function is shown in Figure 4.12.

it iy (g

] — F DptaSekniGetdml | stringih
'{-" f |-metiod public hidehysig Gnstance streimg
- GeTERL() el managed
1
SR ¢ cove size My [W2}
I? .E JAsESLACR &
L Jdmcals [class [me=cerlib]3psten, (0. 5bringWriter U B,
M| A class [System.Xel | System.inl iml Testriter @ 1)
IL_m@sn: nesobi imstance uvodd [mscerlib]Spsten.iD.Strimg@riter::.cterd)
1 1 oems: stioc.n
IL_enk: 1dioc.@
= | :IL:Illl:": brFalse.s [L_BAZS
)| 1L esne: 1dloc.m
IL_@m@na: newoh | inctance vodd [Tystem Eml|Systom.Xnl SmlTestdedter::.ctor{cla
IL_@anF: stloc i
IL_ewig: 1dloc.i
IL_@did: Qde.i%.1
IL_@n?: calluirt iastasce vodd [System.Xnl [Systen. s nl . Sl Textelter: isel_Forna l=
IL_B@iF: Ldarg. 0
IL_wEi@: newab j justance vold Sgpsten. Dats, albatalresdriter:: cler{class Sgst
IL_mid: ddloc.1 .y
IL_Ete; dde,ik, @ e
IL_B@1E: dde.is.@
IL_ mem: call instance yodd Spsten.Dats. KmlbataTreeriter s sSavefclasy [Sput la
benl ,
ha=nl
IL_pep%: l1dloc.D
IL_me2e: callvirk imstamce string [mscorlib]System.l0.5tringWriterz:TeString()
IL_men: ret
¥ #¢ end of method DataSet::CotEml = J1|
v
|l- al | LI'"s I
| Crop active window =7 : |
Por sk, cleck | e, 34 |
dstert| | | et | Fow |[[Foma [HE BRMR, 2sm

Figure 4.12
Double-clicking a type member displays the supporting IL code.

ILDasm is useful for figuring out how the underlying .NET Framework behaves, and provides a means of
going "deep" into the detailed implementation when needed.

Command Line Compilers

Included with both Visual C# .NET and Visual Basic .NET is a command-line compiler. This allows us to
write code outside of the Visual Studio .NET environment with the editor of our choice. This is also helpful
for administrators who use build scripts to pull the latest code from VSS and compile it on a regular basis.

Caution: Work outside of the Visual Studio .NET IDE at your own peril. The productivity gains that
VS.NET provides for us are exceptional. Creating typed datasets, programming against web
references, and calling other functions that require plumbing work "behind the scenes" is made
simple in the graphical IDE of VS.NET.

The Visual Basic .NET compiler is VBC.exe and the Visual C# .NET compiler is CSC.exe. Both compilers
provide a variety of switches that control compilation options, as shown in Figure 4.13.

EI--HF_-: WIS A
I s

C TR e e mma T, el e

EALD
i :
1] .
= 1tall"
1
. ER Bl T G

For e, chek L]

i B lg B A D | A | ebgarhas |F_'|."|ﬁFI:H | Wi | [TR :;HE ,f-_,’__‘,:[ﬂl. |.z=1m

Figure 4.13

The language compilers offer a variety of compilation options.

.NET Developer Productivity Tools Summary

Visual Studio .NET finally realizes the long-awaited vision of a single IDE for all Microsoft development
languages. This will bring more synergy to programming teams and will allow developers to move more
easily between languages. Visual Studio .NET brings a host of other productivity features that make it the
premier development environment for building distributed e-Business applications on the market today.
In addition to using Visual Studio .NET, developers should also become familiar with the ILDasm tool.

This utility can help drive a deeper understanding of the way the .NET Framework is designed and
implemented.

The new .NET platform is the end result of a tremendous effort by Microsoft. The company believes that
the Internet is poised to evolve into a new generation of applications and services, interconnecting data on

levels previously not possible. .NET is designed from the ground up with this model of large-scale data
integration and sharing in mind.

Because of its powerful architectural foundation, robust language implementations, and developer
productivity tools, the .NET platform and toolset is poised to deliver the enterprise-class performance and
extensibility that will enable Microsoft e-Business solutions to play in the space once reserved for
larger-scale Unix and AS/400 systems. This chapter has introduced the .NET architecture and tools. Read
on to learn more about designing each of the three logical tiers in .NET, presentation, business, and data.

The presentation layer of the gasTIX website is implemented using ASP.Net pages written with Visual
Basic.NET. The use of ASP.Net offers the following benefits over classic ASP during development: much
shorter development time, separation of design and code, better encapsulation and reusability, and much
easier maintenance. This chapter examines the major features of ASP.Net with particular focus on how
those features were leveraged in the gasTIX website.

When Microsoft first introduced Active Server Pages (ASP) in 1997, developers were suddenly able to
dynamically publish information to the web and customize web pages very easily while using their existing
Visual Basic skills. Visual Basic had already gained a large following, so this advancement made dynamic
web development instantly available to a very large group of developers. Active Server Pages boasted
very easy development, an interpreted script language, and the ability to interact cleanly with standard
HTML files. All of those features were great in 1997 since only a small percentage of companies had
dynamic websites and fewer ones trusted the Internet to handle their core business functionality. With the
success of Active Server Pages, this philosophy began to change.

Active Server Pages quickly became the de facto standard for adding personalization to websites,
publishing data , and displaying continuously updated information across Intranets. However, even as
Microsoft was enjoying a great response to the first version of Active Server Pages, their developers had
already recognized that the vision of the Internet was changing and they were already hard at work on the
next evolution of the technology, ASP.Net.

In the last few years, we have seen the Internet explode from a public novelty to a fundamental business
component. As bandwidth and security have increased, more and more companies are placing their
business processes on the web while hundreds of new companies have emerged whose entire business
depends on the web for its existence.

Transactions written in XML and transferred through the Internet are rapidly becoming the core of
business-to-business communication. becoming the . As companies place more of their business on the
web, they need increasingly more robust, more streamline solutions that can handle the increased volume.
ASP.Net meets these requirements while offering many other new features.

ASP.Net is a radical change from previous versions of ASP. It is much more than simply an upgrade. In
fact, some previously developed ASP applications and pages will not be easily upgraded to ASP.Net. This
marks a significant departure from past ASP upgrades and will no doubt anger some ASP developers.
Microsoft did not, however, make this decision lightly. In designing ASP.Net, Microsoft realized that the
benefits easily outweigh the problems associated with limited backwards compatibility. It was a small price
to pay but one which will be praised in the long run. The rest of this chapter is devoted to demonstrating
the overwhelming benefits of ASP.Net and demonstrating why developers will want to make the switch.

Classic ASP code suffers from all the symptoms of non-object-oriented programming. They are: poor
reusability, increased difficulty when using a distributed development team, and increased maintenance
challenges.. These problems are actually worse in ASP than other non-oo languages, since ASP
inherently mixes two different development languages into a single code base. By mixing HTML design

code with ASP scripting code (whether it be VBScript, JScript, or another language), the resulting page is
much more difficult to read and maintain. Additionally, classic ASP code becomes tied to the design
making it easier to break and more difficult to reuse in other pages. This problem is often referred to as
"spaghetti code," in that the lines of code are intertwined amongst one another like a mound of spaghetti,
with no discernible beginning or end to any strand.

While there are techniques for overcoming many of the non-OO problems associated with classic ASAP,
none of them are part of the technology itself. It is possible to use COM controls, for instance, to improve
encapsulation and reusability. However, the COM control cannot be written in the same VBScript that the
page is written in, it is written against a different object model, and requires different development skills
to produce. ASP .NET improves upon this by integrating all of the solutions into a single development
package.

Classic ASP also suffers from many of the problems inherent in immature languages, such as limited
functionality and poor performance. Since the default language for classic ASP is VBScript, which is a
subset of the Visual Basic language, developers have often complained about the limited functionality
available to ASP pages. Developers familiar with the full Visual Basic language or other application-level
languages, such as C or C++, have found it difficult to work within the limits of VBScript. The power of
VBScript was enhanced