
TE
AM
FL
Y

Team-Fly®

Jeffrey Cogswell

Developing
Visual Studio® .NET

Macros and Add-Ins

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective
is to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies® – The fun and easy way™ to learn

• The Weekend Crash Course® –The fastest way to learn a new tool or technology

• Visual – For those who prefer to learn a new topic visually

• The Bible – The 100% comprehensive tutorial and reference

• The Wiley Professional list – Practical and reliable resources for IT professionals

The book you now hold, Developing Visual Studio®.NET Macros and Add-Ins, is your complete guide to
customizing the Visual Studio development environment. With this book, you will be able to automate
routine tasks, build custom interfaces, use Office objects, and much more — using any Visual Studio-
enabled language — to make this powerful development tool even more responsive and better suited to
the needs of your development process.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with
you to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks
to review our complete title list and explore the other resources we offer. If you have a comment,
suggestion, or any other inquiry, please locate the “contact us” link at www.wiley.com.

Thank you for your support and we look forward to hearing from you and serving your needs again
in the future.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

WILEY
advantage

The

Developing Visual Studio® .NET
Macros and Add-Ins

Jeffrey Cogswell

Developing
Visual Studio® .NET

Macros and Add-Ins

Publisher: Joe Wikert
Senior Editor: Ben Ryan
Developmental Editor: Adaobi Obi Tulton
Editorial Manager: Kathryn Malm
Production Editors: Micheline Frederick/Felicia Robinson
Media Development Specialist: Megan Decraene
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Jeff Cogswell. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA, 01923, (978) 750-8400, fax (978) 646-8700. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN, 46256, (317) 572-3447, fax (317) 572-4447,
e-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002. Trademarks: Wiley, the Wiley Publishing logo, and
related trade dress are trademarks or registered trademarks of Wiley Publishing, Inc., in the
United States and other countries, and may not be used without written permission. Visual
Studio is a trademark or registered trademark of Microsoft Corporation. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc. is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-23752-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To all the .NET programmers who are
continually seeking knowledge.

TE
AM
FL
Y

Team-Fly®

Acknowledgments xiii

About the Author xv

Introduction xvii

Part 1 Automating Your Work 1

Chapter 1 All about Macros and Add-ins 3
What Are Macros and Add-ins? 4
Why Use Macros and Add-ins? 4
Automating Your Work with Macros 5
Enhancing the IDE with Add-ins 7
Online Help for Macros and Add-ins 8
Other Ways to Customize Visual Studio .NET 9

Manipulating the Windows 10
Managing the Toolbars and Commands 17
Customizing the Menus 22

Moving Forward 26

Chapter 2 Just Enough VB.NET 27
VB.NET Subroutines and Functions 29
VB.NET Variables 30
Arrays in VB.NET 34
Strings in VB.NET 36
VB.NET Control Structures 40

Conditional Statements 40
Loop Statements 41
Exceptions 43

Classes in VB.NET 44
Other VB.NET Topics 46
Moving Forward 48

Contents

vii

Chapter 3 Introducing the Visual Studio Macro IDE 49
The Macro System and the Main IDE 49
Macro Development Divisions 51

Projects and Modules 51
Class Files and Code Files 53
Scoping 53

Working with the Macros IDE 54
The Parts of the Macros IDE 55
Managing Projects and Modules 56

Creating a New Project 57
Loading and Unloading Projects 57
Saving Your Project 58
Default Macro Location 59
Creating a New Module 59
Renaming Projects and Modules 59
Deleting a Module 60

Running a Macro 60
Stopping a Macro 61
Using the Code Editor in the Macros IDE 62

Collapsible Code 62
Working with Blocks of Code 63

Debugging a Macro 63
Working with the Macro Explorer 64
Quickly Recording a Temporary Macro 66

Selecting the Recording Project 67
Recording a Macro 67
Editing the Temporary Macro 68
Assigning Shortcut Keys to Your Macros 70

Moving Forward 71

Chapter 4 Macros That Interact with the User 73
Referencing Assemblies and Macro Projects 73

Referencing External Assemblies 74
Referencing Items in Other Macro Projects 75
Referencing One of Your Own Assemblies 77

Creating Windows and Forms 83
Getting Input from a User 83
Creating a Form 84
Displaying Standard Dialog Boxes 85

Working with System Event Handlers 87
Categories of Events 88

Moving Forward 93

Chapter 5 Just Enough .NET Architecture 95
Getting to Know Microsoft .NET 95

Common Language Runtime 96
.NET Class Library 97

viii Contents

Packaging Your Software: Assemblies and Manifests 98
Looking at an Assembly 99
Organizing Multiple Versions of an Assembly 100

.NET and OLE/COM 101
Globally Unique Identifiers 102
Building an Assembly from a COM Component 102

Macro and Add-in Models 103
Visual Studio Packages 104
Visual Studio Project Types 104

Accessing Project Types Not Supported by the Macros IDE 106
Accessing the Project Object 107
Accessing Visual Basic and C# Projects 108
Accessing C++ Projects 109

Macro IDE Automation Model 112
Moving Forward 113

Part 2 Enhancing Visual Studio 115

Chapter 6 Introducing Add-ins 117
About Add-ins 117

Startup and Shutdown 119
Invoking Your Add-in 120
Interacting with the IDE 121
Creating Custom Options Pages 123
Creating Tool Windows 124
Add-ins and the Command System 124
Wizards 125

Add-ins Are COM Components 126
Creating an Add-in 129

Using the Wizard 130
Building and Running the Add-in 136

Managing Add-ins 137
Moving Forward 138

Chapter 7 Creating Add-ins for the IDE 139
Building an Add-in in C++ 139
Including a GUI with Your Add-in 140

Working with Commands 141
Using the Forms Library 141
Building a Tool Window 145
Using the Form Designer with a Tool Window 153

Moving Forward 159

Chapter 8 Life Cycles, Debugging, and Satellite DLLs 161
The Life Cycle of an Add-in 161
Debugging an Add-in 162

Keeping the Registry Clean 163
Debugging the Command-Line Version 163

Debugging the Command-Line Add-in 164
Setting Up Multiple Debug Configurations 165

Contents ix

Creating a Satellite DLL for Resources 167
About Culture-Specific Information 168
Valid Culture Identifiers 169
Adding Culture-Specific Resources in .NET 170

Forms and Multiple Languages 170
Adding Cultural Assemblies in General 171

Making Your Add-ins Multilingual 175
Moving Forward 184

Chapter 9 Manipulating Solutions and Projects 185
Determining the Currently Selected Project 186
Manipulating a Project’s Items 188
Manipulating a Project’s Settings 193
Accessing and Setting Configuration Properties 195
Adding Configurations 198
Configuring Projects at the Solution Level 200
Configuring Individual Files 201
Manipulating Language-Specific Information 205
Moving Forward 206

Chapter 10 Programming the Document and User Interface Objects 207
Managing Documents with the Document Classes 207

The Form Editor and Documents 209
Opening or Creating a Document 210
Processing Text 212
The EditPoint, TextPoint, and VirtualPoint Objects 218
Working with Multiple Windows and Panes 221

Navigating the User Interface Hierarchy 223
Finding a Hierarchy Item 226
Finding an Item Using Regular Expressions 226
Selecting a Hierarchy Item 228
Collapsing Nodes 230

Moving Forward 231

Chapter 11 The CodeModel and Build Objects 233
Manipulating Code with the CodeModel 234

A FileCodeModel Add-in 237
Working with Build Objects 248

Spawning a Build Process 250
Building with the SolutionBuild Object 252
More on the SolutionBuild Object 252

Moving Forward 254

Chapter 12 Creating Project Wizards 255
Dissecting the Wizard Directory Structure 256

Wizard File Interactions and Symbols 259
Rendering the Template Files 263
Wizard Properties 267
A Script Wizard Tutorial 269

x Contents

The common.js File 276
Viewing Your HTML Files 279

Moving Forward 281

Part 3 VS.NET and Other Products 283

Chapter 13 Writing .NET Add-ins for Microsoft Office 285
Introducing Office Add-ins 285
Writing Add-ins for Other Products 287

Preparing the Office Application 287
Creating the Add-in 288
Adding References to Office Products 291
Writing the Add-in 295

Debugging for Multiple Products 301
Responding to Office Events 303
Moving Forward 311

Chapter 14 Integrating Visual Studio .NET with Microsoft Office 313
Adding a Spelling Checker 314
Integrating an Excel Spreadsheet 322
Automating from Macros 326
Moving Forward 333

Chapter 15 Integrating with Other Products 335
Windows Script Host 335
Delphi 338
Python 340

Script Explorer Add-in 343
Moving Forward 352

Part 4 Deploying and Supercharging 353

Chapter 16 Deploying Your Macros and Add-ins 355
All about Security and Add-ins 355

.NET Security 356
Valid and Verified .NET Code 357
Security Permissions 357
Security Administration for .NET 358
Security in Action 359

COM Security 362
Deploying Macros 364

Setting Up the Deployment Project 365
Adding a Shortcut to the .vsmacros File 370
Creating the Custom Action Project 371

Moving Forward 375

Chapter 17 Supercharging Visual Studio .NET 377
Creating an Options Page for Your Add-in 377
Another Useful Add-in 388
Third-Party Add-ins 392

Contents xi

Exploring the CLI 393
Understanding the CLI 394
Other Languages and the CLI 394

Wrap-up 395

Appendix A Class and Object Quick Reference 397
Root DTE Object 397

DTE Properties 397
DTE Methods 400

Other EnvDTE Objects 401
Enumerations 402

Index 409

xii Contents

When I first set out to write this book, I seriously doubted whether the topic of
macros and add-ins would be broad enough to fill some 456 pages. But as I began to
develop the outline, it became clear that the information was certainly dense enough.
And as I wrote page after page, I was astounded at how much there was to say about
the topic. In the end, I can say honestly that this book was a blast to write.

And since writing such a book is never a one-person deal, I want to acknowledge
the many people who worked hard and stayed up late to help me get this book done
on time. These include Ben Ryan (acquisitions editor), who was very kind throughout
this process; Adaobi Obi Tulton (development editor), who is very talented and
patient; Kel Good (technical editor), who is extremely knowledgeable on all the topics
covered in the book. And, of course, thanks to all the production people and additional
editorial staff, including Micheline Frederick and Janice Borzendowski for the won-
derful job with the final edits.

In addition to the editorial staff and John Wiley & Sons, Inc., I want to thank my dear
friends Jenniffer Lesh, Jennifer and Greg Wood, and Andrea Vaduva M.D. (okay, future
M.D., anyway); and my friend and agent Margot Maley Hutchison of Waterside Pro-
ductions in San Diego, who, as I type this, is right now in the hospital giving birth to
her second child.

Acknowledgments

xiii

Jeff Cogswell is a software engineer by trade, and a writer and teacher at heart. He has
written numerous books and articles on programming, and has taught oodles of peo-
ple how to program; he enjoys seeing the light turn on for each student. He currently
lives in Southern California, but as you read this he might be sitting with his laptop in
a coffeehouse far from his home, possibly near your home. If you see him, be sure to
say hello. Or just email him at readers@jeffcogswell.com. Also be sure to visit his Web
site, www.jeffcogswell.com, where you can find even more information on .NET pro-
gramming.

About the Author

xv

TE
AM
FL
Y

Team-Fly®

Welcome to Macros and Add-ins

This is a book about developing macros and add-ins for Visual Studio .NET. Every pro-
grammer who uses Visual Studio .NET, regardless of the type of project he or she is
developing, and regardless of his or her skill level, sooner or later wonders: Why can’t
Visual Studio .NET do such-and-such? Or: Wouldn’t it be nice if Visual Studio .NET
had this feature I’m thinking of? Or: There must be a way to simplify this task that I do
over and over!

Surely you’ve thought of ways you could make Visual Studio .NET better, whether
it’s simply by automating a repetitive task that you have to do 158 times today or by
implementing a full-scale improvement Visual Studio .NET that, for example, would
add an entire window that contains suggestions for misspelled words in the comments
in your code.

For the first case, simplifying repetitive tasks, you can either use a macro, which is a
simple, interpreted piece of code, or an add-in, which is a compiled library that Visual
Studio .NET loads and runs. In the second case, creating a new window for the Visual
Studio .NET environment, you use an add-in. For numerous other tasks, you can use
either a macro or an add-in.

This is all possible thanks to the developers at Microsoft, who, when they created
Visual Studio .NET, included an automation library that provides a set of the objects and
classes for manipulating the Visual Studio .NET environment. This library is available
to you whether you’re writing a macro or an add-in.

For the macros, Microsoft has built on the previous generation of macro tools for its
products. Whereas these earlier tools featured Visual Basic for Applications (VBA),
Visual Studio .NET uses Visual Basic .NET for its macro language. This means that not
only can your macros drive Visual Studio .NET, but they can access the full, rich .NET
framework library.

For the add-ins, Microsoft used a process that already existed in the Microsoft Office
products. (For those of you who are already familiar with add-ins, I’m talking about

Introduction

xvii

the IDTExtensibility2 interface that Microsoft has used in the past.) This means that if
you already know how to develop add-ins for Microsoft Office, you’ve got a head start
on developing add-ins for Visual Studio .NET. Likewise, after you read the chapters in
this book on how to develop add-ins for Visual Studio .NET, you will know how to
design add-ins for Microsoft Office. For this reason, I have devoted a chapter to using
Visual Studio .NET to develop add-ins for Microsoft Office products.

All that said, this book does much more than just explain how to develop and use
macros and add-ins. By working through the entire book, you will also learn about
.NET programming in general. Specifically, you learn:

■■ How the Common Language Runtime works.

■■ What Microsoft Intermediate Language is.

■■ How to develop satellite DLLs that provide for globalization of your software.

■■ What COM is, how .NET differs from COM, and how you can make the two
work together.

■■ And much more!

In short, at the conclusion of this book, you will have a very strong knowledge of
.NET programming in general.

Required Tools

The tools you need to get the most from this book depend on what you want to do:

■■ If you plan to develop add-ins, you must have the Professional Edition, or either of
the Enterprise editions of Visual Studio .NET. (Theoretically, you could develop
add-ins using the Standard edition of C++, VB.NET, or C#, but you would have
an uphill battle. For that reason, if you’re seriously interested in developing
add-ins, I recommend that you purchase a Professional or Enterprise Edition.)

■■ If you plan to develop macros, you can use any edition of Visual Studio .NET,
provided it’s a .NET edition. Though you can develop macros for earlier
editions of Visual Studio, to take advantage of all the features I describe in
this book, you will want to have a .NET edition.

Minimal system requirements include the following: You must have Windows NT
4.0 or later (that is, anything except Windows 3.1, 95, and 98; and if you’re going with
XP, you’ll want the Professional, not the Home Edition). Microsoft also lists some
requirements on its Web site; however, I recommend that you go way beyond these
requirements, at least in RAM. Remember, these are minimal requirements, meaning
Visual Studio .NET will run, but not necessarily very quickly, giving you plenty of time
to go refill the coffee cup as the virtual memory loads and unloads. Here are the
minimum RAM requirements Microsoft suggests:

Microsoft Windows XP Professional. 160 megabytes (MB) of RAM

Windows 2000 Professional. 96 MB of RAM

Windows 2000 Server. 192 MB of RAM

xviii Introduction

Windows NT 4.0 Workstation. 64 MB of RAM

Windows NT 4.0 Server. 160 MB of RAM

I strongly recommend that you double or even triple these numbers, especially if
you’re developing add-ins, because often you’ll run two instances of Visual Studio
.NET on a single computer. For the development of this book, I used Windows 2000 Pro-
fessional with 320 Meg of RAM, and there were times my system had trouble keeping
up. However, in general 320 Meg on a Win2000 box did fine. Remember, these days,
RAM is pretty cheap, and if you’re a serious developer, RAM is definitely something
you will want to invest in. Go for 512 Meg if you can.

As for other tools, consider that programming is changing. These days, thanks to the
miracle of hypertext, we have access to endless bits and bytes of documentation, all
online, which we can access without having to worry about our computers grinding to
a halt. And for the purposes of this book, you will need access to the online help that
ships with Visual Studio .NET. So if you didn’t install it already, do so before you begin
reading this book, because rather than rewriting the online help, listing every single
method of every single object, I provide you with an augmentation to the online help.
Also, at times I refer you to the online help for more information. (But note: I do not
assume prior knowledge of macros and add-ins, and I certainly don’t expect you to
read the online help before reading this book. The online help is simply a reference; this
book will teach you what you need to know.)

Finally, I’ll state the obvious by adding that you should have easy access to the Inter-
net, preferably high-speed, for several reasons. First, this book has an accompanying
Web site, where you can find additional information from me, more add-ins and
macros, and a forum where you can share ideas and thoughts with other program-
mers. Second, even with the online help loaded, you will be spending a good deal of
time at Microsoft’s development site, http://msdn.microsoft.com, specifically in the
library at http://msdn.microsoft.com/library/. If you aren’t familiar with these two
sites, I encourage you to take a peek at them the next time you’re online, for it is at
these sites that you can find nearly all the answers to anything you might ever get
stuck on, well beyond the topics of macros and add-ins.

Background Knowledge

I assume you are familiar with .NET Programming basics, such as how to create solu-
tions and projects, how to use some of the basic framework classes such as those in the
IO namespace, how to run console applications, how to use the form designers, how to
run the debugger, and similar information.

In addition, it will help if you know C++ programming, although most of the work in
this book is in C# and VB.NET. A bit of COM and ActiveX familiarity will help, too,
although for the uninitiated, I explain most of what you’ll need to know of COM and
ActiveX for developing add-ins. (The reason you need to know a bit about these tech-
nologies is that Visual Studio .NET is a COM automation server, and you’ll be developing
add-ins as COM in-process servers.)

Some knowledge of Visual Basic is also recommended, either the older versions of
the language or the newer VB.NET language, because you’ll be writing macros in

Introduction xix

VB.NET. But for VB, too, I walk the uninitiated through the essentials. And I devote an
entire chapter, Chapter 2, “Just Enough VB.NET,” to introducing VB.NET. And rest
assured, if you’re an expert in C++ or C#, you probably will pick up VB.NET in no
time, as the syntax is simple and the language is easy to learn.

I also suggest you learn a bit of C#, if you don’t know it already, because many of the
examples in this book are in C#. More important, the C# language is, in all likelihood,
the future of .NET. Microsoft created C# from the ground floor with .NET in mind
(while borrowing a good bit of the syntax from Java and, to an extent, C++). Basically
C# is the language of .NET, and so, if you’re going to develop for .NET, you will want
to at least explore this exciting new language. If you know another programming lan-
guage (especially C++ or Java), I guarantee you’ll be able to pick up the basics of C# in
a single day. The syntax is straightforward (it’s based on C++ and Java) and the
language is easy to learn.

About the Book

This book is divided into four parts:

Part 1: Automating Your Work. In Part I, I focus primarily on macro development,
showing you how to automate processes in Visual Studio .NET. Even if your pri-
mary interest is add-ins, I encourage you to read this part, as there is a great deal
of information overlap between macros and add-ins; most of what you can do in
macros you can also do in add-ins. Moreover, in the chapters on add-ins, I assume
you’ve at least given the chapters in Part I a quick read. And note that Part I
includes a chapter that introduces the Visual Basic .NET language.

Part 2: Enhancing Visual Studio. Here I introduce the concepts and technology
behind add-ins and then take you through the whole world of add-in development.

Part 3: VS.NET and Other Products. In this part I describe how you can use
Visual Studio .NET to write add-ins for Microsoft Office, and how you can
integrate Microsoft Office products such as Word, Excel, and Outlook directly
into Visual Studio .NET. There are two ways of integrating: by automating the
office products, using their functionality (such as checking the spelling of source
comments or emailing a source file to another developer); and by embedding a
spreadsheet or other Office document right into Visual Studio .NET. I wrap
up Part 3 with a discussion of other tools useful in automation, such as the
Windows Scripting Host and other languages such as Delphi and Python.
(Yes, you can write automation macros using nearly any language you want,
provided you’re comfortable stepping away from the main macro development
tools built into Visual Studio .NET.)

Part 4: Deploying and Supercharging. Once you’ve developed a macro, an add-
in for Visual Studio .NET, or an add-in for Microsoft Office, you’ll want to know
the ins and outs of getting your product onto another computer. Part IV begins
by explaining how to get your add-in deployed, and ends by describing how to
supercharge Visual Studio .NET.

xx Introduction

About the Web Site

In addition to reading this book, I invite you to visit our official Web site at www
.wiley.com/compbooks/cogswell, where you’ll find :

■■ Code examples submitted by other readers

■■ Pages describing additional issues you may encounter, submitted by readers
such as yourself

■■ A discussion forum where you can talk about any issues relating to macros,
add-ins, and .NET development in general

■■ Links to more add-ins and macros that you can download

■■ And much more.

The Web site was designed to help you, the software developer, get the most possible
out of Visual Studio .NET as you develop add-ins and macros. Please join us!

Introduction xxi

PA R T

One

Automating Your Work

3

Macros and add-ins are nothing new. For a long time, programmers have been creating
products that include features allowing users to somehow add their own customiza-
tions and enhancements to the product. Microsoft products in particular have been
rich with such features for some time. For example, early versions of Word and Excel
had their own macro languages, which Microsoft later replaced with Visual Basic for
Applications (VBA). This included a full-featured, integrated development environ-
ment (IDE) that allowed you to design complete programs written in the VBA lan-
guage. This tool was very similar to the actual Visual Basic development tool, as it
enabled you to write functions in the Visual Basic language and even design forms
with controls such as buttons on them. But the “for applications” part of “Visual Basic
for Applications” meant that the language also made it possible to access features that
were part of the program. For example, in Word, you could select text and change the
font programmatically from your VBA program. In Excel, you could write data to cells
and perform Excel functions such as summations.

Visual Studio .NET now has the richest macro and add-in capabilities of any previ-
ous Microsoft tool, as it uses Visual Basic .NET as its macro language. This means that
in addition to the previous VBA features, you also have full access to the entire .NET
foundation library.

All about Macros and Add-ins

C H A P T E R

1

What Are Macros and Add-ins?

Macros are small programs that automate repeated tasks. For example, in Visual Stu-
dio .NET you might write a macro that automatically saves a backup copy of your pro-
gram prior to compiling for version control purposes; or you might write a macro that
automatically reformats your code by reworking all the indentations and general lay-
out, and then replaces all tabs with spaces. You might then attach these two macros to
hotkeys (which Visual Studio .NET calls keyboard shortcuts) so that you can easily access
them simply by pressing a few keys.

To write your macros, you can use a simple recorder feature. Most of the Microsoft
products (including Visual Studio .NET) allow you to easily record a sequence of key-
strokes and menu commands to a macro, and then play it back later. But if you want to
write more sophisticated macros, you can open up the Visual Studios Macro IDE and
develop macros using a full-featured IDE that looks much like the standard Visual Stu-
dio .NET IDE.

Add-ins are larger programs that do more than simply automate work. They are
compiled programs that are added directly into the Visual Studio .NET process.
Although you can automate work with add-ins just as you can with macros, you can
write much more complex programs. In this sense, add-ins are more like enhance-
ments to the Visual Studio .NET IDE, rather than simply an automation of a common
task.

Why Use Macros and Add-ins?

Since the real purpose of Visual Studio .NET is to create software, it might seem a little
strange that you can use Visual Studio .NET to create parts to use directly in that envi-
ronment. The reason that feature is included is that we programmers love automation.
We love to simplify our work. For example, why go through the headache of repeating
the same task over and over when you can get Visual Studio .NET to do it for you?
That’s where the macros come in. You can easily automate common or complex tasks,
and make them work for you.

You can use many of the macro techniques described in this book in other
Microsoft programs, such as Microsoft Word and Microsoft Excel. They all
use a form of Visual Basic for the macros, and the techniques are similar in
all these products.

But there is much more beyond macros. If you want to add new features to the IDE,
you can use add-ins. You can add new dialog boxes to support your new features, and
you can add property sheets to the Options dialog box.

4 Chapter 1

TE
AM
FL
Y

Team-Fly®

Automating Your Work with Macros

Think of macros as a way to automate Visual Studio .NET. With Visual Studio .NET’s
built-in macro language (which is really Visual Basic .NET, or VB.NET for short) you
can write programs that manipulate the Visual Studio .NET IDE. Because the macros
use VB.NET, which is a full-featured language, you have great flexibility and power in
your programs.

If you’re a die-hard C++ fan, as many of us are, please don’t be put off by
the fact that macros use VB.NET. The new VB.NET language is much more
powerful than previous versions of Visual Basic. It has to be, because when
you use Visual Studio .NET to create standalone VB.NET programs, Visual
Studio .NET compiles it to the same intermediate language to which it
compiles managed C++ program, called the Microsoft Intermediate
Language, or MSIL.

But beyond the fact that you’re using a full-featured language that includes all the
old standards like control structures and classes, your macros also have access to the
full automation engine that controls the Visual Studio .NET product. This automation
engine is an OLE Automation library that provides control over the IDE. The object you
use to access the IDE is called Development Tools Extensibility (DTE). Through this
object, you have access to the full automation system for Visual Studio .NET. You will
be able to access items in the Visual Studio .NET IDE such as:

■■ Currently open documents or just the current active document (usually a
source code file).

■■ A list of the add-ins.

■■ Menu commands and available macro commands.

■■ Windows such as the toolbars or the tool windows. Once you have a reference
to a window, you can manipulate the window.

■■ The solution and its projects.

Microsoft uses the term VSMacro to refer to a macro written for Visual
Studio .NET. In this book, I generally use the term macro, as it’s more
convenient; but if I need to distinguish it from other types of macros, I use
the term VSMacro.

Visual Studio .NET includes an entirely separate IDE for developing macros. If
you’ve worked with the VBA system in Microsoft Word or Excel, for example, you
probably have seen how this works: When you edit a macro, a new window opens that

All about Macros and Add-ins 5

looks very similar to the Visual Studio .NET IDE. But this window is for the develop-
ment of macros. By itself, it’s an entire integrated development environment for build-
ing and editing macros.

To get to the Macros IDE from the main IDE, choose Tools➪Macros➪Macros
IDE. (Or simply press Alt-F11.) The Macros IDE will open as an entirely
separate window from the main IDE.

The Macros IDE contains many of the same features you find in the usual Visual Stu-
dio .NET IDE; it also has the same look and feel. In addition, it has its own explorer,
which is similar to the Solution Explorer called Project Explorer, which shows the cur-
rently loaded macro projects. But, unlike the Solution Explorer, the Project Explorer
does not contain a solution; instead, it simply contains a single root node called
Macros. Also, just as in the main IDE, in the Macros IDE you can access the integrated
online help in the same way as the standard IDE.

Macros “live” in files with a .vsmacros extension. These files contain the VB.NET
code for the macros. A single .vsmacros file can hold multiple macros; each macro lives
as a subroutine.

When you set out to write a macro, you might be tempted to try writing in
C++ as a standalone program. But it won’t work. The reason is that the C++
program will not have access to the DTE object for the particular Visual
Studio .NET instance you are running.

Here’s a brief rundown of how to get up and running with macros. In Chapters 2
and 3, I give more detailed descriptions.

1. Open the Macros Explorer by choosing Tools➪Macros➪Macro Explorer (or
press Alt-F8).

2. Create a new macro project. To do this, in the Macros Explorer, right-click the
word “Macros” at the top of the tree and choose New Macros Project. In the
dialog box that appears, choose a name and location for your macro project.
(I’m calling mine “Chapter1”, since they go with Chapter 1 of this book.)

3. Double-click the name Module1. This will open the module in the Macros IDE.
Here’s the code that you will see:

Imports EnvDTE

Imports System.Diagnostics

Public Module Module1

End Module

6 Chapter 1

There’s not much there, but it’s the basic starting point. It imports the EnvDTE name-
space, which gives you access to the DTE object. It also imports the System.Diagnostics
namespace, which gives you access to system processes and debugging information.
Next are the two lines denoting the start and end of the local module, presently called
Module1. Inside here is where you’ll write your macros. For example, here’s a short
macro that does nothing more than minimize the Visual Studio .NET IDE window.

Imports EnvDTE

Imports System.Diagnostics

Public Module Module1

Sub MinimizeMainWindow()

Dim win As Window

win = DTE.MainWindow()

win.WindowState = vsWindowState.vsWindowStateMinimize

End Sub

End Module

The MinimizeMainWindow subroutine contains the macro. This code creates a
variable called win of type Window. Next the code asks the DTE object for the main
window object, saving it in the win variable. Finally, it sets the WindowState member
to vsWindowStateMinimize, which is a member of the enumerated type vsWin-
dowState.

There are many ways to run the macro, but one easy way is to return to the main IDE
window. In the Macros Explorer you’ll see that your macro is now listed in the tree
under the name Module1. If you double-click the name, the macro will run. (Or you
can right-click and in the popup menu choose Run).

If you want to add more macros, you add more subroutines inside the module.

Enhancing the IDE with Add-ins

An add-in is a compiled program that exists as an OLE COM object. In order for Visual
Studio .NET to recognize add-ins, they must implement the IDTExtensibility2
interface.

In this book, I’m assuming that you’re somewhat familiar with COM objects.
In short, a COM object is one that usually lives in a DLL that implements an
expected set of functions called the interface. In the case of add-ins, they
must include the functions specified in the IDTExtensibility2 interface.
Fortunately, there’s a wizard that automatically sets up the classes for you,
including the function headers for the interface, so all you have to do is fill
in the appropriate code. I show you how to do this starting with Chapter 6,
“Creating Add-ins for the IDE.”

Visual Studio .NET contains a project wizard called Visual Studio .NET Add-in Proj-
ect. This wizard simplifies the process of creating an add-in by providing you with a
starting point. Further, Visual Studio .NET gives you an interesting way of developing

All about Macros and Add-ins 7

add-ins. When you run an add-in project opened in Visual Studio .NET, a new Visual
Studio .NET process will start up. Your add-in will run in this new process, which will
then allow you to debug it from within the original Visual Studio .NET process.

To access the wizards that simplify the task of writing add-ins, you need to
have the Visual Studio .NET Professional Edition or better (which contains
C++ .NET). If you purchase the product called Visual C++ .NET, you can still
write add-ins, but you do not have the wizards to help you with the task. In
this book, I’m assuming that you have the Professional Edition and,
therefore, have access to the Add-in wizard.

Like macros, add-ins have access to the Visual Studio .NET automation object, the
DTE. This means you can completely control the Visual Studio .NET environment from
within your add-in.

You have great flexibility in what you can do with add-ins. Here’s a short list of
some of the possibilities.

■■ Add new tool windows. By tool windows, I don’t just mean a window that has
features like a toolbar. Rather, all the auxiliary windows in Visual Studio .NET
are tool windows. They sport tabs at their bottom, and you can drag them
around so they share a window with other tool windows; and you can drop
them in the middle of the IDE so they become floating windows. Examples
of tool windows are the Solution Explorer, the Help index, and the Output
window.

■■ Add new pages to the Options dialog box.

■■ Add new menu items and enable or disable them.

When developing add-ins, remember that you typically write them in C++, and
then compile them. (However, you can also develop them in C# or VB.NET, and then
compile them.) Therefore, one of the benefits of add-ins is that you can distribute them
without distributing the source code. That’s not the case with macros, which are inter-
preted from a form of VB.NET. (I go into the details of creating an add-in starting in
Chapter 6, “Creating Add-ins for the IDE.”)

Online Help for Macros and Add-ins

One of the most important references you will want to use when developing your
macros and add-ins is the online help that accompanies Visual Studio .NET. There are
dozens of objects and classes available to you for manipulating the Visual Studio .NET
IDE, and these classes are all fully documented in the online help. In this book I show
you how to use the majority of these classes, and I include a complete reference guide
that can help you as well. But for quick answers, the online help is always your best bet.

You can open the online help in several places. First, you can open it in the IDE itself
by choosing Help➪Contents, Help➪Index, or Help➪Search. For most development
work, Help➪Index is typically the most useful. (There is also a dynamic help feature,

8 Chapter 1

which most programmers I know don’t use much, but you might find it helpful.
Dynamic help tracks what you are doing and offers suggested help pages to assist
you.)

You can also open the online help in its own IDE-like window. You can find this from
the Start Menu, in the menu group where you installed Visual Studio .NET. The one
you want is the menu item called Microsoft Visual Studio .NET Documentation. When
you open this item, you will see a standalone program open that looks remarkably sim-
ilar to the main Visual Studio .NET IDE. It has the same general look and feel, with a
similar layout and even similar menu items; to get to the help entries, choose
Help➪Index or one of the other items under the Help menu. But note that this pro-
gram’s purpose is strictly to display the online help, not to develop programs. I like to
use this program when I’m looking up topics, but for whatever reason don’t have the
IDE open (such as when I’m writing a book or article or doing general research). I also
find it to be useful when developing macros. The Macros IDE is a separate window
from the main IDE window, which enables me to put my online help in its own win-
dow as well. Then, whether I’m working in the main IDE or the Macros IDE, I just
press Alt-Tab once or twice to get to the help. An added advantage is that it takes up no
extra space in the IDEs. But, really, this is all a matter of taste.

Finally, you have access to the same help from within the Macros IDE, again from
the Help➪Index, Help➪Contents, and Help➪Search menus.

When searching for help on a particular class, the best way to find the help item is
by opening the help index and typing the name of the class, followed by a space, and
then the word Class. This will get you closest to the item. For instance, if you want help
on the .NET String class and you type just String, you will find several entries for
string. But if you type String Class, you will see a couple lines devoted to the ATL
string class; and right after that, you’ll see the string class pertaining to .NET.

When looking for information on the classes that deal with macros,
sometimes typing the class name followed by the word Class doesn’t quite
get you to where you need to be. Instead, for most of the classes that
pertain strictly to the automation engine of .NET, the entries are listed with
the word Object instead of Class. Thus, the entry for DTE is listed under DTE
Object, not DTE Class.

Also, when looking up information that pertains to macros, I find that the index is a
bit less crowded when I open the Filtered By combobox in the help index, and choose
Visual Studio Macros. Of course, the same information is available when you don’t fil-
ter, but I find it a bit easier on the nerves to navigate when the filter is on.

Other Ways to Customize Visual Studio .NET

Visual Studio .NET includes many ways you can enhance the tool beyond writing
macros and add-ins. For example, you can easily add items to the Tools menu. And, of
course, you can arrange the windows the way you want them, and save them. Or you
can easily customize the toolbars that exist in some of the tool windows.

All about Macros and Add-ins 9

In this book I focus primarily on macros and add-ins. However, to make your devel-
opment as productive as possible, you should know how to completely manipulate the
IDE in these alternate manners. Therefore, in this section I show you how to do this.
There are actually many things that you can do with the IDE, so you might be sur-
prised as you read this section.

If you are a language developer, you can add support for your language to
the Visual Studio .NET. For example, if you have a Pascal compiler, you can
create an add-in that lets people use Visual Studio .NET to develop programs
in your Pascal language. To do this, use the Visual Studio Integrator Program
(VSIP), which is a special program with Microsoft where you get additional
SDKs for writing lower-level components for Visual Studio .NET. This program
requires a separate agreement with Microsoft, meaning it is not a part of the
Visual Studio .NET product that you normally purchase. For information on
this program, visit http://msdn.microsoft.com/vstudio/vsip/default.asp.

Manipulating the Windows
Although most people who use Visual Studio .NET know how to find their way
around the IDE, not everyone knows these interesting tidbits regarding how Visual
Studio .NET handles its tool windows. In addition to knowing all the little tricks to get-
ting around in Visual Studio .NET, it’s also important to understand how the windows
behave if you’re writing macros and add-ins that might manipulate the windows.

First, Visual Studio .NET distinguishes between two different types of windows:
document and tool. Document windows are those into which you type your code, after
which their names appear in the Window menu. Tool windows are the auxiliary win-
dows that do not hold code. Figure 1.1 shows an example of a document window; Fig-
ure 1.2 shows an example of a tool window.

Figure 1.1 A document window.

10 Chapter 1

Figure 1.2 A tool window.

Visual Studio .NET also supports a tabbed window. There is a dedicated window
(which I’ll call a document frame) that contains tab sheets, each holding a document
window. You can split the document frame into multiple smaller document frames,
either vertically or horizontally, each with its own set of tabs. To do this, right-click on
one of the tabs in the document frame and choose either New Horizontal Tab Group or
New Vertical Tab Group. You can move document windows within a document frame
by dragging one tab over another; this will change the z-order (that is, the front-to-back
ordering). Or you can move a document window to another document frame by dragging
the document window’s tab onto any location on the new document frame. Figure 1.3
shows an example of the document window frame split to contain two documents side
by side.

Figure 1.3 An example of a split document window.

All about Macros and Add-ins 11

Similarly, the tool windows can coexist alongside one another inside a tool frame
window that has tabs. You can rearrange the z-order by dragging the tabs, and you can
move a tool window from one tool frame to another by dragging the tab to the new tool
frame. But unlike document windows, you can drag a tab and drop it so it gets its own
floating tool frame window. To do this, grab the tab of your chosen tool window and
drag it over the middle of another frame—not on a tab and not on the border of the
frame. (If you drop it on a border, the window will move to another frame, rather than
become floating.) The IDE will display a rectangular box showing where the frame will
appear if you let go of the mouse button. But, remember, when you do this, you get a
new tool frame. That means you can drag other tool windows onto this same tool
frame, thereby either adding more tabs to the frame or splitting the frame either hori-
zontally or vertically, putting one tool window in one half, and the other tool window
in the other half. Figure 1.4 shows an example of such a split tool window.

To drop the tool window onto another tool window’s frame so that the frame splits,
drop the tool near one of the boarders of the frame: near the left to split the frame hori-
zontally, and drop your tool window on the left half; near the top to split the frame ver-
tically, and drop your tool window on the top; and so on. (When the frame window
splits like this, it really becomes two frame windows sharing a common outer window.)

But if you prefer to drop your tool window so it gets its own tab in the frame, rather
than splitting the frame, drop the tool window either on the title bar of the tool frame
or on the existing tabs of the frame, if there are any. (There won’t be any tabs if the
frame only holds a single tool window.) And speaking of which, if you need to drag a
tool window and it’s the only tool window in a frame, and therefore has no tabs, just
drag the title bar of the frame. The IDE will interpret that as dragging the tool window.

Figure 1.4 A split tool window.

12 Chapter 1

Also be aware that you can turn off some of this behavior. If you want your tool win-
dow to be in its own floating frame where you cannot dock it, and the frame will not
allow other tool windows to enter it, right-click on the tool window’s tab, and in the
popup menu choose Floating. Yes, it’s possible that your tool window is already float-
ing; but in this case, the word means something different: It means the tool window gets
its own private frame, hence the IDE considers this form of floating the opposite of
dockable. Until now, all the behavior I’ve been describing refers to tool windows that
are dockable (yes, even when they’re floating—but not floating as far as the IDE is
concerned).

Now for the strange part: You can drop a tool window on a document frame and it
will get a tab inside the frame, as shown in Figure 1.5. However, the document frame
is still a document frame and behaves like one. But you cannot grab the tab of a docu-
ment window and drop it on a tool frame, because documents cannot live inside a tool
window.

But wait, there’s more! You can also set up tool frames (not tool windows, but
frames) so that they are in auto-hide mode. When in this mode, they appear as a small
tab on the left or right side of the window. When you drag the mouse over one of these
tabs, the window appears to pop out of the side (just like in one of those animal docu-
mentaries where the sand crab jumps out of the earth to snatch its prey).

To turn on the auto-hide mode, first dock the tool window or frame, if it’s not
already docked. Then right-click on either the title bar of the frame or one of the tabs
(any tab will do, as long as it’s on the same frame). In the popup menu that appears,
choose Auto Hide.

Now remember, this auto-hide behavior works only for tool frames, not tool win-
dows. And when you auto-hide a tool frame, it gets one side tab with multiple icons on
it, one for each tool window, as shown in Figure 1.6. When you drag the mouse over
the icon for one of the tool windows, that tool window will pop open and its name will
appear beside the side tab. (There’s also some strange widening behavior with the tab
as the name appears and the other name disappears, but I’ll let you explore that rather
than try to describe it here.)

Figure 1.5 A tool window inside the document frame.

All about Macros and Add-ins 13

Figure 1.6 The tool window tabs are on the left.

Now let’s assume you like the auto-hide behavior but don’t like the way the tool
windows share a tab. In this case, you can give each its own tab. To do that, first give
the tool window its own frame (by dragging it around until it gets its own frame); then
right-click the frame’s title bar (there will be no tab to click) and choose Auto Hide.

When you write macros and add-ins, you have access to this windowing behavior.
Here’s a macro that moves the Server Explorer to a document window:

Public Sub ServerExplorerToDocument()

Dim win As Window

win = DTE.Windows.Item(Constants.vsWindowKindServerExplorer)

If win.AutoHides = False Then

win.IsFloating = False

End If

If win.Linkable = True Then

win.AutoHides = False

win.Linkable = False

win.Visible = True

End If

End Sub

This rather simple macro first allocates a variable called win of type Window.
Window is a class in the automation engine that encapsulates the tool and document

14 Chapter 1

TE
AM
FL
Y

Team-Fly®

windows in the IDE. (That said, be aware that the online help lists the Window class
under Window Object, even though it is indeed a class.)

The second line initializes win with the Server Explorer window. To find the Server
Explorer window, the macro first grabs the DTE instance (this time we’re dealing with
an object called DTE, not a class), then gets its Windows property, which is a container
object that holds all the windows. The Item property is the actual container data, and
you can access Item as a function. To find the Server Explorer window, you call the
Item function, passing an enumerated data type called vsWindowKindServerEx-
plorer. This cumbersome word is an item in the Constants object, and thus I fully
qualify the name by starting it with Constants.

Next I check whether the AutoHides property is True. This property refers to
the Auto Hide feature that I described a few moments ago; when it’s true, it means the
window has the Auto Hide feature enabled. If this property is False, then I set
the IsFloating to False. Checking AutoHides before setting IsFloating to
False took some calculating on my part to get the correct order for setting the prop-
erties. The reason I first checked AutoHides is that I wanted IsFloating to be False;
but the problem is that if AutoHides is True, the macro engine issued a runtime error
(in the form of a popup message called Invalid Parameter) when I tried to set
IsFloating to False. That’s because the Window class only lets you modify
IsFloating if AutoHides is strictly False. Yes, it’s kind of strange, but true.

Next I check whether Linkable is True. Why? Because if Linkable is False, it
implies the window is already living as a Document window, and the macro can finish.
But if it’s True, I go ahead and reset the various properties. First, I set AutoHides to
False, then Linkable to False (this is where the window actually switches to being a
document window), and, finally, Visible to True, so you can actually see the window.

Here’s a macro that moves the Server Explorer back to a tool window:

Public Sub ServerExplorerToTool()

Dim win As Window

win = DTE.Windows.Item(Constants.vsWindowKindServerExplorer)

If win.AutoHides = False Then

win.IsFloating = False

End If

If win.Linkable = False Then

win.Linkable = True

win.Visible = True

End If

End Sub

This macro pretty much reverses the items in the previous macro, notice in this case
I still go through the same rigmarole of setting IsFloating to False. I do this
because even though I’m switching the window back to its own tool window, and even
though it will appear to be floating, remember that to the IDE floating doesn’t mean
the same as it does to us. To reiterate, floating is the opposite as dockable. So even though
I want the window to appear to be floating, I still want it dockable. Thus, I set
IsFloating to False.

All about Macros and Add-ins 15

Then I check whether Linkable is False, because I only want to make the
changes if the window is presently a document window. And if it’s a document win-
dow, Linkable will be False. Then when I switch Linkable to True, this causes
the window to switch back to being a tool window.

An interesting aspect of Visual Studio .NET is that you can choose whether you
want your document windows to be tabbed windows or MDI windows (MDI stands
for Multiple Document Interface). (This applies only to document windows, not tool
windows.) When you open up the Options dialog through Tools➪Options, under the
Environment category, the General options allows you to choose between Tabbed Doc-
uments and MDI environment. (Be aware that if you change this setting, you will have
to restart Visual Studio .NET before you will see the changes.) Figure 1.7 shows what
the Visual Studio .NET IDE looks like with MDI windows.

If you choose Tabbed Documents, your document windows will have tabs at the
top, allowing you to choose which document you wish to edit. Additionally, the upper-
right corner of the document window will have a small box with an x in it that you can
click to close the current document. (The document window itself will not close unless
there is only one document in the window and you close the document.) To the left of
the close box are two arrows (that look like triangles) that you use to scroll the tabs into
view if there are too many tabs to fit in the view.

Figure 1.7 The IDE with MDI windows.

16 Chapter 1

Be aware of an odd behavior in Visual Studio .NET that takes some getting
used to: When you are in Tab Documents mode and you are looking at a
window, you can press Ctrl+Tab to switch to the next window. But “next”
does not necessarily imply the window whose tab is directly to the right of
the current window’s tab, since the IDE maintains a z-order (remember,
that’s a front-to-back order) that is independent of the order of the tabs.
Note, also, that if you want to go in the opposite direction, back to front,
you can use Shift+Ctrl+Tab.

The alternative to Tabbed Documents is the MDI environment. MDI is the standard
interface for a lot of older Windows programs. When you choose this option, the tabs
are not present in the document windows, and each document gets its own window.
You can maximize, minimize, and restore the document windows inside the IDE.
When they are restored (but not maximized), they have their own title bar with the
usual goodies—the title, a minimize button, a maximize/restore button, and a close
button. When you maximize the window, it takes up the entire free area of the IDE (the
area not used by the tool windows), but it does not have its own title bar; instead, the
minimize, maximize/restore, and close buttons appear to the right of the main menu
bar in the IDE.

Most people prefer the newer tabbed look, simply because the names of the
documents are all right there in the form of tabs. It’s easy to quickly switch
between them. With MDI, you can’t see all your document names at once
until you click on the Window menu to get a list of them.

Managing the Toolbars and Commands
Toolbars aren’t nearly as complicated to describe as the tool and document windows.
The toolbars live around the edges of the IDE window. When they’re docked at the top
or bottom of the IDE window, you will see a small dashed bar to the left. You can drag
this bar to move the toolbar around. You can slide it around, swap it with another tool-
bar in the same docking edge of the IDE window, or move it to another edge. And
although the dashed bar’s purpose is for dragging, you can also drag the toolbar from
any spacer between the buttons and controls on the toolbar. (Spacers are areas that are
not clickable; they simply provide for space between the controls, and they have a ver-
tical line when the toolbar is docked in the top or bottom edge, or a horizontal line
when the toolbar is docked on the left or right edge.)

Toolbars can also be floating; if you drag the toolbar to somewhere in the middle
of the IDE’s window and let go, the toolbar will get its own window, with its own title
bar. The title bar is smaller than a standard Windows title bar, and it contains the name
of the toolbar and a close button.

All about Macros and Add-ins 17

You can add and remove toolbars by right-clicking in the free space around the tool-
bars or by right-clicking on the dashed line of the toolbar or on the spacers. When you
right-click, you will see a popup menu listing all the toolbars available. Those that are
visible have checkmarks by them. You can hide a toolbar by unchecking its name in the
popup menu, or make the toolbar visible by checking its name.

The final item in the popup menu is Customize. When you click this item, you will
see the Customize dialog box. (This is the same dialog box that appears when you
choose Tools➪Customize.) In this dialog are three tabs: Toolbars, Commands, and
Options.

The Toolbars tab, shown in Figure 1.8, lists all the toolbars in a checked listbox. The
visible toolbars have checkmarks by them. This tab is handy, as you can add new tool-
bars. In this tab is a button called New, and when you click it, a small window opens
asking you for the name of the new toolbar. When you type the name and click OK, the
new toolbar will appear floating somewhere in the middle of the IDE window, with no
buttons inside it. Its name will also appear in the checked listbox, with a check beside
it. To add and remove buttons from it, use the Commands tab.

The Commands tab, shown in Figure 1.9, is the second tab in the Customize dialog
box. It lists all the commands available. These include all the menu items and the
macros, divided up into categories. The left listbox gives the categories, and the right
listbox gives the commands for that category. If there’s a command you wish to add to
a toolbar, find the command in listbox on the right, then drag the command’s name to
the toolbar on which you want to put the command. You can do this for any toolbar,
including any toolbars you created. To remove a command from a toolbar, just drag the
button off the toolbar and let go anywhere. (But, note, if you drag it onto another tool-
bar, you will move it to the other toolbar.)

Figure 1.8 The Toolbars tab of the Customize dialog box.

18 Chapter 1

Figure 1.9 The Commands tab.

There’s another way you can add and remove commands from a toolbar. (Once
again, we’re bordering on feature overload with this product.) While the toolbar is
docked on the top or bottom of the IDE, you will see at the right end a little arrow
pointing down; or, if the toolbar is docked on the right or left side, the arrow will be at
the bottom and pointing left; finally, if the toolbar is floating, you will see this arrow on
the right-hand side of the toolbar’s title bar, to the left of its close button. When you
click the arrow, you will see a drop-down menu with one item on it called Add or
Remove Buttons. When you move your mouse over the item, you will see a submenu
appear with either one or two items. If the toolbar is one of the standard toolbars (that
is, not one you created) the first menu item will be the name of the toolbar, along with
the commands relating to that name. (For example, the Web toolbar has a Web menu
item containing commands related to the Web and browser.) These commands will
have checkboxes next to them, and you can check and uncheck them to add or remove
the commands from the toolbar. (Yes, it’s true: These are menu items, but they have
clickable checkboxes next to them.) The second menu item is Customize, which brings
up the standard Customize dialog box. If the toolbar is a custom toolbar, then you will
only see the Customize menu item.

The Options tab is the third in the Customize dialog box. When you click on this tab,
the first thing you’ll notice is that the top half of the controls are disabled. That’s
because the toolbars section of the IDE come from Microsoft Office XP, and with that
section came this Customize dialog box. And as it happens, Microsoft decided the fea-
ture called Personalized Menus and Toolbars wouldn’t be made available in the Visual
Studio .NET IDE; so instead of removing them altogether, the company simply dis-
abled them. But the bottom half is available, and these options are:

Large Icons. This one is self-explanatory. Selecting it gives you large icons on
your toolbars. However, it does not substitute larger, higher-resolution icons for
the existing icons. Instead, it just magnifies the existing ones.

All about Macros and Add-ins 19

List font names in their font. When you have a font list on a toolbar, the font
names will be in their own font.

Show ScreenTips on toolbars. When this is selected, a description will appear in
a tooltip window when you float the mouse over a command on a toolbar.

Show Shortcut keys in ScreenTips. If you’ve assigned a shortcut key (also called
a hotkey) to your commands, the tooltip will also include the shortcut key.

Menu animations. Supposedly, this will change the way the menus appear.
Unfortunately, it doesn’t seem to work. (Or, probably, Microsoft didn’t imple-
ment it when it reused the Customize dialog box.)

Keeping in mind that this book is about macros and add-ins, not about how to use
the IDE, take a look at the list of Commands. There you will see all the commands cur-
rently available to the IDE. You can call any of these commands from your macros and
add-ins. In a moment, I’ll show you a macro that lists all the commands. But before you
can run this macro (and after you type it in or, at least, after you have created the mod-
ule where you’ll be typing it), you need to do the following:

1. Make sure you’re in the Macros IDE and that your macro project is open.

2. Choose Project➪Add Reference. The Add Reference dialog box will open (see
Figure 1.10).

3. In the Add Reference dialog box that opens, scroll down and find
System.Drawing.dll. Click on it, then on the Select button. You will see it added
to the Selected Components list at the bottom of the dialog box. Click OK.

4. In the code editor, scroll to the top of your module and add the following line
immediately after the existing line Imports System.Diagnostics:

Imports System.Windows.Forms

The reason you need to add the reference is that the macro makes use of a sizing
class called ClientWidth (to set the listbox’s size to match that of the form), and this
class lives inside the System.Drawing DLL (which is actually an assembly). (I talk
about assemblies in Chapter 5, “Just Enough .NET Architecture.”) The reason for the
additional Imports statement is in the code I make use of various objects in the Sys-
tem.Windows.Forms assembly, but I don’t fully qualify the names. The Imports
statement lets me type the class name without preceding it with System.Win-
dows.Forms.

Now here’s the code for the macro:

Sub GetAllCommands()

Dim cmdlist As Commands = DTE.Commands

Dim c As Command

Dim myform As Form = New Form()

Dim list As ListBox = New ListBox()

Dim i As Integer = 0

Dim count As Integer = cmdlist.Count

Dim status As EnvDTE.StatusBar = DTE.StatusBar

list.Left = 0

20 Chapter 1

list.Top = 0

list.Width = myform.ClientRectangle.Width

list.Height = myform.ClientRectangle.Height - 15

list.Anchor = AnchorStyles.Bottom + AnchorStyles.Top + _

AnchorStyles.Left + AnchorStyles.Right

myform.Controls.Add(list)

For Each c In cmdlist

status.Progress(True, “”, i, count)

If c.Name <> Nothing Then

list.Items.Add(c.Name)

End If

i = i + 1

Next

myform.ShowDialog()

status.Progress(False)

End Sub

The first seven lines of this macro (the lines that start with Dim) declare the local
variables for the macro’s subroutine. The first of these is cmdlist, which the macro
initializes to DTE.Commands. The DTE.Commands object is the key to this macro, as it
contains a list of all the commands. The list lives in DTE.Commands object’s List
property. The second variable, c, is a holder that’s used later on when the macro loops
through the commands; this variable holds the current command in the list.

Figure 1.10 The Add Reference dialog box for the Macros IDE.

All about Macros and Add-ins 21

The third variable creates a new instance of the Form class, which is the macro
name for a window. The next line creates a ListBox instance. Note that this list-
box doesn’t automatically get put inside the window until later on when I call
Controls.Add(list) for the Form object.

The next two variables, i and count, are used for looping through the command
list. Notice that I’m initializing the count with the command list’s Count property,
which is the number of commands in the list.

The variable that follows, status, is a reference to the main status bar in the Visual
Studio .NET IDE’s main window. When the macro cycles through the command list,
the macro puts up a progress bar in the status bar to show how far along it is in gath-
ering up the list. (Gathering the list takes a few moments to do; that’s why I decided to
use a status bar.) The next four lines set the size of the listbox; the following line anchors
it, which simply means that when you resize the form, the listbox will resize with it.
Finally, the line to add the listbox control to the form follows.

Next begins the retrieval of the commands. This loop cycles through the command
list and updates the progress bar accordingly; it then adds the commands to the listbox.
(I first make sure the command isn’t an empty string, since you don’t want to add any
empty strings to the list.) Finally, after the loop finishes, the macro shows the window
in the form of a dialog box by calling the form’s ShowDialog function.

To clean things up after the user closes the window, the macro clears out the
progress bar (otherwise it will stay there).

Customizing the Menus
The menus in the Visual Studio .NET IDE are fully customizable. First, the Tools menu
has its own customization feature that is pretty handy for launching external programs
and scripts.

For example, for a project I recently completed, I wrote a VBScript program that
runs under the Windows Shell system that automatically does a screen capture of the
Visual Studio .NET IDE and saves it to a file. Then I added an item under the Tools
menu that launches the script, passing a filename as a parameter.

Though this book isn’t about VBScript, I do talk a bit about the Windows Script Host
in Chapter 15. Here’s the script I used for my recent project, if you’re curious:

dim filename

Set objArgs = WScript.Arguments

if objArgs.Count = 0 then

WScript.Echo “Error; No filename given.”

else

filename = objArgs(0)

Set WshShell = WScript.CreateObject(“WScript.Shell”)

WshShell.Run “PHOTOED.EXE.lnk”

WScript.Sleep 200

WshShell.AppActivate “Microsoft Photo Editor”

WScript.Sleep 300

22 Chapter 1

WshShell.SendKeys “ %en%fa+{end}” ‘

Paste, File-SaveAs, Select filename

WshShell.SendKeys filename ‘ Enter filename

WshShell.SendKeys “%tt” ‘ Select TIF type

WshShell.SendKeys “%s” ‘ Save it!

WshShell.SendKeys “ %fc” ‘ Close it!

end if

This program went inside a file called screencapture.vbs. If you build a script such
as this, you can then add a menu item under the Tools menu that accesses the script. To
add the menu item, choose Tools➪External Tools. In the External Tools dialog box that
opens, click Add. The dialog box will add a new item to the Menu Contents listbox,
and the Title edit control will be active. You then type the name of your menu item
name into the Title control. (For mine, I typed “screenshot.”)

For the Command edit control, you type the name of the command you want to run.
Make sure you include the .exe filename extension or other executable extension;
otherwise, the IDE will not find the command. I usually also include the full path. Also,
don’t put any command-line arguments here; they go in the next box. If you put them
here, the IDE will get confused and won’t be able to find the program. To run my
screenshot script, I typed “c:\winnt\system32\wscript.exe into the Command edit
control.”

Next, in the Arguments edit control, you list the arguments to your program. For my
script, this is the script file itself, followed by the command-line arguments that get
passed into the script. Here’s what I put for the Arguments edit control:

C:\Tools\screencapture.vbs c:\$(ItemFileName)

Now notice the variable ItemFileName. To fill that in, you can click the small
arrow to the right of the Arguments edit control. This opens a popup menu containing
a list of possible variables for the arguments. I chose Item File Name, and the dialog
box automatically filled in the $(ItemFileName) variable for me.

Here are the variables available to you in the Arguments edit box:

Item Path, Item Directory, Item File Name, and Item Extension. These enter the
name of the current document (typically a source code filename). The first, Item
Path, refers to the entire path and filename, such as c:\dev\system\main.cpp.
The second, Item Directory, refers to just the path name, up to and including the
final backslash, but excluding the filename. The third, Item File Name, is just the
filename, without the extension. The final, Item Extension is simply the filename
extension.

Current Line, Current Column, Current Text. The first, Current Line, is the cur-
rent line number where the cursor is presently located inside the document win-
dow. The second, Current Column, is the column number where the cursor is
located. The third, Current Text, is the currently highlighted text in the docu-
ment window. If there is no text highlighted, this will be an empty string.

All about Macros and Add-ins 23

Target Path, Target Directory, Target Name, Target Extension. These all refer to
the path and filename of the target, which is the item you are building, such as
c:\dev\system\debug\MyProgram.exe. This filename is specified in the cur-
rent solution.

Project Directory, Project File Name. The first is the directory only of the project
file, up to and including the final backslash, but excluding the filename. The sec-
ond is the filename of the current project file only, without the path. (If you need
both, you just enter one after the other.)

Solution Directory, Solution File Name. The first is the directory only of the
solution file, up to and including the final backslash. The second is the filename
only of the solution file.

For the Initial Directory edit box, you can enter the directory in which you want the
program to start running. For my script, I left the initial directory blank. However,
there are some variables here that you can enter. These comprise a subset of those in the
list I just described. The variables available are Item Directory, Target Directory, Target
Name, Project Directory, and Solution Directory.

After you enter the information into the External Tools dialog box, you will have a
new menu item under the Tools menu.

There’s another way you can modify the menus, which is somewhat different from
most programs that allow customization. If you choose Tools➪Customize, you will see
the Customize dialog box. While this box is open, you can click on any menu item and,
without letting go of the mouse, drag the menu item to another position—to within the
same menu, to the top of the menu bar, or to any toolbar. In this manner, you can com-
pletely rearrange the menu items to your liking. (Of course, if you’re using a computer
that others use as well, and you change things around too much, you might have some
unhappy coworkers.)

Also note that inside the Customization dialog box, if you click on the Commands
tab and then scroll down in the Categories list box to the bottom, you will see the cate-
gory New Menu. When you click this item, you will see a single item appear in the
Commands list, called New Menu. This represents a new drop-down menu, and you
can drag it to any of the open toolbars or to the main menu bar; or you can insert it into
an existing menu by holding the mouse over the word on the main menu bar until the
menu opens, and then drag the New Menu item down into the menu bar, as shown in
Figure 1.11.

Once you let go of the mouse, you will have a new menu. You can then change the
caption on the menu by right-clicking the menu, and in the resulting popup menu
clicking the Name item. The menu item itself has an edit control in it (it’s quite fancy,
as you can see), in which you can type the new name for the menu item.

Remember, you created an entire menu, not just a menu item. Technically speaking
you created a menu item with a submenu. Thus, if your new menu is on the main
menu bar, it will have a drop-down menu on which you can drop commands. If your
new menu is on an existing menu, then you will get a secondary menu. Or, if you

24 Chapter 1

TE
AM
FL
Y

Team-Fly®

dropped the new menu on a toolbar, the resulting item will have a small arrow that
you can click to open a drop-down menu.

Then you can drag any command from the Commands tab in the Customize dialog
box onto your new menu. This, of course, includes any of your own macros. Thus, you
can create an entire drop-down menu on the main menu bar for your own macros, if
you want. For example, on my system, I used the New Menu item in the Commands
list to add a new menu on the main menu bar, called Macros. Then, under the Com-
mands tab of the Customize dialog box, I chose the Macros category. From the Com-
mands list I found the macros that I wrote and dragged them to the drop-down area of
my new Macros menu. Finally, with the Customize dialog box still open, I right-clicked
on each menu item and used the Name item to give each macro a friendlier name.
Thus, I had quick menu access to all my macros.

Interestingly, in the Macros IDE, you also have access to a Customize dialog
box, through which you can modify the menus and toolbars inside the
Macros IDE itself. There are fewer commands available to you, however, as
you only have access to those that pertain to the macros.

Figure 1.11 A new menu.

All about Macros and Add-ins 25

Moving Forward

In this chapter, I gave you a feel for what macros and add-ins are and where they fit
into the bigger picture of Visual Studio .NET. I described ways you can configure the
Visual Studio .NET IDE, and I gave you a few macros to get started. This let you expe-
rience a bit of the Macros IDE, which, as you could see, is a separate IDE that looks very
much like the main IDE.

As you saw in the macros that you wrote, the language for macros is VB.NET. There-
fore, I’m devoting the next chapter, Chapter 2, “Just Enough VB.NET,” to a lesson in
VB.NET. In that chapter I take you through the VB.NET language, showing you its syn-
tax and interesting features.

Later in the book, as I get into add-ins, you will see that you can write add-ins in one
of many languages, and for many of the examples I choose VB.NET. This, again, is the
same version of Visual Basic that you use for macro programming. If you’re not famil-
iar with VB.NET, I recommend reading Chapter 2.

26 Chapter 1

27

The Visual Studio .NET macro engine uses VB.NET as its macro language. This means
you need to know a bit of VB.NET to program macros. Entire books have been written
about this language, but rest assured, you don’t need to be an expert in it to write macros.
Instead, with just a bit of an introduction, you can learn the nuts and bolts of VB.NET
simply by doing. Probably, by virtue of the fact that you’re reading this book, you’re
most likely a programmer already; otherwise you would probably have little interest in
working with Visual Studio .NET, much less enhancing it with macros and add-ins. So in
this chapter I’m give you just enough information about VB.NET to get you going. It
comprises subsections on various important topics, along with numerous examples so
you can more quickly become familiar with the language. I’m also assuming you are
familiar with at least one other programming language, such as C++ or C#, and that you
have a basic familiarity with variables, control structures, and classes and objects.

First, here are some general thoughts about VB.NET:

■■ VB.NET, like other versions of BASIC, is not case-sensitive. You can type the
word MSGBOX or the word MsgBox. That said, note that the editor has a pre-
ferred case for most keywords and identifier names, and so will correct your
casing for you after you finish typing in a line of VB.NET code.

Just Enough VB.NET

C H A P T E R

2

■■ The macro editor includes a great deal of automatic formatting in addition to
setting the case. You normally don’t have to worry about the indentations of
your code, because the macro editor will automatically set the indentations for
you. (If you don’t like this feature, you can turn it off. To do so, make sure you
are inside the Macro IDE, not the main IDE, and choose Tools➪Options. The
Options dialog will open, as shown in Figure 2.1. In the treeview on the left,
choose Text Editor, then Basic. In the Visual Basic-specific Options on the right,
uncheck Pretty listing (reformatting) of code.)

■■ At times, the macro editor also automatically enters text for you. Specifically,
when you enter a block statement such as a subroutine or a block-If statement,
the editor automatically adds the closing line of the block for you. (You can also
turn this feature off if you don’t like it. In the same options screen just
described, uncheck Automatic insertion of end constructs.)

If you find that you enjoy working in the VB.NET language but are unsure
whether to use it to develop applications besides simple macros, be assured
that Visual Studio .NET compiles VB.NET source code to the same Microsoft
Intermediate Language (MSIL) to which it compiles C# and C++ managed
applications. Therefore, in terms of performance, there will be no difference
between a program written in VB.NET and C++ with managed extensions.

Figure 2.1 The Options dialog for the Macros IDE.

28 Chapter 2

VB.NET Subroutines and Functions

Like most programming languages, VB.NET allows you to divide your code up into
procedures and functions. In the Visual Basic world, however, procedures are called
subroutines. The primary difference between a subroutine and a function is that a func-
tion has a return value, whereas a subroutine does not. (If you’re coming from a C++
world, then think of a subroutine as a function with return type void.)

Here’s some sample code showing the format of the subroutine in VB.NET:

Sub MySubroutine()

MsgBox(“Hello world”)

End Sub

The first line starts with the keyword sub, then declares the name of the subroutine,
and finally lists the parameters inside parentheses. This example has no parameters.
The lines that follow are the code for the subroutine. The subroutine ends with the key-
words End Sub.

Now here’s an example of a subroutine that uses parameters:

Sub MySubroutineWithParams(ByVal a As Integer, ByVal s As String)

MsgBox(a)

MsgBox(s)

End Sub

This subroutine has two parameters, an Integer and a String. Each of them is
passed by value (thus the ByVal keyword preceding each), which means the subrou-
tine receives a copy of the arguments passed in and cannot modify the originals.

If you would like your subroutine to modify the originals, use the ByRef keyword
in place of the ByVal keyword:

Sub MySubroutineWithParams(ByRef a As Integer, ByVal s As String)

MsgBox(a)

MsgBox(s)

a = a + 1

End Sub

This subroutine calls the preceding subroutine and shows that the value passed in
did indeed change:

Sub TestSub()

Dim num As Integer = 10

MySubroutineWithParams(num, “Hello”)

MsgBox(num)

End Sub

Just Enough VB.NET 29

Now here’s an example of a function:

Function Cube(ByVal num As Integer) As Integer

Return num * num * num

End Function

You can also use ByRef in your function, although most people usually consider
that bad practice, since a function’s primary purpose is to simply return a value, not
modify the parameters passed into it. Nevertheless, the option is there if you need it.

There are two ways you can return a value from a function: The previous code used
the Return statement; the alternative is to set the name of the function equal to the
value you are returning. Here’s the same function using this alternate method:

Function Cube(ByVal num As Integer) As Integer

Cube = num * num * num

End Function

When you write your macros, you will write them as subroutines with no
parameters. If you have a subroutine that takes parameters, or a function, it
will not show up in the Macro Explorer in the main IDE. However, you can
still use subroutines with parameters and functions in your code; your
macro subroutines can call these other subroutines and functions.

VB.NET Variables

In VB.NET you normally declare your variables before you use them, as you do in C++
and other languages. To declare a variable, you use a dimension statement such as this:

Dim mystr As String

This declares a variable of type String called mystr. You would, for example, put
the declaration at the beginning of a subroutine, as here:

Sub Variables()

Dim mystr As String

mystr = “Hello”

MsgBox(mystr)

End Sub

The second line stores a string inside the string variable. Notice that in VB.NET
strings require double quotes.

30 Chapter 2

The MsgBox routine displays a message box containing the text passed into the call
to MsgBox. If you type this subroutine into a macro module, you will see the name
Variables under the module name in the Macros explorer within the main IDE. If you
then double-click the name Variables, the macro will run, resulting in a message box
opening up, with the word “Hello” in it.

You can also initialize the variable in the dimension statement by following the type
name with an equal sign and an initial value, like so:

Sub Variables()

Dim mystr As String = “Hello”

MsgBox(mystr)

End Sub

To declare several variables at once, you can string them together into a single state-
ment, like so:

Dim a1, a2 As String

However, when you declare multiple variables on a single line, you cannot initialize
them with an equal sign and a value on the same line as the declaration. Instead, you
have to initialize them separately:

Dim a1, a2 As String

a1 = “Hello”

a2 = “there”

The VB.NET language has several built-in types. You can declare a variable to be of
any of these built-in types; you can declare it to be of any of the .NET framework classes;
finally, you can declare it to be one of the macro objects, such as EnvDTE.StatusBar.

Each built-in type has an associated .NET class. For instance, the .NET class for the
built-in type Integer is Int32. Thus, when you declare a variable as one of the built-
in types, the variable has a set of member variables and member functions that you
would normally expect to find only in an object. For example, the .NET class Int32
has a member function called ToString, which allows you to convert the integer to a
string using a format specifier. (If you’re familiar with printf format specifiers, .NET
format specifiers have no similarities to printf specifiers.) For example, this code:

Dim s As String

Dim n As Integer = 10

s = n.ToString(“C”)

MsgBox(s)

saves the integer 10 in the variable n, then calls the n variable’s ToString function, just
as if n were an object, not a built-in type. (In fact, it really is an object.) This particular
ToString example formats the number as currency (that’s what the C stands for).
Thus, when the message box opens, it will show the string “$10.00”. (If you’re inter-
ested in exploring the format specifiers, open up the Visual Studio .NET online help,

Just Enough VB.NET 31

and go to the contents. From there, drill down as follows: Visual Studio .NET➪.NET
Framework➪Programming with the .NET Framework➪Working with Base Types➪

Formatting Types. (This section contains a complete description of the format speci-
fiers and how to use them.)

Here’s a list of the built-in types, along with their associated .NET classes and a
description. Note that signed means an integer variable can hold a negative number,
positive number, or 0. Unsigned means the integer variable can hold only positive num-
bers or 0. Note also that although I’m listing the .NET classes here, the primary use for
the class names is to look up the member functions and variables for the class in the
online help. In your macro programming, you will not use the .NET class names.

Byte (class Byte). This is an 8-bit unsigned integer. Its possible values, therefore,
range from 0 to 255.

Short (class Int16). This is a 16-bit signed integer. Its possible values range from
–32768 to 32767.

Integer (class Int32). This is the most commonly used integer type. It’s a 32-bit
signed integer, ranging from –2,147,483,648 to 2,147,483,647.

Long (class Int64). This is an integer with double the precision as the standard
Integer type, allowing for enormously large positive or negative numbers.
If you’re curious, the range is –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. (Yes, that’s nine quintillion.)

Single (class Single). This is a 32-bit floating-point number. Its range is
–3.402823e38 to +3.402823e38, although its precision is limited to 32 bits.

Double (class Double). This is a 64-bit floating-point number, ranging from
–1.79769313486232e308 to +1.79769313486232e308.

Boolean (class Boolean). Variables of this type hold only one of two values: True
or False.

Char (class Char). This is a type representing a single character. Note that in
.NET, the Char type is a wide character, meaning it takes up 2 bytes, not just 1 as
in most character types on other platforms.

Decimal (class Decimal). This is a unique integer type that takes up 96 bits (that
is, 12 bytes). It can hold integers in the range (get ready for this)
–79228162514264337593543950335 to 79228162514264337593543950335. This type
is primarily useful in financial and accounting applications where large num-
bers and no rounding errors are required.

Object (class Object). This is simply the root class from which all .NET objects
are derived.

String (class String). This is the standard .NET string type. Refer to the section
titled “Strings in VB.NET” in this chapter for more information.

Date (class Date). This is a flexible data type for handling dates.

One particularly interesting item of note about the two floating-point types (Single
and Double) is that they can hold any number in their respective range; or they can

32 Chapter 2

hold the value PositiveInfinity to represent positive infinity, NegativeInfinity
to represent negative infinity, or NaN meaning “not a number.” If you divide a positive
number by 0 (according to .NET anyway) you will get PositiveInfinity, like so:

Sub TryInfinity()

Dim f As Single

f = 1.0 / 0.0

MsgBox(f)

End Sub

When you run this macro, you will see a message box with the word “Infinity.” To
get negative infinity, you divide a negative number by 0. To get “NaN,” you divide 0
by 0.

The Decimal type is a bit strange to use. To store a number in a variable of type
Decimal, you can either use a string, as in this code:

Sub TryDecimal()

Dim d As Decimal = “1111111111222222222233”

MsgBox(d * 2)

End Sub

Or you can append a D on the end, like so:

Sub TryDecimal()

Dim d As Decimal = 1111111111222222222233D

MsgBox(d * 2)

End Sub

When you run this code, you will see a message box showing
2222222222444444444466. With the Decimal type, you can also apply a fixed decimal
point. This is not like a floating-point number, which can lose accuracy in accounting
packages. Instead, Decimal uses a fixed decimal point, which maintains accuracy by
storing the digits as a whole number and keeps track of the decimal point’s position.
(It’s the same idea as saying, “To add $15.35 and $2.86 on a calculator, just type in 1535
+ 286,” understanding that there’s an implied decimal to the left of the second digit.)
Thus, you can try something like this:

Sub TryDecimal()

Dim d As Decimal = 11111111112222222222.33D

MsgBox(d * 2)

End Sub

When you declare a variable as a macro object, make sure that when you dimension
a variable, you declare it as a type; don’t use a value in place of the type. Look at this
line of code:

Dim b As StatusBar = DTE.StatusBar

Just Enough VB.NET 33

It declares b to be of type StatusBar, and it initially sets it to DTE.StatusBar.
StatusBar is a class, and DTE.StatusBar is an instance of StatusBar. Remember,
in this book, you are writing macros, so most of the objects you access will be inside the
IDE. Some of these objects might be the only instance of a class. For example, the IDE
has only one status bar. To access this status bar, you access the DTE.StatusBar
object. The easiest way to figure out the type, then, is to look up in the online help the
name of the object you are trying to access. (Most of the objects have the usual names,
such as StatusBar.) The online help will list the entry as an object (as in “StatusBar
Object”). This online help entry looks as if it’s discussing a class (since it includes prop-
erties, methods, and events for the object). However, the entry is actually for the actual
object. Now look down at the example (each object has one) and you’ll see how the
variable is dimensioned. In the case of the status bar, the variable is dimensioned as
type StatusBar.

In Chapter 3, “Introducing the Visual Studio Macro IDE,” I discuss the
different macro objects available, along with many of the .NET classes that
are useful to macros and add-ins.

You can declare constants as well as variables. Constants have fixed values, and
once you declare them, you cannot change them. For constants, you use the keyword
const instead of dim. Here’s an example:

Const company As String = “Macros, Inc.”

Arrays in VB.NET

Arrays in VB.NET (and C++.NET and C# as well) are handled drastically differently
from arrays in non-.NET languages. The reason for the difference is that the .NET
framework includes an array class, and to get the array class working with the .NET
languages, Microsoft totally integrated the .NET array class to the languages. Thus,
VB.NET has an extremely powerful built-in array type.

One unusual aspect of VB.NET arrays is that the indices start at 0 and go up to, and
include, the number you use when you declare the array. So if you declare an array of
100, the smallest index is 0 and the highest index is 100 (so really the size is 101).

The first unusual thing about the array type is that you don’t have to specify a size
when you declare an array variable. Here are some examples. First, a simple array
where I declare the size up front:

Sub ArrayTest()

Dim myarray(5) As Integer

Dim i As Integer

For i = 0 To 5

myarray(i) = i * 2

Next

End Sub

34 Chapter 2

TE
AM
FL
Y

Team-Fly®

Next is a simple two-dimensional array:

Sub ArrayTest()

Dim myarray(5, 3) As Integer

Dim x, y As Integer

For x = 0 To 5

For y = 0 To 3

myarray(x, y) = x * y

Next

Next

End Sub

And now here’s an example where I don’t declare the size up front:

Sub ArrayTest()

Dim myarray() As Integer

Dim x As Integer

myarray = New Integer(5) {}

For x = 0 To 5

myarray(x) = x * 2

Next

MsgBox(myarray.Length)

myarray = New Integer(10) {}

For x = 0 To 10

myarray(x) = x * 5

Next

MsgBox(myarray.Length)

End Sub

The first line of this code declares myarray as an array of integers, but it does not
yet specify the size. In fact, the reason the line doesn’t specify a size is that no array has
been created yet. The third line, myarray = New Integer(5) {}, creates the actual
array and specifies the size of the array. Notice the strange syntax: the type is followed
by a number in parentheses, then by an empty set of braces, which are necessary to dis-
tinguish the right side of the equation from:

New Integer(5)

which simply declares a single integer, initializing it to 5.
The braces also serve as an initializer. Since the braces in the previous code have

nothing inside of them, no initialization is taking place. Here, then, is an example of an
array with initialization:

Dim myarray() As Integer

myarray = New Integer(5) {0, 1, 2, 3, 4, 5}

Just Enough VB.NET 35

Or you can initialize a multidimensional array, like so:

Sub ArrayTest()

Dim myarray(,) As Integer

myarray = New Integer(3, 1) {{0, 0}, {1, 2}, {3, 4}, {5, 6}}

MsgBox(myarray.Length)

End Sub

First, notice how I declared the myarray variable in the first line: I put a lone comma
inside the parentheses. This tells the compiler that I’m declaring a two-dimensional
array variable, but not yet associating it with an actual array object. Then in the second
line, I create the array object. It is a 4-by-2 array since the first dimension runs from 0 to
3, and the second dimension runs from 0 to 1. Then I initialize the elements by putting
braces of arrays inside the outer braces.

Finally, as an experiment, I show the length inside parentheses. When I ran this, I
saw the number 8. That’s the total number of integers inside the array.

Strings in VB.NET

If you are a C or C++ programmer, you will be very happy to see the strong support of
strings that is built into VB.NET. The String type supports both a plus (+) operator and
an ampersand (&) operator, both for concatenation, with slightly different features.
When you are combining strings, they both work the same way. Here’s an example:

Sub StringSamples()

Dim mystr As String = “hello”

mystr = mystr + “ there “

MsgBox(mystr)

End Sub

When you run this, you will see the phrase “hello there” appear in the message box.
Alternatively, you can use the & operator:

mystr = mystr & “ there “

The difference between the + and & operators is apparent when you’re combining a
string with a variable of another type. The & operator converts all items to a string, as
in this sample:

Sub StringSamples()

Dim mystr As String = “Number “

Dim num As Integer = 100

mystr = mystr & num

MsgBox(mystr)

End Sub

When you run this, you will see the string “Number 100” appear in the message box.

36 Chapter 2

The + operator, in contrast, converts strings to long integers. Thus, other than strings,
you can only use the + operator with any of the number types. Here’s an example:

Sub StringSamples()

Dim mystr As String = “50”

Dim num As Integer = 100

Dim total As Long = mystr + num

MsgBox(total)

End Sub

When you run this, you will see the number 150 appear in the message box. That’s
because the third line, which adds mystr + num, converts the string “50” to a num-
ber 50, and then adds it to the number 100 to get 150.

If you need to append to an existing string, instead of typing, for example,
mystr = mystr & “Hello”, you can instead type mystr &= “Hello”. This also
works with the + operator, as in mystr += “Hello”. If you’re a C++
programmer, you will be pleased to see the += and &= additions to the
Visual Basic language.

Copying strings couldn’t be easier. Just set one string variable equal to another:

Sub StringSamples()

Dim mystr1 As String = “George”

Dim mystr2 As String

mystr2 = mystr1

MsgBox(mystr2)

End Sub

You can also compare strings using a single equal sign. (For the C, C++, C#, and Java
programmers, remember VB.NET uses only a single equal sign for comparisons.)
Here’s an example:

Sub StringSamples()

Dim mystr As String = “abc”

Dim mystr2 As String = “abc”

If mystr = mystr2 Then

MsgBox(“The strings are equal”)

End If

End Sub

(As for the syntax of the if statement, I talk about control structures in the “VB.NET
Control Structures” section later in this chapter.)

Since String variables are actually instances of the .NET class String, you have access
to all the String class member functions. For example, the following function converts
a string to uppercase:

Sub StringSamples()

Dim mystr As String = “George”

Just Enough VB.NET 37

mystr = mystr.ToUpper()

MsgBox(mystr)

End Sub

The .NET strings have a very important feature: they are immutable; that is,
you can’t change them. At first that sounds like the most horrible thing a
developer could do when creating a string class. But it’s not as bad as it
sounds: You can’t modify the string, but you can put an entirely new string
inside a string variable. (To the C and C++ programmers, what you’re
really doing is pointing the variable to a new String instance.) Thus,
mystr.ToUpper() doesn’t modify mystr; rather, it just returns a new
string that’s an uppercase version of mystr. If you want to store this
back in mystr, you simply type:

mystr = mystr.ToUpper()

Therefore, don’t fall into the trap of expecting your member functions to
modify the string. They won’t: They return a new string that you need to store
back into the original variable. (If you have many long strings and are going
to be modifying them, you might take a look at the StringBuilder class,
which is documented in the online help. It’s a true mutable string class.)

Some of the String member functions are members of the class itself, not of the
instances. (For C and C++ programmers, I’m talking about static members here.) To
access these methods, simply type the word String, then a period, and then the func-
tion name. Here’s an example:

Sub StringSamples()

Dim mystr As String = “George”

Dim mystr2 As String = “GEORGE”

If String.Compare(mystr, mystr2, True) = 0 Then

MsgBox(“The strings are equal, ignoring case”)

End If

End Sub

The function call String.Compare(mystr, mystr2, True) performs a compar-
ison, while ignoring case. Thus, “George” and “GEORGE” will show as being equal by
the Compare function. (If you leave off the True, or use False instead, you’ll do a case-
sensitive comparison.) The Compare function returns a value of 0 if the strings are equal.

Strings in .NET are zero-based, meaning each character in the string has an
index; the first gets index 0, the second character in the string gets index 1,
and so on. This is unlike previous versions of Visual Basic, where the index
of the first character in a string was 1.

Here’s a short list of some of the more useful string member functions. (For the com-
plete list, check out the Visual Studio .NET online help’s index under “String Class.”)

38 Chapter 2

All of these functions apply to an instance of String, unlike the Compare function I
described earlier, which is a member of the String class itself.

Chars. Technically, Chars is a property, but it works like a function. Use Chars
to retrieve individual characters in a string. For example, if your string variable
called mystr contains “Hello”, then mystr.Chars(1) will return the character
“e,” while mystr.Chars(0) will return the first character, “H.”

EndsWith. Use this function to determine if the string ends with a substring that
you specify. For example, if your string variable mystr contains “Hello there”,
then mystr.EndsWith(“There”) will return True.

IndexOf. This function finds the first occurrence of a substring that you specify.
For example, if your string variable mystr contains “This is a test, isn’t it?” then
mystr.IndexOf(“is”) will return 2.

Insert. Use this function to insert a string into another string. However, remem-
ber you aren’t really changing the string; instead, you’re creating a new string
equal to the original with the new string inserted. For example, if your string
variable mystr contains “Hellome”, then mystr.Insert(5, “ from “)
will return a new string containing “Hello from me”.

PadLeft. Use this function to add spaces (or any character) to the beginning of
a string (that is, the left side of the string) to make the string a certain length.
For example, if your string variable mystr contains “computer”, which is eight
characters, then mystr.PadLeft(12) will return the string “ computer”. You
can also add any character you want, not just spaces, by specifying the character
as the second parameter. Then, mystr.PadLeft(12, “*”) will return the
string “****computer”..

PadRight. This function is identical to PadLeft, except it pads on the right.

Remove. This function removes characters from a string. If mystr is “George
Washington”, then mystr.Remove(1, 5) will return “G Washington”.

Replace. This function replaces a substring in your string with another substring,
both of which you specify. For example, if mystr is “George Washington of
Washington”, then mystr.Replace(“Wash”, “Dry”) will return “George
Dryington of Dryington”. Notice that it replaces every instance of the first given
substring.

Split. Use this function to split a single string into an array of strings. The origi-
nal string gets split up based on a character you specify. For example, if mystr
is “Once upon a time.”, then mystr.Split(“ “) will return an array contain-
ing “Once”, “upon”, “a”, and “time.”. Here’s a sample macro that splits a string
and displays each string of the resulting array in a message box:

Sub StringSamples()

Dim mystr As String = “Once upon a time.”

Dim myarray As String() = mystr.Split(“ “)

Dim onestr As String

For Each onestr In myarray

MsgBox(onestr)

Next

End Sub

Just Enough VB.NET 39

ToLower. This function converts the string to lowercase, returning the new string
consisting of all lowercase letters.

ToUpper. This function converts the string to uppercase, returning the new string
consisting of all uppercase letters.

VB.NET Control Structures

VB.NET supports all the usual control structures that you would expect in a modern
programming language. In the sections that follow, I discuss conditional statements,
loop statements, and exceptions.

Conditional Statements
VB.NET supports both If statements and Select/Case statements. (For C++ pro-
grammers, Select/Case statements are the same as switch statements.)

There are two forms of the If statement: a standard If statement and a block-If
statement. Here’s an example of a standard If statement:

If size < 50 Then MsgBox(“Size is less than 50”)

This statement occupies only a single line. It always starts with the If keyword, then a
condition, the word Then, and finally the statement to execute, if the condition is true.

Now here’s an example of a block-If statement:

If size < 50 Then

MsgBox(“Size is less than 50”)

size = 50

MsgBox(size)

End If

The key here is that the first line contains the keyword If, the condition, and the key-
word Then. The lines that follow, up to the End If line, only run if the condition is
True. The End If line signifies the end of the If-block.

The block-If statement can also support multiple Else blocks:

Sub Conditionals()

Dim size As Integer = 125

If size < 50 Then

MsgBox(“Size is less than 50”)

size = 50

MsgBox(size)

ElseIf size < 100 Then

MsgBox(“Size is less than 100”)

Else

MsgBox(“Size exceeds 100”)

End If

End Sub

40 Chapter 2

Notice the keywords used: the ElseIf keyword is a single word, and the final block
simply uses an Else statement.

VB.NET also supports a Select/Case statement. Here’s an example:

Sub Conditionals()

Dim size As Integer = 5

Select Case size

Case 0

MsgBox(“It’s 0”)

Case 1, 3, 5, 7, 9

MsgBox(“Odd, less than 10”)

Case 2, 4, 6, 8

MsgBox(“Even, less than 10”)

Case 10 To 20

MsgBox(“Between 10 and 20”)

Case Else

MsgBox(“Greater than 20 or less than 0”)

End Select

End Sub

The first line is the variable being tested, in this case, size. The case lines that fol-
low are the items against which to compare the variable. You can either put a single
value or a list of values separated by commas; or, if you’re dealing with integral types,
a lower bound and an upper bound separated by the word To. Optionally, you can
have a final Else clause that runs for all other cases.

Unlike C and C++, you can put strings in a Case statement. Thus, the following is
perfectly valid:

Sub Conditionals()

Dim name As String = “Fred”

Select Case name

Case “Fred”, “Ethel”

MsgBox(“It’s the neighbors”)

Case “Lucy”, “Ricky”

MsgBox(“Its us”)

End Select

End Sub

Loop Statements
There are four loop statements that you can use in VB.NET: a While loop, a Do loop,
and two forms of a For loop.

First, here’s an example of the While loop:

Sub Loops()

Dim n As Integer = 0

While n < 5

MsgBox(n)

n += 1

Just Enough VB.NET 41

End While

End Sub

You can see that the While loop starts with the keyword While, then a condition.
The lines that follow are those the While loop executes while the condition is True. You
signify the end of the lines with the End While statement. Also, remember that if the
condition is not satisfied initially, the lines in the While loop will not execute at all, and
execution will resume after the End While statement.

Now here’s an example of a Do loop:

Sub Loops()

Dim n As Integer = 0

Do

MsgBox(n)

n += 1

Loop While n < 5

End Sub

This works the same as the While loop, except the computer tests the condition
after the lines inside the block run. Therefore, the lines inside the block always run at
least once, even if the condition is not satisfied.

You can also code the While loop using syntax from the Do loop. The following loop
performs identically to the first While loop in this section; the syntax is just slightly
different:

Sub Loops()

Dim n As Integer = 0

Do While n < 5

MsgBox(n)

n += 1

Loop

End Sub

And now here’s an example of the first kind of For loop. This kind is for simple
counting:

Sub Loops()

Dim n As Integer

Dim a As Integer = 1

For n = 1 To 15

a += n

Next

MsgBox(a)

End Sub

The For loop starts with the keyword For, then the variable that serves as the
counter, then the starting number for the counter, the word To, and the ending number
for the counter. In this example, the For loop will run 15 times. The first time it runs, n
will be 1. The final time it runs, n will be 15.

42 Chapter 2

Optionally, you can tell how many times to increase the counter variable after each
iteration. By default, the counter variable increases by 1. The following code, however,
increases it by three each time by appending Step 3 after the For loop’s header line:

Sub Loops()

Dim n As Integer

Dim a As Integer = 1

For n = 1 To 16 Step 3

a += n

Next

MsgBox(a)

End Sub

To count down, simply use a negative number for the Step, as in:

For n = 16 To 1 Step -3

a += n

Next

Finally, when dealing with container classes, you can iterate through the containers
using the For Each construct. One common place to do this is with arrays. Here’s an
example that iterates through the items in an array:

Sub Loops()

Dim myarray() As Integer

myarray = New Integer(5) {0, 1, 2, 3, 4, 5}

Dim n As Integer

For Each n In myarray

MsgBox(n)

Next

End Sub

Exceptions
Exceptions are an important addition to the VB.NET language. They work similarly to
other languages, such as C++.

There are three subblocks in an exception block. These are:

Try block. This is the block that contains the code that might result in an
exception.

Catch block. This block contains the exception handler. You can have additional
Catch blocks to handle more exceptions.

Finally block. This block contains the code that always runs, whether an
exception occurred or not.

Here’s an example of an exception handler dealing with file I/O. File I/O is
probably the most error-prone situation, since pretty much anything unexpected can

Just Enough VB.NET 43

happen: the disk could fill up; another program could corrupt a file that your program
is working on; and so on. This example opens a file, writes several lines of text to it, and
closes it.

Sub WriteFile()

Try

Dim f As TextWriter

Dim n As Integer

f = File.CreateText(“c:\myfile.txt”)

For n = 1 To 100

f.WriteLine(“Number “ & n)

Next

f.Close()

Catch e As IOException

MsgBox(“Exception occurred “ & e.Message)

Finally

MsgBox(“All finished!”)

End Try

End Sub

If you’re trying this out, please refer to “Other Ways to Customize Visual Studio
.NET” in Chapter 1, “All about Macros and Add-ins,” for information on how to set up
your macros. You will need to include the following line for this preceding code to
work:

Imports System.IO

One problem in working with exceptions is determining which exceptions
can occur. In the previous example, I knew that the most likely culprit to
raise an exception would be the WriteLine method. To find the exceptions
this method can raise, I opened the online help and located the
TextWriter Class in the index. Then I chose the All Members item under
the TextWriter Class entry. I located the WriteLine method and opened up
the one that takes a string as a parameter. I then found, midway down the
page, a list of the exceptions the WriteLine method can throw. There was
only one, and it was IOException.

Classes in VB.NET

Classes with support for inheritance are a welcome addition to Visual Basic. Here’s an
example of a class in VB.NET:

Class DrawingShape

Protected width As Integer

44 Chapter 2

TE
AM
FL
Y

Team-Fly®

Protected height As Integer

Function GetArea() As Integer

If VerifyDims() Then

Return CalculateArea()

Else

Return -1

End If

End Function

Protected Overridable Function CalculateArea() As Integer

Return 0

End Function

Private Function VerifyDims() As Boolean

If width < 0 Or height < 0 Then

VerifyDims = False

Else

VerifyDims = True

End If

End Function

Sub New(ByVal x As Integer, ByVal y As Integer)

width = x

height = y

End Sub

End Class

In a moment I’ll show you an example of two classes derived from this Drawing-
Shape class. But, first, some points about it:

■■ Access levels go to the left of an item and refer only to the item that follows
(unlike C++). Your choices for access levels are public, protected, or pri-
vate. Additionally, VB.NET has a scope called friend, which means the items
are private outside the module containing the class, but public anywhere
within the module. If you do not specify an access level, an item will be public
by default (except for constants, which default to private).

■■ To return data from a function, you can either use the Return statement (as I
did in the GetArea function) or set the function name equal to the return value
(as I did in the VerifyDims function). Note, however, that most people prefer
to use the Return statement.

■■ To specify that derived classes can override a function, put the keyword
Overridable after the access level. You can see this in the CalculateArea
function.

■■ The New function is a constructor. The constructor gets called when you
create an instance of the class. You can see this constructor takes two integer
parameters.

Just Enough VB.NET 45

Now here’s an example of two classes derived from class DrawingShape:

Class Rectangle

Inherits DrawingShape

Protected Overrides Function CalculateArea() As Integer

Return width * height

End Function

Sub New(ByVal x As Integer, ByVal y As Integer)

MyBase.New(x, y)

End Sub

End Class

Class Triangle

Inherits DrawingShape

Protected Overrides Function CalculateArea() As Integer

Return width * height / 2

End Function

Sub New(ByVal x As Integer, ByVal y As Integer)

MyBase.New(x, y)

End Sub

End Class

Each of these classes is derived from the DrawingShape class. Notice the second
line of each class, Inherits DrawingShape, which declares the base class.

Each of these classes also overrides the CalculateArea function. To override it, I
included the Overrides keyword (not to be confused with the Overridable key-
word I used in the DrawingShape class).

Finally, each class also has a constructor. In VB.NET, you do not label your con-
structors as Overridable or as Overrides. (If you’re a C++ programmer, this
shouldn’t be a surprise to you. The same is true with the ANSI standard for C++.
Under the ANSI standard, constructors are not virtual.) Also, when creating a construc-
tor for a derived class, you must call the base class constructor in the first line of the
derived constructor’s code. You can see this line in constructor: MyBase.New(x,y).
(You always use the keyword MyBase.) Finally, in VB.NET, when you have a con-
structor in a base class that takes parameters, you must provide a constructor with the
same parameter types in the derived class, even if the constructor in the derived class
does nothing more than call the constructor for MyBase.

Other VB.NET Topics

In this section I provide you with some miscellaneous topics in VB.NET programming.

46 Chapter 2

Comments. In VB.NET, a single quote character begins a comment. The comment
runs to the end of a line. A comment can begin in the middle of a line. Here are
some samples:

‘ Loop through each string in the array

For Each onestr In myarray

MsgBox(onestr) REM display the string

Next

Breaking up lines. Unlike other languages where statements end with a semi-
colon, statements in VB.NET end with the end of a line. If you have a really long
line, you can just put it on one line, scrolling off the right side of the code editor.
But for esthetics, you might want to split up the line. To split a line in VB.NET,
end the first line with a space and then an underscore; you’re then free to con-
tinue the statement on the next line. Of course, you can only split a line in places
where you would normally insert a whitespace; you can’t, for instance, break a
line in the middle of a variable name. And you’re also free, by ending a line with
an underscore, to stretch a statement over as many lines as you need.

Displaying output to the user. There are three ways you can display output:

■■ Using the MsgBox function. You can use this function to display a small mes-
sage box showing a string you pass to the MsgBox function. Many of the
examples in this chapter used the message box.

■■ Writing to the status bar. For occasional single-line messages, you can display
a line of text in the main IDE’s status bar. Here’s a sample line of code that
does this:

DTE.StatusBar.Text = “Finished processing.”

■■ Writing to an output pane. For sophisticated output, you can create a new
pane in the output window and write to it. Here are two helper functions to
help you do this, followed by a sample macro that uses the two functions.
First, the two functions:

Function AddOutputPane(ByVal title As String) As OutputWindowPane

Dim outwin As Window = DTE.Windows.Item _

(EnvDTE.Constants.vsWindowKindOutput)

outwin.Visible = True

Return outwin.Object.OutputWindowPanes.Add(title)

End Function

Sub Print(ByVal Output As OutputWindowPane, ByVal text As String)

Output.OutputString(text & Chr(13))

End Sub

■■ The first of these shows the output window, and then adds a new pane to
the output window. The function returns a reference to the new output
pane, which you can pass to the second function. The second function takes
as a parameter the output pane and a text string, and it writes the string to
the pane, along with a carriage return at the end. And now here is a sample
macro that uses these two functions:

Just Enough VB.NET 47

Sub SetupOutputPane()

Dim MyOutput As OutputWindowPane

MyOutput = AddOutputPane(“Macros”)

Print(MyOutput, “This is one line”)

Print(MyOutput, “This is another line”)

End Sub

Finally, another way to interact with the IDE user is by creating a window (called a
form, in macro language), populating it with controls and interacting with the window.
In other words, the way to interact is to build a full-blown GUI. I talk about this in
Chapter 4, “Macros That Interact with the User.”

Moving Forward

This chapter provided you with a brief introduction to VB.NET. It gave you enough
information to get you up to speed on the language that you use to write macros in
Visual Studio .NET. That means I couldn’t detail every aspect of the VB.NET language,
as that would require an entire volume or more.

If you’re interested in learning more about VB.NET as you write your macros, I sug-
gest exploring the online help. It’s easy to navigate, and you should be able to quickly
find the answers to any of your questions. But if you’re interested in mastering
VB.NET as a full-scale programming language (beyond macros), then I recommend
playing with the main VB.NET development tool within Visual Studio .NET and
studying the online help. Additionally, you might pick up a book or two about
VB.NET. There are plenty out there, and many of them are excellent.

In the next chapter I detail the process of building a macro and interacting with the
Visual Studio .NET IDE.

48 Chapter 2

49

In this chapter I show you how to get going quickly with macros. First I talk about the
different parts of the macro projects and how they fit together. Next I take you through
the Macros IDE, showing you all the different ways you can manage multiple projects
at once. After that, I describe how the main IDE provides some shortcuts for quickly
entering a macro using what is called a temporary macro. Temporary macros are a con-
venient way for quickly automating simple tasks in the IDE. Moreover, as you’ll learn,
these macros need not remain temporary: When you create one of these, you can
rename it, which will make it permanent, and then modify and improve it as you cre-
ate a more powerful, complete macro.

The Macro System and the Main IDE

Macros live in projects, which are much like the programming projects you’re already
familiar with. But two points are very important in understanding how the macro sys-
tem works together with the main IDE:

■■ Macro projects and programming projects are separate. When you write a macro, it
is not a part of a programming project or solution. Instead, it stands on its own,
and you can load it at any time, regardless of the programming project or solu-
tion you are presently working on. If you have a macro project open, to which
you have made changes that you have not yet saved, and you close the current
solution you are also working on, you will not be prompted to save the current

Introducing the Visual
Studio Macro IDE

C H A P T E R

3

macro project. Instead, the solution will close, but the macro project will remain
open. Only when you unload a macro project or shut down Visual Studio .NET
will the main IDE ask if you want to save the changes to the macro project.

■■ You choose which macro projects you want to have open. You are free to have any
one or multiple macro projects open simultaneously. Then when you restart the
Visual Studio .NET, the macro projects load when Visual Studio .NET loads.
Thus, you can have macros that respond to the launch of Visual Studio .NET.

Macro development takes place from two sides: from the main IDE and from the
Macros IDE, which is shown in Figure 3.1. When you work on macros from the main
IDE, you interact with the macros through the Macro Explorer. However, even if you
plan to develop your macros using the main IDE (which you will be doing if you plan
to do any macro coding), I caution you not skip the section in this chapter called
“Working with the Macro Explorer,” for there I cover many important aspects of macro
development that are applicable whether you use the Macro Explorer or not.

Figure 3.1 The Macros IDE.

50 Chapter 3

Macro Development Divisions

The Visual Studio .NET macro system is divided into several parts that help you man-
age your macros. At the highest level is the macro system itself. Think of the macro sys-
tem as the equivalent of a solution in the main IDE: The macro system holds your
macro projects in the same way that a solution holds your programming projects.
However, unlike solutions, there’s only one macro system.

Projects and Modules
The macro system includes separate macro projects that you create, save, load, and
unload. A macro project is a single entity with its own variables, macros, functions, and
classes. The macro project exists in a single file on your hard drive. This file gets a
.vsmacros extension. Having a single file means that if you want to share a macro proj-
ect with somebody else, you can easily give that person the macro project file, allowing
the recipient to use the macros in the project.

If you double-click a .vsmacros file in Windows Explorer (outside of Visual
Studio .NET), one of two things will open: First, if Visual Studio .NET is not
running, it will start up and load the macros project. Second, if Visual Studio
.NET is already running, it will load the macros project.

When you create multiple macros, think of a project as its own program, just as you
build a project in the main IDE into a standalone program or library. A macro project
has its own variables, which are not accessible to the subroutines and functions in
other macro projects.

When you organize your macro projects on your hard drive, you can put each proj-
ect in its own directory—but you don’t have to. Since each project uses only a single
file, you can have multiple .vsmacros project files in a single directory, with each file
containing a separate project.

Be careful if you rename your macro files. If you change MyMacros.
vsmacros to, for example, SystemUtils.vsmacros, you will be changing
only the filename, not the project name. Then, when you open the macro
project, you will see the previous name in the Macro Explorer, not the new
name that you gave the project. Therefore, I recommend you rename your
macros from the Macro Explorer, as I describe in the section “Working with
the Macro Explorer.”

Inside the macro project you create modules. Think of a module as a source code file,
even though all the modules for a project are saved inside the single project .vsmacros
file. You write your code inside a module. You can have multiple modules in a single
macro project, or you can just have one. (If you have no modules, the macro project
won’t be of much value since it won’t have any code.)

Introducing the Visual Studio Macro IDE 51

Technically, a module isn’t quite analogous to a source code file. The reason is that
even though the Macros IDE considers a module a standalone file that you edit, you
can actually put two modules inside a single module file. However, I recommend that
you keep each module in its own file, in the interest of keeping your macro project
manageable.

Here’s an example of an entire module:

Imports EnvDTE

Imports System.Diagnostics

Imports System.Windows.Forms

Public Module MainUtilities

Sub ShowCurrentDate()

MsgBox(Now)

End Sub

Sub ShowUsername()

MsgBox(SystemInformation.UserName)

End Sub

End Module

The first section contains the imports. Every class in the .NET framework exists inside
a namespace, and to use the class you must do one of two things: fully qualify the class
name by specifying the namespace, then a dot, then the class name; or you must provide
an imports statement. Notice the third imports line imports the namespace
System.Windows.Forms. The reason is that the SystemInformation class, which I
use in the ShowUsername subroutine, is part of the System.Windows.Forms name-
space. (UserName is a property of the SystemInformation class.) Thus, I had a choice:

■■ I could fully qualify the SystemInformation class, like so:

MsgBox(System.Windows.Forms.SystemInformation.UserName)

■■ I could list an imports statement at the top, as I did, and then have direct access
to the class name SystemInformation.

Next is the module declaration. This consists of the words Public Module, fol-
lowed by the name of the module. Each module name within a project must be unique.
The module begins with the module header and ends with the statement End Module.

Finally, inside your module you put your individual macros. The macros are VB.NET
subroutines. In addition you can have variables, classes, and functions, and other subrou-
tines that are not macros. The extra source code provides support for your macro routines.

Macros are public subroutines that do not take any parameters. By nature of
a subroutine, macros do not have a return value. (That’s because VB.NET
separates subroutines from functions: functions have a return value,
subroutines do not.) Optionally, you can declare a subroutine as private,
making it unavailable as a macro. See the “Scoping” subsection for
information on public and private subroutines.

52 Chapter 3

Class Files and Code Files
If you’re familiar with VB.NET, you will be interested to know that you can also insert
class files and code files into your project. While working inside the Macros IDE, you
can choose File➪Add New Item. The Add New Items dialog box will open, showing
three templates: Module, Class, and Code File.

As with modules, the class file and code files are not really files; they’re parts of your
project that live inside the .vsmacros files.

Be careful when working with class files and code files, however, because these
items are not accessible as macros. Instead, treat them as having supporting roles in
your projects. Although you can write code for a module inside your code file, the
module will still not be visible as containing macros. Therefore, subroutines inside the
module cannot function as macros.

Scoping
Modules have an interesting feature in that all the variables and other identifiers you
declare in your module are accessible throughout the macro project on a global level,
which means you do not have to fully qualify the names. For example, suppose you
have a project with the MainUtilities module shown earlier in the “Projects and
Modules” section. Then suppose you add another module that looks like this:

Imports EnvDTE

Imports System.Diagnostics

Public Module TestModule

Sub CallFriend()

ShowUsername()

End Sub

End Module

You can see that the CallFriend subroutine is calling a subroutine called
ShowUsername. That subroutine is in the MainUtilities module. But can the
CallFriend subroutine call a subroutine in another module without giving the mod-
ule name? Yes, it can. You do not need to fully qualify it, although you can, if you want
to make sure people reading the code will know where the ShowUsername function is
(generally a good idea). You can fully qualify the call by replacing the ShowUser-
name() line with the following line:

MainUtilities.ShowUsername()

Even though the names in a module are globally available within a project, one
somewhat strange feature is that you can have two modules with the same name in it.
For example, you could put a subroutine called GetInfo in the MainUtilities
module, and another subroutine also called GetInfo in the TestModule module.
But, then, if you want to call one of the GetInfo subroutines, you must fully qualify
the name as either MainUtilities.GetInfo or TestModule.GetInfo.

Introducing the Visual Studio Macro IDE 53

If there are any subroutines in a module that you don’t want other modules to call,
add the word Private, as in this subroutine:

Private InternalSize As Integer

Private Sub InternalData()

InternalSize = 10

End Sub

You can see that I have two items in the preceding code: a private integer variable
called InternalSize and a private subroutine called InternalData. To make each
item private, I simply included the word “private” before the declaration to make pri-
vate item unavailable to any items outside of the module: Other modules cannot access
the private item, nor can the main IDE access the item.

Since the main IDE cannot access an item marked as private, that means if
you have a subroutine that takes no parameters but you do not want it
available as a macro, you can declare it as private.

Optionally, you can include the word Public before an item inside a module to
make the item accessible from outside the module; however, that isn’t necessary,
because the items are public by default.

As for modules, you are free to name them as you please; however, you cannot have
two modules with the same name in a single project.

Working with the Macros IDE

The Macros IDE makes developing macros easy. If you’re reading this book straight
through, then you’ve already learned a bit about the Macros IDE and seen a little of it
in action. If not, you need to know that the Macros IDE is a complete IDE for develop-
ing macros that is separate from the main IDE. It looks very much like the main IDE,
except its focus is on macros.

Remember, the macros IDE is not a standalone program. You cannot start it
independently of the main IDE.

The Visual Studio .NET main IDE provides you with several ways to get to the
Macros IDE:

■■ Double-click a module name in the Macro Explorer. Or right-click a module
name and choose Edit. Either way, the Macros IDE will open, showing the code
for the module.

■■ Right-click a macro name in the Macro Explorer and choose Edit. The Macros
IDE will open, showing the module containing the macro, with the code edi-
tor’s insertion point on the first line in the macro subroutine’s code.

54 Chapter 3

TE
AM
FL
Y

Team-Fly®

■■ From the main IDE, choose Tools➪Macros➪Macros IDE.

■■ Press Alt+F11.

When you are using the Macros IDE, I recommend opening its task list, shown in
Figure 3.2 (choose View➪Other Windows➪Task List, or press Ctrl+Alt+K). Having the
task list open is useful because as you type your VB.NET code, the Macros IDE contin-
ually checks the syntax of what you type. If the IDE finds errors in your code, it will
display the errors in the task list. Therefore, you can constantly keep an eye on the task
list to see if you’ve made any mistakes in your code.

Inside the Macros IDE, the Macro Explorer is not available. Instead, you have
the Project Explorer, which serves the same purpose. But be aware that
double-clicking a macro name in the Project Explorer opens the macro
source code for editing; it does not run the macro.

The Macro Explorer in the main IDE and the Project Explorer in the Macros IDE are
connected: If you make a change to the macro system using the Macro Explorer and
then look at the Macros IDE’s Project Explorer, you’ll see the same changes. Similarly,
if you make a change in the Macros IDE’s Project Explorer and then switch to the main
IDE, you’ll see the change noted in the Macro Explorer.

The Parts of the Macros IDE
Like the main IDE, the Macros IDE has several tool windows that let you manipulate
your macro projects. You can move these tool windows around in the same way you
can in the main IDE. Here are the tool windows that you’ll find useful:

Project Explorer. This window shows the projects that are currently loaded into
the IDE. Under each project is a list of the files for the project. The Project
Explorer does not list individual macros.

Figure 3.2 The Macros IDE task list.

Introducing the Visual Studio Macro IDE 55

Class Explorer. Although this window is named the Class Explorer, it shows
your projects broken down by modules as well as classes. Further, under the
modules, the Class Explorer includes the macro names that are part of the mod-
ule. Normally you put modules and classes in their own files, and so typically
the items in the Class Explorer will be the same as the items in the Project
Explorer.

Help Index. This shows the index entries for the online help, as it does in the
main IDE.

Help Contents. Like the same-named window in the main IDE, this window
shows the contents of the help.

Dynamic Help. If you like this feature in the main IDE (a lot of people don’t), it’s
available in the Macros IDE as well. It will track what you are doing and make
suggestions for the appropriate help item.

In addition to the tool windows, there are document windows that hold your source
code files. (But remember that these source code files aren’t really individual files;
they’re treated as separate files by the IDE. Ultimately, though, all are saved together
inside the single .vsmacros project file.)

The Macros IDE also has several useful toolbars. The list is smaller than that in the
main IDE, but those that are present serve similar purposes as the like-named toolbars
in the main IDE. They are:

Debug. Provides buttons for debugging a macro, such as tracing through the
macro and stepping into its procedures.

Debug Location. Gives information about the currently running process and the
call stack.

Full Screen. Includes a single button that lets you toggle a full-screen view of the
source file you’re currently editing.

Standard. Includes buttons for such activities as saving the project, searching for
text, and quickly switching to the Project Explorer or the Class View.

Text Editor. Allows quick access for advanced text-editing features such as
manipulating bookmarks in the code and indenting entire blocks of code.

You can choose which toolbars you want to show by right-clicking in the blank areas
around the toolbars. The popup menu will list all the toolbars, with a check beside
those that are showing.

Finally, like the main IDE, you can completely configure the Macros IDE. To do so,
either choose Tools➪Customize or right-click in the blank areas around a toolbar and
choose Customize. The Customize dialog box will open, which works in precisely the
same way as I described in Chapter 1, “All about Macros and Add-ins,” in the section
“Other Ways to Customize Visual Studio .NET”: You can create and modify toolbars
and manipulate the menus.

Managing Projects and Modules
If you’re reading this chapter straight through, many of the topics in this section will
be somewhat familiar later on when you read the section “Working with the Macro

56 Chapter 3

Explorer.” The difference is that in the latter section I discuss how to manage your pro-
jects using the Macro Explorer in the main IDE; here I show you how to manage your
project using the Macros IDE. However, there are certain things you can do only from
within the main IDE through either the Macro Explorer or the menu items. These are:

■■ Create a new project.

■■ Load a project.

■■ Unload a project.

Since I show you later how to do these three tasks using the Macro Explorer, now I’ll
show you how to do them using the menus. Remember, however, that these are the
menus in the main IDE, not in the Macros IDE. (Why can’t life be less complicated?)

The Macros IDE is aware of an active project. You can tell which project is
currently active by looking at the title bar of the IDE window. The title will
start with the name of your project, followed by a hyphen, followed by the
words “Microsoft Visual Studio Macros.”

Creating a New Project

To create a macro project, you must use the main IDE. To do so, choose Tools➪

Macros➪New Macro Project. The New Macro Project dialog box will open. The only
template available by default is Macro Project. Make sure the Macro Project template
icon is highlighted. Then enter the name of your project in the text box labeled Name.
Next, choose a directory in which to place your project.

When you create a new macro project, the Open dialog box creates a new
directory for the project, just like the main IDE, which creates directories for
you. The new directory has the same name as your project file, but without
the .vsmacros extension.

After you create the new project, when you switch back to the Macros IDE, you will
see the project in the Project Explorer.

Loading and Unloading Projects

Like creating a macro project, you can only load and unload projects from the main IDE.

Remember, the main IDE maintains a list of macro projects that are
currently loaded. These are the macro projects that you (or your IDE users)
can access while working with the IDE.

If there is a macro project that you don’t care to use or work on for the time being,
you can remove it from the macro system. This is called unloading the project. After you
do so, the macro project will vanish from the Macro Explorer in the main IDE and from

Introducing the Visual Studio Macro IDE 57

the Project Explorer and Class View in the Macros IDE. The project is still on your hard
drive; it’s just not loaded into the IDE.

Here’s how to load or unload a macro project:

■■ To load a macro project: Choose Tools➪Macros➪Load Macro Project. A dialog
box will open allowing you to locate and choose a .vsmacros project file. When
you click Open, the macro project will be added to the macro system. It will
also show up in the Macro Explorer. Alternatively, you can double-click the
.vsmacros file in Windows Explorer.

■■ To unload a macro project: In the Macro Explorer, click on the name of the macro
project you wish to unload. Then choose Tools➪Macros➪Unload Macro Project.

Saving Your Project

Back in the Macros IDE, to save a project, choose File➪Save (the word “Save” on the
menu will be followed by the name of your project). Or press Ctrl-S.

Which project you save depends on what item in the IDE is currently active:

■■ If you first click on any item in either the Project Explorer or the Class View, the
project containing that item will be saved.

■■ If you first click on the source file window, then the project containing the
active document will be saved.

You cannot tell the IDE to save only a single module. Since all modules within a proj-
ect are stored in a single .vsmacros file, you can only save the entire project, including
all its modules, at once.

Note also that when you edit a macro, you don’t need to save the project to see the
changes from within the Macros IDE. The main IDE knows of the code as it is in mem-
ory, not as it is on disk.

Although the macro system keeps all the modules for a project wrapped up inside a
single .vsmacros file, you can export the individual modules to their own text files with
a .vb extension. The macro system doesn’t actually use these .vb files; the macro system
still uses the modules as they are stored in the .vsmacros file. But this way you can use
the files in other VB.NET projects if you wish. (To use the module in another macro
project, you can use the insert the module by right-clicking on the macro project in the
Project Explorer in the Macros IDE, and then choosing Add➪Add Existing Item from
the popup menu.)

To export a module to its own file, either make sure the module is open in the source
code window or click on the module’s name in the Project Explorer. Then choose
File➪Export, where the word “Export” will be followed by the name of the module
you are exporting. An Export File dialog box will open that’s equivalent to a typical
Save As dialog box. Choose the location where you want to save the file, enter its name,
and click Save.

When you export a file, the file will be saved in Unicode format. Therefore,
some text editors might not be able to open it (although, believe it or not,
Notepad.exe on Windows NT, 2000, and XP will open a Unicode file).

58 Chapter 3

Default Macro Location

Although you can save your macro projects anywhere on the hard drive where you
have permissions, by default, Visual Studio .NET stores the macros in a directory
called VSMacros, in the default Visual Studio projects locations.

To view or change this default location, make sure you’re in the main IDE, not the
Macros IDE, and choose Tools➪Options. Inside the Options dialog box, choose Envi-
ronment➪Projects and Solutions. In the options page is an edit control labeled “Visual
Studio project locations.” This edit control contains the default project path.

If you decide to change the default location for your macros to a different
directory, remember that you will also be changing the default location for
the programming projects and solutions in the main IDE.

Creating a New Module

To create a new module, you have some choices:

■■ Make sure the project that will contain the module is the active project. (You
can tell by looking at the title bar of the Macros IDE(you should see the proj-
ect’s name there.) If your project is not the active one, click on its name (or one
of its modules) in the Project Explorer. Next, choose File➪Add New Item.

■■ Right-click the project name in the Project Explorer, and in the popup menu
choose Add➪Add Module.

Either of these two options will cause the Add New Item dialog box to open. Make
sure Module is highlighted in the Templates list, then type the name of your new mod-
ule in the Name edit box. Next, click Open. (Yes, the button is labeled Open, not Create
or something more appropriate.)

After you click Open, the new module will be in your project. You will see it in the
Project Explorer, and you can now edit it.

Renaming Projects and Modules

To rename a project or module from within the Macros IDE, do one of the following:

■■ Right-click the project name or module name in the Project Explorer and
choose Rename. The project or module name in the Project Explorer will turn
into an edit control, where you can type the new name and press Enter.

■■ Click the project name or module name in the Project Explorer, pause a couple
seconds, and then click the name a second time. (Note, if the name is already
highlighted, you should only have to click the name once.) The name will turn
into an edit control into which you can type the new name.

Introducing the Visual Studio Macro IDE 59

Make sure that when you attempt to change a project’s or a module’s name
that you are in the Project Explorer in the Macros IDE, not the Class View.
You cannot change the project or module name from the Class View.

When you change a project’s or a module’s name, the change will not be permanent
until you save the project by choosing File➪Save, where the word Save will be fol-
lowed by the project name. Even then, you will not see the actual .vsmacros filename
change until you either unload the macro or shut down the main IDE, because the
main IDE keeps the .vsmacros file open as long as the macro project is open.

Be careful with module names. The Project Explorer in the Macros IDE lists
the name of the file that contains the module (even though technically all
the “files” for these modules are stored inside a single .vsmacros file). This
filename does not have to match the name contained in the header line of
the Module declaration in the source code file. But that’s when things get
confusing. I prefer to name my module and its filename the same, for
simplicity. Plus, that helps me to think of the file and the module as a single
entity. But if you do rename the module, only do so by right-clicking the
module in the Project Explorer and choosing Rename. That will keep
everything synchronized.

Deleting a Module

To delete a module, do one of the following. (Make sure you do these in the Project
Explorer, not the Class View.)

■■ Click the name of the module in the Project Explorer. (If an edit control appears
so that you can edit the name, just press Esc.) Then either press Del or choose
Edit➪Delete.

■■ Right-click the name of the module in the Project Explorer and choose Delete.

Whichever action you take, you will then see a message that says, “Module1 will be
deleted permanently” (but instead of Module1 you will see the name of your module).
In other words, you cannot undo the deletion of a module. If you are sure you want to
delete the module, click Yes. (The reason the action cannot be undone is that all the
modules for a single project are all stored in a single .vsmacros file for the project.
When you click Yes, the IDE deletes the module directly from the .vsmacros file. There-
fore, although the .vsmacros project file is still present, the module is not.)

Running a Macro
To run a macro without starting a debugging session, either switch to the main IDE and
double-click the macro name in the Macro Explorer, or, from the Macros IDE, click the
mouse anywhere inside the macro’s code in the source code editor; then either press
Ctrl-F5 or choose Debug➪Start without Debugging.

60 Chapter 3

If there are errors anywhere in a macro project, then neither the main IDE
nor the Macros IDE will let you run any of the macros in the project. Make
sure, then, that there are no errors in your project.

An important point to be aware of when you run your macros is that if you have
global variables in your macro project, these variables will not change between execu-
tions of the macro. For example, suppose you have this variable and macro defined in
a module:

Private TestNumber As Integer = 10

Sub IncTestNumber()

TestNumber += 1

MsgBox(“Test Number is now “ & TestNumber)

End Sub

If you then go over to the main IDE and double-click the IncTestNumber name in
the Macro Explorer, you will see a message box with the number 11. Now, based on
what I said a moment ago, see if you can answer this question: The second time you
click IncTestNumber, will you see 11 (meaning the variables got reset in between exe-
cution of the macro) or 12 (meaning the variables are still active)? If you answered 12,
you were right.

However, if you change any code inside the project containing the macro (whether
or not you save the changes to disk), then Visual Studio .NET will restart the project,
meaning your variables will be reset as well. Thus, if I modify the IncTestNumber
macro, when I return to the main IDE and double-click the IncTestNumber name, I will
once again see the number 11, not 13, in a message box.

If you run a macro, and while it is running attempt to run another macro, the
second macro will get queued, and will not begin until immediately after the
first macro finishes.

Stopping a Macro
If a macro you have running gets stuck, or you just want to end it, you can force the
macro to stop. Suppose you have the following macro (or perhaps a macro that calls
this subroutine):

Public Sub WaitForAMoment()

MsgBox(“Going to sleep for 10 seconds...”)

System.Threading.Thread.Sleep(10000)

MsgBox(“Awake again!”)

End Sub

Here, the Sleep function causes the macro to pause; you are required to specify the
time in milliseconds. (There are 1000 milliseconds in a second.) I passed 10000 to
the function, which means the macro will pause for 10 seconds. If you run this macro, the
Visual Studio .NET will seem to freeze up for 10 seconds.

Introducing the Visual Studio Macro IDE 61

If, instead, you want to abort the macro before the 10 seconds is up, switch to the
task bar on the Windows desktop. There, you will see an animated icon of a cassette
tape flipping around. Double-click this icon and the macro will stop. Or, you can right-
click this icon, in which case you’ll get a popup menu with a single choice: “Stop Visual
Studio macros.” Choose this menu item to stop the macro.

Using the Code Editor in the Macros IDE
By now you’ve certainly seen the code editor in the Macros IDE, and you’ve probably
discovered that it works pretty much just like the code editor in the main IDE. In the
introductory section of Chapter 2, I mentioned that the code editor will automatically
format your VB.NET code for you. Here, now, are some more tips for getting the most
from the editor.

Collapsible Code

You may have noticed that to the left of some of your lines of code is a small minus sign
that looks similar to the minus symbol in a treeview control. This sign serves the same
purpose as that in a treeview control: to collapse the code. For example, if you want to
see only a subroutine’s header and hide the subroutine’s code, you can collapse the
subroutine. For example, if this is your subroutine:

Sub ShowCurrentDate()

MsgBox(Now)

End Sub

and you click the minus sign that shows up in the code editor to the left of the Sub
line, the code will collapse into just this line:

Sub ShowCurrentDate()

To the left of this single line will now be a plus sign instead of a minus sign, which
you can click to reexpand the code. This collapsible code functionality is also called the
outlining feature of the code editor.

And while the code is collapsed, you’ll see to the right of it a small white box with
an ellipses (...) in it. If you momentarily hold the mouse pointer over this box, a small
tooltip window will appear showing you the collapsed code.

If you want to collapse all the subroutines and functions in your code,
choose Edit➪Outlining➪Collapse to Definitions.

If you don’t like this outlining feature, you can turn it off by choosing Edit➪Outlin-
ing➪Stop Outlining. Later, if you decide you want it back on, choose Edit➪Outlin-
ing➪Start Automatic Outlining.

62 Chapter 3

Working with Blocks of Code

If there are several lines of code that you want to comment out, highlight them and
choose Edit➪Advanced➪Comment Selection. To uncomment a commented block of
code, choose Edit➪Advanced➪Uncomment Selection.

If you have the automatic formatting feature turned off (through the Tools➪Options
dialog box, on the Text Editor➪Basic➪VB Specific page, under the Pretty Listing (refor-
matting) of code selection), you can automatically format a section of code by high-
lighting the lines and choosing Edit➪Advanced➪Format Selection.

You can also perform all the usual features that are present in the main IDE under
the Edit➪Advanced menu, such as making a selection all uppercase or all lowercase (if
you have such a need).

If you have a block of code collapsed and you want to perform a block edit
operation (such as commenting out the code) on the collapsed code,
highlight the box with the ellipses in it before performing the block edit
operation.

Debugging a Macro
In this section I assume you’re familiar with debugging concepts and how to use the
debugger in the main IDE, which is the tool you use for debugging your programming
projects. The debugger in the Macros IDE works very much like the one in the main
IDE. However, there’s a trick to getting your macros to run there:

1. To debug a macro, make sure the module containing the macro is opened in the
code editor.

2. Click on the first line of the macro, the header line containing the Sub declaration.

3. Press F9 to set a breakpoint (or right-click the line and choose Insert Break-
point). You will see a red highlight appear on the line.

4. Press F5 to start the debugger (or choose Debug➪Start).

When the debugger starts, it will break at the first line in your macro, and the first
line’s highlight will change from red to yellow.

When you are running a macro in the Macro IDE Debugger, you cannot stop
the macro by double-clicking the macro icon in the tray of the Windows
desktop’s task bar. Doing so will have no effect.

While you are at a breakpoint, you can then do any of the following:

■■ Step into a subroutine or function: Choose Debug➪Step Into, or press F11, or click
the Step Into button on the Debug toolbar.

■■ Step over a subroutine or function: Choose Debug➪Step Over, or press F10, or
click the Step Over button on the Debug toolbar.

Introducing the Visual Studio Macro IDE 63

■■ Step out of a subroutine or function: Choose Debug➪Step Out, or press Shift+F11,
or click the Step Out button on the Debug toolbar.

■■ Modify an existing breakpoint: Right-click a line with a breakpoint and choose
Remove Breakpoint, or Disable Breakpoint, or Breakpoint Properties. If you
choose Breakpoint Properties, the Breakpoint Properties window will open,
allowing you to add conditions upon which to break.

■■ Add a breakpoint: Right-click a line and choose Add Breakpoint.

■■ Add a watch: Right-click an identifier in the source code window and choose
Add Watch. The Watch window will open, showing the identifier along with
other identifiers you are already watching.

■■ Add a quick watch: Right-click an identifier in the source code window and
choose Quick Watch. The Quick Watch window will open, showing you the
identifier and its current value, which you can change.

When you’re viewing the Quick Watch window, you can call other
subroutines and functions in your code. Simply type the name of the
subroutine or function in the Expression window along with parentheses
containing zero or more parameters, and click Recalculate.

■■ Watch the local variables in a subroutine: Choose Debug➪Windows➪Locals.

■■ Observe the call stack: Choose Debug➪Windows➪Call Stack.

Working with the Macro Explorer

Although you will normally use the Macro IDE to develop your macros, you have full
access to the macros from the standard IDE through the Macro Explorer. To view the
Macro Explorer, shown in Figure 3.3, choose View➪Other Windows➪Macro Explorer.

Like the Solution Explorer, the Macro Explorer shows your macro projects in a hier-
archical manner inside a treeview. When you expand a project, you see the individual
modules, and under each module you see the individual macros for that project.
(Remember, each macro is a public VB.NET subroutine inside the module.)

Figure 3.3 The Macro Explorer in the main IDE.

64 Chapter 3

TE
AM
FL
Y

Team-Fly®

To run a macro using the Macro Explorer, double-click its name in the Macro
Explorer or right-click its name and choose Run.

The Macro Explorer allows you to do the following actions on your projects, mod-
ules, and macros. First, here are items involving macro projects:

■■ Create a new macro project: Right-click the top item called Macros in the tree-
view; in the popup menu, choose New Macro Project. The New Macro Project
dialog box will open, just as it does when you use the menu items to create a
new macro project. You only have one option for a template, Macro Project.
Type a name and a location for your new project. Then click Open (even
though you’re actually creating and then opening the project).

■■ Insert an existing project into the Macro Explorer: If you have a macro project, such
as one you received from somebody else, that’s not in the Macro Explorer, you
can add it. Right-click the Macros item and choose Add➪Insert Existing Project.

■■ To unload a project: Right-click the project name and choose Unload Macro Project.

■■ To save a project: The only way to save a macro project from within the main IDE
is to choose File➪Save All. However, this saves everything that has changed. If
you prefer to save only your file, use the Macros IDE and choose File➪Save,
where Save is followed by the name of your project.

■■ To rename a project: Right-click the name of the project and choose Rename.

Now here are items involving modules within a project:

■■ To create a new module: Right-click the module name in the Macro Explorer and
choose New Module. The Add Module dialog box will open, allowing you to
create the new module.

■■ To rename a module: Right-click the module name in the Macro Explorer and
choose Rename. You can then type in a new name for the module.

■■ To delete a module: Right-click the module name and choose Delete. As in the
Project Explorer in the Macros IDE, you cannot undelete a module once you’ve
deleted it here. But you will see a slightly different message from the one you
see in the Macros IDE: “Are you sure that you want to delete Module1? This
action cannot be undone.”

■■ To Edit a module: Double-click the module name. The Macros IDE will open and
you will see the code file for the module whose name you double-clicked.

If you’re digging through the popup menus as you read this, you’ll see the menu
name Set as Recording Project. For more information on this item, see “Quickly
Recording a Temporary Macro” in this chapter.

And now here are the actions you can perform in the Macro Explorer on individual
macros. Remember, macros are subroutines inside a module, and all the modules
within a project are stored in a single .vsmacro file:

■■ Create a new macro: Right-click on the module that you want to hold the macro
and choose New Macro. When you do so, the Macro IDE will open and the

Introducing the Visual Studio Macro IDE 65

Macro IDE will automatically insert a new macro called Macro1 (or Macro2,
and so on) into the module.

■■ Rename a macro: Right-click on the macro name (back inside the Macro Explorer,
in case you’re looking at the Macros IDE now from the previous bullet item).
Then choose Rename. You can type in a new name for the macro.

■■ Delete a macro: Right-click on the macro name and choose Delete. The IDE will
ask if you really want to delete the macro, since the action cannot be undone.
Just like modules, macros live inside a module, which lives inside the
.vsmacros project file. If you delete a macro, the IDE completely removes it
from within the .vsmacros project file; thus it cannot be undone. So be sure you
really want to delete a macro before doing so.

■■ Run a macro: Either double-click a macro name or right-click on the macro name
and choose Run.

While a macro is running, you will see two visual indicators: First, down in
the status bar of the main IDE, you will see a small animated icon that looks
sort of like a cassette tape flipping around; second, you will see this same
animated icon in the tray portion of the taskbar on your Windows desktop.

Finally, remember this important tip:

When you double-click a macro in the Macro Explorer, the macro runs. Do
not double-click the macro to edit it. However, if you double-click a module
name, you will enter the Macros IDE so you can edit the module.

Quickly Recording a Temporary Macro

When programmers first developed the concept of a macro, the process was simple:
The user identified a task that he or she wanted to repeat several times, and so started
a macro recorder; next, the user performed the task to be repeated (such as typing some-
thing into the keyboard and perhaps selecting various menu items); finally, the user
turned off the recorder. The macro was recorded. When the user wanted to repeat the
task, he or she started the macro, usually by pressing some key.

The process was nice and simple. Fortunately, today, Microsoft has maintained that
simplicity for those users who only want to record repeated tasks. The Visual Studio
.NET IDE includes a recorder feature that’s as easy as the steps just described. And it
not only records the macros, but it saves the macros in the same language you use to
write your own macros from scratch, VB.NET.

Saving the macros in VB.NET has a nice bonus feature, too: If you, the macro devel-
oper, want to automate a task that involves pressing keys, choosing menu items, and
filling in dialog boxes, you can use the recorder features as a starting point for writing
your macro.

Thus, in this section I show you how to get the most out of the recorder features.

66 Chapter 3

Selecting the Recording Project
If you have no macro projects open and you start recording a macro, Visual Studio
.NET will create a macro project for you by default. This project will be called
MyMacros, and it will have two modules: one called Module1 (which is a default mod-
ule that the recorder doesn’t use, but to which you’re free to add macros) and another
called RecordingModule. The macro that you record goes inside the RecordingModule
module, and the macro is called TemporaryMacro.

But if you do have several macro projects open, you have a choice: You can either let
Visual Studio .NET assign you a RecordingModule and a TemporaryMacro when it
records your macro for you or you can choose which project will be the recording proj-
ect. (If you let Visual Studio .NET assign you a RecordingModule, it will use the
default Module1 until you choose a different project to be the recording project.)

To choose the recording project, open the Macro Explorer, right-click the
project, and choose Set as Recording Project. After you select which project
will be the recording project, your chosen project’s name will appear in
boldface in the Macro Explorer.

Recording a Macro
Once you have chosen a recording project (which means you might have chosen the
defaults), you can go ahead and record your macro. Now remember, the IDE will
assign this macro the name TemporaryMacro, but it is in no way temporary: You are
free to rename it, move it to another module, and so on.

If you are going to record a macro, I recommend opening up the Macro Explorer
so that you can easily access the macro after you have recorded it. Then you’re ready
to record:

To record a macro, choose Tools➪Macros➪Record Temporary Macro. (The
default key combination for this is Ctrl+Shift+R.)

When you begin recording, the Recorder toolbar will open. This toolbar lets you
pause the recording, stop the recording, or altogether cancel the recording.

A point of note about the Recorder toolbar: Though it is a toolbar, it’s special in that
the IDE won’t let you open it unless the recorder is running, nor can you close it when
the recorder is running. Oddly, the IDE will, however, let you modify the toolbar while
it is open (which means a macro is being recorded). But if you do modify the Recorder
toolbar, your changes will not get recorded into the macro. (Probably, it’s best not to
mess with such self-referential universes. Leave that for the science fiction movies.)

While the Recorder toolbar is open, any keystrokes you perform, or toolbar buttons
you click, or menu items you choose will be recorded. Further, if any of these actions
opens a dialog box, and you click OK in the dialog box, your settings will be recorded.
Each action that you perform will result in additional VB.NET lines of code being put
in the macro subroutine.

Introducing the Visual Studio Macro IDE 67

The toolbar has three buttons on it:

Pause Recording. If you click this button, the recording action will be momentar-
ily suspended, at which point any keystrokes or other actions you perform will
not be recorded. Recording will resume when you click the Pause Recording
button a second time.

Stop Recording. This button will end your recording and save the actions into
the Module as a new macro.

Cancel Recording. This button is the abort button; if you click it, the recorder
will stop recording and your actions will not be saved to a macro. Click this if
you decide you don’t want to record a macro after all.

Editing the Temporary Macro
After you have recorded a macro, you can edit it. To do so, locate the macro project in the
Macro Explorer that is the recording project (its name will be bold). Underneath it, right-
click on RecordingModule and choose Edit. When you do so, the Macros IDE will open.

Here’s an example of a macro that I recorded. First, here are the actions that I
recorded:

1. Ctrl+A (That’s the same as Edit➪Select All.)

2. Edit➪Advanced➪Format Selection

3. Edit➪Copy

4. File➪New File (In the New File dialog box, I chose Text File.)

5. Edit➪Paste

6. File➪Save As (In the Save As dialog box, I typed the same name as the file I
copied the text from, but instead of a .cpp extension I used a .txt extension.)

And now here’s the code I see in the Macros IDE for this module:

Option Strict Off

Option Explicit Off

Imports EnvDTE

Imports System.Diagnostics

Public Module RecordingModule

Sub TemporaryMacro()

DTE.Windows.Item(“MyProgram.cpp”).Activate()

DTE.ActiveDocument.Selection.SelectAll()

DTE.ExecuteCommand(“Edit.FormatSelection”)

DTE.ActiveDocument.Selection.Copy()

DTE.ItemOperations.NewFile(“General\Text File”)

DTE.ActiveDocument.Selection.Paste()

DTE.ActiveDocument.Save(“C:\MyProject\ArrayTest.backup.txt”)

68 Chapter 3

End Sub

End Module

Notice that the Save selected the filename I typed in. That’s not good; my intention
was to write an automatic backup macro. But that’s okay; I can change it. Also,
notice that even though I typed MyProgram.backup, the macro recorded it as MyPro-
gram.backup.txt with a .txt extension. But that’s not the recorder’s fault. That’s the
fault of the Save File As dialog box: If while inside the Save File As dialog box I had
chosen All Files (*.*) for the Save as Type box, then Visual Studio .NET would have
saved the filename as I requested it.

The next step is to modify this macro so it’s more useful. I certainly don’t want to
save every file as MyProgram.backup. Instead, I will ask the IDE for the name of the
document that’s open, and I’ll piece the filename together myself. Also notice that the
first line in the macro is a call to Activate. That function activates the document
called MyProgram.cpp. But in the final version of this macro, I hope to have the macro
use whichever file is currently active. So I will chop that Activate line altogether.

To figure out the filename information, I’m going to use two .NET macro features:

■■ To retrieve the filename, I’m going to use the DTE.ActiveDocument object.
That’s a handy property right on the DTE object itself that returns an instance of
a class called Document.

■■ To figure out the backup filename, I’m going to use a class called Path, which
has a handy function called ChangeExtension. This function takes a filename
and a new extension name as parameters, and returns a new string with the
path modified. What could be simpler?

Finally, after I recorded the macro I decided that I should probably close the new
backup file that I created. So I added a line at the end of the macro to close the file.

Here, then, is the new code after I changed it:

Option Strict Off

Option Explicit Off

Imports EnvDTE

Imports System.Diagnostics

Imports System.IO

Public Module RecordingModule

Sub TemporaryMacro()

Dim Filename As String

Dim Doc As Document

Doc = DTE.ActiveDocument

Filename = Doc.FullName

BackupFilename = Path.ChangeExtension(Filename, “.backup”)

DTE.ActiveDocument.Selection.SelectAll()

DTE.ExecuteCommand(“Edit.FormatSelection”)

DTE.ActiveDocument.Selection.Copy()

DTE.ItemOperations.NewFile(“General\Text File”)

Introducing the Visual Studio Macro IDE 69

DTE.ActiveDocument.Selection.Paste()

DTE.ActiveDocument.Save(BackupFilename)

DTE.ActiveDocument.Close(vsSaveChanges.vsSaveChangesYes)

End Sub

End Module

Now this code is more usable in a general sense. Instead of working on a particular
file, it works on any open file in the main IDE. Once I’m happy with the code, I can
rename the macro and copy it to a different module from the RecordingModule. Then
the macro is ready for prime-time use.

Assigning Shortcut Keys to Your Macros
If you give your macros to other people to use on their computers, you might not want
them to have to keep the Macro Explorer open so they can access your macros. Fortu-
nately, you have some choices on how to allow them to run your macros. (You can
implement these on your own computer, too, for use during the development of your
macros.)

■■ Choose and assign the macro a shortcut key so that when the IDE user presses
a certain keystroke combination (such as Ctrl+Shift+m), the macro will run.

■■ Add various menu items to the user’s IDE that allow menu access to the
macros.

■■ Add various buttons to the toolbars on the user’s IDE that allow button access
to the macros.

■■ Provide instructions on how the user can choose to do any of the previous
three items.

In Chapter 1, “All About Macros and Add-ins,” in the section “Managing the Tool-
bars and Commands,” I showed you how to add toolbar buttons for your macros. In
the same chapter, in the section “Customizing the Menus,” I showed you how you can
insert menu items for your macros. Now here’s how you can assign shortcut keys.

1. From the main IDE, choose Tools➪Options. Expand the Environment tree;
under Environment, click Keyboard to see the Keyboard options. (Alterna-
tively, choose Tools➪Customize. In the Customize dialog box, under the Tool-
bars tab, click Keyboard. This will also get you to the Keyboard options page.)

2. In the middle of the dialog box you’ll see a listbox with all the commands
known to the IDE. Either scroll through this to find your macro or just type the
macro name in the text box above the list labeled “Show commands contain-
ing.” Do not press Enter; just wait a moment and the list will shorten to only
those commands that have the text your entered.

70 Chapter 3

3. Next click on your macro in the list, then click the mouse on the text box
labeled “Press Shortcut Key(s).” You will see the name of your keystroke
appear in the edit control. For example, if you press Ctrl+Shift+I, you will see
“Ctrl+Shift+I” appear in the text box. You will also see a list of places where
this shortcut key is already assigned. (Hint: It’s a good idea to look at this list to
make sure you’re not clobbering a shortcut key that’s already in use and that
you use occasionally. Once, while using Microsoft Excel during a slow time in
my mental activity, I reassigned Ctrl+S and later wondered why, when I tried
to save my file, one of my macros would run instead.)

4. When you’re happy with the key assignment, press Assign.

Moving Forward

This chapter introduced you to the Macros IDE, which, as you now realize, looks very
much like the main IDE. That means if you know how to use the main IDE, you’ll be
comfortable using the Macros IDE as well. Further, you learned how to use the Macro
Explorer in the main IDE to create and modify the names of your macros.

In the next chapter I show you ways to write macros that have their own user inter-
faces. And while on that topic, I’ll cover the different ways that you can present infor-
mation to the user.

Introducing the Visual Studio Macro IDE 71

73

In this chapter I show you how you can interact with the user in various ways. I devote
the first half of the chapter to showing how you can reference other libraries in your
projects, because to make interaction easy, often you will want to work with external
projects or libraries. For example, you might have a .NET assembly (which is a .NET
form of a .DLL) that contains subroutines, functions, or classes that you want to use in
your macros. To use these items, however, you must set up a reference to the assembly
in your macro project. Or you might have a set of subroutines and functions you wrote
in VB.NET using the Macros IDE that you want to use in other macros.

In this chapter I also show you how you can access these subroutines and functions
from any macro project using two different approaches: importing the code into your
project and creating a standalone assembly that you reference in your project.

From there I move on to show you how easy it is to create forms and populate them
with controls, and how you can interact with the forms. I also show how you can make
use of the common Windows dialogs.

Finally, I discuss the different events you can respond to that occur in the main
Visual Studio .NET IDE, events such as a window opening or the main IDE starting up.

Referencing Assemblies and Macro Projects

In Visual Studio .NET, you can create DLLs called assemblies. An assembly is a DLL or
EXE that contains managed Microsoft.NET code, along with information about the file.

Macros That Interact
with the User

C H A P T E R

4

When you build a managed application or class library in Visual Studio .NET, the final
.EXE or .DLL you create is an assembly.

Since your macros use VB.NET, you have access to the rich set of features included
in .NET programming, including the use of external assemblies. (As a user of Visual
Studio .NET, you’ve probably encountered assemblies before, but if you’re not sure
what they’re all about, refer to Chapter 5, “Just Enough .NET Architecture.”)

Referencing External Assemblies
When you want to use objects and classes from an external assembly, you need to add
a reference to the assembly from your VB.NET macro. The Macros IDE includes a dia-
log box for adding references; the Macros IDE also includes a list of the referenced
assemblies in the Project Explorer.

To view the references list in the Project Explorer, expand a project; the first
item you will see under the project name is References. When you expand
References, you will see the names of referenced assemblies.

To add a reference to your project, you have two choices:

■■ Right-click the word References under the project name in the Project Explorer.
A popup menu containing a single item opens: Add Reference. Choose it and
its dialog box will open.

■■ Make sure your project is active (in the Project Explorer or Class View, click on
any item in the project; the project name will appear in the title bar of the
Macros IDE). Then choose Project➪Add Reference. The Add Reference dialog
box will open.

Whenever you add a reference using the Project➪Add Reference menu item,
take a quick look at the title bar of the Macros IDE to make sure the correct
project is active. It’s easy to accidentally add the reference to the wrong
project!

The Add Reference dialog box is shown in Figure 4.1. It contains a list of assemblies
registered in the .NET system. You can add your project references to one or more of
these assemblies. The list of assemblies contains the name of the assembly, the version
number, and the path to the assembly’s .DLL file.

To use the Add Reference dialog box, click on the assembly’s name in the list and
then click the Select button; or just double-click the assembly’s name; its name will
then appear in the Selected Components list in the lower portion of the dialog box.
(You can select multiple names by holding down the Shift and Ctrl keys and clicking
multiple names.) Repeat this step to add more than one assembly.

74 Chapter 4

TE
AM
FL
Y

Team-Fly®

Figure 4.1 Use the Add Reference dialog box to add to your project references to external
assemblies.

If you have a list of assemblies to add, but decide you want to remove one from the
list, click its name in the Selected Components list and click Remove. When you’re fin-
ished, click OK. (If you change your mind, you can always return to this dialog box
later to add more references; or you can remove them from the References list in the
Project Explorer. You will see that the References section in the Project Explorer now
contains the items you chose in the Add Reference dialog box. If you want to remove a
reference, right-click the reference name in the References list in the Project Explorer
and choose Remove.

Referencing Items in Other Macro Projects
If you have a set of subroutines, functions, and classes in a macro project that you want
to make available to other macro projects, you have a couple of choices for doing this.
First, you can export the module containing the subroutines, functions, and classes,
and then add the module to the project needing the items. Second, you can move the
module into a VB.NET program inside the main IDE and build an assembly containing
the items. (This second approach isn’t as difficult as it sounds; in fact, it’s pretty easy.
The only catch is that you must have VB.NET available in your main Visual Studio
.NET installation.)

Macros That Interact with the User 75

Both approaches have some pros and cons:

■■ Exporting the module. The advantage is that you have direct access to the source
code in your macro project, because the module becomes an actual part of your
project. The disadvantage is that your project ends up with a copy of the original
module, rather than the original module itself. Thus, if you make changes to the
original, you will have to duplicate the changes in your project, or reimport it.

76 Chapter 4

LISTING REFERENCES FROM A MACRO

This is a book on macros, so in addtion to telling you about references, I’m going to show
you how you can gain access to a project’s references at runtime. The following macro
lists all the macro projects presently loaded, and for each project lists the references,
including the full path to the reference. In the following listing, I obtain a Solution object
from the DTE.MacrosIDE object. The Solution object contains a set of Project
objects. I climb through the list of Project objects, and from each obtain a VSProject,
which contains the list of references. For each reference, I ask for its name and its path,
which I print to the Output window.

Imports EnvDTE

Imports System.Diagnostics

Public Module ObtainReferences

Sub ListRefs()

Dim a As VSLangProj.Reference

Dim s As Solution

Dim vsp As VSLangProj.VSProject

Dim p As Project

ClearOutput()

s = DTE.MacrosIDE.Solution

For Each p In s.Projects

vsp = p.Object

Print(“Project: “ & p.Name)

For Each a In vsp.References

Print(“ “ & a.Name)

Print(“ “ & a.Path)

Next

Next

End Sub

End Module

■■ Building an assembly. The advantage is that when you modify the assembly, all
the macro projects that reference the assembly pick up the changes. The disad-
vantage is that the code is no longer a macro in itself.

In this section I show you how to export a module and then import it to another
project. In the next section, I show you how to transform your macro project into an
assembly and then add a reference to the assembly.

To export a module:

1. Give the module a name that is going to be unique. Why? Because if you try to
import the module to another project, and that project already has a module by
the same name, the import will fail. Therefore, don’t use the default name,
Module1. (And when you change the name, change the module filename that
shows up in the Project Explorer, as well as the name of the Module declaration
inside the file. The best way to change both names simultaneously is by right-
clicking on the module name in the Project Explorer and choosing Rename.)

2. In the Macros IDE, find the module name in the Project Explorer and right-click
on it.

3. In the popup menu, choose Export (the word Export will be followed by the
name of the module).

4. The Export File dialog box will open. Save the module where you can easily
find it (it doesn’t have to be in a macro directory, but I usually put it in a direc-
tory with other macros). Give the exported file a .vb filename extension.

The module is now in its own file with a .vb extension. You’re ready to import it to
another project. (But remember, the project will get its own copy of the module, so any
changes you make to the module won’t automatically be picked up by the project to
which you’re importing the module.) To import the module:

1. In the Macros IDE, find the project to which you want to import the module.
Right-click on the project name and choose Add➪Add Existing Item.

2. The Add Existing Item dialog box will open, and the title bar of the dialog box
will also have the name of the project to which you’re going to import the mod-
ule. Make sure this name is the correct project.

3. Find the module you’re importing, choose it, and click Open.

The Macros IDE will import the module to your project. Your project will end up
with an additional module with the same name as the originally exported module.
You’re now free to use the module as if it were part of the project—because it is part of
the project.

Referencing One of Your Own Assemblies
To show you how to make an assembly available to a macro, I’m going to start with a
sample macro that I will move over to the main IDE and build an assembly. Then I’ll
make the assembly available to other macros.

Macros That Interact with the User 77

If you already have an assembly and simply want to access it in your
macros, all you need to do is copy its DLL to the directory c:\program
files\microsoft visual studio .net\common7\ide\publicassemblies
(substituting the first two directory names in the path if you installed Visual
Studio .NET in a directory other than the default). When you open the Add
Reference dialog box, you will see the name of your assembly.

As I mentioned in the previous section, if you write some general subroutines or
classes that you want to make available to other macros, you can put the subroutines
and classes inside an assembly. Here’s how you do this. First, suppose the following
code is the macro module you wish to make available to other macro projects:

Imports EnvDTE

Imports System.Diagnostics

Public Module Output

Private OutputWin As OutputWindowPane

Private Function FindOutputPane(ByVal win As OutputWindowPanes, _

ByVal title As String)

Dim apane As OutputWindowPane

For Each apane In win

If apane.Name = title Then

Return apane

End If

Next

Return Nothing

End Function

Private Sub AddOutputPane(ByVal title As String)

Dim outwin As Window = DTE.Windows.Item _

(EnvDTE.Constants.vsWindowKindOutput)

outwin.Visible = True

OutputWin = FindOutputPane(_

outwin.Object.OutputWindowPanes, title)

If OutputWin Is Nothing Then

OutputWin = outwin.Object.OutputWindowPanes.Add(title)

End If

End Sub

Public Sub Print(ByVal text As String, _

Optional ByVal title As String = “Macros”)

AddOutputPane(title)

OutputWin.OutputString(text & Chr(13))

End Sub

Public Sub Clear(Optional ByVal title As String = “Macros”)

AddOutputPane(title)

78 Chapter 4

OutputWin.Clear()

End Sub

End Module

When I built this module as a macro, I did not add any additional references to the
macro project beyond what was already referenced by default. However, as you’ll see
shortly, I’ll nevertheless need to add some references when I transform this into a
VB.NET program that will later become an assembly.

Here are the steps to get the preceding module into a VB.NET program, ready for an
assembly.

1. In the main IDE, create a new solution by choosing File➪New➪Blank Solution;
or open an existing solution.

2. Create a new VB.NET class library by choosing File➪Add Project➪New Proj-
ect. In the New Project dialog box, choose Visual Basic Projects in the left tree,
then choose Class Library in the Templates list on the right. Type a name and
location for your project. Make sure the name is reasonably unique, as this is
the name that will appear later on in the Add Reference dialog box when you
create a macro to use the assembly you’re building.

3. Visual Studio .NET will create a new starter project for you, which will contain
a Class1.vb file and an AssemblyInfo.vb file. You can remove the Class1.vb file
if you want, as you won’t be needing it (at least not for this example).

4. In the Solution Explorer, right-click on the name of the project you just created
and choose Add➪Add Module. In the Add New Item dialog box, make sure
Local Project Items in the left tree is highlighted and that Module in the tem-
plates list on the right is highlighted. Then type a name for the module. (I rec-
ommend using the same name as the module you’ll be copying over. For the
sample, I used the name Output.)

5. Switch back to the Macros IDE and open the module you’ll be using in the
assembly. Copy the entire code to the clipboard. (For example, I press Ctrl-A to
select all, then Ctrl-C to copy.) Then switch back to the main IDE and replace all
the code in the new module with the code from the clipboard. (For example, I
press Ctrl-A to select all, then Ctrl-V to paste over the selection.)

At this point, for the most part, your module should be fine as-is, with two impor-
tant exceptions:

■■ You will likely need to add some references if you use any of the classes out-
side of the main System namespace.

■■ The assembly you’ll be building doesn’t automatically know about the root
DTE object, as the macros do, so you’ll need a special routine to add it.

Here’s how you perform these two actions:

1. For the references, switch back to the Macros IDE; in the Project Explorer, look
at the references in the original macro project that contained the code you are

Macros That Interact with the User 79

putting in the assembly. Then go back to the main IDE. In the Solution Explorer
you’ll see there’s also a References section to which you can compare the refer-
ences. If any are missing (which there will be), right-click on the word Refer-
ences and choose Add Reference. Scroll down and click on the missing items.
(The names will have a .dll extension, but other than that they will be the
same.) One you’ll most likely need is the envdte library, which contains the
DTE object and class information. When you’re finished, click OK.

2. Now you need to make your module recognize the DTE object. To do this, add
the following lines inside the module:

Private OutputWin As OutputWindowPane

Private TheDTE As DTE

Public Sub Setup(ByVal ADTE As DTE)

TheDTE = ADTE

End Sub

3. Next replace any references to the DTE object with TheDTE. In other words,
instead of directly using the DTE object throughout the code, you’ll use the
TheDTE object, which is a private variable local to the module in the code you
just added.

That should finish fixing up the module. Here’s the completed module (the changes
are shown in bold):

Imports EnvDTE

Imports System.Diagnostics

Public Module Output

Private OutputWin As OutputWindowPane

Private TheDTE As DTE

Private Function FindOutputPane(ByVal win As OutputWindowPanes, _

ByVal title As String)

Dim apane As OutputWindowPane

For Each apane In win

If apane.Name = title Then

Return apane

End If

Next

Return Nothing

End Function

Private Sub AddOutputPane(ByVal title As String)

Dim outwin As Window = _

TheDTE.Windows.Item(EnvDTE.Constants.vsWindowKindOutput)

outwin.Visible = True

OutputWin = FindOutputPane(_

outwin.Object.OutputWindowPanes, title)

If OutputWin Is Nothing Then

OutputWin = outwin.Object.OutputWindowPanes.Add(title)

80 Chapter 4

End If

OutputWin.Clear()

End Sub

Public Sub Print(ByVal text As String, _

Optional ByVal title As String = “Macros”)

AddOutputPane(title)

OutputWin.OutputString(text & Chr(13))

End Sub

Public Sub Clear(Optional ByVal title As String = “Macros”)

AddOutputPane(title)

OutputWin.Clear()

End Sub

Public Sub Setup(ByVal ADTE As DTE)

TheDTE = ADTE

End Sub

End Module

Now you’re ready to build the assembly. To do this, you need to first set up the
assembly information. In the information for this project in the Solution Explorer,
notice a file called AssemblyInfo.vb. Double-click to open it. You will see several lines
that look like this:

<Assembly: AssemblyTitle(“”)>

but with various other identifiers in place of AssemblyTitle. For the AssemblyTi-
tle and AssemblyDescription, type a title and description inside the quotes. You
can also fill in some of the other information, such as company name and so on. Here’s
what I filled in and what I left blank:

<Assembly: AssemblyTitle(“VBMacroUtilities”)>

<Assembly: AssemblyDescription(“VBMacroUtilities”)>

<Assembly: AssemblyCompany(“Jeff Cogswell”)>

<Assembly: AssemblyProduct(“”)>

<Assembly: AssemblyCopyright(“(c) 2002 Jeffrey M. Cogswell”)>

<Assembly: AssemblyTrademark(“”)>

<Assembly: CLSCompliant(True)>

Now here’s the really important part: You’re going to set up this project so it will cre-
ate a strong-named assembly, which is simply an assembly that includes an encryption
key that uniquely identifies the assembly. To add the strong name, first you need to
add a line to the AssemblyInfo.vb file that you were just modifying. Add the following
line to the very end of the AssemblyInfo.vb file:

<Assembly: AssemblyKeyFile(“..\\..\\keyPair.snk”)>

This is a reference to a file containing a unique key.

Macros That Interact with the User 81

Next, to create this file containing a unique key, you need to open up a good old
command-prompt window (that is, a DOS window). But don’t open the default one
that’s buried somewhere inside the Start menu of the Windows Desktop. Instead, click
on the Start menu, go to the Microsoft Visual Studio .NET group, choose Visual Studio
.NET tools, and then click Visual Studio .NET Command Prompt. This is a special ver-
sion of the standard command prompt that has the path already set up for all the .NET
command-line tools.

Once you have the Visual Studio .NET Command Prompt open, change to the direc-
tory containing the VB.NET project you created and have been modifying. Make sure
you’re in the directory that contains the AssemblyInfo.vb file, then type the following
command:

sn -k keyPair.snk

This will generate a file that contains an encryption key pair. You don’t need to
worry about the contents of the file; the sn program generated a unique pair for you.

Now return to the main IDE. Go ahead and compile the program by right-clicking
the project name in the Solution Explorer and choosing Build.

After you’re finished building, you need to copy the resulting .DLL file to a special
location to enable the macro referencing system to find it. For this you can use either
the same Command Prompt window you had opened a moment ago or Windows
Explorer, whichever you prefer. Underneath the directory containing your project (the
same place you wrote the keyPair.snk file) you will find a bin directory containing the
DLL. Here’s what I see:

VBMacroUtilities.dll

Copy this .DLL to the following directory (or modify the first couple of directories in
the path if you installed your .NET system elsewhere):

c:\program files\microsoft visual studio .net\common7\ide\

publicassemblies

Now the .DLL, which is also an assembly, is in place for your macros to use it.
Here’s how you can try out the assembly. Switch over to the MacrosIDE, and in one

of your macro projects, add a reference to your new assembly. To do so, right-click on
the project in the Project Explorer and choose Add Reference. In the Add Reference dia-
log, find the new one called VBMacroUtilities. Double-click the assembly and click OK
to add it to your references.

Now try writing a subroutine that calls a procedure or function in your assembly. If
you’re using the example I gave you, try this:

Sub TryExternalRef()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

VBMacroUtilities.Print(“Writing to Output Window!”)

End Sub

82 Chapter 4

The first line inside the subroutine sets up the module so it knows about the DTE
object. The next two lines call subroutines inside the assembly.

Creating Windows and Forms

Since you have access to the .NET framework, you can use the classes in the Sys-
tem.Windows.Forms library. In this and the following section I show you how you can
interact with the user through dialog boxes and windows. One particularly exciting
topic is how you can create custom windows called forms, complete with the controls
you want on them: buttons, listboxes, you name it.

Getting Input from a User
Perhaps the easiest way to get input from the user is with the InputBox function. This
VB.NET function is built right into the language; it displays a small dialog box con-
taining an Edit control, allowing the IDE user to enter a string. The InputBox function
returns the user’s entry. Here’s a sample of the InputBox function:

Sub SimpleInput()

Dim name As String

name = InputBox(“What is your name?”)

MsgBox(“Your name is “ & name)

End Sub

The InputBox function has four optional parameters after the main string:

■■ Title. The text that appears in the title bar of the message.

■■ Default Response. The text that appears inside the entry Edit box by default
when the dialog initially opens.

■■ X-Position. The horizontal position for the dialog box.

■■ Y-Position. The vertical position for the dialog box.

Here’s an example using all four of these optional parameters:

Sub SimpleInput2()

Dim name As String

name = InputBox(“What is your name?”, “Secret”, _

“Refusal”, 100, 100)

MsgBox(name)

End Sub

If the user presses Cancel, InputBox will return a string of length 0. This is
the same as if the user clears the entry Edit box and then clicks OK.

Macros That Interact with the User 83

Creating a Form
Although in the Macros IDE you don’t have access to a drag-and-drop designer, as you
do in the main IDE when creating a VB.NET or C# program, creating a form is still
easy: All you do is create an instance of class Form. Here’s all you need; first, an
Imports statement:

Imports System.Windows.Forms

and then this code:

Sub QuickForm()

Dim f As Form = New Form()

f.ShowDialog()

End Sub

Of course, this code doesn’t do much other than create a form. But you can see how
it first creates an instance of class Form, then it calls ShowDialog for the form.

But the form would be better if it had some controls on it. Here’s a listing that cre-
ates a button, in addition to the form, and adds an event handler to the form. First
review the code for an entire module, then I’ll explain how it works:

Imports EnvDTE

Imports System ‘ Added this manually!

Imports System.Diagnostics

Imports System.Windows.Forms

Public Module Module1

Class Handlers

Sub Button_Clicked(ByVal sender As Object, ByVal e As EventArgs)

VBMacroUtilities.Print(“Click”)

End Sub

End Class

Sub ShowForm()

VBMacroUtilities.Setup(DTE)

Dim f As Form = New Form()

f.Width = 400

f.Height = 300

Dim b As Button = New Button()

b.Text = “Click”

b.Left = 25

b.Top = 25

Dim h As Handlers = New Handlers()

AddHandler b.Click, AddressOf h.Button_Clicked

f.Controls.Add(b)

f.ShowDialog()

End Sub

End Module

84 Chapter 4

TE
AM
FL
Y

Team-Fly®

To use this module, simply call the ShowForm subroutine, which exists as a macro.
But notice one important aspect to this module: I had to manually add the Imports
System line, because the Macros IDE didn’t add it automatically. The import of Sys-
tems makes it easier to directly use the class EventArgs, because you don’t have to
type the fully qualified name, Systems.EventArgs. I also added the Imports Sys-
tem.Windows.Forms line, allowing easier access to the various form and control
class. And notice in a couple places in the code I’m using the VBMacrosUtilities assem-
bly, which I created earlier in this chapter, in the section, “Referencing One of Your
Own Assemblies.”

Now notice the class called Handlers at the top. This class holds a single function
called Button_Clicked. As you can probably imagine, this function is the code that
will handle the click of a button. In the subroutine ShowForm, you can see I first set up
the output for the VBMacroUtilities assembly, then I create a new form. The next two
lines set the width and height of the form.

The next line creates a new button for the form. Note that this line doesn’t yet add
the button to the form, however; it simply creates the button object. Next I set the text
for the button (the button will be labeled “Click”), and then I set the position by speci-
fying the Left and Top members.

Next I create the instance of the Handlers class. Although there are no member
variables (the class contains only a single function), I still need to create an instance of
the class, because event handlers require an instance, not just a class. Then I register the
event handler. To register the handler, I call the AddHandler function, passing two
items:

■■ The event I want to catch. In this case, I want to catch the Click event of my button,
which is simply called b. Thus, the first parameter of AddHandler is b.Click.

■■ The address of the function that will capture the event. This function must be a
function inside an instance, so I don’t just pass the function name; I pass the
name of the object as well. Thus, I pass AddressOf h.Button_Clicked.
(The AddressOf keyword takes the address of the item that follows,
h.Button_Clicked.)

As you can see, AddHandler doesn’t look like a typical function call; its parameters
don’t have parentheses, an idea that is a throwback to the old BASIC language where
built-in functions didn’t take parameters (even though AddHandler itself did not
exist in the old BASIC language).

That’s all there is to it: This sample code creates a window with a button, and when
you click the button you see the message “Click!” appear in the output window.

Displaying Standard Dialog Boxes
The .NET framework includes classes for displaying standard dialog boxes, such as a
font chooser. Here’s a sample code that shows the FontDialog dialog box, and then sets
the fonts accordingly.

Macros That Interact with the User 85

To use this listing properly, you need to add the following references:
System.Drawing.dll, and VBMacrosUtilities. Also take note of the Imports
statements, as you need to add two imports lines as well: the System import
and the System.Windows.Forms import.

Imports EnvDTE

Imports System ‘ Added this manually!

Imports System.Diagnostics

Imports System.Windows.Forms

Public Module FontForm

Class MyFontDialogClass

Dim f As Form

Dim b As Button

Sub Button_Clicked(ByVal sender As Object, ByVal e As

EventArgs)

Dim fonts As FontDialog = New FontDialog()

If fonts.ShowDialog() = DialogResult.OK Then

f.Font = fonts.Font

End If

End Sub

Sub ShowForm()

VBMacroUtilities.Setup(DTE)

f = New Form()

f.Width = 400

f.Height = 300

b = New Button()

b.Text = “Click”

b.Left = 25

b.Top = 25

AddHandler b.Click, AddressOf Me.Button_Clicked

f.Controls.Add(b)

f.ShowDialog()

End Sub

End Class

Sub FontDialogTest()

Dim inst As MyFontDialogClass = New MyFontDialogClass()

inst.ShowForm()

End Sub

End Module

In this code, I changed the architecture just a bit from the sample in the previous sec-
tion; I put the ShowForm function inside the main class, and I moved the form and but-
ton variables outside of ShowForm and into the class instance itself. That way the
Button_Clicked subroutine has easy access to the two variables.

86 Chapter 4

Inside the Button_Clicked subroutine you can see how I accessed the font dialog:
I first created a new instance of FontDialog and then I simply called the FontDia-
log instance’s ShowDialog function. I then tested the return value of ShowDialog,
to see if the IDE user clicked OK. If so, I set the new font for the form equal to the Font
property of the FontDialog instance. (Setting the form’s font by default sets the font
for all the child controls of the form, so the button’s font changes as well.)

Here’s a list of the standard dialogs available:

■■ ColorDialog. A standard dialog that lets your IDE user choose a color.

■■ OpenFileDialog. A dialog that lets your IDE user choose a file that exists on your
computer. Normally, you would use this when you want to prompt the user for
the name of a file to open.

■■ SaveFileDialog. A dialog that lets the user specify a new filename anywhere on
the computer. Normally, you use this when you want to prompt the user for a
name for saving a file.

■■ FontDialog. A dialog that lets the user select a font.

■■ PageSetupDialog. A dialog for setting up the printer.

■■ PrintDialog. A dialog for printing.

Since the focus of this book is macro development, for our purposes here, I’ll simply
say that these dialog box classes behave the same as in standard .NET development.

Working with System Event Handlers

Often when you write a macro, it’s convenient to be able to respond to various activi-
ties the IDE user performs. For example, before the IDE user closes a document, you
might want to run a macro that records the current date and time to a log file (assum-
ing, of course, that such a macro wouldn’t be a violation of privacy).

The Visual Studio .NET Macro system includes a built-in set of events that your macros
can respond to; additionally, you can write your own new events. A macro that responds
to an event is called an event handler. The built-in event handlers have several categories,
which I discuss shortly. But first let me explain how to create an event handler.

The event handlers show up only in the macro explorer from within the
Macros IDE. They do not show up in the Macro Explorer from within the
main Visual Studio .NET IDE. Therefore, to run the event handlers, you must
perform the action in the main IDE that triggers the event.

To create an event handler that shows you how to create a handler that takes place
whenever the IDE user opens a document, follow these steps:

1. In the Macros IDE, inside either the Class View or Project View, find the project
where you wish to create the event handler and expand the project’s tree.

2. Double-click the EnvironmentEvents module under the project’s tree to open it
inside the code editor. This module looks just like any other module, except it

Macros That Interact with the User 87

has a section of automatically generated code. Do not modify this code. You can
(and will, if you add an event handler), however, add more code to the module.

3. At the top of the code module are two comboboxes. In the left combobox,
find the category for the event you wish to handle. For the example, choose
DocumentEvents.

4. After you choose a category in the left combobox, the Macros IDE will fill the
right combobox with the events in the chosen category. For the example,
choose DocumentOpened.

5. The Macros IDE will automatically insert a subroutine skeleton for the event
handler. The subroutine skeleton includes the subheader line, which is impor-
tant, because the subheader line shows you the object that is passed to the
event. For the example, the object passed to the event is the document that was
opened (since the event handler is DocumentOpened).

Inside the subroutine, type the code for your handler. For the example, use this
code:

Public Sub DocumentEvents_DocumentOpened(ByVal Document As _

EnvDTE.Document) Handles DocumentEvents.DocumentOpened

Dim logfile As System.IO.StreamWriter

logfile = New StreamWriter(“c:\docs.log”, True)

logfile.WriteLine(Document.FullName + “ “ + Now)

logfile.Close()

End Sub

6. If you need any Imports lines, you can add them now. (Or you can do this step
anytime after step 2, where you opened the EnvironmentEvents module.) For
the example, add the line Imports System.IO after the existing Imports
System.Diagnostics line.

Now you can try out the event handler macro. For the example, switch back to the
main IDE and open any file. (If you have a project open, the easiest way is to click a
source code file in the Solution Explorer under the project you have open.) When you
do so, you won’t see anything happen beyond the file opening; but in the background,
the example event handler will run. If you look at the root of the C: drive, you will see
a file docs.log. This file will contain a line such as this:

C:\temp3.txt 10/2/2002 12:50:56 PM

When you open another file, the event handler macro will add another line to the
log file. Thus, you will accumulate a log of all files that are opened within the IDE.

Categories of Events
The Visual Studio .NET macro engine has 12 categories of built-in event handlers,
which cover most of the common actions that an IDE user can perform. Each category
contains several event handlers. Here’s the list:

88 Chapter 4

DTE events. These are the events dealing with when the macro engine starts up
or shuts down, as well as when the IDE starts up or shuts down. The DTE
events are:

ModeChanged. Occurs when the IDE user begins a debug session, and again
when the debug session ends. (Note that the Visual Studio .NET online help
claims this event also occurs when a build session begins or ends, and when
the program being built runs. That is not the case: The ModeChanged event
occurs only when beginning and ending a debugging session.)

OnBeginShutdown. Occurs when the IDE user shuts down the Visual Studio
.NET IDE. Specifically, the event occurs when the shutdown process begins.

OnMacrosRuntimeReset. Occurs when the macro engine resets. The main use
for this is when you have custom event handlers (as opposed to handlers for
the built-in events): inside this event handler you would reattach the event
handlers.

OnStartupComplete. Occurs after the IDE user starts up the Visual Studio
.NET IDE and after the startup process is complete. Remember, when you
open either the Macro Explorer or the Macros IDE, you can choose which of
your macro projects are loaded or unloaded. Those that are loaded will reload
the next time you start up the main IDE. Thus, if you have an OnStartupCom-
plete handler, it will run the next time you start up the IDE.

Document events. These are the events dealing with documents, such as open-
ing and closing. The Document events are:

DocumentClosing. Occurs just before the IDE user closes a document.

DocumentOpening. Occurs when the IDE user opens a document. Specifi-
cally, this event occurs before the IDE opens the user’s chosen document.
Note that the first parameter to the DocumentOpening event handler is a
String type called DocumentPath. This parameter is actually the full path and
filename of the document, not just the path.

DocumentOpened. Occurs when the IDE user opens a document. Specifically,
this event occurs after the IDE opens the user’s chosen document.

DocumentSaved. Occurs after the IDE user saves a document.

Window events: These events take place as the IDE user manipulates the docu-
ment windows in the main IDE. These events do not occur in response to the
IDE user manipulating the tool windows. The Window events are:

WindowActivated. Occurs when any window in the IDE receives the focus.

WindowClosing. Occurs when the IDE user closes a document window. Note
that this event occurs before the DocumentClosing event occurs.

WindowCreated. Occurs when the IDE user opens a document window. This
event occurs after the DocumentOpening event, but before the Document-
Opened event. Thus, the order is (1) DocumentOpening, (2) WindowCreated,
and (3) DocumentOpened.

Macros That Interact with the User 89

WindowMoved Event. Occurs when the IDE user moves or resizes a docu-
ment window. This event really only matters when the IDE user has chosen
the MDI environment from the Environment:General section of the Options
dialog box. If the IDE user instead has chosen Tabbed documents, he or she
cannot move the windows, thus the WindowMoved event has no effect.

Task List events. The task list is a window with checked items that you can use
for keeping track of a to-do list relating to your project (although, really, you can
add any item, not just project-related items). The IDE also adds items to this list
when the IDE user builds a project and there are errors. The IDE adds a line for
each error. The Task List events are:

TaskAdded. This event occurs after a new item is added to the task list, when
the IDE user builds a project and there are errors; the errors appear in the task
list. Or, this event can happen when the IDE user manually adds an item to
the task list. The event handler receives an instance of the TaskItem class,
which contains information about the task that was added. The following is a
sample TaskAdded event handler:

Public Sub TaskListEvents_TaskAdded(ByVal TaskItem As _

EnvDTE.TaskItem) Handles TaskListEvents.TaskAdded

MsgBox(“TaskAdded: “ + TaskItem.Description)

End Sub

TaskModified. Occurs only after the IDE user modifies an item in the task, not
when he or she deletes or adds a task. The event handler receives an instance
of the TaskItem class, which contains information about the task after it was
modified.

TaskNavigated. Occurs when the IDE user double-clicks on an item in the task
list that refers to compiler errors or warnings or other to-do information in
the task list pertaining to the source code. When the user double-clicks such
an item, the TaskNavigated event will occur, then the IDE will switch focus to
the source code, highlighting the line to which the task item refers. For exam-
ple, if the IDE user builds a project and there is an error in the code, the IDE
will add an item to the task list describing the error. When the user double-
clicks the error message in the task list, the TaskNavigated event will occur
and then the IDE user will see the line with the error appear in the source
code. The line will be highlighted.

TaskRemoved. Occurs when an item is removed from the task list. The event
occurs just before the IDE removes the task. However, when the IDE user
builds a project, and there are existing error and warning messages in the task
list, the IDE removes the existing error and warning messages, but the
TaskRemoved event does not occur. The event occurs only when the IDE user
manually removes an item from the task list.

Find events. The IDE contains a Find in Files dialog box, which the IDE user can
use to find search strings through multiple files. The Find category of events
actually contains only one event, FindDone:

90 Chapter 4

FindDone. Occurs after the IDE user performs a Find in Files operation. The
event occurs after the search is finished. The event handler receives a vsFind-
Result enumeration, which simply tells the status of the completed Find in
Files operation—whether the search item was or wasn’t found, a replace
operation found the searched item, a replace failed because no search items
were found, the search did not complete, or the search resulted in an error.

Output window events. The output window in the IDE is a multipurpose win-
dow that displays the output of various activities, such as the output from a
build or from a debugging session. At the top of the output window is a drop-
down listbox that contains a list of panes. When you choose an item in the list,
the output window switches to output for the item you chose. The output cate-
gory consists of the following events:

PaneAdded. This event occurs when a new output window is added, but only
in response to macros and add-ins that add an output pane. This event does
not occur when the IDE adds an output pane (for instance, when the IDE user
begins a debugging session, the IDE creates a Debug pane).

PaneClearing. This event occurs when an output pane clears, for example, when
the IDE user right-clicks inside the output window and chooses Clear All.

PaneUpdated. This event occurs when the output in a pane changes, whether
text is added or the text is cleared. This includes when the IDE user builds a
project. Note that this event occurs every time a line of text is added to the
output pane, which can cause numerous PaneUpdated events to occur.

Selection events. This event category contains only one event, which deals with
the item is currently selected within the IDE. Think of the selection as the combi-
nation of the window that currently has the focus (whether it’s a document win-
dow or a tool window) and, within that window, the item that is currently active.

OnChange. When the user clicks either on a different item within the
window that currently has the focus or on a different window altogether,
the OnChange event occurs. Note, however, that this event handler does
not have any parameters, thus the handler does not receive any information
on the selection. To find out what is currently selected, inspect the
DTE.SelectedItems object. The following sample code demonstrates this.

Public Sub SelectionEvents_OnChange() Handles SelectionEvents.OnChange

Dim item As SelectedItem

Dim mystr As String = “”

If DTE.SelectedItems.MultiSelect = True Then

For Each item In DTE.SelectedItems

mystr = mystr + item.Name + Chr(13)

Next

MsgBox(mystr)

Else

MsgBox(DTE.SelectedItems.Item(1).Name)

End If

End Sub

Macros That Interact with the User 91

Build events. The Build events occur when the IDE user builds a project or solu-
tion. Even if a project is up-to-date, these events still occur. They also occur
when the IDE issues a clean command. The Build events are:

OnBuildBegin. Occurs when the IDE user builds a project. If the user builds
an entire solution containing multiple projects, only one OnBuildBegin event
will occur. To find out which project begins, see the OnBuildProjConfigBegin
event in this list.

OnBuildDone. Occurs when a build process is complete. Again, if the IDE
user builds an entire solution, this event will occur only once even though the
solution contains multiple projects.

OnBuildProjConfigBegin. Whenever a build begins, this event occurs. This
event contains the name of the project, the name of the configuration (such as
Debug or Release) and the name of the solution configuration. If the user
chooses to build an entire solution, the OnBuildProjConfigBegin event occurs
prior to the build of each project in the solution.

OnBuildProjConfigDone. Occurs after each project build. For multiple projects
within a solution, this event occurs after each project in the solution builds. An
event handler for this event receives the same information as the handler for the
OnBuildProjConfigBegin event.

Solution events. The Solution events occur in response to various activities
involving the solutions. They are:

AfterClosing. Occurs after a solution closes.

BeforeClosing. Occurs before a solution closes.

Opened. Occurs after a solution opens.

ProjectAdded. Occurs after the IDE user adds a project to the solution.

ProjectRemoved. Occurs after the IDE user removes a project from the solu-
tion.

ProjectRenamed. Occurs after the IDE user renames a project in the solution.

QueryCloseSolution. This event is interesting because the handler receives a
Boolean variable that the handler can change: If the handler determines the
solution should not close after all, the handler can return True to cancel the
closing of the solution.

Renamed. Occurs after the IDE user renames the solution.

Debugger events. These events deal with interaction with the debugger. The
Debugger events are:

OnContextChanged. Occurs when the user (or a macro) changes the current
process, program, thread, or stack.

OnEnterBreakMode. Occurs when the debugger encounters a breakpoint.

OnEnterDesignMode. Occurs when the IDE returns from debug mode.

OnEnterRunMode. Occurs when the process being debugged begins to run,
either initially or after a breakpoint.

92 Chapter 4

OnExceptionNotHandled. Occurs when the program being debugged
encounters an exception that was not handled by the program.

OnExceptionThrown. Occurs when an exception is thrown. It will take place
before an OnEnterBreakMode event.

Moving Forward

In this chapter I discussed the different ways that you can write a macro that interacts
with the user. This includes creating forms and writing to the main IDE’s output win-
dow. Additionally, I took you through the steps of building an assembly called
VBMacroUtilities that writes to the output window. Be sure to follow the steps I outlined,
as you will need this assembly for many of the macros in the remainder of the book.

Initially, the next chapter diverts focus from macros to address some .NET architec-
ture. Halfway through the chapter, I return to the macros to show you how the projects
and solutions coexist, and how you can manipulate them with your macros.

Macros That Interact with the User 93

MULTIPLE HANDLERS FOR A SINGLE EVENT

What if you have multiple macro projects open and you write an event handler in each
project for the same event? The IDE will simply call each of the event handlers, one after
another. However, there is no guarantee as to the order in which they will be called. This
is because the events use Visual Studio .NET delegates, which handle the business of
calling event handlers. A delegate calls the handlers in the order in which they are
added. But in the macros, you do not have control over this order. Therefore, if you are
handling the same event in multiple macro projects, do not tie them together, with one
relying on the other happening first.

TE
AM
FL
Y

Team-Fly®

95

By virtue of the fact that you’re reading a book on developing macros in Visual Studio
.NET, it’s probably safe to assume that you know at least some .NET programming.
Nevertheless, for those of you not that familiar with .NET, in this chapter I talk about
the architecture of .NET, to help get you up to speed. For those of you proficient in
.NET programming, this chapter will serve to show you how .NET fits into the macro
development world.

Getting to Know Microsoft .NET

Since .NET was introduced, around 1999, many people have tried to define exactly
what it is. Some think it’s an online subscriber-based service, much like MSN, where
users can log in and check their email. (In fact, there’s good reason for this: When you
visit the MSN page, Microsoft now includes a big welcome to .NET.) But to most soft-
ware engineers, .NET is the latest and greatest layer that sits atop the Windows oper-
ating system. In the past, there were OLE and COM (which are still very much a part
of Windows) and something called Windows DNA (which many programmers
ignored; and to this day most still don’t have a clue what Microsoft was attempting
with it).

In fact, .NET is something new altogether. It’s an entire framework that provides:

■■ Managed applications, which means the .NET framework takes care of object
management, including the deletion of objects that are no longer used. In other
words, C++ programmers don’t need to worry about deleting their objects,

Just Enough .NET Architecture

C H A P T E R

5

provided the objects are managed objects. This also means the operating system
watches over the security of systems, ensuring safe execution of code that
might not be trusted. Finally, managed applications also run in Microsoft Inter-
mediate Language (MSIL), which is a highly optimized language.

■■ A rich class library.

■■ Easy ways to create Web services.

■■ A solution to the problem of different programs expecting different versions of
the same DLL.

■■ A software development kit to aid in .NET programming.

■■ A development tool for creating .NET programs, called Visual Studio .NET.

■■ Flexibility in deploying applications that target multiple platforms. Included in
this is just-in-time compilation, which means the runtime will compile the pro-
gram from MSIL to native code either at installation time or on the fly at runtime.

■■ Support for multiple language development. Since code is compiled to an inter-
mediate language, developers can use any language for which there exists an
MSIL compiler. Such languages include C++, C#, and Visual Basic .NET.

In order to provide for all these features, Microsoft has supplied two layers:

■■ Common Language Runtime (CLR)

■■ .NET Class Library

The CLR is the heart of the .NET system. It is the layer that sits on top of the operating
system and provides the .NET features for managed applications. When you execute a
.NET program, the CLR handles the just-in-time compilation and the execution of the
program, along with memory management, security, and thread management. When a
program is a .NET application, it is, in actuality, an application that targets the CLR.

If you’re familiar with Java, the CLR is very much like the Java Virtual
Machine (JVM) in concept: When you run a Java program, it runs on top of
the JVM, while the JVM handles memory management and garbage
collection, along with other features such as thread management. Also,
when you write Java programs, they are compiled on the fly using a just-in-
time compilation process, just like .NET programs.

The .NET class library is composed of a rich set of classes that provide features such
as string handling, console output, file handling, and window and form management.

In the sections that follow I describe the CLR and the .NET Class Library.

Common Language Runtime
Common language runtime is the foundation of the .NET Framework. It provides the
fundamental services that you would normally expect to find in a runtime system,
such as memory allocation and thread management. But unlike other runtime systems,
the common language runtime also includes a number of basic data types. This is an

96 Chapter 5

important feature that helps simplify cross-language development. Prior to .NET, if
you created a library of classes and functions, the language in which you developed
the library made a difference to how the library was used by other languages.

For example, if you wrote a set of classes and standalone functions in C++ and saved
them to a library, but wanted to access the classes and functions in either Pascal (using,
for example, Borland Delphi) or Visual Basic, you were in for quite a job. For starters,
strings are stored differently in different languages; and other issues might arise as
well, such as whether the different languages use the same standard for floating-point
numbers, and even the same byte order for integers. If there were differences, you had
to twist your data before calling the functions, and then do another twist once you had
the results of the function. To top it all off, the order in which variables are passed to
the functions also differs. (That’s why, if you did Windows programming in C or C++
in earlier days, you may have noticed that frequently you had to throw the keyword
“pascal” in front of some function calls, whereas Pascal and C/C++ pass their function
parameters in the opposite order.)

But beyond the basic data types, classes are a nightmare. Previous versions of Visual
Basic, Delphi, and Microsoft Visual C++ all store classes differently, with different vir-
tual table mechanisms. (Incidentally, at the time of this writing, Borland has
announced a version of Delphi that is fully compatible with .NET.) Older versions of
VB didn’t even support inheritance. I could go on and on about the differences.

To resolve these issues, Microsoft gave us the CLR. Unlike the Java Virtual Machine,
which provides cross-platform development but requires that programs all be written
in a single language, Java, the CLR lets you choose your language. For example, you
can choose C++, the new C#, or the newest Visual Basic, and, soon, Borland Delphi’s
Object Pascal.

Presently, you’re pretty much stuck targeting Windows for a platform; but that
might soon change as well, as developers come to recognize the importance of work-
ing along with Microsoft Windows (whether they like Windows and Bill Gates or not)
and begin to work on .NET-compatible libraries on Unix and Linux. (For more infor-
mation on .NET support under Linux, go to www.dotnet.za.net/. At the top is a link
for .NET on Linux.)

.NET Class Library
The .NET class library is a full-featured library that contains many different namespaces,
each serving a separate purpose. A reference to the entire class library would easily fill an
entire volume; therefore, here I list only some of the more commonly used groups of
classes. You can find the entire reference in the online help if you open the contents and
drill down to Visual Studio .NET➪.NET Framework➪Reference➪Class Library.

Here, then, are some of the namespaces you’ll find, along with some of the more
useful classes:

System namespace. This contains basic types, including a root Object class and
class versions of the fundamental MSIL types. Basic type classes include Int32
(which is a C++ class; in VB.NET, you use Integer) and String. This name-
space also has the Console class, which allows you to write to the console.
(Macros, however, don’t have a console window, so the Console class isn’t very
useful in the macro world.)

Just Enough .NET Architecture 97

System.Data namespace. This namespace contains classes for accessing databases.

System.Drawing namespace. This namespace includes types relating to graph-
ics. Classes include Bitmap, Brush, Color, Font, Icon, Image, Point (a
structure that holds simply X and Y values), Rectangle (a structure that holds
X, Y, Width, and Height values), and Size (a structure that holds Width and
Height values). Because the Point, Rectangle, and Size structures are quite
useful, classes in other namespaces occasionally use these structures in their
member functions. If you call any of these member functions, you need to
include a reference to the System.Drawing namespace.

System.IO namespace. This namespace handles file input and output. It includes
many useful classes for various types of file I/O, such as a general-purpose
File class, as well as an extremely handy Directory class for manipulating
directories (something ANSI C++ is lacking), and a Path class for manipulating
path names stored as strings (the Path class only manipulates strings; it doesn’t
actually perform any file input or output). Other useful classes include Memo-
ryStream, StreamWriter (for writing text to a file), and StreamReader (for
reading text from a file). Note that if you work with the classes in the
System.IO namespace, you’ll probably notice two classes called TextWriter
and TextReader. These two classes are actually abstract classes that serve as a
base for StreamWriter and StreamReader, respectively, along with several
other classes. If you open the online help for either TextWriter or Tex-
tReader, you can see a list of the derived classes. Also, if you want to open a
StreamReader or StreamWriter instance, use the File class’s OpenText
method or CreateText method, respectively.

System.Net namespace. It’s hard to imagine a macro that would need access to
the Internet, but this namespace is here for that purpose, filled with several Net-
related classes. Of course, the namespace is useful in .NET programs other than
macros that need access to the Internet. The System.Net namespace also
includes another namespace, System.Net.Socket, which has several classes for
dealing with low-level sockets.

System.Web namespace. This namespace includes classes that operate at a
much higher level than the classes in the System.Net namespace, providing
access to Web-based information. This namespace is part of the greater world
of ASP.NET.

System.Xml namespace. This namespace provides the tools for parsing XML
files. If you’re an XML guru, you’ll be pleased to know the namespace is com-
plete, with regard to the various XML standards.

Packaging Your Software: Assemblies and Manifests
One of the fundamental features of .NET is that it uses assemblies, which are really just
DLLs or executable files, but packaged with additional .NET information to what’s
normally in a DLL or executable. Further, in the case of DLLs, assemblies are stored in
a way that makes versioning more manageable.

98 Chapter 5

An assembly is the fundamental unit of execution in .NET; it contains the Microsoft
intermediate language code, along with the startup code that invokes the CLR, passing
the MSIL code to the CLR for compilation and execution.

In addition to the MSIL code, an assembly contains a manifest, the metadata inside
an assembly that describes the assembly. This metadata includes:

■■ General information. The manifest can contain general information such as the
name of the assembly and the version number.

■■ Security information. The manifest can contain permission requests, such as the
permission to write to the hard disk, but the computer on which the assembly
runs may have a permission setup that forbids the application to do so. The
assembly will then not be able to run.

■■ The files that make up the assembly. Assemblies can be split up into multiple mod-
ules, with a single file containing the manifest, and the code existing in sepa-
rate files called modules. To learn more about this feature, open the .NET
online help and drill down to Visual Studio .NET➪.NET Framework➪Pro-
gramming with the .NET Framework➪Programming with Application
Domains and Assemblies➪Building a Multifile Assembly. (And while drilling
down, you’ll probably find some interesting topics along the way you might
want to take the time to read.)

■■ A list of other assemblies this assembly depends on. As with any library or exe-
cutable, an assembly can depend on other assemblies.

Looking at an Assembly

If you want to look at the information contained in an assembly, you can use the ildasm
program (which stands for Intermediate Language Disassembler). This program pro-
vides you with a graphical user interface (GUI) that displays information about an
assembly, including the metadata in the assembly’s manifest and the code in the
assembly. By default, the ildasm program is installed in the C:\Program
Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin directory.

When you run the ildasm program, you first see a window from which you can
choose File➪Open. In the Open dialog box, you then choose an assembly, normally
either an .EXE or .DLL file. When ildasm opens the assembly, you will see a treeview,
with the root node showing the full path to the assembly. Under the root is the word
MANIFEST. If you double-click on MANIFEST, a new window will open showing the
metadata for the assembly.

Under MANIFEST are the namespaces available in the assembly, along with any
top-level items that are not in a namespace. Under each namespace are the items con-
tained in the namespace, including classes and functions. Under classes you will see
the members of the class. To access code items such as functions and member func-
tions, double-click an item and see its MSIL code.

Just Enough .NET Architecture 99

Organizing Multiple Versions of an Assembly

If you’ve ever installed a software package that’s a year or two old, only to have the
software’s installation program overwrite a DLL in your Windows or Windows\Sys-
tem32 directory, replacing a newer DLL with an older DLL, then you’re aware that,
currently, DLL versioning is a nightmare in Windows. Once the newer DLL is gone and
an older one is in its place, very possibly newer software that was already on your
computer will no longer function—definitely not a fun situation. And if you reinstall
the newer software to restore the new DLL, it’s also possible the older software will no
longer function!

Microsoft has ended this DLL nightmare by incorporating a clever versioning tech-
nique, whereby different versions of a DLL will be installed in separate directories on
your system. Here’s how it works: In the Windows directory is a directory called
assembly, and under it is one called Global Assembly Cache (GAC). Inside the GAC
directory is a separate directory for each DLL. And inside each of these DLLs is a sep-
arate directory for each version of the DLL. For example, if you have an assembly called
MainUtilities, and over the past year you have created two different versions of
MainUtilities, version 1.0.0.0, and version 1.2.0.0, you can install both DLLs into the
GAC. The GAC directory would then have a directory called MainUtilities, and under
that would be two directories, one for version 1.0.0.0 and one for version 1.2.0.0, each
containing the respective DLL.

If you try to traverse the GAC directory using the Windows Explorer, you will
quickly find that you can’t. The reason is that, technically, you’re not
supposed to know (or, at least, not supposed to care) how the directory
structure that I just described is organized. Instead, when you install .NET,
you get a Windows Explorer add-in (called a shell extension) that displays
the assemblies, not in a hierarchy of directories, but rather as a list,
including the name and the version, anytime you try to look at any directory
in Windows\assembly. So if you want to see the actual directory structure,
you need to use the DOS command prompt.

So that you don’t have to be concerned about the directory structure, the .NET
framework includes a utility that installs an assembly into the GAC for you, while
maintaining the integrity of the directory structure. This utility is called gacutil.exe,
and by default it’s installed in the C:\Program Files\Microsoft Visual Studio .NET\
FrameworkSDK\Bin directory.

If you’re interested in using the gacutil program to install your own
assembly into the global assembly cache (or remove your assembly from the
cache), make sure you create the assembly with strong naming. If you’re
curious how to do this, refer to “Referencing One of Your Own Assemblies”
in Chapter 4, “Macros That Interact with the User.”

100 Chapter 5

The gacutil program has a lot of command-line options, but I find for most work I only
need a couple of the options. Here’s a sample line to install an assembly into the GAC:

gacutil /i MainUtilities.dll

This command will uninstall a particular version of an assembly:

gacutil /u MainUtilities,version=1.2.0.0

This command will uninstall all versions of an assembly (so be careful):

gacutil /u MainUtilities

If you used the DOS command prompt to dig down into the assembly
directory, and your prompt is sitting inside the directory of an assembly that
you’re trying to remove, the gacutil program will not be able to remove the
assembly: You will see the error message, “The process cannot access the file
because it is being used by another process.” To prevent this error, change to
some directory other than that of the assembly you’re trying to remove.

.NET and OLE/COM

In the past, much of Windows revolved around Component Object Model (COM) com-
ponents. Originally, Microsoft created Object Linking and Embedding (OLE), and from
there developed OLE 2. But the developers decided they didn’t want versions (I’m not
making this up) so they dropped the 2 and just called OLE 2, OLE. They then broke it
up into architectural layers and called the bottommost layer COM. Today, OLE typically
refers to compound documents and the sharing of data between applications. Other
examples of COM include ActiveX controls (which used to be called OCX controls).

The COM topic is enormous, warranting entire books written about it. But at the
heart of COM are interfaces and objects. When you work with COM, you write code that
conforms to a particular interface to be used in a particular situation. For example, you
might provide a class that is to be used as a GUI control in a pre-.NET Visual Basic pro-
gram. In order for the older Visual Basic to access your class, your class must provide
a certain set of member functions. These member functions comprise the interface. In
the COM and OLE world, people like to say that this interface is a contract between an
object and its users (the users are usually called clients).

The interface concept is somewhat complex in that you can create a class that sup-
ports multiple interfaces, allowing your class to be used in multiple situations. To use
your class, a client requests a pointer to the interface it needs, then the client uses this
interface to call the member functions in your class.

Just Enough .NET Architecture 101

The COM concept dates back to the early 1990s when Microsoft decided it was the
way of the future. Programmers everywhere began building COM components and
sending them out with their applications. One look at the oleview program (by default
installed in C:\Program Files\Microsoft Visual Studio .NET\Common7\Tools) will
show you just how many COM components are installed on your computer.

Every COM component includes a type library, which is data that describes the
types inside the COM component. Typically, COM components live as a DLL
(although they can live as EXEs as well) and this type library is embedded right inside
the .DLL or .EXE file as a resource. (If you see other extensions such as .OCX, it’s really
a DLL with a different filename extension.) As an alternative to putting the type infor-
mation inside the file as a resource, you can put the type information in a separate file
with a .TLB extension (which stands for type library). Normally, you would put this
.TLB file in the same directory as the .DLL file.

Globally Unique Identifiers
Then, to make life a bit more complicated, Microsoft implemented an entire structure
for the COM system that makes use of globally unique identifiers, or GUIDs for short.
(Most people pronounce GUID either “goo-id” and “goo-eed.”) A GUID is a 32-digit
hexadecimal number; Microsoft’s idea was to create an algorithm that could generate
a GUID guaranteed to be unique. That is, if you and I simultaneously run a program
containing the algorithm, Microsoft assures us that you and I will not get the same
number. And supposedly you and I can run the program over and over and over and
never see the same number. (In part, it works like this: The algorithm takes the current
time, along with some numbers that seem to uniquely represent the computer on
which the algorithm runs, which pretty much guarantees uniqueness.)

Each COM component, then, gets a GUID, as does each interface. So if somebody
defines an interface (such as one to be implemented by COM components that are to
serve as controls on a pre-.NET Visual Basic window), then that person will assign a
GUID to the interface. Then if you and I each build a COM component that implements
the interface (that is, if we both create a window control), we will each assign a GUID
to our program and we will state that our program implements the interface given by
the interface GUID.

As you can imagine, all this has resulted in piles upon piles of GUIDs (most of which
come out of Microsoft’s development group). If you open up your Registry using the
regedit program and drill down to HKEY_CLASSES_ROOT➪CLSID, you will see tons
of COM classes that are installed on your computer, all listed by GUID. If you then drill
down to HKEY_CLASSES_ROOT➪Interface, you’ll find all the COM interfaces your
computer knows about, also arranged by GUID. And if that’s not enough, if you look
at HKEY_CLASSES_ROOT➪TypeLib, you’ll find all the type library information your
computer knows about, arranged (you guessed it) by GUID.

Building an Assembly from a COM Component
So now that all these GUIDs are on your computer, Microsoft has changed its mind.
OLE and COM are not the way of the future. Instead, today, it’s .NET. So what to do
about all those COM components floating around? Microsoft decided to make .NET

102 Chapter 5

compatible with COM. To accomplish this, it built a utility that lets you create an
assembly based on the type information in the COM component’s .DLL, .EXE, or .TLB
file. Ultimately, the assembly will simply call into the COM component. The end result
is that you, the .NET programmer, can use the COM component as if it’s just another
class in an assembly. The actual COM aspects are then hidden from you.

If you want to create an assembly based on a COM component, you can use the
tlbimp program (which stands for Type Library Import). This program is by default
installed in C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin.) It
takes as input a file containing type library information for a COM component. Thus,
the program is either a .DLL or an .EXE representing a COM component that contains
its own type library information as a resource, or it’s a .TLB file. As output, the pro-
gram generates a .DLL that is a valid .NET assembly.

Here’s an example of how to use the tlbimp tool. According to the oleview program,
my computer has an ActiveX COM control called ioRdyCtl.ocx, which is apparently
related to the Iomega tools that I installed for working with my zip drive. This COM
control is installed in C:\Program Files\Iomega\Common. If I want to create an assem-
bly that can access this control, here’s a command that I can run from the DOS prompt:

tlbimp “C:\Program Files\Iomega\Common\ioRdyCtl.ocx” /namespace:Iomega

The first parameter is the name and location of the COM file. The second parameter
is optional; it’s a namespace under which I would like all types in the assembly to be.
When I ran this line, I ended up with a file called IORDYCTLLib.dll, which is a valid
assembly.

You can also supply a version number for the assembly if you want to, using another
command-line option:

tlbimp “C:\Program Files\Iomega\Common\ioRdyCtl.ocx” /namespace:Iomega

/asmversion:1.0.1.0

After running this line, you can look at the resulting assembly using the ildasm util-
ity. When I tried it on the Iomega assembly, I saw a namespace called Iomega (since
that’s what I requested in the tlbimp command-line options). Under the Iomega name-
space, I saw all the classes and types available there. These were originally classes and
types in the COM control; now they’re available as .NET classes.

To test out the assembly, you can create a new Visual Basic or C# program in the
main IDE and add a reference to the assembly (by right-clicking References under the
new project in the Solution Explorer, clicking Browse, and selecting the assembly file).
Then create a new subroutine, type the namespace name, then a period, and you’ll see
a popup list of all the classes and types in the namespace. If you see this list, you know
everything worked.

Macro and Add-in Models

One of the major challenges in understanding the models behind the Visual Studio
.NET macro and add-in development is simply sorting out all the classes and name-
spaces. If you have wandered through the online help, you’ve probably seen many

Just Enough .NET Architecture 103

classes and namespaces that may seem somehow interrelated, yet somehow separate.
In this and the following sections, I try to clear up the general organization of all the
namespaces and classes, as well as explain to you how they all fit together and how to
use them.

Visual Studio Packages
Visual Studio .NET is built on several libraries that Microsoft calls packages. These
packages form the heart of Visual Studio .NET and exist as COM objects. You can see
the list of packages if you open up the regedit program (from the Start Menu, choose
Run and type regedit). Expand the HKEY_LOCAL_MACHINE, then SOFTWARE,
then Microsoft, then VisualStudio, then 7.0. Under the key Packages you’ll see a whole
list of COM objects. Each one serves a separate purpose.

Some of these packages are useful to macro and add-in developers, and include fea-
tures such as the control and manipulation of solutions in Visual Studio .NET, or con-
trol and manipulation of the various tool windows and menus. Microsoft has made
these more useful features available for macro and add-in development. Other pack-
ages are less useful to macro and add-in developers.

To make the more useful packages available for macro and add-in programming,
Microsoft has implemented assembly versions of the packages. The packages them-
selves are simply COM objects; therefore, the folks at Microsoft ran the tlbimp utility to
create the assembly versions (at least we can assume that’s how they were created).
The end result is that you can use these assemblies to control the Visual Studio .NET
IDE from your macros and add-ins.

Visual Studio Project Types
Depending on which products you have installed (such as Visual C++, C#, and Visual
Basic .NET), your copy of Visual Studio .NET will recognize various project types. If
you want to dig through the Registry further, you can find out exactly what types of
projects your installation supports. Under the HKEY_LOCAL_MACHINE, then SOFT-
WARE entries, then Microsoft, and finally inside VisualStudio, then 7.0, you’ll find a
key called Projects. This key lists the project types available under your installation.
Each project type has a GUID associated with it; this GUID is used when you access the
Project objects in the macros and add-ins. Here’s a list of some of the common items
you’re likely to see, along with their GUIDs:

■■ Project Converter {059D6162-CD51-11d0-AE1F-00A0C90FFFC3}

■■ Visual Studio Deployment CAB Project {0b7288ca-6892-4441-925d-34d99f5c97bd}

■■ Visual Studio Deployment Project {54435603-dbb4-11d2-8724-00a0c9a8b90c}

■■ Visual Studio Deployment Setup Project {5443560c-dbb4-11d2-8724-00a0c9a8b90c}

■■ Visual Studio Deployment Tier Project {5443560d-dbb4-11d2-8724-00a0c9a8b90c}

■■ Visual Studio Deployment Merge Module Project {5443560e-dbb4-11d2-8724-
00a0c9a8b90c}

104 Chapter 5

TE
AM
FL
Y

Team-Fly®

■■ Visual C++ Project {8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}

■■ Visual Basic Project {F184B08F-C81C-45f6-A57F-5ABD9991F28F}

■■ C# Project {FAE04EC0-301F-11d3-BF4B-00C04F79EFBC}

When you use a macro to obtain a Project object, the object’s Kind property will
contain a GUID for the type of project. Thus, if you see the GUID {8BC9CEB8-8B4A-
11D0-8D11-00A0C91BC942}, from the preceding list you can see that you have a Visual
C++ Project. Here’s a macro that prints out the name of each project in the current solu-
tion and the GUID the project’s type:

Sub ListProjects()

‘ Use the VBMacroUtilities assembly from Chapter 2.

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim proj As Project

For Each proj In DTE.Solution.Projects

VBMacroUtilities.Print(proj.Name & “ “ & proj.Kind)

Next

End Sub

After you know the type of project, you can obtain the Project object’s Object
property; this property contains an instance of a COM object that’s specific to the type
of project. For example, a Visual C++ Project object will have a COM object that
holds information specific to Visual C++ Projects. In contrast, a Visual Basic Project
object will have a COM object that holds information specific to Visual Basic projects.
(In the case of the preceding macro, the COM object would be proj.Object inside
the For loop.)

One way you can find out the project GUID for a particular project is to
simply open the project file (the file of any extension ending in proj, such as
.csproj) in a text editor. Once you open the file, you’ll see an XML file with a
line starting ProjectGUID. The Project GUID will follow, surrounded by
double quotes.

When you access the projects using the Project object, but don’t go further into the
Project object’s Object property, Microsoft regards your work as taking place in the
General Extensibility Model. Under this model, you can access general information
about a project, but no information that’s specific to the language. (For example, a C++
project might be written to access the Microsoft Foundation Classes (MFC). Informa-
tion specific to only C++ projects, then, would mention whether the project uses MFC,
whereas information specific to VB.NET projects would have no need for information
about MFC.) When you start accessing the information stored in the Object property
of the project, Microsoft says you are working in the language-specific model.

When you’re looking at the Kind property to determine the type of object, you prob-
ably don’t want to memorize all these GUIDs or have to type them in (can you say
“typos?”). Fortunately, the .NET framework has defined some constants for you that
you can use in place of the GUIDs—well, at least, it has three constants defined for you:

Just Enough .NET Architecture 105

■■ PrjKind.prjKindVBProject. The GUID for a Visual Basic project.

■■ PrjKind.prjKindCSharpProject. The GUID for a C# project.

■■ PrjKind.prjKindVBAProject. The GUID for a macro project running in
the Macros IDE. I talk about this in the next section, “Macros IDE Automation
Model.”

These are the only three constants defined by default. The reason is that these are
defined in a library called VSLangProj that’s specifically for these three types of pro-
jects. As for constants for the other GUIDs, Microsoft wasn’t so kind as to supply them.
However, you can easily create them yourself. But, really, the only one you’re likely to
need is the Visual C++ Project kind. The reason is that, at present, the only kinds of pro-
jects Microsoft has made accessible from a language-specific perspective are the Visual
Basic, C#, Macro/VBA, and C++. For the other types of projects, you get back the
GUIDs in the list; that said, the object you get back isn’t immediately accessible—
unless you use a small trick, which I discuss next.

Accessing Project Types Not Supported by the Macros IDE

I’m only going to give you basic guidance for using the trick to access the other project
objects; and from there, Microsoft certainly doesn’t support this, but I’m providing you
with this trick if you want to use it at your own risk. Here’s what you need to do:

1. Find the GUID of the type of project you want to access. (You can start with the
list of GUIDs I gave you earlier; the rest are in the Registry as I described.)

2. Once you have the GUID, locate the GUID in the Projects key in the main
VisualStudio/7.0 key in the Registry.

3. Under the key you will find another key called AddItemTemplates; under that
is another key called TemplateDirs. Under that key you’ll find another GUID.
This is a GUID for a package.

4. Go up to the Packages key in the same VisualStudio/7.0 section and locate the
GUID for the package. Under that key you’ll find a key called SatelliteDll. This
key contains both a Path and a DllName that together contain the name of a
COM server.

5. Run the tlbimp program to import the COM object as an assembly. This assem-
bly will then contain a class for the object.

So far so good, but there’s one piece missing: You need to know the class name of the
object stored in the Project object’s Object property.

One easy way to determine the class name is to call the TypeName function, which
is a function built into VB.NET. Here’s an example:

MsgBox(TypeName(proj.Object))

When you run this line, a message box will open showing you the name. When I ran
this for the Setup project, I saw the name IVsdDeployable, thus I knew the object class
in this case was IVsdDeployable, which corresponds to a Setup project.

106 Chapter 5

Accessing the Project Object

In this and the next two sections, I describe the architecture behind the projects. To
illustrate this discussion, I show you some macros that retrieve information from the
projects. (For a full discussion of projects—including how to modify them using your
macros—refer to Chapter 9, “Manipulating Solutions and Projects.”

To gain access to the Project object, you start with the DTE object’s Solution
property to get the Solution object. The Solution object contains information about
the currently loaded solution; it also contains a Projects property that is a collection
of all the projects. Each item in this collection is an object of type Project. The Proj-
ect object contains only information that is generic, not specific, to the language; thus,
Microsoft considers it as part of the general extensibility model.

The Project object includes a ProjectItems property that contains the items the
project holds, including source files and the folders that contain the source files. Here’s
a macro that lists all the items:

Sub ListProjectItems()

‘ Use the VBMacroUtilities assembly from Chapter 2.

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim proj As Project

Dim obj As Object

For Each proj In DTE.Solution.Projects

VBMacroUtilities.Print(proj.Name & “ “ & proj.Kind)

Dim pitem As ProjectItem

If Not proj.ProjectItems Is Nothing Then

For Each pitem In proj.ProjectItems

VBMacroUtilities.Print(“ “ & pitem.Name)

Next

End If

Next

End Sub

Here’s a sample output for a project called MyProgram. This is a C++ project, and
therefore the output shows .cpp and .h files along with the folder names:

MyProgram {8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}

MyProgram.cpp

AssemblyInfo.cpp

stdafx.cpp

stdafx.h

ReadMe.txt

Source Files

Header Files

Resource Files

In the two sections that follow, I show you how to access the project types that are
supported by the IDE, Visual Basic, C#, and C++.

Just Enough .NET Architecture 107

Accessing Visual Basic and C# Projects

To access language-specific information about Visual Basic and C# projects, you need
to add to your project a reference to the VSLangProj assembly, if it’s not already refer-
enced by your Macro project. This library is an assembly version of the vslangproj.tlb
type library, which gets installed by default in the directory C:\Program Files\Com-
mon Files\Microsoft Shared\MSEnv.

When you have a Project object, and you take its Object property, you will get
an instance of VSProject. VSProject is defined in the VSLangProj assembly. This
object contains information specific to Visual Basic and C# projects. To determine if the
Project object refers to a Visual Basic or C# project, check its Kind property, as in the
following Macro code:

If (proj.Kind = VSLangProj.PrjKind.prjKindVBProject) _

Or (proj.Kind = VSLangProj.PrjKind.prjKindCSharpProject) Then

Dim vsproj As VSLangProj.VSProject

vsproj = proj.Object

End If

Inside this If-block, after you get the proj.Object object, you can use it to access
information about the project. Here’s an extended version of this same macro code that
lists a great deal of information about a project:

Sub ShowProjectInfo(ByVal proj As Project)

‘ Use the VBMacroUtilities assembly from Chapter 2.

If (proj.Kind = VSLangProj.PrjKind.prjKindVBProject) _

Or (proj.Kind = VSLangProj.PrjKind.prjKindCSharpProject) Then

Dim vsproj As VSLangProj.VSProject

vsproj = proj.Object

VBMacroUtilities.Print(“Project: “ & proj.Name)

VBMacroUtilities.Print(“References:”)

Dim ref As VSLangProj.Reference

For Each ref In vsproj.References

VBMacroUtilities.Print(ref.Path)

Next

If (proj.Kind = VSLangProj.PrjKind.prjKindVBProject) Then

VBMacroUtilities.Print(“Imports:”)

Dim i As Integer

For i = 1 To vsproj.Imports.Count

VBMacroUtilities.Print(vsproj.Imports.Item(i))

Next

VBMacroUtilities.Print(“”)

End If

End If

End Sub

And here’s an example of a macro that calls the ShowProjectInfo function:

Sub PrintVBandCSProj()

‘ Use the VBMacroUtilities assembly from Chapter 2.

108 Chapter 5

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim proj As Project

For Each proj In DTE.Solution.Projects

ShowProjectInfo(proj)

Next

End Sub

When I ran the PrintVBandCSProj macro on a solution that contained several
VB.NET and C# projects, I saw this output for one of the projects (the VBMacroUtilities
project that I use throughout this book).

Project: VBMacroUtilities

References:

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\System.dll

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\System.Data.dll

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\System.Xml.dll

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\envdte.dll

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\Microsoft.Vsa.dll

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\office.dll

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\System.Windows.Forms.dll

Imports:

Microsoft.VisualBasic

System

System.Collections

System.Data

System.Diagnostics

You can see all the assemblies that the project references, as well as all of the imports.
Since references and imports are language-specific items (C++ doesn’t use either, for
example), the reference and import information is not present in the main Project
object. Instead, they’re both in the VSProject item, which is language-specific for
VB.NET and C#.

In the ShowProjectInfo macro, I fully qualified all the type names. For
instance, I specified VSLangProj.VSProject. If you prefer to simply
specify VSProject rather than the fully qualified name, you can add an
imports statement at the top of the macro’s module, as shown here:

Imports VSLangProj

Then you can declare variables such as this:

Dim vsproj As VSLangProj.VSProject

Accessing C++ Projects

To access information specific to C++ projects, you need to reference the C++ project
library. There are three assemblies pertaining to C++ projects, but in this section I only

Just Enough .NET Architecture 109

describe one of them, the VCProjectEngine library. I discuss the other two in Chapter 9,
“Manipulating Solutions and Projects.”

To get to the C++ project information, start with a Project object, check if the Kind
property specifies a C++ project, then take the Project object’s Object property, and
cast it to a VCProject class. To check the Kind property, you probably want to create
a constant variable containing the GUID for a C++ project, like so:

Const prjKindVCProject = “{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}”

The class you’ll be using in this section is called VCProject. One of the C++
project assemblies is also called VCProject. However, the class VCProject
is actually a part of the VCProjectEngine assembly, not the VCProject
assembly.

Next is an extended version of the ShowProjectInfo subroutine from the preced-
ing section, modified to support C++ projects. Notice I included the new constant
prjKindVCProject as well. To use this subroutine this time, instead of fully qualify-
ing the names, I included an import statement at the top of the module:

Imports Microsoft.VisualStudio.VCProjectEngine

Now here’s the subroutine:

Const prjKindVCProject = “{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}”

Sub ShowProjectInfo2(ByVal proj As Project)

‘ Use the VBMacroUtilities assembly from Chapter 2.

If (proj.Kind = VSLangProj.PrjKind.prjKindVBProject) _

Or (proj.Kind = VSLangProj.PrjKind.prjKindCSharpProject) Then

Dim vsproj As VSLangProj.VSProject

vsproj = proj.Object

VBMacroUtilities.Print(“Project: “ & proj.Name)

VBMacroUtilities.Print(“References:”)

Dim ref As VSLangProj.Reference

For Each ref In vsproj.References

VBMacroUtilities.Print(ref.Path)

Next

If (proj.Kind = VSLangProj.PrjKind.prjKindVBProject) Then

VBMacroUtilities.Print(“Imports:”)

Dim i As Integer

For i = 1 To vsproj.Imports.Count

VBMacroUtilities.Print(vsproj.Imports.Item(i))

Next

VBMacroUtilities.Print(“”)

End If

ElseIf proj.Kind = prjKindVCProject Then

Dim vcproj As VCProject

vcproj = proj.Object

110 Chapter 5

VBMacroUtilities.Print(“Project: “ & proj.Name)

VBMacroUtilities.Print(“Configurations:”)

Dim cfg As VCConfiguration

For Each cfg In vcproj.Configurations

VBMacroUtilities.Print(cfg.Name)

VBMacroUtilities.Print(“ BrowseInfo:” & _

cfg.BuildBrowserInformation)

VBMacroUtilities.Print(“ Uses MFC:” & _

cfg.useOfMfc)

VBMacroUtilities.Print(“ Is .NET app:” & _

cfg.ManagedExtensions)

Next

End If

End Sub

This subroutine accesses the configuration info that’s specific to C++ projects. For
each configuration, I print out the name of the configuration, whether the Build Browse
Information selection is turned on, whether the configuration uses MFC, and whether
the configuration uses Managed Extensions (and is, therefore, a .NET application).

Here’s an updated macro subroutine that uses the ShowProjectInfo2 subroutine:

Sub PrintAllProjInfo()

‘ Use the VBMacroUtilities assembly from Chapter 2.

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim proj As Project

For Each proj In DTE.Solution.Projects

ShowProjectInfo2(proj)

Next

End Sub

When I ran the PrintAllProjInfo subroutine on my own projects, here’s the informa-
tion I saw for one of them:

Project: MyProgram

Configurations:

Debug|Win32

BrowseInfo:False

Uses MFC:0

Is .NET app:True

Release|Win32

BrowseInfo:False

Uses MFC:0

Is .NET app:True

Notice that the Uses MFC item printed out a number, 0, rather than a Boolean value of
True or False. The reason is that the useOfMFC property holds one of three numbers:
0 means the project doesn’t use MFC; 1 means the project uses MFC and links to the MFC
static library; and 2 means the project uses MFC but links to the MFC dynamic library.

Just Enough .NET Architecture 111

Macro IDE Automation Model
The Macros IDE has its own automation engine, which at first seems a little strange to
people. As you’ve certainly noticed, the Macros IDE looks very similar to the main IDE.
That’s because, although it’s a separate program, it uses many of the packages used
underneath the main IDE.

The Macros IDE is actually the program called vsaenv.exe. Under the default instal-
lation, you can find it in c:\Program Files\Common Files\Microsoft Shared\VSA\7.0\
VsaEnv\vsaenv.exe. Since this program is essentially a knock-off of the main IDE, but
with certain features stripped away and other features added, the program also has an
entire section in the Registry that lists its packages and projects, among other things.
The Registry entry, a sibling to the main IDE’s Registry entry, is called VSA. (The letters
VSA in the Registry entry and in the executable filename vsaenv.exe stand for Visual
Studio for Applications.)

As to the project types, the Macros IDE lets you create only one kind, a Visual Stu-
dio for Applications VB.NET Project, that is, a macro project. This project has a GUID
of {13B7A3EE-4614-11D3-9BC7-00C04F79DE25}, but since you don’t want to have to
remember that (or type it in), you can use PrjKind.prjKindVBAProject.

Just as in working with the main IDE, when you acquire a Project object, you can
check if its Kind property equals PrjKind.prjKindVBAProject. If so, then you
have a macro project. But the way you acquire a Project object for the Macros IDE is
slightly different from how you get one for the main IDE: Instead of using the root DTE
object, you use the DTE object that belongs to the Macros IDE. You can get this using
the object DTE.MacrosIDE.

If you look at the properties for the main DTE object, you’ll see a property
called Macros, which in turn has a DTE object—that is, there’s an object
DTE.Macros.DTE. This object is not , however, the DTE for the Macros IDE.
It’s actually just the original main DTE. The Macros property represents the
macro recorder, not the Macros IDE. And the Macros property’s DTE object
is just its parent object, which is the main DTE object.

Here’s a sample macro that obtains the projects in the Macros IDE and writes out
their names and their Kind value:

Sub ListMacroProjects()

‘ Use the VBMacroUtilities assembly from Chapter 2.

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim proj As Project

For Each proj In DTE.MacrosIDE.Solution.Projects

VBMacroUtilities.Print(proj.Kind & “ “ & proj.Name)

Next

End Sub

112 Chapter 5

Here’s a sample line of output from this macro:

{13B7A3EE-4614-11D3-9BC7-00C04F79DE25} Samples

You can see the GUID is the same as the one mentioned earlier. Following the GUID
is the name of the project.

Like the Visual Basic projects in the main IDE, when you have a macro project in the
Macros IDE, you can cast the Project object’s Object property to a VSProject
object to obtain more information about the project from a language perspective.

Moving Forward

In this chapter I introduced the .NET architecture, then applied it from the perspective of
writing macros and add-ins. Regardless of the type of product you are developing, prob-
ably the three most important aspects to understand about the .NET architecture are:

■■ What the CLR is and how it fits into the picture

■■ What an assembly is

■■ Which classes are available in the .NET framework

In the next chapter, which begins Part II, I introduce the high-level architecture of
add-ins, then explain what they are and how they fit into the system. In Chapter 7, I
take you through the steps of building an add-in.

Just Enough .NET Architecture 113

TE
AM
FL
Y

Team-Fly®

PA R T

Two

Enhancing Visual Studio

117

An add-in is a powerful way to enhance the Visual Studio .NET IDE. The idea behind
an add-in is to enable developers to create custom enhancements to the IDE. When you
create an add-in, it becomes fully integrated with the IDE, giving the IDE user the illu-
sion that the add-in is not a separate component from the IDE itself. In this chapter I
provide you with much of the background information you will need to build add-ins,
illustrated with a couple of add-ins to get you going; then, in Chapter 7, I show you
sample code for many of the concepts I lay out in this chapter.

If you’re like most programmers, you don’t read this type of book cover to
cover, instead preferring to skip around. However, I do recommend that you
read this chapter before any of the remaining chapters in Part II.

About Add-ins

An add-in is a DLL that you create and that Visual Studio .NET loads into its own
process. Your add-in can communicate with the Visual Studio .NET IDE, to access the
different parts of the IDE, such as the solutions and projects, the code editor, and the
tool windows. Moreover, the add-in can respond to events that take place in the IDE.

If this is starting to sound similar to a macro, that’s because they are similar. An add-
in has access to all the automation features and objects that a macro does; this means
that pretty much any task you perform in a macro you can also do in an add-in. In spite

Introducing Add-ins

C H A P T E R

6

of all these commonalities, an add-in has one major distinction from a macro: An add-
in is compiled, then the main IDE loads it as a DLL; a macro is not compiled, and Visual
Studio .NET’s macro engine interprets the macro on the fly. Furthermore, because an
add-in is compiled into a DLL, you can distribute it without having to distribute the
source code. That’s not the case with macros; when you distribute a macro you are dis-
tributing the source code. For this reason, if you’re worried about your intellectual
property, then certainly you want to build an add-in instead of a macro.

Another advantage of add-ins over macros is that you have your choice of language
in which to develop them, whereas macros are limited to Visual Basic; add-ins can be
in any .NET language (that is, any language that can be compiled to Microsoft Inter-
mediate Language). And, if you’re brave, you can create an add-in that’s not a .NET
assembly, because the add-ins are COM controls at heart. However, I don’t recommend
that, so I don’t show you how to do this in this book.

As I just said, when you create an add-in, you are given the choice of language to use.
Depending on the languages you have installed, your choices will be: C++, C#, and
Visual Basic .NET. There aren’t any real advantages or disadvantages to any of these
three languages, since all three are compiled to the same intermediate language, MSIL;
therefore, pick the language based on what you prefer and which one you know best.

All the .NET languages are available for building add-ins, so I give examples
in all three: C++, C#, and VB.NET.

When you create an add-in for Visual Studio .NET, one of your goals should be to
make the add-in seem like a natural part of Visual Studio .NET. Here are some ways
you can accomplish this goal:

■■ Stick to a common look and feel. If you have a dialog box, don’t make custom
buttons and graphics that look nothing like the buttons and graphics in the
Visual Studio .NET IDE.

■■ Make use of the IDE’s GUI elements, including:

■■ Tool windows

■■ Menus

■■ Toolbar buttons

■■ Use the Options dialog box to allow for customization of your add-in.

■■ Integrate it directly to the IDE. By this I mean that if, for instance, your add-in
makes modifications to the IDE user’s source code, make the modifications
right in the document window, not just to the file itself. And, certainly, don’t
launch an external code editor.

Here are some other goals you might strive toward:

■■ Make your add-in flexible. Let the IDE user customize it.

■■ Make your add-in easy to use. This is Windows, after all: don’t require the user
to memorize complex keystrokes and commands.

■■ Give the user flexibility for installing and uninstalling the add-in.

118 Chapter 6

If you’ve poked around in the .NET Framework SDK, you may have come
across a rather interesting program called DbgCLR, which by default gets
installed in C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\
GuiDebug. This is simply a standalone version of the debugger that’s
integrated to the main Visual Studio .NET IDE. Since this program is built on
many of the standard Visual Studio .NET packages, you might expect that
you could create add-ins and macros for this tool. Unfortunately, that’s not
the case. You can’t create add-ins or macros for the DbgCLR tool.

Startup and Shutdown
When you create and install an add-in, you can specify whether you want the add-in
to be present the next time you start up the main Visual Studio .NET IDE. Your add-in
has the capability to respond to events, and some of these events deal with the system
starting up and shutting down. Therefore, if you want your add-in to do any specific
work when the IDE starts up (such as opening some files and initializing some objects)
you can respond to the event for the system startup. Similarly, if you want to do some
cleaning up before the IDE shuts down, you can respond to the event for the system
shutdown.

The event you will receive for the system startup happens after the system is
finished starting up—that is, after the IDE has finished loading its various
packages and tool windows. You will see, for example, the Start page
appear in the Web browser just as you receive the system startup event. As
for the shutdown process, your add-in will receive a shutdown event just as
the IDE begins its main shutdown procedure. However, this one is a little
touchy: If you watch closely, you will see some shutdown activities take
place before your add-in receives its shutdown event. For example, I saw
the browser window inside the IDE close before I received my event.

Alternatively, you can configure an add-in so that it does not start up automatically.
In this case, the IDE user must manually start up or shut down the add-in. And just as
with the startup and shutdown of the IDE, your add-in can also respond to the startup
and shutdown events for the add-in itself.

As you would expect, if your add-in is registered to start up when the IDE
starts up, your add-in will receive one event for the startup of the IDE and
another event for the startup of the add-in itself. Specifically, your add-in
will first receive the event for when the add-in starts up, followed by the
event for the IDE starting up. When shutting down, a similar process takes
place, but in the reverse order: First you will receive an event that the
system is beginning to shutdown; then you will receive an event that your
add-in is shutting down.

Introducing Add-ins 119

The Visual Studio .NET documentation calls the startup of your add-in the connec-
tion and the shutdown of your add-in the disconnection. There’s a good reason for this:
First, Visual Studio .NET uses the COM system to load the DLL containing your add-
in. Then Visual Studio .NET sends a connection event to your add-in. Therefore, there’s
a moment during which your add-in is actually loaded but you have not yet received
the event from Visual Studio .NET. Nevertheless, when your add-in receives the con-
nection event, technically it’s already loaded.

When you write your add-in, you will see that the names of the events I just
described are as follows:

OnConnection. Occurs when the add-in starts up.

OnDisconnection. Occurs when the add-in finishes.

OnStartupComplete. Occurs when the IDE finishes its own startup process.

OnBeginShutdown. Occurs when the IDE is about to shut down.

Invoking Your Add-in
Visual Studio .NET provides you with different ways to invoke your add-in. First, when
you create the add-in using the Add-in wizard, you can specify that you want your add-
in to start up automatically when the main IDE starts. Or, you can specify that you don’t
want the add-in to start up automatically, in which case the IDE user can start the add-
in manually using the Add-in Manager. (The Add-in Manager is a dialog box accessed
through Tools➪Add-in Manager that lets the IDE user load and unload add-ins.)

Once your add-in is loaded, it can receive various commands from IDE actions,
either through IDE events or when the IDE user issues a command to your add-in. To
issue a command, the IDE user has three choices:

■■ Click a button on a toolbar that runs a command inside your add-in.

■■ Choose a menu item that runs a command inside your add-in.

■■ Issue a command directly through the command tool window.

But this raises a question: If you allow the IDE user to access your add-in through a
button on a toolbar or a menu item, where does the button or menu item come from?
The answer depends on which type of button or menu item. There are two kinds:

■■ A button or menu item that invokes a command inside your add-in.

■■ A button or menu item that loads your add-in.

In the case of the first, the add-in itself can install the button or menu. But what
about the second one? How can the add-in have a button or menu that starts up the
add-in? The programmers invoke a trick to make this happen: The add-in automati-
cally loads itself the first time; thereafter, the IDE user can load the add-in by clicking
a button or menu item. Here’s how it works:

1. When you write your add-in, you create it so that, when it is installed, it starts
up automatically.

120 Chapter 6

2. You code your OnConnection event handler to install a button or menu item
that loads the add-in. Further, you code the add-in so it removes the automatic
startup feature.

3. Optionally, you can include code that checks whether the button or menu is
showing, and if so, disables the button or menu item. Then you include code in
the OnDisconnect event that reenables the button or menu item.

At first, this process might seem a bit counterproductive, but consider this scenario
for which the three steps would work:

1. The IDE user installs your add-in, which is registered to start when the IDE
starts. The user then starts the IDE.

2. The add-in loads at the IDE startup and checks for a button or menu item.
There isn’t one, since this is the first time the add-in has run, so the add-in
adds the button or menu item. The add-in now registers itself to not start up
automatically. And, if you took the optional step 3 in the process, you would
now disable the menu item or button you just added, since the add-in is
presently running and there’s no reason (yet) for a menu item or button that
starts the add-in.

3. The user does some work and then shuts down the IDE.

4. The user later restarts the IDE. Now, though the add-in hasn’t started yet, the
button or menu item is present that will start it. The user clicks the button or
chooses the menu item and the add-in loads. And, if you took optional step 3,
the add-in sees that the button or menu is already there and disables it so the
user cannot click it again.

From the IDE user’s perspective, this is all simple: The first time he or she installed
the add-in, it ran automatically. After that, there was a button or menu item to start the
add-in. Later, when you create an add-in, you will see that the Add-in wizard gives
you the opportunity to install a menu item on the Tools menu bar. This menu item per-
forms precisely the steps I just outlined.

Interacting with the IDE
When you create an add-in, you have access to the root DTE object of the IDE. This
means you can interact completely with the IDE, whether you’re dealing with the main
IDE or the Macros IDE. Through this object, you can obtain other objects, such as the
Solution object, through which you can modify solutions and projects. Or you can
interact with the Output window, in which you can print useful messages to the user.

Unlike with macros, however, you do not simply access the DTE object directly via
the name DTE. Instead, you receive a reference to the DTE object in your OnConnec-
tion event, and you save the reference into a variable (usually using a class member
variable). Then, throughout your code, instead of accessing DTE directly, you use the
class member variable.

Introducing Add-ins 121

Fortunately, when you use the wizard to create an add-in, the wizard
automatically inserts code to your class for the OnConnection event
handler. This code saves the reference to the DTE object into a member
variable. Therefore, if you use the wizard, you don’t need to write the code
yourself to save the DTE object.

Through the root DTE object, you have full access to the IDE, including the toolbars,
all the windows (both document windows and tool windows), the current solution, and
the commands. Here’s the complete list of item categories your add-in can interact with:

■■ Solutions and projects, which represent the entire solution and its projects.

■■ The build objects, which are used to automate compiling and building of pro-
jects and solutions.

■■ Code editor objects, which allow you to select code, modify it, and perform
other editing tasks automatically.

■■ Code definitions, which gives you have access to the actual code engines (this
topic is discussed in Chapter 9, “Manipulating Solutions and Projects”).

■■ Tool and document windows, including specific tool windows such as the out-
put window and the Solution Explorer.

■■ Commands, which are those the IDE can run. (More on this later in this chap-
ter, in the section “Add-ins and the Command System.”)

■■ Debugger objects, which automate the use of the debugger.

■■ Events from the IDE other than the startup and shutdown events.

Because the add-in has access to the root DTE object, you can create add-ins that do
the same work as a macro. Say, for example, you have a macro that works well, but for
which you don’t want to distribute the source code: In this case, you can reimplement
the source code as an add-in. And because you have flexibility in the language you use,
you can use VB.NET just as you do in the macros, meaning you’ll have to make very
few changes to your code. (But, remember, in your macro you probably accessed the
root DTE object directly, so you will have to modify your code to use the reference to
the DTE object passed in to your OnConnection event handler.)

Recall from Part I, which focused on macros, that I took one of my more useful
macros and made an assembly out of it. I then put the assembly in the publicassemblies
directory, which made the assembly accessible to any macro. In doing so, I had to take
the source code from my macro and move it to the main IDE, into its own VB.NET proj-
ect. This means that, when you develop your code to interact with the IDE, you have
the following choices:

■■ You can write macro code.

■■ You can write an assembly that the macro and add-ins can access.

■■ You can write an add-in.

How you implement your code is up to you, and the choice you make will depend
on how you want it to work with other macros and add-ins.

122 Chapter 6

When dealing with the IDE, be aware of one important distinction between macros
and add-ins: When you run a macro, the IDE pauses and waits for the macro to finish.
This is not the case with an add-in. The IDE loads an add-in and then periodically
sends events to the add-in as the IDE user interacts with the IDE (which might include
interacting with GUI elements created by the add-in, such as toolbar buttons, menu
items, and tool windows). No multithreading is taking place: If your add-in goes into
a long loop, the IDE will freeze up until your loop finishes, just as with macros. How-
ever, the point is, your add-in, once loaded, remains present, and can receive multiple
events and commands.

Creating Custom Options Pages
One handy feature of add-ins is the capability to create custom pages for the Options
dialog box (accessed by the IDE user through Tools➪Options).

There are two similar reasons you might want to add a page to the Options dialog
box: First, you might want to give the user a way to configure your add-in itself; sec-
ond, you might want to give the user a way to configure the data your add-in is con-
trolling or managing. (Or you might even want to do both.)

You might be tempted to use your own approach to allowing your users to
configure your add-in. It might, for example, seem nice to have a menu item
that opens up a special dialog box for configuring your add-in. In general,
however, this is a bad idea. Better to give the IDE users the feeling that your
add-in is an integrated part of the IDE. Think about it: Many of your users
probably will be programmers themselves, as well as power users, hence
not so easily fooled (or impressed, for that matter); and probably they’ll be
sticklers for a common look and feel. Therefore, your best bet is to use the
Options dialog box.

As a consequence of being able to write add-ins that work in the main IDE or the
Macros IDE or both, you can also set up pages for the Options dialog box in the Macros
IDE, as well as the main IDE. But before you design a page for the Options dialog box,
make sure you spend a little time becoming familiar with the general look of the
Options dialog box. Note, for example, that the left side of the Options dialog box lists
categories of options, arranged hierarchically. You will want to create your options
pages to match this structure.

When you create an options page, you create and register an ActiveX control that the
Options dialog loads. This ActiveX control contains the form that the Options dialog
displays. You can put controls on the form and write code that interacts with the form,
just as you would for any dialog box. Through this code you can save the options the
IDE user chooses through your Options page.

Next you add an entry to the Registry under your add-in detailing the hierarchy for
the options categories. (In Chapter 17, “Supercharging Visual Studio .NET,” when I
show you how to create an options page, I also show you how to register the ActiveX
control.)

Introducing Add-ins 123

Creating Tool Windows
If you want your users to be able to interact with your add-in using more than buttons
and the Options dialog box, you can create tool windows with your add-in that are
fully integrated to the IDE. Besides the practical uses, tool windows also give your
add-in a more integrated feel, as if it’s an integral part of the IDE.

When you create a tool window, the IDE user will be able to manipulate it the same
way as any other tool window, by moving it around, docking it, and making it float.
Furthermore, your tool window will automatically take on a tab when the IDE user
drags it onto another window. All this happens automatically; you don’t have to do
any programming, because the features are built right into the Visual Studio .NET IDE.
The end result is that your add-in appears to be an integral part of the IDE.

When you work with tool windows, you can also allow users to open up a property
window, which you can fill with various properties pertinent to your add-in. For
example, if your add-in is a list of files arranged in a treeview, you can allow the IDE
user to click on one of the files in the list, after which the property window will fill with
information about the particular file. This is just like the standard use of the property
window inside the main IDE: The IDE user can right-click on many different items
inside the IDE and in the popup menu choose Properties, which opens the Properties
window.

Add-ins and the Command System
One of the fundamental parts of the main IDE is the command system. When you
choose View➪Other Windows➪Command Window, a tool window opens that contains
a prompt in the form of a greater-than symbol (>). In this window, you can type com-
mands to interact with the IDE. The commands are all categorized according to this for-
mat: name.command or name.commandgroup.command. Recall that in Chapter 1,
“All about Macros and Add-ins,” I gave you a macro called GetAllCommands that
opens a window and displays all the commands; here I give you a different version of
the macro: it writes the commands to the output window. To use this, you need to use
the VBMacroUtilities assembly that I described in Chapter 3. Here’s the code for this
simple macro (remember, this is a macro, not an add-in, although you could use the
code in an add-in):

Sub ShowCommands()

Dim cmd As Command

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

For Each cmd In DTE.Commands

If Not cmd.Name Is Nothing Then

VBMacroUtilities.Print(cmd.Name)

End If

Next

End Sub

124 Chapter 6

TE
AM
FL
Y

Team-Fly®

This macro will list all the commands. One command, for example, is File.Close,
which, as its name implies, closes a document. If you open the command window and
type the following:

File.Close

whichever file is active in the document window will then close.
Through this command window the IDE user can also interact with your add-in.

Your add-in can register new commands, which the IDE user can type in. When the
IDE user types a command for your add-in, your add-in receives an Exec event, along
with the name of the command the user typed. Through your Exec event handler, you
can respond to various commands.

When you create an add-in, the Exec event handler is created automatically
for you by the Add-in wizard. You can then simply add to the existing code
for this event handler to respond to various commands.

In addition to interacting directly through the command window, your add-in can
set up a toolbar button and attach a particular command to the button; or you can do
the same with a menu item. Then when the IDE user clicks the toolbar button or
chooses the menu item, your Exec handler will receive the name of the command.

When your add-in starts up, you can register the commands you plan to
process. Once you do so, the commands you register will become part of the
command list. Your command will then be part of the DTE.Commands list in
the macros, as well as the command list in the Configuration dialog box
under the Commands tab, in the Add-ins category.

Wizards
Another feature you can implement with your add-ins is a dialog box with a series of
step-by-step pages to guide the IDE user through some process, such as configuring
your add-in the first time the add-in runs. Such a dialog box is called a wizard, and it
behaves just like the wizards you use when you create an add-in or other application.
You can launch the wizard from within your add-in (such as in response to a com-
mand) or you can set up the IDE so the wizard appears in the New Project or New File
dialog boxes. You have full control over what the wizard looks like; and like the rest of
an add-in, you can use C++, VB.NET, or C# to create the wizard.

But when you create a wizard, before it can appear in the New Project or New File
dialog boxes, you have to create a special file with a .vsz filename extension. You then
store this file with other .vsz files. (An alternative is to create a different type of file that
instead has a .vsdir extension. This includes additional information beyond what you
put inside a .vsz file, including information about an icon you would like to appear
inside the New Project or New File dialog box.)

In Chapter 12, “Creating Project Wizards,” when I show you how to create a wizard,
I also show you how to create the .vsz or .vsdir file and where to put the file.

Introducing Add-ins 125

Add-ins Are COM Components

As you are writing an add-in in one of the .NET languages, and ultimately building an
assembly, be aware that, actually, you are building a COM component with which the
main IDE and Macros IDE can interact.

Remember that a COM component implements an interface, which simply means
that the COM component has several available functions that a caller expects to see. (In
the case of an add-in, the caller is the IDE.) By convention, COM interface names
always start with an “I,” for interface. And when you create a COM component
(including an add-in), you register it in the Registry using various GUIDs (which I
explained in Chapter 5, “Just Enough .NET Architecture.”)

When you create an add-in, you must implement an interface called IDTExtensi-
bility2. (A lot of interfaces provided by Microsoft end with a 2, to indicate they’re
newer versions of an interface Microsoft designed some time ago for earlier products.)
By implementing the IDTExtensibility2 interface, you create a class in your add-in
that has the member functions defined in IDTExtensilibity2. The IDE will then call
your member functions at certain times (in other words, these functions are event han-
dlers). Some of the member functions I define here you’ve seen earlier in this chapter:

At this juncture, I’m giving you an overview of all these member functions
and the interfaces I describe later in this section. I show you how to use
them in detail in Chapter 7.

OnAddInsUpdate. When an add-in is either added or removed, the IDE will call
the OnAddInsUpdate function for all add-ins currently loaded.

OnBeginShutdown. When the IDE begins to shut down, it will call this function
for all add-ins that are loaded.

OnConnection. When an add-in is loaded, the IDE will call this function only for
the add-in that was loaded. (Add-ins do not receive this event for other add-ins.)

OnDisconnection. When an add-in is being unloaded, the IDE will call this func-
tion only for the add-in being unloaded.

OnStartupComplete. When the IDE is finished starting up, it will call this func-
tion for all add-ins that are loaded. Naturally, this will affect only the add-ins
that are registered to start up when the IDE starts.

In addition to the IDTExtensibility2 interface, an add-in usually implements a
second interface called IDTCommandTarget. This interface allows the add-in to
respond to commands. (When you create an add-in using the Add-in wizard, your
code will automatically be set up for both the IDTExtensibility2 and IDTCom-
mandTarget interfaces.)

In case you’re curious, and though the online help doesn’t explicitly state
this, my best guess is that the letters “DT” in the interface names stand for
Development Tools, the same as in DTE (Development Tools Extensibility).
And the “I,” of course, stands for Interface.

126 Chapter 6

The IDTCommandTarget interface has two functions; therefore, for your add-in to
implement this interface, it must supply these two functions, which the IDE will call.
They are:

Exec. The IDE calls this function when it wants to issue a command that your
add-in is to execute.

QueryStatus. The IDE calls this function to ask your add-in if a command is avail-
able. Your QueryStatus function will return a combination of enumerations spec-
ifying whether the command is Unsupported, Supported, Enabled, or Invisible.

With the QueryStatus function, there are two other possible enumerations
your function can return. These are the oddly named Latched and Ninched.
After searching far and wide on the Internet (including Microsoft’s MSDN
site), I finally found out what these two items mean (and which few people
seem to use): latched indicates the command is an on/off toggle and that
it’s currently in the on state; ninched, which seems to have little application
to commands, indicates the command is really a set of commands covering
multiple commands, and that the different commands are in different
states. (Microsoft gave this analogy on its Web site to explain this: Consider
some text selected in a word processor document, some of which is bold
and some of which is not bold. The state of the text as a whole being bold is
“ninched.”) Good thing English is a growing, evolving language; I was unable
to find “ninched” in the dictionary!

With add-ins, interfaces find their way into two other areas: wizards and pages in
the Options dialog box. Wizards implement the IDTWizard interface. This interface
only has a single function called Execute. In the code for your wizard, inside the Exe-
cute function, you write the code that displays the wizard.

As for Option dialog box pages, the interface in question is called IDTToolsOp-
tionsPage. This interface has five functions:

GetProperties. This function deals with returning a set of properties.

OnAfterCreated. The IDE calls this function when a custom Tools option page
gets created.

OnCancel. The IDE calls this if the IDE user clicks the Cancel button in the
Options dialog.

OnHelp. The IDE calls this if the IDE user clicks the Help button in the Options
dialog.

OnOK. The IDE calls this if the IDE user clicks the OK button in the Options
dialog.

Although I just covered four interfaces, typically you’ll have three different COM
objects. The first is the actual add-in object, which implements the IDTExtensibility2
and IDTCommandTarget interface. The second is the wizard, which implements the

Introducing Add-ins 127

IDTWizard interface. And the third is the Options dialog box page, which implements
the IDTToolsOptionsPage. Of course, if you’re building an add-in, you don’t have
to include a wizard or an Options dialog box page; it’s your choice as to which features
you want to include.

For the IDE to be able to use the three COM components I just mentioned, each com-
ponent must be registered. When you use the Add-in wizard, the resulting project
takes care of registering the add-in COM component. (In Chapters 12 and 17, when I
show you how to build a wizard and Options page, respectively, I also show you how
to register them.) With add-ins, however, there are actually two different stages of reg-
istration: registering the add-in so that Visual Studio .NET knows about it and regis-
tering the COM component so COM system knows about it.

It is at this point that things can get a little touchy. When you run the Add-in wizard,
the wizard itself registers your add-in so that the Visual Studio .NET IDE knows about
it. (And, optionally, the wizard will register the add-in with the Macros IDE if you
choose to make the add-in available to the Macros IDE.) The registration of the COM
component itself, however, takes place each time you rebuild the add-in. Moreover,
when you use the wizard to create an add-in, you also end up with an add-in Setup
project that you can build and then use for installing the add-in. That’s handy if you
want to ship your add-in to other users. But here’s the problem: What if you download
the source code for an add-in and you get the add-in project but not the Setup project?
I bring this up because that’s exactly what happens if you download the sample add-
in projects from the Microsoft site, at http://msdn.microsoft.com/vstudio/down-
loads/samples/automation.asp. In that case, you need to do the registration yourself,
manually. (The online help makes a brief mention of the process, but suggests it’s just
nice to know. The truth is, it’s important to know; furthermore, the online help gives
only half the instructions).

In the next section, “Creating an Add-in,” you’ll learn to use the wizard to create an
add-in. The wizard creates some starter code for you, which includes a GUID for the
add-in. In the event you don’t have a Setup project and weren’t fortunate enough to run
the wizard, if you have the GUID and the name of your add-in, and you come up with a
description, you can use the following macro to register your add-in with Visual Studio:

Sub RegisterForIDE()

Dim guid As String

Dim name As String

Dim friendlyname As String

Dim description As String

guid = InputBox(“Enter the GUID, including the braces { }”)

If guid = “” Then

MsgBox(“No changes made to registry.”)

Exit Sub

End If

name = InputBox(“Enter the formal name”)

If name = “” Then

MsgBox(“No changes made to registry.”)

Exit Sub

End If

friendlyname = InputBox(“Enter the friendly name”)

If friendlyname = “” Then

128 Chapter 6

MsgBox(“No changes made to registry.”)

Exit Sub

End If

description = InputBox(“Enter a description”)

If description = “” Then

MsgBox(“No changes made to registry.”)

Exit Sub

End If

Dim reg As RegistryKey

reg = Registry.ClassesRoot.CreateSubKey(_

name & “.Connect\CLSID”)

reg.SetValue(Nothing, guid)

reg = Registry.LocalMachine.CreateSubKey(_

“SOFTWARE\Microsoft\VisualStudio\7.0\AddIns\” & _

name & “.Connect”)

reg.SetValue(“FriendlyName”, friendlyname)

reg.SetValue(“Description”, description)

reg.SetValue(“LoadBehavior”, 4)

reg.SetValue(“CommandLineSafe”, 1)

reg.SetValue(“CommandPreload”, 1)

MsgBox(“Finished!”)

End Sub

This macro uses the Registry class, which is in the Microsoft.Win32 namespace of
the .NET framework. Using the name, GUID, and description, it enters the correct data
into the Registry so that the next time you start Visual Studio .NET, the IDE will know
about your macro.

If you use the preceding macro, you need to enter the GUID. This can be
somewhat difficult, so I recommend that before running it, you use the
mouse to highlight the GUID in the add-in code and copy it to the clipboard.
Then when you run the macro and you’re asked for the GUID, you can just
paste it in.

Creating an Add-in

In this section I walk you through the creation of an add-in. First I walk you through
the use of the wizard, then I show you how to build your add-in. Along the way, I give
you tips for dealing with problems you might encounter.

When you run the Add-in wizard, it will create two projects: the add-in
project, and a Setup (also called Deployment) project for the add-in. However,
initially, the wizard sets up the solution configuration such that the Setup
project is set to not build when you build the entire solution. When you build
the entire solution, you will see a message at the end such as this:

Introducing Add-ins 129

Build: 1 succeeded, 0 failed, 1 skipped

The “1 skipped” causes a lot of confusion. But getting Visual Studio .NET to
not skip the project is simple. You can either right-click the Setup project and
choose Build to force a build on it, or you can set it to always build, by right-
clicking on the solution name in the Solution Explorer and then, in the popup
menu, by choosing Properties. In the Properties window, click on
Configuration Properties. In the list on the right, check the box under Build for
the Setup project; then click OK. Now your project is set to build each time.

Using the Wizard
To create an add-in, follow these steps:

1. From the main IDE, open the New Project dialog box (either through
File➪New Project or File➪Add Project).

2. In the New Project dialog box, in the Project Type treeview, choose Other Pro-
jects➪Extensibility Projects.

3. In the Templates list, choose Visual Studio .NET Add-in.

4. As with any project, enter a name and location for the project.

5. Click OK.

After you click OK, the Visual Studio Add-in wizard will begin. The first page of the
wizard is simply an introductory message; just click Next. (Or, if you realize you want
to change your settings in the New Project dialog box, go back by clicking Back.) Then
follow these steps:

1. On page 1 of 6 (note that the introductory page doesn’t have a page number),
choose the language you want to use for your add-in. Remember, unlike macros,
you can use any .NET language that’s installed on your computer. For the Enter-
prise Edition of Visual Studio .NET, your choices are Visual C#, Visual Basic, and
Visual C++/ATL. For these sample steps, I’m choosing C#. Then click Next.

2. On page 2 of 6, choose in which IDE you want the add-in to be used: the main
IDE or the Macros IDE or both. The first checkbox on this page is Microsoft
VSMacros IDE, which, in this book, is what I’ve been calling the Macros IDE. The
second checkbox is Microsoft Visual Studio .NET, which is what I’ve been calling
the main IDE. For this example, check just the main IDE. Then click Next.

3. On page 3 of 6, specify the name and description of your add-in. Then click Next.

On page 3 of 6, the phrase “name of your Add-in” refers to the friendly
name, that is, the name that will appear in the upper list of the Add-in
Manager. This is separate from the name by which the IDE actually knows
the add-in.

130 Chapter 6

4. On page 4 of 6, you are offered four checkbox options:

■■ The first option asks whether you want to create a menu item for the Tools
menu after you’ve created and installed the add-in. (Yes, that’s what this
checkbox option really means, even though the wording is particularly bad.)
That said, it also offers another, more secret option: whether or not your class
will be derived from IDTCommandTarget. I pretty much always want my
classes derived from IDTCommandTarget, so I always check this first option.

■■ The second option asks whether you want to use the add-in with the
command-line version of the Visual Studio .NET. If you do, your add-in is
not allowed to open up a modal dialog box. By checking the second check-
box, you’re agreeing not to put up any modal dialog boxes.

■■ The third option asks whether you want the add-in to load when the main
IDE loads (after the add-in is installed, of course).

■■ The final option asks whether you want your add-in to be available to all
the users on the present machine, or just the current user (i.e., you).

5. For this example, leave the middle two checkboxes checked, and check the final
box to make the add-in available to all users. Then click Next.

You can change the options on page 4 later on if you prefer. To remove the
item from the Tools menu, use Tools➪Configure, the way you would to
normally remove a menu item. To change whether to use the add-in in
command-line mode, or to change whether the add-in loads when the IDE
loads, use the Add-in Manager, as I describe later in this chapter, in
“Managing Add-ins.” To change whether the add-in is available to just you
or to all users, open regedit and manually move the add-in information from
HKEY_LOCAL_MACHINE to HKEY_CURRENT_USER, or vice versa. A word of
caution here: Making such moves is often risky, due to the possibility of
making mistakes, so be extremely careful if you decide to do this.

6. On page 5 of 6, you can specify information in the About box, specifically,
whether you want a description of your add-in to appear in the IDE’s About
box. On this page you will also see an icon appear automatically, indicating
that you can change the icon later. Click Next.

7. On page 6 of 6, you will see a list of your chosen options for your review. If you
want to change any of them, click Back. When you’re finished, click Finish.

Remember, your add-in gets registered with Visual Studio .NET when you are
finished running this wizard. It’s during this registration that Visual Studio
.NET makes changes to the Registry, which is the process by which Visual
Studio .NET registers your add-in. In order to make the add-in available to
all the users, Visual Studio .NET will register the add-in under the

Introducing Add-ins 131

HKEY_LOCAL_MACHINE key. If the add-in is just for you, Visual Studio .NET
will register it under the HKEY_CURRENT_USER key. Under either of these
two keys, Visual Studio .NET will store the add-in information in
HKEY_LOCAL_MACHINESOFTWARE\Microsoft\VisualStudio\7.0\AddIns. (See
“Managing Add-ins,” later in this chapter for more information on the
Registry.) However, remember, if you change these settings, you’re only
changing the present installation; you won’t be changing the installer
application.

After you click Finish, Visual Studio .NET will create two projects for you: the add-
in project and a Setup program for your add-in. The Setup program is what you give
other IDE users so they can install your add-in. Visual Studio .NET will also automat-
ically set up a dependency between the two projects: The Setup project depends on the
add-in project; thus, if you build the Setup project, the add-in project will build as well.

If you go looking for the Setup project on your hard drive, be aware that the
wizard creates it under the directory for your add-in. If, for example, you
named your add-in MyAddin1, the wizard would create a directory called
MyAddin1 to contain your add-in project, and then a directory called
MyAddin1\MyAddin1Setup. When you build the Setup, you will get a
directory MyAddin1\MyAddin1Setup\Debug or
MyAddin1\MyAddin1Setup\Release, which contains the debug and release
version of the Setup file, respectively. Finally, the Setup file is called
MyAddin1Setup.msi. (These days, Microsoft has its own installation
software that’s automatically installed with the different breeds of
Windows, and the setup information goes inside the .msi file.)

If, on page 4, you specified that you want the add-in available only to you,
not all users, this information will carry forward into the Setup program.
When the IDE user who receives your Setup program installs your add-in,
the add-in will install only for that IDE user, not other users of the same
computer.

Important: If you see an error message such as this in your task list:

C:\dev\MyAddin\MyAddinSetup\MyAddinSetup.vdproj Unable to find

dependency ‘C:\dev\MyAddin\obj\Debug\MyAddin.tlb’ of project

output ‘Primary output from MyAddin (Active)’

fear not. This error refers to the Setup project, not the add-in itself, meaning
you can still run the add-in. This error is simply a side effect from the creation
by the wizard of the add-in’s Setup project before building the add-in project.

132 Chapter 6

The Setup project is looking for the .tlb file (which contains type information
about the add-in for the COM system), but the .tlb file is not there, and
won’t be until you build the add-in. To make the message go away, however,
there’s a slight catch: Even after you build the add-in, the message will still
be in the task list. To get rid of it, right-click the Setup project, and in the
Popup menu choose Build.

The following is the code that was generated automatically for the add-in I created.
For this particular add-in, I chose to have a Tools menu item automatically created for me
and to have the project written in C#. (Note that the wizard also automatically inserted
several comments, but to save space here, I removed these comments from the code.)

namespace CSAddin1

{

using System;

using Microsoft.Office.Core;

using Extensibility;

using System.Runtime.InteropServices;

using EnvDTE;

[GuidAttribute(“2BD7B62D-1595-4D4E-93C6-02263436DEB8”),

ProgId(“CSAddin1.Connect”)]

public class Connect : Object, Extensibility.IDTExtensibility2,

IDTCommandTarget

{

public Connect()

{

}

public void OnConnection(object application,

Extensibility.ext_ConnectMode connectMode, object addInInst,

ref System.Array custom)

{

System.Windows.Forms.MessageBox.Show(“Add-in loaded!”);

applicationObject = (_DTE)application;

addInInstance = (AddIn)addInInst;

if(connectMode == Extensibility.ext_ConnectMode.ext_cm_UISetup)

{

object []contextGUIDS = new object[] { };

Commands commands = applicationObject.Commands;

_CommandBars commandBars = applicationObject.CommandBars;

try

{

Command command = commands.AddNamedCommand(addInInstance,

“CSAddin1”, “CSAddin1”, “Executes the command for CSAddin1”,

true, 59, ref contextGUIDS,

(int)vsCommandStatus.vsCommandStatusSupported

+(int)vsCommandStatus.vsCommandStatusEnabled);

Introducing Add-ins 133

CommandBar commandBar = (CommandBar)commandBars[“Tools”];

CommandBarControl commandBarControl =

command.AddControl(commandBar, 1);

}

catch(System.Exception /*e*/)

{

}

}

}

public void OnDisconnection(

Extensibility.ext_DisconnectMode disconnectMode,

ref System.Array custom)

{

}

public void OnAddInsUpdate(ref System.Array custom)

{

}

public void OnStartupComplete(ref System.Array custom)

{

}

public void OnBeginShutdown(ref System.Array custom)

{

}

public void QueryStatus(string commandName,

EnvDTE.vsCommandStatusTextWanted neededText,

ref EnvDTE.vsCommandStatus status, ref object commandText)

{

if(neededText ==

EnvDTE.vsCommandStatusTextWanted.vsCommandStatusTextWantedNone)

{

if(commandName == “CSAddin1.Connect.CSAddin1”)

{

status =

(vsCommandStatus)vsCommandStatus.vsCommandStatusSupported|

vsCommandStatus.vsCommandStatusEnabled;

}

}

}

public void Exec(string commandName, EnvDTE.vsCommandExecOption

executeOption, ref object varIn, ref object varOut,

ref bool handled)

{

handled = false;

134 Chapter 6

TE
AM
FL
Y

Team-Fly®

if(executeOption ==

EnvDTE.vsCommandExecOption.vsCommandExecOptionDoDefault)

{

if(commandName == “CSAddin1.Connect.CSAddin1”)

{

handled = true;

return;

}

}

}

private _DTE applicationObject;

private AddIn addInInstance;

}

}

Other than removing the comments, the only other change I made to this code was
to add a call to MessageBox in the beginning of the OnConnection function:

System.Windows.Forms.MessageBox.Show(“Add-in loaded!”);

But in order for the program to recognize the System.Windows.Forms name-
space, I also had to add a reference. To do this, I right-clicked the word References in
the Solution Explorer under my project name. Using the references dialog box, I added
a reference to System.Windows.Forms.dll.

If you want to add this line for a VB.NET add-in, here’s the line you will type instead
in the Connect.VB.NET source file (Visual Basic has its own MsgBox function, and so
you don’t need to add a reference to the System.Windows.Forms namespace as I did
with the C# version):

MsgBox(“Add-in Loaded!”)

And, finally, if you want to add this line to the C++ version, you can just call the
Win32 API function MessageBox, like so:

MessageBox(0, “Add-in Loaded!”, “Add-in”, MB_OK);

You can see that the two interfaces I described in the previous section are indeed
covered. The class includes the functions OnConnection, OnDisconnection,
OnAddInsUpdate, OnStartupComplete, and OnBeginShutdown. All five of these
functions are for the IDTExtensibility2 interface. The class also has two functions,
QueryStatus and Exec, which are part of the IDTCommandTarget interface. And if
you look at the class header itself, you can see that your class is derived from the two
interfaces:

public class Connect : Object, Extensibility.IDTExtensibility2,

IDTCommandTarget

Introducing Add-ins 135

Building and Running the Add-in
To build the add-in, simply right-click the add-in’s name in the Solution Explorer, and
in the popup menu choose Build, just as you would with any other project. When you
build the add-in, the build process will make sure the Registry is set up for the COM com-
ponent that gets built. However, as I mentioned in the section “Add-ins Are COM
Components,” the build process registers the COM component only with the COM sys-
tem; the process does not register the add-in component with the IDE. (In the same sec-
tion, I showed you how to register the component manually and provided a macro to
help in the effort.)

When you build an add-in, be aware of these points. First, remember that
the add-in runs as an enhancement to the very same IDE that you are using
to build the add-in. That means if the add-in is running in the current
instance of the IDE or in another instance of the IDE, you will not be able to
link the object codes into a single DLL. The IDE will have the file open and
the operating system will put a lock on it. Therefore, before you can link the
object files, make sure you do not have the add-in currently running.

The wizard you originally used to create the add-in project automatically config-
ured the project, so that when you run the wizard, the IDE will launch a second
instance of Visual Studio .NET, in which your add-in will run. There’s nothing special
about this newly running instance of Visual Studio .NET; it’s just another instance run-
ning, with no command-line parameters and no special provisions for your add-in.
Therefore, to try out your add-in, set the add-in project as the startup project; press F5,
to run the add-in in debug mode, or Ctrl-F5, to run it without debugging.

If, however, instead of the second instance of Visual Studio .NET starting, you get a
message stating that no program has been specified (or, in the case of C++, a message
box appears asking for the name of the executable file (you need to configure the proj-
ect to run Visual Studio .NET. The following points tell you how, depending on the
language of the project.

■■ If you write your add-in in C#, open the properties for the project; in the Prop-
erty Pages dialog box in the left treeview, choose Configuration Properties➪

Debugging. Then in the properties on the right, under Start Action, set Start
Application to the full path of your Visual Studio .NET application.

■■ If you write your add-in in VB.NET, open the properties for the project; in the
Property Pages dialog box in the left treeview, choose Configuration
Properties➪Debugging. In the properties on the right, under Start Action, set
Start External Program to the full path to Visual Studio .NET.

■■ If you write your add-in in C++, you can simply fill in the path to the Visual
Studio .NET program right in the executable section of the dialog box that
appears when you try to run your add-in. Filling it in here will set the correct
project property for you automatically. Alternatively, you can manually set the

136 Chapter 6

project property. To do so, open the properties for the project, and in the left
treeview of the Property Pages dialog box, choose Configuration Properties➪

Debugging. Then in the properties on the right, under the heading Action, set
the Command property to the full path to your Visual Studio .NET program.
(Remember, you’ll probably want to do all this for both the Debug and Release
configurations.)

In all three cases, the executable is devenv.exe, and by default the program is in
C:\Program Files\Microsoft Visual Studio .NET\Common7\IDE\devenv.exe.

Managing Add-ins

To control the loading and unloading of the add-ins, the IDE user can invoke the Add-in
Manager, which lists all the add-ins that are registered with the IDE. To access the Add-
in Manager, choose Tools➪Add-in Manager. When it opens, you will see a list of the
add-ins that is registered with Visual Studio .NET. (These are the add-ins listed under
the HKEY_LOCAL_MACHINESOFTWARE\Microsoft\VisualStudio\7.0\AddIns key
in the Registry.) Each add-in has a checkbox to its left, as well as checkboxes listed under
the two columns labeled Startup and Command Line. Here’s what these checkboxes do:

■■ If you check the leftmost box, the add-in will load as soon as you exit from the
Add-in Manager. If the add-in is already loaded and you uncheck the check-
box, the add-in will unload when you exit the Add-in Manager.

■■ If you check the box under Startup, you will specify that the add-in will load at
startup the next time Visual Studio .NET starts. Clearing this means the add-in
will not load automatically at startup.

■■ If you check the box under Command Line, you will specify that the add-in is
safe to be loaded when Visual Studio .NET is executed as a command line.

In addition to using the Add-in Manager, you can access more options by directly
editing the Registry. In general, this is not a good idea; however, the Add-in Manager
does not cover all the options for the add-ins. If you start regedit and go to the
HKEY_LOCAL_MACHINESOFTWARE\Microsoft\VisualStudio\7.0\AddIns key in
the Registry, you will see the names of the add-ins. If you then click on one of the names,
in the right panel of the regedit, you will see some or all of the following values:

CommandPreload. This is a handy value that your add-in can check to deter-
mine if the add-in has been run since it was first installed: 0 means the add-in
has been run, 1 means it has not. If the value is 1, then your OnConnection func-
tion will receive the value ext_cm_UISetup for the ConnectMode parameter.

Description. This is the description that appears in the bottom portion of the
Add-in Manager when you select an add-in.

FriendlyName. This is the name that appears in the Add-in Manager. If you
don’t supply a value here, the name will be the actual name of the add-in.

Introducing Add-ins 137

LoadBehavior. This specifies the current load situation for the add-in. The value
will be a sum of the following: 1 means the add-in should be loaded when the
IDE starts; 2 means the add-in is presently loaded; and 4 means the add-in
should be loaded when Visual Studio .NET is invoked as a command-line utility
for building projects. (The 1 corresponds to a check under Startup in the Add-in
Manager, and 4 corresponds to a check under Command Line in the Add-in
Manager.)

SatelliteDllName. This is the name of a DLL that contains resources such as
icons and string resources that your add-in can use. (The main reason for sepa-
rating the string resources into a satellite DLL is so you can include strings in
different languages. You would have separate resource directories for each
locale. If you’re familiar with working with locales, you follow the standard pro-
cedure for this.)

SatelliteDllPath. This is the path that contains the satellite DLL. However, the
IDE constructs the actual path by taking this path and appending a number rep-
resenting the locale.

AboutBoxDetails. When you choose Help➪About Microsoft Development Envi-
ronment, you will see a list of the languages installed in the Visual Studio .NET,
as well as a list of the add-ins that are installed and running. Below the list is a
box with an icon and a description. By setting the AboutBoxDetails key, you can
specify a string that appears as the description in this box. (This is separate from
the Description value.)

AboutBoxIcon. In addition to a description in the About dialog box, you can
specify an icon that the About dialog box should display when the user clicks on
the name of your add-in. To specify an icon, use an integer that is the icon num-
ber in the SatelliteDll.

Since you can also create an add-in for the Macros IDE, you will find the
same Registry setup as in the preceding list, under the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VSA\7.0\AddIns. This key lists
the add-ins that apply to the Macros IDE.

Moving Forward

This chapter covered the add-in concepts. In the two chapters that follow, I take these
concepts and build several add-ins. During the process you will see just how easy it is
to build a powerful add-in that’s fully integrated to the Visual Studio .NET IDE.

138 Chapter 6

139

In this chapter, I expand on the concepts presented in Chapter 6 to show you how you
can build an add-in that includes a GUI and interacts with the IDE’s command system
and menu bar.

In the code for each of the sample add-ins in this chapter, you will notice a
GUID value in the form of a GuidAttribute. These are the GUIDs that were
assigned to me when I ran the wizard. Although you can certainly use the
same GUID in your code if you decide to type in these samples, I don’t
recommend doing so. The reason is that if you create a product that uses
the GUID, and by chance another reader does the same thing, and both your
add-ins end up on the same computer, there will be a problem. Therefore, I
recommend that you run the Add-in wizard to get the project started and
use the GUID that the wizard assigns to you. From there, you can type in the
code from the samples.

Building an Add-in in C++

If you built your add-in in C++, you probably quickly noticed something disturbing:
The add-in does not use .NET and the C++ managed extensions by default! That’s not
good. Fortunately, you have a choice: You can either add managed extensions or you

Creating Add-ins for the IDE

C H A P T E R

7

can continue writing the add-in without the .NET framework, accessing the automa-
tion objects through the COM objects that are passed into the functions in your add-
in’s main CConnect class. (Yes, in C++, the class has a C in front of it.)

If you want to skip the .NET framework and the C++ managed extensions, you can
write your add-in, continuing from the starter code the wizard generated for you. But
if you want access to the .NET framework and the C++ managed extensions, here are
the steps you can follow to add it.

If these steps seem a little strange, it’s because the compiler option for
managed extensions is not compatible with several other compiler options.

1. Open the project properties.

2. In the treeview, choose Configuration Properties➪General. In the properties on
the right, set Use Managed Extensions to Yes.

3. Choose Configuration Properties➪C/C++➪Code Generation. Set the Use Run-
time Checks property to Default. Also in this section set the Enable Minimal
Build property to No.

4. Choose Configuration Properties➪C/C++➪General. Make sure Debug Infor-
mation Format is set to Program Database (/Zi).

After you follow these steps, your project will be set up to build a .NET assembly
rather than a standard DLL, which means you’ll be able to access the .NET framework
classes.

If you’re planning to use C++ to write your add-in, you will want to have a
thorough understanding of COM and ATL. The alternative is to either learn
about COM and ATL (perhaps pick up a book on it) or seriously consider
writing your add-in in C# or VB.NET. (If you prefer C++ style syntax, then try
C#. Its syntax is very much like C++, and it really is a good language.)

Including a GUI with Your Add-in

If you do not expect your add-in to be run in command-line mode, you can include a
GUI. There are two different ways your add-in can have a GUI:

Interact with the IDE directly. This approach is useful for creating, for example,
additional tool windows that are integrated right with the IDE.

Use the System.Windows.Forms library to build a form yourself. This is best
if you need to display a modal dialog. (I don’t recommend using this approach
for nonmodal windows, as the windows will not be integrated to the IDE.)

140 Chapter 7

In the sections that follow I’ll show you how to use the Windows.System.Forms
library; then I demonstrate how to create a tool window using your add-in. In the case
of the tool window, I cover two aspects: putting a preexisting ActiveX control in the
tool window, and putting a form that you create with the IDE’s Designer inside the tool
window.

Working with Commands
You can access most of the functionality of the IDE through named commands, such as
Edit.SelectAll, which is the command for selecting all the text in the currently
open source code document. You can set up your add-in to recognize named com-
mands. In the sections that follow, I will be showing you how to do so; but before we
get started, I need to point out that for your add-ins to use named commands, the class
for the add-in must be derived not only from IDTExtensibility2, but also from IDT-
CommandTarget. The IDTCommandTarget interface provides the two functions that
are necessary for working with commands, QueryStatus and Exec.

If you need to remove a command that you added (as you’ll do in the
examples in the following section), write a macro or add-in code that
obtains the reference to the Command object for the command, and call the
Delete member function. (Don’t worry about accidentally deleting a built-in
command. I tried this on my computer—choosing a command I figured I could
live without in the event of the worst-case-scenario—and I received an error;
fortunately, Visual Studio .NET wouldn’t let me delete it.) Here’s an example
of a macro that deletes a command created by one of the examples later in
this chapter (in the section, “Building a Tool Window”).

Sub DeleteCommand()

Dim cmd As Command =

DTE.Commands.Item(“ToolWindowAddin.Connect.Load”)

If Not cmd Is Nothing Then

cmd.Delete()

End If

End Sub

Using the Forms Library
For this sample, I started by using the Add-in wizard to create a C# add-in. Since I
wanted my add-in to support commands, I chose the Create Tools menu option in the
wizard. From there I added code so that when the add-in receives a command, it will
display a model dialog box, which I hard-coded in C#. (You can also use the Designer
to create your form, in which case, in the following code, instead of hard-coding the
form information, just call ShowDialog for your form.)

Creating Add-ins for the IDE 141

The beginning of the namespace looks like this (make sure you add a reference in
your project to System.Windows.Forms.dll):

namespace GuiAddin1

{

using System;

using Microsoft.Office.Core;

using Extensibility;

using System.Runtime.InteropServices;

using EnvDTE;

// For this next line, be sure to add a reference

// in your project to System.Windows.Forms.dll.

using System.Windows.Forms;

Next comes the class header and the OnConnection method. Remember, I checked
the option Create Tools menu item in order to have my class implement both IDTEx-
tensibility2 and IDTCommandTarget. However, I didn’t really want the extra
goodies the Tools menu option adds—a toolbar and such—so I deleted those lines, but
kept the part where the code creates a named command (although I fixed up the call to
AddNamedCommand with my own command name):

[GuidAttribute(“3B357420-B183-4553-9851-D70B7C60BD19”),

ProgId(“GuiAddin1.Connect”)]

public class Connect : Object, Extensibility.IDTExtensibility2,

IDTCommandTarget

{

public Connect()

{

}

// Note: Removed Toolbar stuff

// Removed connectMode comparison. Was:

// if(connectMode ==

Extensibility.ext_ConnectMode.ext_cm_UISetup)

public void OnConnection(object application,

Extensibility.ext_ConnectMode connectMode,

object addInInst, ref System.Array custom)

{

applicationObject = (_DTE)application;

addInInstance = (AddIn)addInInst;

object []contextGUIDS = new object[] { };

Commands commands = applicationObject.Commands;

try

{

Command command =

commands.AddNamedCommand(addInInstance,

“MyCommand1”, “GUIAddin1 MyCommand1”,

142 Chapter 7

“Executes the command for GuiAddin1.MyCommand1”,

true, 59, ref contextGUIDS,

(int)vsCommandStatus.vsCommandStatusSupported +

(int)vsCommandStatus.vsCommandStatusEnabled);

}

catch(System.Exception)

{

MessageBox.Show(“Exception...”);

}

}

I didn’t add any code to the OnDisconnection, OnAddInsUpdate, OnStartup-
Complete, and OnBeginShutdown methods. However, you can’t delete them,
because if you do, you’ll have an abstract class that you cannot instantiate. Therefore,
leave them as-is.

Next I fixed up the QueryStatus method just a bit so it understands my own com-
mand. (Remember, the QueryStatus function is what the IDE calls to find out if a
command is available, and the QueryStatus function will receive the fully qualified
name of the command. Therefore, if you named your add-in something other than
what I did—GuiAddin1—then you’ll have to replace the text GuiAddin1 in this code
with your add-in name. Here’s the code:

public void QueryStatus(string commandName,

EnvDTE.vsCommandStatusTextWanted neededText,

ref EnvDTE.vsCommandStatus status, ref object commandText)

{

if(neededText ==

vsCommandStatusTextWanted.vsCommandStatusTextWantedNone)

{

if(commandName == “GuiAddin1.Connect.MyCommand1”)

{

status =

vsCommandStatus.vsCommandStatusSupported|

vsCommandStatus.vsCommandStatusEnabled;

}

}

}

Finally, the Exec method is where I create the form. The idea is that when the IDE
user issues a command to the add-in, the add-in will respond by opening the form. You
can see in this code that I created a new Form instance and set various properties. Then
I created several control instances and set their properties. After I created the control
instances, I set the Form instance’s AcceptButton property equal to my OK button so
that when the IDE user presses Enter, the form will close as if he or she pressed OK.
Here’s the code, which finishes the class:

public void Exec(string commandName,

EnvDTE.vsCommandExecOption executeOption,

ref object varIn, ref object varOut, ref bool handled)

Creating Add-ins for the IDE 143

{

handled = false;

if(executeOption ==

vsCommandExecOption.vsCommandExecOptionDoDefault)

{

if(commandName == “GuiAddin1.Connect.MyCommand1”)

{

Form f = new Form();

f.Height = 180;

f.Width = 200;

f.Text = “GUI Add-in”;

Label label1 = new Label();

label1.Text = “Enter your name”;

label1.Left = 20;

label1.Top = 20;

TextBox tb1 = new TextBox();

tb1.Text = “”;

tb1.Left = 20;

tb1.Top = 60;

Button okbtn = new Button();

okbtn.Text = “OK”;

okbtn.Left = 20;

okbtn.Top = 120;

okbtn.DialogResult = DialogResult.OK;

Button cancelbtn = new Button();

cancelbtn.Text = “Cancel”;

cancelbtn.Left = 100;

cancelbtn.Top = 120;

cancelbtn.DialogResult = DialogResult.Cancel;

f.Controls.AddRange(new Control[]

{label1, tb1, okbtn, cancelbtn});

f.AcceptButton = okbtn;

DialogResult res = f.ShowDialog();

if (res == DialogResult.OK)

{

MessageBox.Show(tb1.Text);

}

handled = true; // Remember to set this to true!!!

}

}

}

private _DTE applicationObject;

private AddIn addInInstance;

}

}

When you compile and run this code, you have an add-in that can display a dialog
box with the issuance of a command. Here’s how to do that:

144 Chapter 7

TE
AM
FL
Y

Team-Fly®

Figure 7.1 The add-in will display a modal dialog box.

1. Run a new instance of Visual Studio .NET.

2. Load your add-in using the Add-in Manager.

3. Choose View➪Other Windows➪Command Window to open the command
window.

4. In the command window, type the following command and press Enter
(although if you named your add-in something other than GuiAddin1, then
you’ll replace GuiAddin1 with the name of your add-in).

GuiAddin1.Connect.MyCommand1

When you run this command, the IDE will first call your add-in’s QueryStatus
function, passing it the exact string you typed, GuiAddin1.Connect.MyCommand1.
Your QueryStatus function will indicate the command is available by setting the sta-
tus parameter. Next, the IDE will call your Exec function, asking you to execute the
command. The Exec function will display a modal dialog box, as shown in Figure 7.1,
allowing you, in this case, to type in a name. When you press Enter, the Exec function
will open a message box showing the string you typed in. Although the message box
in itself is not particularly interesting, the code for this message box demonstrates how
you can retrieve user information from the form by inspecting the properties of the
controls on the form.

Building a Tool Window
Before I delve into the code for creating a tool window, I want to explain the role of
ActiveX controls and tool windows. In short, tool windows are not .NET windows,
hence they can only display ActiveX controls, not .NET controls.

All the tool windows in the IDE are implemented as ActiveX controls. You can see
this for yourself if you open up the regedit. Inside regedit, drill down to HKEY_
LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.0\ToolWindows. Under
the ToolWindows key, you will see several GUIDs. These are not yet the GUIDs for
ActiveX controls; these are unique identifiers for the tool windows. Every tool window
has to have a unique identifier, so what better way than to use GUIDs? If you click on this
GUID, {3AE79031-E1BC-11D0-8F78-00A0C9110057}, you will see two values for it: a
name and another GUID. The name is Solution Explorer, so this tool window represents
the Solution Explorer. The GUID is {DA9FB551-C724-11d0-AE1F-00A0C90FFFC3}. If you

Creating Add-ins for the IDE 145

dig through the HKEY_CLASSES_ROOT/CLSID key, you’ll eventually find this GUID,
which is for an ActiveX control.

In order for your add-in to create a tool window, you need two identifiers: a GUID
that will identify the tool window and a unique identifier for the ActiveX control. For
the ActiveX control you can either specify the ActiveX control’s own GUID or the offi-
cial name for the ActiveX control. For the sample that follows, I used the built-in Inter-
net Explorer control, and its unique name is Shell.Explorer.

If you’re not an ActiveX control expert and all this seems a bit daunting, don’t
worry. In the next section I show you how you can get around the fact that the
tool window needs an ActiveX control. Nevertheless, you still might want to
review this section so you can fully understand how tool windows work.

Once you have the two unique identifiers, you can call CreateToolWindow, passing
a reference to your add-in (so that the IDE will know which add-in goes with this new
tool window), the unique name (or GUID) for the ActiveX control, a title for the tool win-
dow, and a unique GUID for the tool window. Finally, as a fifth parameter you specify a
reference to an object that will receive a document object returned by CreateToolWin-
dow. This document object is, in fact, the actual object that you’ll use to communicate
with the ActiveX control. You’ll see how to do that in the sample code that follows.

This sample code creates a tool window that displays a Web browser; specifically, it
displays an instance of the browser control that is the heart of Internet Explorer. (In the
past I would have instructed you to make sure you had IE installed on your computer,
but these days it’s there automatically.) I chose the Web browser control, for two rea-
sons. First, I wanted to use a control that’s easy to use; and second, I wanted to use a
control that I know you’ll have installed on your computer.

To set up this sample, create a new C# add-in, call it ToolWindowAddin, and check
the wizard box that asks whether you want a tool menu item created. Next—and this
is easy to forget—you must add a reference to the ActiveX control that your tool win-
dow will be hosting. When you right-click the project name in the Solution Explorer
and choose Add Reference, you’ll see a tab called COM in the Add Reference dialog
box; click on it and wait a moment as the COM list loads. (This could take awhile
depending on how much software you have installed on your computer.) Scroll down,
find, then double-click Microsoft Internet Controls (its path is C:\Windows\Sys-
tem32\shdocvw.dll). Then click OK.

When you click OK, two things will happen. First, believe it or not, the IDE will
automatically create an assembly based on the ActiveX control. It will name this assem-
bly Interop.SHDocVw.dll (the middle name, SHDocVw, is the name of the library) and
place it in the obj directory underneath your project directory. Second, the IDE will add
to your project a reference to this new assembly.

When you add the Microsoft Internet Controls component, the IDE will also
automatically add the control to the Setup project for you. You don’t want
that, however, because the Setup project will refuse to build with a Windows
system file present. To fix this, go to the Solution Explorer and find theSetup

146 Chapter 7

project called ToolWindowAddinSetup. Expand the project folder and then
expand the Detected Dependencies folder. Under Detected Dependencies,
right-click on shdocvw.dll and in the popup menu choose Exclude.

Now in your code you can access the types specified in the ActiveX control. The Web
browser’s type is IWebBrowser. So when I call CreateToolWindow, the final parameter,
which receives a reference to an object, will receive a reference to IWebBrowser.

The IWebBrowser control has a simple method called Navigate. You pass a URL,
and the control will load and display the URL.

Following is the first part to the add-in. You can see that I added a reference to
System.Windows.Forms, which I did simply to give me access to the MessageBox
function.

namespace ToolWindowAddin

{

using System;

using Microsoft.Office.Core;

using Extensibility;

using System.Runtime.InteropServices;

using EnvDTE;

// Remember to reference System.Windows.Forms in Soluton Explorer

using System.Windows.Forms;

Next is the Connect class that the wizard generated automatically for me. In this
class you can see that I added a couple of member variables, one called doc (which is
the IWebBrowser instance) and one called toolwin (which is an instance of Window
representing the tool window). Later on in this code, I needed a GUID, so I ran the
Create GUID tool (available through the IDE by choosing Tools➪Create GUID or by
running guidgen.exe from the command line). I then pasted the GUID in as the value
for a string called newguid.

After that, I created a variable called tempdoc, which will temporarily hold the value
of the object returned by CreateToolWindow. The reason I needed this temporary
variable is that CreateToolWindow insists that I pass to it a variable of type object.
Then after calling CreateToolWindow, I cast the result to my IWebBrowser variable.

The call to CreateToolWindow also returns an instance of ToolWindow. (This
instance is the actual return value; CreateToolWindow returns my Web browser doc-
ument through a reference parameter.) I save the ToolWindow instance so I can use it
later, and then I set its Visible property to True.

Then, just for fun (and to prove to myself that this code really worked), I call the Web
browser control’s Navigate function, passing a URL. But the Navigate function
requires four extra parameters that aren’t really needed at this point, so I pass four
empty objects.

Finally, all this code that I just described goes in a try block, which I used for debug-
ging as I wrote the code. I left the try block there, in case I want to add any more error
checking. For instance, if for some reason CreateToolWindow is unable to load the
ActiveX control, the CLR will throw an exception, which the code can catch. But if the
code doesn’t catch the exception, the IDE will display an error message when the IDE

Creating Add-ins for the IDE 147

user tries to load the add-in, asking if he or she would like to unregister the add-in.
(Best to handle such errors yourself, where you have more control. You might, for
example, display a MessageBox explaining that the ActiveX control is not available,
and offer suggestions on how the IDE user can obtain it.)

Here is the part of the code I just described:

[GuidAttribute(“0FA19594-9EAC-4215-8F05-345D8BC4A10C”),

ProgId(“ToolWindowAddin.Connect”)]

public class Connect : Object, Extensibility.IDTExtensibility2,

IDTCommandTarget

{

private SHDocVw.IWebBrowser doc = null;

private Window toolwin = null;

public Connect()

{

}

public void OnConnection(object application,

Extensibility.ext_ConnectMode connectMode,

object addInInst, ref System.Array custom)

{

applicationObject = (_DTE)application;

addInInstance = (AddIn)addInInst;

try

{

String newguid = “{8F4C6171-1167-4d64-82B7-A25F99A29E0A}”;

object tempdoc = null;

Window macroexp = applicationObject.Windows.Item(

Constants.vsWindowKindMacroExplorer);

String objkind = macroexp.ObjectKind;

toolwin = applicationObject.Windows.CreateToolWindow(

addInInstance,

“Shell.Explorer”,

“New Tool Window”, newguid, ref tempdoc);

toolwin.Visible = true;

doc = (SHDocVw.IWebBrowser)tempdoc;

object emptyobj = null;

doc.Navigate(“http://www.wiley.com”, ref emptyobj,

ref emptyobj, ref emptyobj, ref emptyobj);

}

catch (System.Exception e)

{

MessageBox.Show(e.Message);

}

148 Chapter 7

In the next section of code I register the commands. This add-in has two commands,
one that shows the tool window and one that loads a Web address into the tool win-
dow. Notice in the first call to AddNamedCommand, for the third parameter, instead of
describing the command, I simply passed a string with the value “Toolwin”. The rea-
son is that I’m adding a menu item on the View window, inside the Other Windows
submenu. The name that I want to appear there is the name of my window, and that
name will come from the description parameter of the call to AddNamedCommand.
That way my window will appear in the Other Windows list along with windows such
as Macro Explorer; these other windows also have just a window name, not a full
description.

After the code for the creation of the two commands comes the code that creates a
menu item. Pay close attention to this code, as it took a good deal of digging on my
part. The menu item objects are actually part of the Microsoft Office toolkit, not part of
.NET. Thus, the Visual Studio .NET documentation’s coverage of the menu objects is
sparse at best. (In my digging I ended up at Microsoft’s MSDN Library site,
http://msdn.Microsoft.com/library.)

The menu modification code is a bit convoluted. The menu of items across the top of
the main IDE window is considered a CommandBar instance. But this instance only has
the names across the top, not the names on the drop-down menus. Further, each name
across the top is an instance of CommandBarPopup. (Normally in a CommandBar, the
items are instances of CommandBarCommand, but in the case of menu items, they are
instances of CommandBarPopup, which is derived from CommandBarCommand.)

Each drop-down menu is itself an instance of CommandBar. To obtain this, I ask the
CommandBarPopup that corresponds to the View menu for its CommandBar instance.
That gives me the CommandBar instance of the View menu.

From there I do it all over again: I find the CommandBarPopup member corre-
sponding to “Other Windows”, and grab its CommandBar instance (which “Other
Windows” has, since it’s a submenu.) And that final CommandBar instance is the
instance where I want to insert my command. (Whew!)

Finally, to add the command, I call a member function of the Command instance, not
a member of the CommandBar instance. Specifically, I call AddControl, passing the
CommandBar instance, and a number representing the position where I want to insert
the command. In my call to AddControl in the following code you can see that I
passed the variable called othersBar and the number 1. Thus, after this code runs, I’ll
have a menu item View➪Others Windows➪ToolWin.

One more point about this code: When you add a set of commands to the IDE and a
menu to the IDE, it’s almost a done deal. The commands and the menu won’t go away
when the add-in unloads. And when you restart the IDE, the commands and menu
will still be there, even if the add-in isn’t loaded yet. And what if you reload the add-
in? Not a problem. Notice there’s a try/catch block around this code. If the
AddNamedCommand function discovers that the command already exists, the function
will throw an exception, sending me down to my catch block, skipping my attempt to
add a menu item. And so I will still only have one menu item, rather than an additional
one each time the add-in loads. (Therefore, and contrary to what the default code from
the wizard does, I do not need a big if statement around this code.)

Creating Add-ins for the IDE 149

object []contextGUIDS = new object[] { };

Commands commands = applicationObject.Commands;

try

{

// If the commands already exist, this whole block will

// drop out to the catch block below, so I don’t need

// to worry about accidentally adding anything twice.

Command command1 = commands.AddNamedCommand(addInInstance,

“Show”, “Toolwin”, “Shows the Tool Window”, true,

59, ref contextGUIDS,

(int)vsCommandStatus.vsCommandStatusSupported +

(int)vsCommandStatus.vsCommandStatusEnabled);

Command command2 = commands.AddNamedCommand(addInInstance,

“Load”, “Load”, “Loads a URL”, true, 59,

ref contextGUIDS,

(int)vsCommandStatus.vsCommandStatusSupported +

(int)vsCommandStatus.vsCommandStatusEnabled);

// Add the menu item

// This requires drilling down through the Microsoft

// Office toolbar objects,

// much of which is only partially documented :-(

CommandBarPopup viewMenu = (CommandBarPopup)

(applicationObject.CommandBars[“MenuBar”]

.Controls[“&View”]);

CommandBar viewMenuBar = viewMenu.CommandBar;

CommandBarPopup othersMenu = (CommandBarPopup)

(viewMenu.Controls[“Oth&er Windows”]);

CommandBar othersBar = othersMenu.CommandBar;

command1.AddControl(othersBar, 1);

}

catch(System.Exception)

{

}

}

After this code comes the OnDisconnection, OnAddInsUpdate, OnStartup-
Complete, and OnBeginShutdown code. As with the sample in the previous section,
I did not modify these methods and so I’m not listing them here, to save space. How-
ever, do not delete them after the wizard creates them, as you’ll need them; otherwise
your class will be abstract.

Next come the QueryStatus and Exec functions. Since I have two commands, I
doubled them up in the QueryStatus function, checking if the commandName is
either command. Here’s the QueryStatus function:

150 Chapter 7

public void QueryStatus(string commandName,

EnvDTE.vsCommandStatusTextWanted neededText,

ref EnvDTE.vsCommandStatus status, ref object commandText)

{

if(neededText == EnvDTE.vsCommandStatusTextWanted.

vsCommandStatusTextWantedNone)

{

if(commandName == “ToolWindowAddin.Connect.Show”

|| commandName == “ToolWindowAddin.Connect.Load”)

{

status = (vsCommandStatus)

vsCommandStatus.vsCommandStatusSupported |

vsCommandStatus.vsCommandStatusEnabled;

}

}

}

The Exec function is remarkably simple. I check which command I received, and if
its the Show command, I simply set the toolwin variable’s Visible property to
True. Or if the command I received is the Load command, I grab the command’s
parameter (passed in through the varIn object, which I cast to a string), and then I call
the document object’s Navigate command. Since I’m passing the command’s param-
eter to the Navigate command, that means I’m expecting a URL for the parameter.
Here’s the code:

public void Exec(string commandName,

EnvDTE.vsCommandExecOption executeOption,

ref object varIn, ref object varOut, ref bool handled)

{

handled = false;

if(executeOption == EnvDTE.vsCommandExecOption.

vsCommandExecOptionDoDefault)

{

if (commandName == “ToolWindowAddin.Connect.Show”)

{

toolwin.Visible = true;

handled = true;

return;

}

if (commandName == “ToolWindowAddin.Connect.Load”)

{

if (varIn != null)

{

string str = (string)varIn;

toolwin.Visible = true;

object emptyobj = null;

doc.Navigate(str, ref emptyobj, ref emptyobj,

ref emptyobj, ref emptyobj);

handled = true;

Creating Add-ins for the IDE 151

return;

}

}

}

}

private _DTE applicationObject;

private AddIn addInInstance;

}

}

That’s the whole add-in. To use it, compile it, start a new instance of Visual Studio
.NET, and load the add-in. When it loads, you will see a tool window load, and it will
start by going to the Web site www.wiley.com. (If you’re not online, you’ll get the stan-
dard Internet Explorer error message that the browser can’t find the domain.)

Next, notice the two additional features I included. First, if you close the tool win-
dow, you can bring it back just like you can any other tool window, by visiting the View
menu. In this case, choose View➪Other Windows➪ToolWin. (Presently, the icon is the
one that add-ins use by default, a smiley face. In Chapter 8, in the section “Registering
a Satellite DLL for Resources,” I talk about other possibilities for icons.)

Now that you’ve been through the code, you can see how this menu item works:
When you choose it, the IDE sends the command ToolWindowAddin.Connect.Show
to the add-in. The add-in’s Exec function kicks in, and displays the tool window.

The Show command has an interesting oddity: When you call any command in
the add-in, the first thing the IDE does is display your tool window for you.
So, technically, your Exec function doesn’t have to do anything at all for the
Show command, as long as the command is registered and the QueryStatus
function says the command is available. But I thought leaving the Show
command out of the Exec function would make for some strange code that
would be confusing to someone who might be given the chore of maintaining
my code for me, so I included the Show command in the Exec function.

As for the second feature, if you open up a command window by choosing
View➪Other Windows➪Command window, you can type in the Navigate command:

ToolWindowAddin.Connect.Load http://www.cnn.com

The tool window will open (if it’s not already open) and load the site www.cnn.com,
provided you’re on the Internet. (If you right-click on the tool window, you’ll see it’s
the same browser window used in Internet Explorer; you get the usual popup menu.)

Though this code is handy for accessing the add-in, you might not want to have to
open the command window every time. So here’s a macro you can use that will prompt
you for the Web address and then run the command for you:

152 Chapter 7

Sub OpenSite()

Dim url As String

Dim customin, customout As Object

url = InputBox(“Enter the URL:”)

If (url = “”) Then

Exit Sub

End If

Dim cmd As Command =

DTE.Commands.Item(“ToolWindowAddin.Connect.Load”)

DTE.Commands.Raise(cmd.Guid, cmd.ID, url, customout)

End Sub

Using the Form Designer with a Tool Window
In the previous section I showed you how to create a tool window that displays an
ActiveX control, how the commands can manipulate the tool window, and how you
can have a menu item that displays the tool window. In this section I’ll show you one
more important action: how to use the form designer to create your tool window, so
you’re not limited to displaying strictly ActiveX controls (and so you don’t have to be
an expert in ActiveX).

Although a tool window must display an ActiveX control, you can employ a little
trick to get it to display a form that you build with the Visual Studio .NET IDE’s
Designer. Someone at Microsoft built what’s called a shim control, an ActiveX control
that serves one purpose: to display a form.

Actually, a shim control doesn’t display an instance of the Form class; it
displays an instance of a user control. However, the Designer lets you draw
controls on a user control in the same way you would a form, so the end
result is the same: You still get to use the Designer.

But before you can try this out, you need to obtain the shim control. Here’s how: Visit
http://msdn.microsoft.com/vstudio/downloads/samples/automation.asp and down-
load the sample called ToolWindow Add-ins. (The file is a self-extracting executable.)
Extract the files in it and open the solution in the VSUserControlHost directory. Build
the project, then close the solution and return to your own solution. (If you want,
instead of loading the solution, you can try out the command-line version of Visual Stu-
dio .NET, which will build a project for you without having to close the current solution.
Go the Visual Studio .NET command prompt, change to the directory containing the
VSUserControlHost.sln file, and issue the following command to do so.)

devenv VSUserControlHost.sln /build DEBUG

This library you are building is the ActiveX control that you’ll be using to display
your .NET form. When you build the library, the build process automatically registers
the ActiveX control in the Registry so you won’t have to.

Creating Add-ins for the IDE 153

Now start your new add-in project. I called my project ToolWinForms. Again, for
this sample I used C#, and I turned on the wizard option regarding the creation of a
“tools” menu so that I can have an IDTCommandTarget interface.

After you create the new project, make sure you add a reference to the library you
just built. Right-click the project’s name in the Solution Explorer and choose Add Ref-
erence. In the Add Reference box, click the COM tab. Scroll down and double-click
VSUserControlHost 1.0 Type Library, then click OK. This will add a reference so that
you can access the ActiveX control that will be hosting your .NET form.

Again right-click the project’s name in the Solution Explorer; in the popup menu
choose Add➪Add User Control. In the Add New Item dialog box, make sure User
Control is selected and type a name for your control, followed by .cs to denote the file-
name. (I called mine ControlForm, even though it’s technically not a form. The IDE
will create the new class for you, and the Designer will open. Unlike a typical form, the
Designer will show only a grid where you can drop controls, no form features. Open
the toolbox by choosing View➪Toolbox.

Next, follow these steps for dropping the controls on the form:

1. Widen and lengthen the form so its size is about 600 pixels wide by about 200
pixels tall. (You can see its size by right-clicking it and choosing Properties; in
the Properties window scroll down to the Size property.)

2. Double-click the Panel in the toolbox. A panel will appear in the form. Right-
click the panel and choose Properties; the Properties window will open. Scroll
down until you see Dock; set the Dock property to Fill. (To do so, either type an
F, or click the drop-down arrow and click the box in the center of the small win-
dow that opens.)

3. Double-click the button in the toolbox. Slide the button toward the upper-left
corner. Set its Text property to Command.

4. Double-click ListView in the toolbox. Drag it to the left edge, just below the
button. Drag its bottom toward the lower edge of the form. Drag its right edge
to the right edge of the form.

5. Now you can add the columns for ListView. Right-click on ListView on your
form and choose Properties. Set the View property to Details. Also in the Prop-
erties window, scroll down and click the Columns property. A small button
with an ellipses (...) on it will appear; click it. The ColumnHeader Collection
Editor will open. Follow these substeps:

a. Click Add to add a new column. Set the Name property to NameColumn,
the Text property to Name, and the Width property to 150.

b. Click Add to add a second column. Set the Name property to IDColumn,
the Text property to ID, and the Width property to 80.

c. Click Add to add a third column. Set the Name property to GUIDColumn,
the Text property to GUID, and the Width property to 250.

d. Click OK.

Your form is now set up, and it should look more-or-less like the one shown in
Figure 7.2.

154 Chapter 7

TE
AM
FL
Y

Team-Fly®

Figure 7.2 The finished form.

Double-click the button so you can add an OnClick handler. Here’s the code for the
handler:

private void button1_Click(object sender, System.EventArgs e)

{

foreach (Command cmd in Connect.applicationObject.Commands)

{

ListViewItem lvitem = new ListViewItem(cmd.Name, 0);

lvitem.SubItems.AddRange(new String[] {cmd.ID.ToString(),

cmd.Guid.ToString()});

listView1.Items.Add(lvitem);

}

}

You will also need to add a using line for the EnvDTE toward the top of the code.
Here’s the top of my file so you can see where I put it:

using System;

using System.Collections;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Windows.Forms;

namespace ToolWinForms

{

// Added this so I can access the IDE.

using EnvDTE;

The rest of the code I left unchanged, so I’m not including it here.
On to the Connect.cs file, which was generated automatically by the wizard. Once

again I needed a new GUID for the tool window, which I’ll use in the OnConnection
function to register my new tool window. To create the GUID, I again used Tools➪Cre-
ate GUID.

Creating Add-ins for the IDE 155

And as with the example in the preceding section, I’ll need a reference to the Sys-
tem.Windows.Forms assembly. However, by using the Designer, the IDE added this
reference for me automatically.

Here’s the start of my Connect.cs code. You can see I again added a line for the Sys-
tem.Windows.Forms assembly:

namespace ToolWinForms

{

using System;

using Microsoft.Office.Core;

using Extensibility;

using System.Runtime.InteropServices;

using EnvDTE;

// Added this...

using System.Windows.Forms;

Next is the header for the class. Like the example in the preceding section, I’m allo-
cating a variable for my object. However, instead of using a Web browser object, this
time I’m using the object defined in the VSUserControlHost library that I built at the
start of this section. You can see the type of the object is IVSUserControlHostCtl.

[GuidAttribute(“CBC8C226-9EDE-405A-8D3B-3ACDAEDBFF2C”),

ProgId(“ToolWinForms.Connect”)]

public class Connect : Object,

Extensibility.IDTExtensibility2,IDTCommandTarget

{

private VSUserControlHostLib.IVSUserControlHostCtl doc = null;

private Window toolwin = null;

public Connect()

{

}

Here’s the OnConnection function, which is similar to the OnConnection func-
tion in the preceding section; however, in the CreateToolWindow call I passed the
name of the ActiveX control for this example, which is “VSUserControlHost.
VSUserControlHostCtl”. As before, I saved the return document, but this time cast
it to the IVSUserControlHostCtl type, saving it in the doc object.

Next, I tell the doc object the name of my form class. However, to do that, I must
locate the assembly containing the form class (which is the currently running assem-
bly). This involves a call to GetExecutingAssembly. Then I take the results and pass
them along with the name of my form class to the doc object by calling the Hos-
tUserControl member function.

This time I create only a single command and I set its description to “ToolWin-
Forms”, which will ultimately appear on the View➪Other Windows menu. I then use
the same convoluted process as in the example in the preceding section to set up the
menu:

156 Chapter 7

public void OnConnection(object application,

Extensibility.ext_ConnectMode connectMode,

object addInInst, ref System.Array custom)

{

applicationObject = (_DTE)application;

addInInstance = (AddIn)addInInst;

try

{

String newguid = “{743F0A16-B976-40f2-9578-87BB53C2DCDA}”;

object tempdoc = null;

Window macroexp = applicationObject.Windows.Item(

Constants.vsWindowKindMacroExplorer);

String objkind = macroexp.ObjectKind;

toolwin = applicationObject.Windows.CreateToolWindow(

addInInstance,

“VSUserControlHost.VSUserControlHostCtl”,

“Form Host”, newguid, ref tempdoc);

toolwin.Visible = true;

doc =

(VSUserControlHostLib.IVSUserControlHostCtl)tempdoc;

System.Reflection.Assembly asm = System.Reflection.

Assembly.GetExecutingAssembly();

// Be sure to set the right namespace.form name

// in this next line.

doc.HostUserControl(asm.Location,

“ToolWinForms.ControlForm”);

}

catch (System.Exception e)

{

MessageBox.Show(e.Message);

}

object []contextGUIDS = new object[] { };

Commands commands = applicationObject.Commands;

try

{

// If the commands already exist, this whole block will

// drop out to the catch block below, so I don’t need

// to worry about accidentally adding anything twice.

Command command1 =

commands.AddNamedCommand(addInInstance,

“Show”, “ToolWinForms”, “Shows the Tool Window”, true,

59, ref contextGUIDS,

(int)vsCommandStatus.vsCommandStatusSupported +

Creating Add-ins for the IDE 157

(int)vsCommandStatus.vsCommandStatusEnabled);

CommandBarPopup viewMenu = (CommandBarPopup)

(applicationObject.CommandBars[“MenuBar”]

.Controls[“&View”]);

CommandBar viewMenuBar = viewMenu.CommandBar;

CommandBarPopup othersMenu = (CommandBarPopup)

(viewMenu.Controls[“Oth&er Windows”]);

CommandBar othersBar = othersMenu.CommandBar;

command1.AddControl(othersBar, 1);

}

catch(System.Exception)

{

}

}

The QueryStatus and Exec functions are not as interesting as the example in the
preceding section. For the QueryStatus function, I just check for the single Show
command and issue a status that it’s supported and available. For the Exec function, I
again check for the single Show command and then make the tool window visible.
However, following the QueryStatus and Exec functions, I did make a small change
to the two variables that the wizard automatically added; I made them static. The rea-
son is that I want to be able to access them from the form class and I don’t want to
worry about having an instance of Connect handy. Since I’ll only be creating one
instance of Connect, I went ahead and made the two variables static.

public void QueryStatus(string commandName,

EnvDTE.vsCommandStatusTextWanted neededText,

ref EnvDTE.vsCommandStatus status, ref object commandText)

{

if(neededText == EnvDTE.vsCommandStatusTextWanted.

vsCommandStatusTextWantedNone)

{

if(commandName == “ToolWinForms.Connect.Show”)

{

status = (vsCommandStatus)

vsCommandStatus.vsCommandStatusSupported |

vsCommandStatus.vsCommandStatusEnabled;

}

}

}

public void Exec(string commandName,

EnvDTE.vsCommandExecOption executeOption,

ref object varIn, ref object varOut, ref bool handled)

{

handled = false;

if(executeOption == EnvDTE.vsCommandExecOption.

vsCommandExecOptionDoDefault)

158 Chapter 7

{

if (commandName == “ToolWinForms.Connect.Show”)

{

toolwin.Visible = true;

handled = true;

return;

}

}

}

// I made these static so the form can access them

// without an instance of Connect.

static public _DTE applicationObject;

static public AddIn addInInstance;

}

}

That’s it. Now the source files are all ready, and you can build the program. After
you build it and start a new instance of Visual Studio .NET, you can start the add-in
using the Add-in Manager. When the add-in begins, it will install a menu item as
View➪Other Windows➪ToolWinForm. From then on, you can access the add-in
through this menu item, rather than through the Add-in Manager.

When you start the add-in, its tool window will open, showing the layout that you
built with the Designer. Initially, the tool window might be the smaller, but you can resize
it to make it bigger; or you can drag it onto one of the other tool windows to dock it.

When you click the button labeled Command, the ListView control will fill with all
the commands the IDE knows. (If you tried any of the macros that list commands, you
can see that this compiled add-in is much faster than a macro.)

Moving Forward

In this chapter I took the concepts presented in Chapter 6, “Introducing Add-ins,” and
built actual add-ins to demonstrate them. In the process I showed you the different
ways you can feature a user interface with your add-in, including using tool windows.
I’m partial to tool windows, because by putting your GUI in a tool window, the add-in
takes on the familiar look and feel of the Visual Studio .NET IDE, allowing your IDE
users to easily use the add-in without having to learn a new GUI. Plus, the tool win-
dow add-in makes the add-in seem fully integrated to Visual Studio .NET.

In the next chapter I continue the discussion of add-ins, covering three distinct top-
ics related to them: the life cycle of an add-in, how to debug an add-in, and how to
create satellite DLLs to allow for globalization of your software.

Creating Add-ins for the IDE 159

161

In this chapter I discuss three important topics: the life cycle of an add-in, how to
debug an add-in (including a command-line add-in), and how to create satellite DLLs
for your add-in that allow your add-in to display information in a user’s native lan-
guage.

The Life Cycle of an Add-in

The OnConnection handler of an add-in receives a connectMode parameter that
describes the current state of the add-in. For example, if the connectMode parameter
is ext_cm_UISetup, then your add-in code can assume this is the first time the add-
in has been run since the add-in was installed. In that case, you can do initial process-
ing such as adding commands, menu items, and toolbar buttons.

The values for the connectMode variable, such as ext_cm_UISetup and
ext_cm_Startup are found in the Extensibility.ext_ConnectMode enumeration.

Here are the possible values for the connectMode parameter:

ext_cm_AfterStartup (equal to 0). Your add-in will receive this when the IDE
user loads the add-in manually through the Add-in Manager.

ext_cm_Startup (equal to 1). If your add-in is set to load when the IDE starts,
the add-in will receive this value.

Life Cycles, Debugging,
and Satellite DLLs

C H A P T E R

8

ext_cm_External (equal to 2). If an external program or component forced the
add-in to load, the add-in will receive this value. This would happen, for
instance, if an automation controller launches a new instance of Visual Studio
.NET using a CreateObject call.

ext_cm_CommandLine (equal to 3). At the time of the writing, this option was
not available. When you load the command-line version of the devenv program,
your add-in will receive the ext_cm_Startup value.

ext_cm_Solution (equal to 4). If you have a solution that requires a particular
add-in and you load that solution, causing your add-in to load, your add-in will
receive this value.

ext_cm_UISetup (equal to 5). The first time you run the add-in after it installs,
your add-in will receive this value.

When you create an add-in using the Add-in wizard, and you check the box for
adding a tool button, you automatically get code in your OnConnection handler that
responds to the ext_cm_UIStartup value. If you need to force an ext_cm_UISetup
value, you have two ways available:

■■ You can run the command-line command devenv /setup.

■■ You can set the CommandPreload registry entry.

To set the CommandPreload Registry entry, open the Registry editor, and move down
to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.0\AddIns and
find your add-in. Under your add-in, you will see a CommandPreload entry. Change
its value to 1.

I prefer not to use ext_cm_UISetup. The reason is that any changes
I make to the UI, such as adding a menu item, are then tied strictly to
ext_cm_UISetup. However, if the IDE user is running multiple instances of
Visual Studio .NET (as when I’m writing an add-in) the add-in’s menu setup
can get overwritten by another instance of Visual Studio .NET, causing the
menu addition to go away. To prevent that, I make a simple assumption: If
the commands my add-in adds are not present, the menus it adds are
probably not present either. So I put all my setup inside a Try/Catch block;
inside the try block, I first try adding my new commands before adding the
menu items. The IDE has a feature whereby it will throw an exception if a
command already exists. I then do nothing in my catch block, allowing the
add-in to continue. But if the exception does not get thrown, I add the menu
items. This process occurs every time the add-in loads.

Debugging an Add-in

Debugging an add-in involves starting a second instance of Visual Studio .NET, in
which you run your add-in and debug it. You can set breakpoints in your add-in (such

162 Chapter 8

as in the OnConnection method), and when you interact with the add-in in the sec-
ond instance of Visual Studio .NET, the second instance will halt when it encounters
your breakpoint. You can then debug from the first instance of Visual Studio .NET.

To debug the add-in, make sure the project is set up to run Visual Studio .NET when
you begin a debug session. I describe these necessary steps in “Building and Running
the Add-in” in Chapter 6, “Introducing Add-ins.”

The Visual Studio .NET IDE has two methods of debugging: one that debugs
strictly VB.NET and C# programs and one that debugs C++ programs. If you
develop your add-in in C++, and you run the debugger, the debugger will
take a lot longer to load than it would if you were debugging in C# and
VB.NET.

When you’re ready to debug your add-in, you can start it in the debugger by mak-
ing sure it’s the startup project (right-click its project in the Solution Explorer; and in
the popup menu, choose Set as Startup Project) and then simply pressing F5. This will
launch the second instance of Visual Studio .NET. You can then set breakpoints as you
normally would. But to debug the add-in itself, you need to load the add-in. To load
the add-in, open the Add-in Manager and check the box to the left of your add-in’s
name. When you click OK, the add-in will load.

Keeping the Registry Clean
If your add-in makes any modifications to the Registry, some of these modifications
will not stick. Visual Studio .NET updates the Registry when it exits; thus, when the
second instance (the one being debugged) changes the Registry and exits, you will
return to the first instance. When that instance exits, it will again update the Registry,
undoing some of the changes from the second instance. As for which changes it
undoes, specifically they include those dealing with the creation of commands, the cre-
ation of toolbar buttons, and the creation of menu items. Therefore, be aware that your
commands may come and go as you’re debugging.

Moreover, the changes to the Registry that do stick can be problematic. If, say, while in
the second instance of Visual Studio .NET you change whether your add-in loads when
Visual Studio .NET starts, this change will stick, so when you finish debugging and
return to the first instance of Visual Studio .NET, the change will be there. If you’re not
aware of this, and you shut down Visual Studio .NET for the day, when you start it back
up the next morning, your add-in will load. If the add-in is in a volatile state, the Add-in
manager might, to your surprise, detect an exception and issue a warning, ask whether
you want to unregister the add-in. This is not a problem, exactly (although I recommend
clicking No), but it can be a source of confusion, especially if you are working with other
developers who might not be as familiar with add-in development as you are.

Debugging the Command-Line Version
You can start up the Visual Studio .NET product in command-line mode, allowing you
to do batch builds. In this section I show you how to set up the IDE so it can spawn your
add-in in command-line mode, allowing you to debug the add-in in that mode as well.

Life Cycles, Debugging, and Satellite DLLs 163

Be careful not to confuse the two terms command-line mode and
commands. When you operate the Visual Studio .NET tool in command-line
mode, you type its executable name, devenv, at the DOS command prompt,
along with several parameters. This prevents the IDE from opening, allowing
devenv to write results to the DOS window. Commands, on the other hand,
refer to the commands available to you from within the IDE. When you click
a toolbar button or choose a menu item or type a name into the Command
window within the IDE, you cause the IDE to execute one of its many
commands.

When you build an add-in, you need to take into consideration whether the add-in
can be used during a command-line build. Although you personally might not use the
command-line version of Visual Studio .NET, it’s very possible the users of your add-
in will, especially if you’re developing a commercial add-in.

Although this may seem incorrect, in the first version of Visual Studio .NET
(considered Visual Studio version 7.0, which, at the time of this writing is the
current version), in order for your add-in to load when the command-line
version of devenv loads, you must set the add-in to load when the IDE
starts, by choosing the Startup option in the Add-in Manager for your add-
in. If you simply select Command Line, the add-in will not load when the
command-line version of devenv starts. In fact, whether you check
Command Line or not, the add-in will still load if you have the Startup
option selected.

Debugging the Command-Line Add-in

To instruct the IDE to launch devenv in command-line mode, you need to set up the
debugger to add the appropriate command-line options to the devenv command. That
will force devenv to run in command-line mode.

To set up these items, do the following:

1. Open the Properties window for the add-in project.

2. In the Debugging section under Configuration Properties, make sure the
external program is set to devenv. (It should be.)

3. For the command-line arguments, type the name of a solution you wish to
build in command-line mode. (Remember, command-line mode is primarily for
building solutions. I do not, however, recommend that you make this solution
the same as the one containing your add-in.) For mine, because I was building
the VSUserControlHost.sln, I set up the following command-line argument:

VSUserControlHost.sln /build DEBUG

4. Set the working directory to the location of the solution file you want to build.

164 Chapter 8

TE
AM
FL
Y

Team-Fly®

When you debug in command-line mode, you are somewhat restricted, in
that you won’t see the DOS command window. If you’re adventurous and
you want to try to see the output, you can play around with the DOS cmd
command and its /K and /C parameters. For my work, however, I primarily
rely on setting breakpoints inside my add-in and debugging from there.

Setting Up Multiple Debug Configurations

If you write an add-in that you expect to be used with both command-line mode and
IDE mode, you can make your debugging sessions simpler by creating additional con-
figurations for your project. By default, your projects have two configurations: Debug
and Release. (This is true whether you’re using C++, C#, or VB.NET.)

If you followed the instructions I gave earlier in this section, you now have your
add-in set up such that when you run it, the second instance of devenv will launch in
command-line mode. But what if you want to launch it in IDE mode? It would be
annoying to have to open up the project settings each time you want to launch in a dif-
ferent mode. Instead, I recommend you create a separate configuration. The following
steps describe how to create and set up this new configuration:

1. Open up the Properties dialog box for your add-in project. Depending on
which language you’re using, your Property Pages dialog box will look slightly
different. But regardless of the language, your Property Pages dialog box will
have a drop-down listbox at the top where you can choose a configuration, as
well as a button called Configuration Manager.

2. Click the Configuration Manager button. The Configuration Manager will
open, as shown in Figure 8.1.

Figure 8.1 The Configuration Manager.

Life Cycles, Debugging, and Satellite DLLs 165

3. In the Configuration Manager, click the drop-down listbox at the top, labeled
Active Solution Configuration, and choose New. A small dialog box called New
Solution Configuration will open, as shown in Figure 8.2.

4. In the edit control labeled Solution Configuration Name, type the name CmdDe-
bug (or any name to notate the debug version of the command-line mode; I pre-
fer to keep the name short, thus my choice of an abbreviated name, CmdDebug).

5. Next, click the drop-down listbox labeled Copy Settings From and choose
Debug, as you want to create the new configuration initially as a duplicate of
the Debug configuration. (In the next step, you’ll modify the configurations so
two won’t be identical.) Make sure the “Also create new project
configuration(s)” checkbox has a check beside it, and click OK.

6. When the New Solution Configuration dialog box closes and you’re back in the
Configuration Manager, click Close.

The changes you make by using the Configuration Manager are for the
entire solution, not just a single project.

After the Configuration Manager closes, you’ll be back in the Property Pages dialog
box for the project. The Configuration drop-down listbox will now have the new Cmd-
Debug configuration, which is the same as the Debug configuration. Since for most
projects you’ll spend most of your time working in IDE mode rather than command-
line mode, I now recommend changing the Debug configuration to run in IDE mode,
leaving the CmdDebug configuration to run in command-line mode. To make the
Debug configuration run in IDE mode, choose Debug in the Configuration drop-down
listbox and delete any text inside the edit control labeled “Command-line arguments.”
Also, go ahead and clear out the Working Directory textbox. (By removing these
command-line arguments, devenv will launch in IDE mode.)

If you plan to execute devenv without running the debugger, you can
repeat all these steps for Release configuration, creating a CmdRelease
configuration that contains the command-line options that result in the
command-line execution, while leaving the command-line options blank
for the Release configuration.

Figure 8.2 The New Solution Configuration.

166 Chapter 8

You can then close the Property Pages dialog box by clicking OK. Now you can
choose whether you want to run devenv in command-line mode or in IDE mode. If you
look up at the standard toolbar (if the standard toolbar isn’t present, right-click on the
toolbar area and choose Standard), you’ll see a drop-down listbox with the configura-
tion names Debug, CmdDebug, Release, and, possibly, CmdRelease, depending on
whether you added the CmdRelease configuration. To choose a configuration, simply
make your selection from this configuration drop-down listbox.

After you choose your configuration, when you run the debugger, you’ll either get
the command-line version of devenv or the IDE version of devenv, depending on your
selection in the drop-down listbox.

If you’re writing your add-in in C++, be careful when playing around with
different configurations, because each time you build under a different
configuration, Visual Studio .NET registers the resulting DLL as the server for
your add-in’s COM component. Since each configuration gets its own
directory in your project directory, and this directory contains a resulting
DLL, the location of your COM component will effectively change each time
you change to a different configuration. Fortunately, the IDE runs a
registration program, to register the DLL you are building; this registration
will keep the COM system updated on where your latest DLL is.

Creating a Satellite DLL for Resources

When you want to include resources in your add-in’s DLL (such as graphics, icons, and
strings) that are culture-specific, you can put the resources in a satellite DLL. But before

Life Cycles, Debugging, and Satellite DLLs 167

ADD-INS AS COM COMPONENTS AND ASSEMBLIES

When you create an add-in, you are actually creating a COM component that also serves
as an assembly. Here’s how this works: You create two files, an assembly, in the form a
DLL, and a type library with a .tlb extension. (The Add-in wizard sets up your project to
create both of these files for you when you build your project.) The Visual Studio .NET IDE
expects not an assembly, but a COM file for the add-ins. The add-ins you are building
with Visual Studio .NET are actually assemblies, with a COM wrapper around them (in the
form of a type library), which allows your assemblies to serve as COM components,
satisfying the COM requirement. With COM components, you use one approach for
building satellite DLLs, as I describe in the following sections; with assemblies, you use a
different approach for building satellite DLLs, which I also describe.

So which approach should you use? The online help suggests you use the COM
approach. However, doing so requires stepping out of the .NET world into the COM world,
which I prefer not to do. (I am, after all, writing my add-ins for .NET.) Therefore, in this
chapter I show you how you can ignore the online help instructions and use the .NET’s
assembly form of creating satellite DLLs.

I explain what this is all about, I direct your attention to the sidebar titled “Add-ins as
COM Components and Assemblies.”

If you’re already familiar with building .NET assemblies and satellite DLLs,
this note is for you. You might have noticed a seeming discrepancy in the
online help for add-ins (which I also mention in the sidebar): It reads that
satellite assemblies use the ID codes such as 1033; but the online help for
assemblies refers to culture names, such as en-us. The reason is that add-
ins are COM components, which use the IDs, with assembly wrappers
around them. After I explain about cultures in this section, I show how you
can use the assembly form of the satellites to make all your work .NET-
compliant.

About Culture-Specific Information
When Windows NT version 3.1 first shipped in the early 1990s, it contained an API called
the National Language Support, which provided programmers with a way to determine
a user’s culture-specific information, such as the name of the language, the currency for-
mat, time and date formats, and the names of the days and months. By accessing culture-
specific information in your programs, you can allow users to interface with familiar
words and formats, rather than forcing them to work either in English, or any other lan-
guage for that matter, which might not be their native language.

Now with .NET, Microsoft includes National Language Support through the Sys-
tem.Globalization namespace. This namespace includes a class called Culture-
Info, which holds information specific to a culture, including a string identifier, which
names the culture, and a numeric identifier called LCID, which stands for locale iden-
tifier, or if you prefer, local culture identifier.

If you care about standards, the string identifiers are specified in the ISO
standards 639-1 and 3166; the format for the string is specified in the
standard RFC 1766.

Examples of the string identifier are:

en for English

en-US for American English

en-AU for Australian English

en-JM for Jamaican English

es-MX for Mexican Spanish

And for every language, the Globalization namespace includes both a generic form
of the language, such as en for English and fr for French, as well as national versions of
the languages, such as en-CA for Canadian English and fr-CA for Canadian French. The
reason for this distinction is that, for example, Canadian French is slightly different from

168 Chapter 8

the French spoken in France, and Canadian English is slightly different from the
English spoken in the United Kingdom.

The numeric identifiers were specified in the original National Language Support
API that Microsoft used in Windows NT. For each string identifying a culture, the API
has a single numeric identifier. The identifier for American English, for example, is
1033. You may have seen these numbers before if you installed the version of the
Microsoft Developer Network (MSDN) that accompanies Visual Studio .NET, where
you may have noticed a directory that is simply a number. On my system, that number
is 1033, since I installed the American English version of the software. Here’s where
mine is installed:

C:\Program Files\Microsoft Visual Studio .NET\Msdn\1033

This directory contains the American English version of the MSDN online help files.
The 1033 identifier also appears as a directory name in numerous other places in my

installation. If I open a command (DOS) prompt, and move to the directory C:\Pro-
gram Files\Microsoft Visual Studio .NET, and type dir 1033 /s, I see 294 directories
named 1033. Each of these contains culture-specific information. But with the assem-
blies you build in .NET, the situation is slightly different. Instead of using a number
such as 1033, .NET uses the string version of the culture name, such as en-US.

Inside each of these culture directories are those files for which Microsoft decided to
provide culture-specific versions. As for obtaining the month and currency formats,
which I prefer in the American version of English, the various software packages
installed in C:\Program Files\Microsoft Visual Studio .NET can simply access the Sys-
tem.Globalization namespace. But, often, as a programmer, you don’t even need to
directly use the classes in the System.Globalization namespace; instead, you can sim-
ply write out a string—for example, as currency—and the .NET framework will auto-
matically format the string properly for the local culture.

How does the .NET framework know the local culture? When the user installs Win-
dows, he or she specifies the preferred culture. In the Control Panel is an icon named
Regional Options. When you double-click this entry, you can choose your preferred
culture. Additionally, you can customize the entry by choosing a different setting for
numbers (for example, if you prefer to use commas or decimals as thousand separa-
tors), currency (if you prefer to use, for example US$ instead of $ for United States cur-
rency), time format (such as 8:45:56 A.M. or 08:45:56), and the date format (such as
10/27/02 or 27/10/02 for the twenty-seventh day in October 2002).

Valid Culture Identifiers
Here’s a macro that will list all the culture identifiers known to .NET. First, include the
following line at the top of the macro module:

Imports System.Globalization

Now here’s the code for the macro. It lists the culture ID, the string ID, and the full
name of each culture.

Life Cycles, Debugging, and Satellite DLLs 169

Sub ListCultures()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim ci As System.Globalization.CultureInfo

For Each ci In CultureInfo.GetCultures(CultureTypes.AllCultures)

VBMacroUtilities.Print(_

ci.LCID.ToString().PadRight(8) & _

ci.Name.PadRight(12) & ci.EnglishName)

Next

End Sub

Here are the some of the output lines:

10 es Spanish

2058 es-MX Spanish (Mexico)

3082 es-ES Spanish (Spain)

4106 es-GT Spanish (Guatemala)

5130 es-CR Spanish (Costa Rica)

6154 es-PA Spanish (Panama)

You can use this program to determine the string ID of cultures. (You will need this
information in many of the following sections.)

You can find out the current culture by checking the CurrentUICulture
property of the CultureInfo class. The property is an instance of
CultureInfo. It is also a static member; therefore, you do not need
to start with an instance of CultureInfo.

Adding Culture-Specific Resources in .NET
Since adding culture-specific information to a program in .NET is not a topic covered
in many books, in this section I show you how to create multilingual resources in a
.NET program that is not an add-in. Then, in the next section, I show you how to apply
these techniques to your add-ins.

Forms and Multiple Languages

The Visual Studio .NET Form Designer has a little-known feature that makes adding
languages to your forms incredibly easy. To try out this feature, open the New Project
dialog box and click Visual Basic Projects, then choose Windows Application. Create
the new project and open up the form, if it’s not already open.

Now try out the following steps:

1. Right-click the form, and in the popup menu choose Properties to open the
Properties window for the form. (For the remaining steps, I’m assuming your
Properties window is listed by category. To make sure it is, click the upper-left
icon in the Properties window, the one called Categorized.)

170 Chapter 8

2. In the Properties window, scroll down to the Appearance section and set the
Text property to Hello!.

3. Scroll down to the Misc section. Inside this section, you will see two important
properties: Language and Localizable. Set Localizable to True; this will make
your form multilingual.

4. Also in the Misc section, click the Language property and you’ll see a drop-
down list. In the drop-down list, choose German. Now scroll back up to the
Text property and change it to Guten Tag!.

Now the form gets interesting: Keep an eye on the caption of the form, and in the
properties window scroll back down to the Language property. Change it back to
Default. Now look again at the caption of the form: It changed back to Hello!. You now
have a multilingual form. You can also add controls to the form (I recommend adding
them while the language is set to Default; otherwise you’ll get a warning message
reminding you to set the default language). Then when you switch between languages,
you can also change the text on the controls as well. Note that you can only change the
language from the form’s property settings, and when you do, the language changes
for all the controls on the form.

Go ahead and save the form you were working on. Next, build the project. You can
then run the program if you want, but what I mainly want you to see is the set of result-
ing files and assemblies. Open up either a Windows Explorer window or a DOS
prompt and go to the directory containing the project you’ve been working on; in that
directory, move to the bin subdirectory. Inside the bin subdirectory, you can see the
executable file for the program you built. Beside this file is a directory called de (which
stands for Deutsch, German for “German”). Drop down into the de directory, where
you’ll see a DLL. This DLL’s filename will be the same as your project name, followed
by .resources.dll. This DLL contains the regional information for the German language.
In other words, this DLL is a cultural assembly.

Now move up two directories to the main project directory. If you look at the files
here, you will see two resource files with the extension .resx (which stands for
Resource/XML):

■■ Form1.de.resx

■■ Form1.resx

The first file contains the German version of the form; the second file contains the
default version of the form, in which I placed the English version of the form, as is cus-
tomary (at least for Americans).

Adding Cultural Assemblies in General

In the previous section you used the form designer to create a German language
assembly. In this section I show you how to do the same thing but without using the
form designer.

It turns out the IDE is culture-smart. If you set up your resources properly (as the
form designer did for you automatically in the previous section), when you build your

Life Cycles, Debugging, and Satellite DLLs 171

project, the IDE will automatically transform your culture-specific resources into its
own satellite DLLs. To see this in action, perform the following steps:

1. Create a new VB.NET or C# project, but this time use the Console Application
template.

2. After the IDE creates the project for you, right-click the project name in the
Solution Explorer; in the popup menu choose Add➪Add New Item. The Add
New Item dialog box will open.

3. In the Add New Item dialog box, choose the Local Project Items category, then
choose the Assembly Resource File template. (Don’t click Open yet!)

4. This step is important: For the name of the resource, type: words.de.resx.

5. Now click Open. The Add New Item dialog box will close and the resource edi-
tor will open inside the main IDE.

Before proceeding, I want to explain why the name is important: In order for the IDE
to recognize that your resource file is culture-specific, the filename must consist of
some name, followed by a period, followed by a legitimate culture string, followed by
a period, followed by the extension resx, like so:

name.<Culture string identifier>.resx

Examples are name.de.resx for German, and name.es-MX.resx for Mexican Spanish.
When you follow the naming convention properly, Visual Studio .NET will auto-

matically compile your culture-specific resources into its own satellite DLLs when you
build your project. It will also put the satellite DLLs inside subdirectories named for
the language. The name.de.resx resource file will go in a directory called de, and the
name.es-MX.resx resource fill will go in a directory called es-MX.

In order for a culture-specific resource to end up in its own satellite
assemblies, the name must include a valid culture string identifier. If you
make one up, such as name.something.resx, the IDE will not compile the
resource separately. Instead, the IDE will compile the resource into the main
project assembly.

But before you build, continue working on the project I began describing in the pre-
ceding steps:

6. Open up the words.de.resx file if it’s not already open. In the resource editor,
click the first line to add a column, as shown in Figure 8.3.

7. In the name column, type the word GREETING. In the value column, type the
words Guten Tag! This is shown in Figure 8.4. Now press Enter to add the
new row. Choose File➪Save words.de.resx.

8. Repeat the preceding steps to add a resource file called words.es-MX.resx,
which represents Mexican Spanish. Again type GREETING for the name col-
umn. (This is the keyword by which you will locate the language-specific
string.) In the value column, type the word Hola.

172 Chapter 8

Figure 8.3 Click the first line in the resource editor to add a resource string.

9. Next you can add a default resource. Doing so is good policy, because it
ensures that people whose language is one that you didn’t include can at least
read the English. To do this, create one more resource, but this time simply call
it words.resx. Open it and add a single line, with GREETING for the name col-
umn and Hello! for the value column. Then save the file.

That completes the resources. Next you can access the proper string based on the
current culture. Add the following code to your main module. (And, yes, there are
some strange lines in it, which I’ll explain after the code. But this really is the easiest
way to access the resources.)

Imports System.Globalization

Imports System.Resources

Module Module1

Private Class words

End Class

Sub Main()

Dim rm As ResourceManager

rm = New ResourceManager(GetType(words))

Dim s As String = rm.GetString(“GREETING”)

Console.WriteLine(s)

End Sub

End Module

Life Cycles, Debugging, and Satellite DLLs 173

Figure 8.4 Add the words GREETING and “Guten Tag!” to the resource.

First, the empty class called words might seem pretty useless. But it serves one
important purpose: The constructor for the ResourceManager object, which is the
object you use for accessing the resources, needs a type whose name happens to match
the first word in the filename of the resource files, before the culture name and .resx
extension. Thus, in this case, with resource files name words.de.resx and so on, you
need to create a type called words. The type doesn’t have to actually do anything; you
simply need a type with the proper name. (This means, of course, that you will want to
use care in naming your resource files so that you can create a type name that is avail-
able. To that end, many people create a class and make that the main class in which
they put all the processing. Then they name their resources the same as the class.)

You can see in the code that to create the ResourceManager instance, you pass the
type instance of the words class using the GetType keyword. Then, after obtaining the
ResourceManager instance, you can call GetString to retrieve the string resource.
And this program, like the one in the previous section, is multilingual. If you change to
a different cultural setting, you can read a different resource.

If you prefer to program in C#, here’s the same program in that language. Notice
that the C# equivalent of the VB.NET GetType keyword is typeof.

using System;

namespace CSMultilingualConsole

{

class words

{

}

/// <summary>

/// Summary description for Class1.

174 Chapter 8

TE
AM
FL
Y

Team-Fly®

/// </summary>

class Class1

{

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

System.Resources.ResourceManager rm = new

System.Resources.ResourceManager(typeof(words));

Console.WriteLine(rm.GetString(“GREETING”));

}

}

}

Making Your Add-ins Multilingual
In Chapter 6, in the section “Managing Add-ins,” I made brief mention of satellite
DLLs in my discussion of the Registry. Under the Registry entry for each add-in, you
can specify both a SatelliteDLLName entry and a SatelliteDLLPath entry. When Visual
Studio .NET loads your add-in, it constructs the satellite name and path by taking the
name stored in SatelliteDLLPath, appending a backslash, followed by the numeric
identifier for the culture, appending another backslash, and finally appending the
name stored in SatelliteDLLName. Thus, if the SatelliteDLLName is MyResources.dll,
the SatelliteDLLPath is c:\dev\MyAddIn and your specific culture identifier is 2055
(which is the German language for Switzerland); then .NET will load the DLL given by
c:\dev\MyAddIn\2055\MyResources.dll.

However, this information applies primarily if you’re writing a COM component
that is not an assembly. But this book is about .NET, so I prefer to make use of the
assembly features of satellite DLLs. Thus, for the add-in I’m about to show you, I’m
going to use the procedures I described in the previous two sections.

Go ahead and create a new add-in. Make sure to select the option for the Tool but-
ton so that the add-in’s Connect class will be derived from IDTCommandTarget.

Following is the add-in’s main Connect code. In this code I add a command for the
Show menu item, as I did in the Chapter 7, “Creating Add-ins for the IDE.” I also set
up the add-in to use the VSUserControlHost, also described in Chapter 7. (Make sure
you remember to add a reference to the VSUserControlHost 1.0 Type Library.)

namespace LocalizedAddin

{

using System;

using Microsoft.Office.Core;

using Extensibility;

Life Cycles, Debugging, and Satellite DLLs 175

using System.Runtime.InteropServices;

using EnvDTE;

[GuidAttribute(“5052EF2A-17F7-4C78-9FF4-668C3342060E”),

ProgId(“LocalizedAddin.Connect”)]

public class Connect : Object, Extensibility.IDTExtensibility2,

IDTCommandTarget

{

public Connect()

{

}

public void OnConnection(object application,

Extensibility.ext_ConnectMode connectMode,

object addInInst, ref System.Array custom)

{

applicationObject = (_DTE)application;

addInInstance = (AddIn)addInInst;

object []contextGUIDS = new object[] { };

Commands commands = applicationObject.Commands;

_CommandBars commandBars = applicationObject.CommandBars;

object objTemp = null;

try

{

Command command =

commands.AddNamedCommand(addInInstance,

“Show”, “Time Form”, “Shows the tool window”,

true, 59, ref contextGUIDS,

(int)vsCommandStatus.vsCommandStatusSupported +

(int)vsCommandStatus.vsCommandStatusEnabled);

CommandBarPopup viewMenu = (CommandBarPopup)

(applicationObject.CommandBars[“MenuBar”]

.Controls[“&View”]);

CommandBar viewMenuBar = viewMenu.CommandBar;

CommandBarPopup othersMenu = (CommandBarPopup)

(viewMenu.Controls[“Oth&er Windows”]);

CommandBar othersBar = othersMenu.CommandBar;

command.AddControl(othersBar, 1);

}

catch(System.Exception /*e*/)

{

}

String guidstr = “{10906CA9-2FB0-42ca-9BC2-C7446E89406B}”;

applicationObject = (_DTE)application;

addInInstance = (AddIn)addInInst;

windowToolWindow = applicationObject.Windows.

CreateToolWindow (

addInInstance, “VSUserControlHost.VSUserControlHostCtl”,

176 Chapter 8

“Date Time Demo”, guidstr, ref objTemp);

windowToolWindow.Visible = true;

objControl = (VSUserControlHostLib.IVSUserControlHostCtl)

objTemp;

System.Reflection.Assembly asm =

System.Reflection.Assembly.GetExecutingAssembly();

objControl.HostUserControl(asm.Location,

“LocalizedAddin.LocalizedForm”);

}

public void OnDisconnection(

Extensibility.ext_DisconnectMode disconnectMode,

ref System.Array custom)

{

}

public void OnAddInsUpdate(ref System.Array custom)

{

}

public void OnStartupComplete(ref System.Array custom)

{

}

public void OnBeginShutdown(ref System.Array custom)

{

}

public void QueryStatus(string commandName, EnvDTE.

vsCommandStatusTextWanted neededText,

ref EnvDTE.vsCommandStatus status, ref object commandText)

{

if(neededText == EnvDTE.vsCommandStatusTextWanted.

vsCommandStatusTextWantedNone)

{

if(commandName == “LocalizedAddin.Connect.Show”)

{

status = (vsCommandStatus)vsCommandStatus.

vsCommandStatusSupported |

vsCommandStatus.vsCommandStatusEnabled;

}

}

}

public void Exec(string commandName,

EnvDTE.vsCommandExecOption executeOption,

ref object varIn, ref object varOut, ref bool handled)

{

Life Cycles, Debugging, and Satellite DLLs 177

handled = false;

if(executeOption == EnvDTE.vsCommandExecOption.

vsCommandExecOptionDoDefault)

{

if(commandName == “LocalizedAddin.Connect.Show”)

{

windowToolWindow.Visible = true;

handled = true;

return;

}

}

}

private _DTE applicationObject;

private AddIn addInInstance;

public Window windowToolWindow;

public VSUserControlHostLib.IVSUserControlHostCtl objControl;

}

}

Now create a User Control as I describe in the section titled “Using the Form
Designer with a Tool Window” in Chapter 7. Put three labels on the form, as shown in
Figure 8.5. Also add a time control. (You can find the time control in the Components
section of the toolbox.)

Double-click the timer control and add the following code:

System.DateTime dt = System.DateTime.Now;

label2.Text = dt.ToLongDateString();

label3.Text = dt.ToLongTimeString();

Now return to the form designer. Set the top label’s Text property to Date and
Time. Next set the form’s Localizable property to True and switch the language to
Spanish (Mexico). Now set the top label’s Text property to Fecha y hora. Next
click back on the form, and in the Property window set the language to French
(France). Set the top label’s Text property to Date et heure. Now set the form’s
language back to Default.

Figure 8.5 The form with three labels on it.

178 Chapter 8

Here’s the code for the form:

using System;

using System.Collections;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Windows.Forms;

namespace LocalizedAddin

{

/// <summary>

/// Summary description for LocalizedForm.

/// </summary>

public class LocalizedForm : System.Windows.Forms.UserControl

{

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Label label3;

private System.Timers.Timer timer1;

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

public LocalizedForm()

{

// This call is required by the Windows.Forms Form Designer.

InitializeComponent();

// TODO: Add any initialization after the InitForm call

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

if(components != null)

{

components.Dispose();

}

Life Cycles, Debugging, and Satellite DLLs 179

}

base.Dispose(disposing);

}

#region Component Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

System.Resources.ResourceManager resources =

new System.Resources.ResourceManager(

typeof(LocalizedForm));

this.label1 = new System.Windows.Forms.Label();

this.label2 = new System.Windows.Forms.Label();

this.label3 = new System.Windows.Forms.Label();

this.timer1 = new System.Timers.Timer();

((System.ComponentModel.ISupportInitialize)

(this.timer1)).BeginInit();

this.SuspendLayout();

//

// label1

//

this.label1.AccessibleDescription = ((string)(resources.

GetObject(“label1.AccessibleDescription”)));

this.label1.AccessibleName = ((string)(resources.

GetObject(“label1.AccessibleName”)));

this.label1.Anchor = ((System.Windows.Forms.AnchorStyles)

(resources.GetObject(“label1.Anchor”)));

this.label1.AutoSize = ((bool)(resources.

GetObject(“label1.AutoSize”)));

this.label1.Dock = ((System.Windows.Forms.DockStyle)

(resources.GetObject(“label1.Dock”)));

this.label1.Enabled = ((bool)(resources.

GetObject(“label1.Enabled”)));

this.label1.Font = ((System.Drawing.Font)(resources.

GetObject(“label1.Font”)));

this.label1.Image = ((System.Drawing.Image)(resources.

GetObject(“label1.Image”)));

this.label1.ImageAlign = ((System.Drawing.ContentAlignment)

(resources.GetObject(“label1.ImageAlign”)));

this.label1.ImageIndex = ((int)(resources.GetObject

(“label1.ImageIndex”)));

this.label1.ImeMode = ((System.Windows.Forms.ImeMode)

(resources.GetObject(“label1.ImeMode”)));

this.label1.Location = ((System.Drawing.Point)

(resources.GetObject(“label1.Location”)));

this.label1.Name = “label1”;

this.label1.RightToLeft =

180 Chapter 8

((System.Windows.Forms.RightToLeft)

(resources.GetObject(“label1.RightToLeft”)));

this.label1.Size = ((System.Drawing.Size)(resources.

GetObject(“label1.Size”)));

this.label1.TabIndex = ((int)(resources.

GetObject(“label1.TabIndex”)));

this.label1.Text = resources.GetString(“label1.Text”);

this.label1.TextAlign = ((System.Drawing.ContentAlignment)

(resources.GetObject(“label1.TextAlign”)));

this.label1.Visible = ((bool)(resources.

GetObject(“label1.Visible”)));

//

// label2

//

this.label2.AccessibleDescription = ((string)(resources.

GetObject(“label2.AccessibleDescription”)));

this.label2.AccessibleName = ((string)(resources.

GetObject(“label2.AccessibleName”)));

this.label2.Anchor = ((System.Windows.Forms.AnchorStyles)

(resources.GetObject(“label2.Anchor”)));

this.label2.AutoSize = ((bool)(resources.

GetObject(“label2.AutoSize”)));

this.label2.Dock = ((System.Windows.Forms.DockStyle)

(resources.GetObject(“label2.Dock”)));

this.label2.Enabled = ((bool)(resources.

GetObject(“label2.Enabled”)));

this.label2.Font = ((System.Drawing.Font)(resources.

GetObject(“label2.Font”)));

this.label2.Image = ((System.Drawing.Image)

(resources.GetObject(“label2.Image”)));

this.label2.ImageAlign = ((System.Drawing.ContentAlignment)

(resources.GetObject(“label2.ImageAlign”)));

this.label2.ImageIndex = ((int)(resources.GetObject

(“label2.ImageIndex”)));

this.label2.ImeMode = ((System.Windows.Forms.ImeMode)

(resources.GetObject(“label2.ImeMode”)));

this.label2.Location = ((System.Drawing.Point)(resources.

GetObject(“label2.Location”)));

this.label2.Name = “label2”;

this.label2.RightToLeft =

((System.Windows.Forms.RightToLeft)

(resources.GetObject(“label2.RightToLeft”)));

this.label2.Size = ((System.Drawing.Size)(resources.

GetObject(“label2.Size”)));

this.label2.TabIndex = ((int)(resources.

GetObject(“label2.TabIndex”)));

this.label2.Text = resources.GetString(“label2.Text”);

this.label2.TextAlign = ((System.Drawing.ContentAlignment)

(resources.GetObject(“label2.TextAlign”)));

this.label2.Visible = ((bool)(resources.

Life Cycles, Debugging, and Satellite DLLs 181

GetObject(“label2.Visible”)));

//

// label3

//

this.label3.AccessibleDescription = ((string)(resources.

GetObject(“label3.AccessibleDescription”)));

this.label3.AccessibleName = ((string)(resources.

GetObject(“label3.AccessibleName”)));

this.label3.Anchor = ((System.Windows.Forms.AnchorStyles)

(resources.GetObject(“label3.Anchor”)));

this.label3.AutoSize = ((bool)(resources

.GetObject(“label3.AutoSize”)));

this.label3.Dock = ((System.Windows.Forms.DockStyle)

(resources.GetObject(“label3.Dock”)));

this.label3.Enabled = ((bool)(resources.

GetObject(“label3.Enabled”)));

this.label3.Font = ((System.Drawing.Font)(resources.

GetObject(“label3.Font”)));

this.label3.Image = ((System.Drawing.Image)

(resources.GetObject(“label3.Image”)));

this.label3.ImageAlign = ((System.Drawing.ContentAlignment)

(resources.GetObject(“label3.ImageAlign”)));

this.label3.ImageIndex = ((int)(resources.

GetObject(“label3.ImageIndex”)));

this.label3.ImeMode = ((System.Windows.Forms.ImeMode)

(resources.GetObject(“label3.ImeMode”)));

this.label3.Location = ((System.Drawing.Point)

(resources.GetObject(“label3.Location”)));

this.label3.Name = “label3”;

this.label3.RightToLeft =

((System.Windows.Forms.RightToLeft)

(resources.GetObject(“label3.RightToLeft”)));

this.label3.Size = ((System.Drawing.Size)(resources.

GetObject(“label3.Size”)));

this.label3.TabIndex = ((int)(resources.

GetObject(“label3.TabIndex”)));

this.label3.Text = resources.GetString(“label3.Text”);

this.label3.TextAlign = ((System.Drawing.

ContentAlignment)(resources.

GetObject(“label3.TextAlign”)));

this.label3.Visible = ((bool)(resources.

GetObject(“label3.Visible”)));

//

// timer1

//

this.timer1.Enabled = true;

this.timer1.SynchronizingObject = this;

this.timer1.Elapsed += new System.Timers.

ElapsedEventHandler(this.timer1_Elapsed);

//

182 Chapter 8

// LocalizedForm

//

this.AccessibleDescription = ((string)(resources.

GetObject(“$this.AccessibleDescription”)));

this.AccessibleName = ((string)(resources.GetObject

(“$this.AccessibleName”)));

this.Anchor = ((System.Windows.Forms.AnchorStyles)

(resources.GetObject(“$this.Anchor”)));

this.AutoScroll = ((bool)(resources.

GetObject(“$this.AutoScroll”)));

this.AutoScrollMargin = ((System.Drawing.Size)

(resources.GetObject(“$this.AutoScrollMargin”)));

this.AutoScrollMinSize = ((System.Drawing.Size)

(resources.GetObject(“$this.AutoScrollMinSize”)));

this.BackgroundImage = ((System.Drawing.Image)

(resources.GetObject(“$this.BackgroundImage”)));

this.Controls.AddRange(new System.Windows.Forms.Control[] {

this.label3,

this.label2,

this.label1});

this.Dock = ((System.Windows.Forms.DockStyle)(resources.

GetObject(“$this.Dock”)));

this.Enabled =

((bool)(resources.GetObject(“$this.Enabled”)));

this.Font = ((System.Drawing.Font)(resources.

GetObject(“$this.Font”)));

this.ImeMode = ((System.Windows.Forms.ImeMode)

(resources.GetObject(“$this.ImeMode”)));

this.Location = ((System.Drawing.Point)(resources.

GetObject(“$this.Location”)));

this.Name = “LocalizedForm”;

this.RightToLeft = ((System.Windows.Forms.RightToLeft)

(resources.GetObject(“$this.RightToLeft”)));

this.Size = ((System.Drawing.Size)(resources.

GetObject(“$this.Size”)));

this.TabIndex = ((int)(resources.

GetObject(“$this.TabIndex”)));

this.Visible = ((bool)(resources.

GetObject(“$this.Visible”)));

((System.ComponentModel.ISupportInitialize)

(this.timer1)).EndInit();

this.ResumeLayout(false);

}

#endregion

private void timer1_Elapsed(object sender,

System.Timers.ElapsedEventArgs e)

{

System.DateTime dt = System.DateTime.Now;

Life Cycles, Debugging, and Satellite DLLs 183

label2.Text = dt.ToLongDateString();

label3.Text = dt.ToLongTimeString();

}

}

}

When you run this add-in, you will see the form for it. By default the form will be in
English. If you switch your computer’s culture to either French (France) or Spanish
(Mexico), and then restart the IDE, your add-in will be in the appropriate language.
Notice also that the date and time will use the format standard of the particular culture.

Moving Forward

In this chapter I discussed three important topics: the life cycle of an add-in, how to
debug an add-in, and how to use satellite DLLs to allow your software to present infor-
mation in a local language. Globalization is something that many programmers tend to
neglect (especially in the United States), but if you add globalization features to your
programs, your software will be much more well received by people in other countries.

In the next chapter, I explain how you can manipulate solutions and project pro-
grammatically from either an add-in or a macro. Stay tuned!

184 Chapter 8

TE
AM
FL
Y

Team-Fly®

185

In Chapter 5, “Just Enough .NET Architecture,” I talked briefly about project objects
and how you can access project information using different objects, depending on the
language the project is written in. I expand on that discussion here, by explaining how
you can modify the project information.

If you have not read Chapter 5, I encourage you to read the section titled
“The Visual Studio Project Types” there before continuing with this chapter,
because I assume here that you understand how to access generic project
information through the Project object, and that this Project object also
contains an Object property. The Object property gives you access to a COM
object that contains language-specific information.

Why would you want to modify project information? Suppose you are building a
project in which you call several external tools during the build process. To access these
external tools, you set various Custom Build steps in the properties for the particular
files in your project. You could set the Custom Build step for each file separately or you
could write a macro that sets the information for you. This, in fact, is exactly what I did
in Chapter 8 in the macro that adds resource files to a project.

As another example, you might be developing a class library contained in an assem-
bly for commercial use by other programmers. In order to make things as easy on your
clients as possible (and to minimize support calls!) you might include with your library
a macro or add-in that automatically adds the assembly to a project in the form of a

Manipulating Solutions
and Projects

C H A P T E R

9

reference, carefully setting the project properties. Then the user can begin program-
ming with your class library without having to spend time messing with the project
settings. You could include such a macro with your assembly.

Determining the Currently Selected Project

The following macro code obtains the currently selected project in the Solution
Explorer. When you have a macro that manipulates a project, using this code, you can
find out which project name the IDE user has clicked in the Solution Explorer. The IDE
user can also click on one of the items inside a project, and this code will obtain the
project containing the selected item.

Sub FindProject()

Dim projs As System.Array

Dim proj As Project

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

MsgBox(proj.Name)

End If

End Sub

This macro first obtains the root DTE object, and from there a list of the active pro-
jects through the ActiveSolutionProjects property. (Note: The reason that “pro-
jects” is plural here is because the IDE user can click on multiple items in the Solution
Explorer by clicking one item and then holding down the Ctrl key and clicking another
item.) The preceding macro obtains only the first selected project in such cases. If you
want your macro to operate on all the selected projects, you can use this macro instead:

Sub FindProjects()

Dim projs As System.Array

Dim proj As Project

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

For Each proj In projs

MsgBox(proj.Name)

Next

End If

End Sub

You can use similar code in an add-in as well. Remember that in add-ins, you do not
access the root DTE object through the DTE variable name; instead, you grab the DTE
object from the first parameter in the OnConnection method. Here’s the OnConnec-
tion method for a VB.NET add-in that registers a command that will get the selected
projects. (If you want to try this out, make sure you check the Add-in wizard option to
create a Tool menu item; that will give you a class that’s derived from IDTCommand-
Target so you can implement commands.)

186 Chapter 9

Public Sub OnConnection(ByVal application As Object, _

ByVal connectMode As Extensibility.ext_ConnectMode, _

ByVal addInInst As Object, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnConnection

applicationObject = Ctype(application, EnvDTE.DTE)

addInInstance = Ctype(addInInst, EnvDTE.AddIn)

Dim objAddIn As AddIn = Ctype(addInInst, AddIn)

Dim CommandObj As Command

Try

CommandObj = applicationObject.Commands.AddNamedCommand(_

objAddIn, “GetProjects”, “AddinProjectManip2”, _

“Gets the selected project names “, True, 59, Nothing, _

1 + 2)

Catch e As System.Exception

End Try

End Sub

Notice that I’m adding a command called GetProjects. Here’s the QueryStatus
method that enables the command:

Public Sub QueryStatus(ByVal cmdName As String, ByVal neededText _

As vsCommandStatusTextWanted, ByRef statusOption As vsCommandStatus, _

ByRef commandText As Object) Implements IDTCommandTarget.QueryStatus

If neededText = EnvDTE.vsCommandStatusTextWanted. _

vsCommandStatusTextWantedNone Then

If cmdName = “AddinProjectManip2.Connect.GetProjects” Then

statusOption = Ctype(vsCommandStatus.vsCommandStatusEnabled _

+ vsCommandStatus.vsCommandStatusSupported, vsCommandStatus)

Else

statusOption = vsCommandStatus.vsCommandStatusUnsupported

End If

End If

End Sub

And, finally, here’s the code that executes the command. You can see that I just
pasted in the macro code (that’s why I chose Visual Basic for this add-in) and then
replaced DTE with applicationObject.

Public Sub Exec(ByVal cmdName As String, ByVal executeOption As _

vsCommandExecOption, ByRef varIn As Object, ByRef varOut As Object, _

ByRef handled As Boolean) Implements IDTCommandTarget.Exec

handled = False

If (executeOption = vsCommandExecOption. _

vsCommandExecOptionDoDefault) Then

If cmdName = “AddinProjectManip2.Connect.GetProjects” Then

Dim projs As System.Array

Dim proj As Project

projs = applicationObject.ActiveSolutionProjects()

Manipulating Solutions and Projects 187

If projs.Length > 0 Then

For Each proj In projs

MsgBox(proj.Name)

Next

End If

handled = True

Exit Sub

End If

End If

End Sub

To try out this add-in, build its project, start a new instance of Visual Studio .NET,
and open a solution (any solution will do). In the Solution Explorer, select a couple pro-
jects by clicking one, then while holding down the Ctrl key, clicking another. Next,
open the Add-in Manager and check the box next to the add-in. Then choose
View➪Other Windows➪Command Window, to open a new command window, and
type the following command into the command window:

AddinProjectManip2.Connect.GetProjects

You will see a series of message boxes open, one for each project you selected, with
each message box showing the name of a project.

Manipulating a Project’s Items

By itself, the macros and add-ins in the preceding section aren’t particularly useful in
that they only display information about a project, rather than manipulate the projects.
But you can easily add code to manipulate a Project object. Here are some of the project-
related objects that you might manipulate from a macro.

Project.ProjectItems. Your macro could check whether a file is already part of a
project, by checking for the file’s existence in the ProjectItems collection. If
the file doesn’t exist, your macro could add it. For example, if you have a class
library in the form of source code, your macro could automatically add the
source code to the project. You can also use the ProjectItems property to
obtain information on the individual items in the project, such as the source
code files or the resource files. Each such item is a ProjectItem object.

Think of the ProjectItems object as corresponding to the items
underneath the project name in the Solution Explorer. Remember, the
project has a ProjectItem object not just for files, but for folders as well. If,
for example, you have a C++ project with folders called Source Files, Header
Files, and Resource Files, you will have a separate ProjectItem object for the
three folders as well as for each file. However, in the case of C# and VB.NET
projects, you will not have a ProjectItem object for the References folder,
nor its members.

188 Chapter 9

ProjectItem.IsOpen. Your macro can check this property to determine if the user
currently has the file open in the IDE. For example, if the ProjectItem object
corresponds to a C++ source file, then IsOpen will be true if the C++ source file
is currently open in the IDE editor. If your macro or add-in is making consider-
able changes to a project, you might check IsOpen for each item in the project.
If any such items are open, you might display a message to the IDE user stating
that the documents must be closed before proceeding. (Note: The IsOpen
method works only for items in VB.NET and C# projects.) The following code is
an example of a macro that uses IsOpen. This macro goes through the list of
ProjectItem objects and determines which are opened, finally displaying a
message box showing the list of open project items.

Sub ListOpenItems()

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

Dim str As String = “”

For Each pitem In proj.ProjectItems

If pitem.IsOpen Then

str &= pitem.Name + Chr(13) + Chr(10)

End If

Next

MsgBox(str)

End If

End Sub

ProjectItem.Saved. Your macro can check if a project item has been changed
since the last save. For example, if the IDE user has a C++ source file open in the
IDE editor, and the user edits the source code but does not save the file, then the
Saved property for the corresponding project item will be false.

ProjectItem.Open. Your macro can open a project item automatically. If the proj-
ect item is a source file, the file will open in the editor. Your macro can then
make changes to the source file. Note, however, that there’s a trick to making the
Open function work: The Open function returns an object of class Window, and
initially this Window object’s Visible property is set to False. You need to
change the Visible property to True. The following code demonstrates this:

Sub OpenAllSourceFiles()

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

Dim ext As String = “”

For Each pitem In proj.ProjectItems

ext = System.IO.Path.GetExtension(pitem.Name)

Manipulating Solutions and Projects 189

If ext = “.cpp” Or ext = “.vb” Or ext = “.cs” Then

Dim win As Window

win = pitem.Open()

win.Visible = True

End If

Next

End If

End Sub

ProjectItem.Remove and ProjectItem.Delete. Be sure you understand the differ-
ence between these two. The Remove method removes the item from the project,
but keeps the item on the disk. If, for example, the item is a source file, after you
call the Remove method, the source file will still exist on the disk, but will no
longer be a member of the project. The Delete method, in contrast, removes the
item from the project and deletes the file from the disk, so use Delete with care.

ProjectItem.Save. If the project item is open in the editor, and has changed since
the last save, this method will save the item. However, the Save method works
only for items in C# and VB.NET projects.

ProjectItem.SaveAs. If the project item is open in the editor, you can use SaveAs
to save the project item under a different name. The SaveAs method will save
the project item with the new name, remove the original file from the project
(leaving the original project item’s file on the disk), and add the new file to the
project. However, SaveAs has two caveats: First, you can use it only on files
that are currently open in the editor, which means the source code editor for
source files or a resource editor for resource files; second, SaveAs works only
for items in a C# or VB.NET project.

ProjectItem.Name. The Name property represents the name of the project item.
For folders (such as in a C++ project), this is the name of the folder. For files, this
name always matches the filename. You can change this property, in the case of
folders to change the name of the folder. However, if you change this property
for a file, nothing will happen: neither the name of the file will change, nor will
the filename in the project tree in the Solution Explorer. If you need to change
the name of a file, see SaveAs, just defined.

ProjectItem.FileCount. In the case of ProjectItem objects that are folders
(such as in a C++ project), the FileCount property will tell you how many
items are in the folder. For individual files, this property is always 1.

ProjectItem.FileNames. Be careful with this property, as it does not behave as the
documentation states it will. This is an array that is supposed to contain the list
of filenames in the project item. In the case of project items that are a single file,
the FileNames array contains only a single item, which is a string representing
the full path and filename of the single file. So far so good; but in the case of
folders, the FileNames property doesn’t quite function as you would expect.
For the version of Visual Studio .NET that is current at the time of this writing
(the first version), all the items in the FileNames array contain the name of the
folder itself, not the files contained in the folder.

190 Chapter 9

In addition to the preceding items, the ProjectItems property of the Project object
also has several methods that let you add items to a project. The ProjectItem object’s
methods, for example, let you write a macro that automatically adds a class library to
a project. You can also add folders to the project. The ProjectItem object’s methods
are rather intelligent, in that they take into consideration the fact that you probably
don’t want to add a file to a project that is not within the project’s directory structure.

To add a file to a project, you have several choices. If you want to add a single file to
the project, you can use the AddFromFile method. Here’s an example:

Sub AddSingleFile()

Dim projs As System.Array

Dim proj As Project

Dim pitems As ProjectItems

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

pitems = proj.ProjectItems

pitems.AddFromFile(“c:\temp\myfile.bas”)

End If

End Sub

You can see that the call to AddFromFile adds the file called c:\temp\myfile.bas.
When the IDE adds the file, it will assume a build action based on the filename

extension. Since this code adds a file with a .bas extension, if you run this macro on a
VB.NET project, the myfile.bas will be set to build with the project. However, if you
add a resource file, such as a resource, its Build Action is set, by default, to Content. You
can change this to Embedded Resource.

The problem with this code, however, is that if your project is not in the temp direc-
tory, you will have a file in the project that’s not inside the project’s directory. Further,
the file’s name has an absolute path in it, c:\temp, which can cause further trouble if
you want to copy the project onto another computer.

Normally, if you remove a file from a VB.NET or C# project by right-clicking
the filename in the Solution Explorer, and in the popup menu choosing
Delete, you will be warned that, “‘myfile.vb’ will be deleted permanently.” If
you click OK, the file itself will be deleted. However, this message appears
only when the file is in the project directory. If you use AddFromFile to add
a file that’s outside your project directory, and you delete the file from the
project, Visual Studio .NET will not delete the file itself, nor will it show a
message box saying it plans to do so. (If you use AddFromFile to add a file
that’s in the project’s directory and you try to delete the file from the
project, then the IDE will delete the file itself.)

Fortunately, the ProjectItems object includes another method, called AddFrom-
FileCopy, that copies the file into the project directory, then adds the copy—not the
original—to the project. Here’s an example:

Manipulating Solutions and Projects 191

Sub AddSingleFileCopy()

Dim projs As System.Array

Dim proj As Project

Dim pitems As ProjectItems

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

pitems = proj.ProjectItems

pitems.AddFromFileCopy(“c:\temp\myfile.bas”)

End If

End Sub

Of course, the AddFromFileCopy also has a disadvantage: You now have a second
copy of the original file. This means you have to decide whether you would prefer to
use AddFromFile or AddFromFileCopy.

The AddFromFile and AddFromFileCopy functions both return an instance
of ProjectItem, which represents the item you just added to the project.
You can then manipulate the new item through the returned ProjectItem
object.

When you call AddFromFile, if the file you’re adding already exists, then you will
get an error. In the case of the macros, you will see a message box appear with the mes-
sage “There is already a link to ‘c:\temp\myfile.bas’. A project cannot have more than
one link to the same file.” If you prefer, you can handle the error yourself using a
Try/Catch block; doing so will suppress the default error message. Here’s an example:

Try

pitems.AddFromFile(“c:\temp\myfile.bas”)

Catch

MsgBox(“The project already has a myfile.bas”)

End Try

You will also get an error if you try to add a file that has the same name as a file
already in the project. For example, if your project has a file called myfile.bas, and you
add a different file also called myfile.bas, you will get the message, “There is already a
file of the same name in this folder.”

If you try to add a file that simply doesn’t exist, you will get a different error
message in a message box that reads: “Cannot add the link because the source file
‘c:\myfile.bas’ cannot be found.” As before, you can handle this error with a Try/Catch
block if you prefer.

Finally, in an attempt to exhaust all possibilities, I explored what would happen if I
called AddFromFileCopy, passing a full-path to a file that’s in the project directory. It
turns out the IDE doesn’t attempt to copy the file (which, I suppose, would result in an
error); instead, the IDE just adds the file itself to the project, meaning you are not work-
ing with a copy of the file, but the original. Therefore, if you try to delete the file from
the project, you will delete the original file itself. So be careful when doing this.

192 Chapter 9

If you want to add an entire directory of files to a project, you can use the
AddFromDirectory method. Use care when calling AddFromDirectory, because
you could end up with files you didn’t expect: Even subdirectories and their contents
will get added to your project. If the files don’t have any business being in a project,
then the compiler won’t know what to do with them and will simply ignore them
when you build the project. If the files do, however, belong, then the IDE will build any
source files when you perform a build. However, as with adding a single file for C#
and VB.NET projects, resource files (such as .jpg files) will not, by default be set to
Embedded Resource for their Build Action; instead, the Build Action for resource files
is set by default to Content.

When you call AddFromDirectory, you will end up with another folder in your
project that contains links to all the files in the directory. The folder will have the same
name as the directory. Here’s a macro that adds an entire directory to the currently
selected project:

Sub AddEntireDirectory()

Dim projs As System.Array

Dim proj As Project

Dim pitems As ProjectItems

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

pitems = proj.ProjectItems

pitems.AddFromDirectory(“c:\temp2”)

End If

End Sub

Interestingly, if you then delete the folder from your project, you will receive a warn-
ing message that the entire directory and its contents will be deleted. I tried this, and
when I clicked OK, to my surprise the items were indeed removed from the project; but
the original files were still on my hard drive, so, in fact, the files were not permanently
deleted. It’s hard to know whether this is a bug or a feature, but in case it’s a bug, I
wouldn’t count on the files being there in future releases of Visual Studio .NET.

Manipulating a Project’s Settings

In Chapter 5, “Just Enough .NET Architecture,” I talked briefly about language-specific
configurations. Here I’m going to expand on that discussion by talking about general
configurations, as well as how to manipulate both general configurations and language-
specific configurations.

When adding a library to a project, there’s an alternative to simply adding the
library’s code, which helps avoid having either an absolute path or a copy of the file. In
the case of a VB.NET or C# project, you could add a reference to your library, rather
than actually adding your library’s code files to the project. But that, of course, means
your library must exist as an assembly. And in the case of a C++ project, you can add
the library’s .lib file to the project’s linker section. To do either of these tasks, you need
to work with the project settings.

Manipulating Solutions and Projects 193

When you work on a project and you right-click the project’s name in the Solution
Explorer and choose Properties, you will see the Property Pages dialog box, which
allows you to modify the project settings. But in addition to the project settings, you
can manipulate build settings for individual items in the project. Through the Config-
uration object you can manipulate the settings for either a project or the project items.
For a project, you access the configurations through the Project.Configuration-
Manager property; for a project’s item, you access the configurations through the
ProjectItem.ConfigurationManager property.

Although the ProjectItem object is language-independent, not all languages
have a ConfigurationManager for the project items. C# and VB.NET do not;
C++ does.

Normally, a single project has at least two configurations, one for Debug and one for
Release. Thus, a project’s ConfigurationManager property will be an array con-
taining at least two items. Each item is of class Configuration.

The following macro obtains the Configuration objects for a project and each of
its items:

Sub GetConfigs()

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

Dim pitems As ProjectItems

projs = DTE.ActiveSolutionProjects()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

If projs.Length > 0 Then

proj = projs.GetValue(0)

Dim cfg As Configuration

VBMacroUtilities.Print(“Project Configurations: “ & _

proj.ConfigurationManager.Count)

For Each cfg In proj.ConfigurationManager

VBMacroUtilities.Print(“ “ & cfg.ConfigurationName)

Next

For Each pitem In proj.ProjectItems

VBMacroUtilities.Print(“Item “ & pitem.Name)

If Not pitem.ConfigurationManager Is Nothing Then

For Each cfg In pitem.ConfigurationManager

VBMacroUtilities.Print(“ “ &

cfg.ConfigurationName)

Next

End If

Next

End If

End Sub

When you run this macro for a project, you will see the names of the different config-
urations available. Notice in this code that I’m stepping through the list of configurations

194 Chapter 9

TE
AM
FL
Y

Team-Fly®

using the For Each construct. If, however, you know that a certain configuration is
available, you can access the configuration directly by name, like so:

cfg = proj.ConfigurationManager.Item(“Debug”, “Win32”)

This line assumes proj is a Project object, and cfg is a Configuration object.
The first parameter is the configuration name; the second parameter is the platform for
the configuration. This line of code, then, also assumes the project is a C++ project and
that it has a Debug configuration that runs on Win32.

Accessing and Setting Configuration Properties

When you open up the Property Pages dialog box for a project, you can set the differ-
ent properties for the various configurations. The Configuration object gives you
access to these different properties through the Configuration.Properties
object. For each property in the Property Pages dialog, the Properties object con-
tains a single instance of class Property. This Property object contains a key and a
value. The key is the name of the property, and the value is the property’s value.

For example, when you have a C++ project and you open the Property Pages dialog
box for this project, under the Debugging setting you will find a property called
“Working Directory”. This is the setting for the directory under which your program
should run when you are debugging the program. As with all the settings in the Prop-
erty Pages dialog box, this Working Directory setting has a corresponding instance of
Property that contains a name and a value. The name, in this case, happens to be
“WorkingDirectory”, and the value is a string that is stored in the working direc-
tory, if any. (If you leave the Working Directory setting blank, which it is by default, the
Value member of the Property object will be set to Nothing in VB.NET, which cor-
responds to NULL in C++.) Since each item in the Property Pages dialog box is a single
property, you can see why, in Visual Studio .NET, Microsoft named the project settings
dialog box the Property Pages dialog box.

Here’s a macro that will list all the properties for a project:

Sub ConfigurationProperties()

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

Dim pitems As ProjectItems

projs = DTE.ActiveSolutionProjects()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

If projs.Length > 0 Then

proj = projs.GetValue(0)

Dim cfg As Configuration

VBMacroUtilities.Print(“Project Configurations: “ & _

proj.ConfigurationManager.Count)

For Each cfg In proj.ConfigurationManager

Manipulating Solutions and Projects 195

VBMacroUtilities.Print(cfg.ConfigurationName)

Dim prop As EnvDTE.Property

‘ Or use: Dim prop As [Property]

For Each prop In cfg.Properties

If Not prop.Value Is Nothing Then

VBMacroUtilities.Print(“ “ & prop.Name & _

“: “ & prop.Value.ToString())

Else

VBMacroUtilities.Print(“ “ & prop.Name & _

“: <None>”)

End If

Next

Next

End If

End Sub

I want to point out something strange about this code, specifically related to the
comment that reads, Or use: Dim prop as [Property]. It means that you could
use that line instead of the previous line, Dim prop as EnvDTE.Property. The
square brackets are used to distinguish the type name from the built-in VB.NET key-
word property. However, because I prefer to avoid resorting to odd syntax, I simply
fully qualify the word Property by preceding it with EnvDTE, which is the name-
space where you can find the Property class.

When you click a project in the Solution Explorer and then run this macro, it will
step through each configuration; and then for each configuration, it will step through
all the properties, listing the name and value of each. This is a pretty useful macro if
later on you’re going to write another macro that modifies the properties, because you
can look at this macro and figure out the names of the properties. (This macro is, in fact,
the one I used to help me figure out that the property name for the working directory
in a C++ program is “WorkingDirectory”.)

Once you know the name of a property, you can change it. Here, then, is a macro that
sets a single property, in this case, the WorkingDirectory property:

Sub SetSingleProperty()

Dim projs As System.Array

Dim proj As Project

Dim path As String

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

If proj.Kind <> “{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}” Then

MsgBox(“Please select a C++ project.”)

Exit Sub

End If

Try

Dim cfg As Configuration

cfg = proj.ConfigurationManager.Item(“Debug”, “Win32”)

Dim prop As EnvDTE.Property

196 Chapter 9

prop = cfg.Properties.Item(“WorkingDirectory”)

If Not prop.Value Is Nothing Then

VBMacroUtilities.Print(prop.Value)

Else

VBMacroUtilities.Print(“<No value specified>”)

End If

prop.Value = “c:\temp”

Catch

MsgBox(“Exception caught.”)

End Try

End If

End Sub

The first key line in this code is where I obtain the property itself by accessing the
Item member of the Properties object, passing the name “WorkingDirectory”.
That process gives me back a Property instance. The second key line is where I
change the value of the actual property; specifically, the Property instance’s Value
member. In this case, I set the value to “c:\temp”.

Notice also that to access the particular configuration, I specified the name “Debug”
and the platform, “Win32”. And notice that I wrapped the configuration code inside a
Try/Catch block; that way, if I made a mistake when I typed in the code, such as typ-
ing the name of the property wrong, I would catch the error in the Catch block.

If you click on a C++ project in the Solution Explorer and run this SetSingle-
Propertymacro, then open the Property Pages for the project and click on the Debug-
ging group, you’ll see that the working directory is now set to c:\temp. (If this were an
important project, you might want to set it back to what it used to be. To help you out,
I wrote the macro so it would print out the previous value to the Output window.)

Now when I run the earlier macro, called ConfigurationProperties, on a
VB.NET project, I can see that the property for setting the working directory is instead
called StartWorkingDirectory. Thus, if you want to modify the SetSingle-
Property macro to set the working directory for a VB.NET program, you can first
change the if-block that checks the project Kind property, like so:

If proj.Kind <> VSLangProj.PrjKind.prjKindVBProject Then

MsgBox(“Please select a VB project.”)

Exit Sub

End If

Then, you can change the configuration line to this:

cfg = proj.ConfigurationManager.Item(“Debug”, “.NET”)

Notice that here you specify .NET for the platform, not Win32.
Then you can change the line that retrieves the property, like so:

prop = cfg.Properties.Item(“StartWorkingDirectory”)

Finally, if you want to use this macro on C# projects, the property name is the same,
StartWorkingDirectory.

Manipulating Solutions and Projects 197

Adding Configurations

In Chapter 8, I showed you a trick that will let you test an add-in either by running
Visual Studio .NET in command-line mode or in standard GUI mode. Recall that this
trick involved adding a new configuration specifically for running and debugging in
command-line mode. This new configuration set various properties for launching the
external program. These properties were Start External Program, Command-Line
Arguments, and Working Directory.

Using the language-specific configuration objects, you can modify the project using
a macro to make these same settings. Here are the steps involved:

1. Add a new configuration based on an existing configuration.

2. Set the property for starting an external program.

3. Set the property for the command-line arguments.

4. Set the property for the working directory.

To add a new configuration (step 1), you use the language-independent Configu-
rationManager object. To set the properties (steps 2 through 4), you can use the
information in the previous section, “Accessing and Setting Configuration Properties.”
Following is a macro that does this work. The assumption here is that you will want to
load Visual Studio .NET in command-line mode to build some other solution, during
which you want to test out your add-in. (This solution should not contain your add-in;
it would contain separate projects you are working on.)

Sub AddCommandLineConfiguration()

Dim projs As System.Array

Dim proj As Project

Dim path As String

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = CType(projs.GetValue(0), EnvDTE.Project)

If proj.Kind <> VSLangProj.PrjKind.prjKindVBProject And _

proj.Kind <> VSLangProj.PrjKind.prjKindCSharpProject Then

MsgBox(“Please select a VB or C# project.”)

Exit Sub

End If

‘ Get the build solution name and path

Dim buildsoln As String

Dim solndir As String

buildsoln = InputBox(_

“Enter the path and filename of the solution.”)

If buildsoln = “” Then

Exit Sub

End If

solndir = System.IO.Path.GetDirectoryName(buildsoln)

buildsoln = System.IO.Path.GetFileName(buildsoln)

‘ Get the installed path

198 Chapter 9

Dim reg As Microsoft.Win32.RegistryKey

Dim installed As String

reg = Microsoft.Win32.Registry.LocalMachine.OpenSubKey(_

“SOFTWARE\Microsoft\VisualStudio\7.0”)

installed = reg.GetValue(“InstallDir”)

‘ Add a configuration

proj.ConfigurationManager.AddConfigurationRow(_

“CmdDebug”, “Debug”, True)

‘ Now locate the configuration we just added

Try

Dim command As String = installed & “devenv.exe”

Dim args As String = buildsoln & “ /build DEBUG”

Dim cfg As Configuration

Dim prop As EnvDTE.Property

cfg = proj.ConfigurationManager.Item(“CmdDebug”, “.NET”)

prop = cfg.Properties.Item(“StartProgram”)

prop.Value = command

prop = cfg.Properties.Item(“StartArguments”)

prop.Value = args

prop = cfg.Properties.Item(“StartWorkingDirectory”)

prop.Value = solndir

prop = cfg.Properties.Item(“StartAction”)

prop.Value = 1

Catch

MsgBox(“Exception caught.”)

End Try

End If

End Sub

Chapter 8 explained the purpose of this code. This macro simply sets up the project
the way you did manually in Chapter 8. In addition, notice that I look up the installa-
tion path for Visual Studio .NET. The reason is that the command line, when it runs
devenv.exe (which is the executable file for Visual Studio .NET) needs a full path to the
command being run. Thus, instead of simply putting devenv.exe for the command
line, I extract the installation path from the Registry, which is also the directory of the
devenv.exe program. Then I use this information to construct the full path and file-
name for the devenv.exe program, which I then store in the StartProgram property.

I also added one extra item in this code that might seem foreign: I set a property
called StartAction. This corresponds to the radio button in the Start Action group in
the Property Pages dialog box. The choices in the dialog box are Start Project, Start
External Program, and Start URL. To choose one of these items programmatically, set
the StartAction property to 0, 1, or 2, respectively. Since here I want to start an exter-
nal program, I set the StartAction property to 1.

Manipulating Solutions and Projects 199

To use this macro, click on an add-in project (since the macro really only makes
sense for add-in projects) and then run the macro. You will be prompted for the full
path and filename of a solution file. This is the solution file that devenv will build in
command-line mode while loading the add-in. The macro will then finish up, after
which your add-in project will be set properly; from there you can proceed as you did
in Chapter 8.

Configuring Projects at the Solution Level

Like projects, a solution also has properties that live as members of the Solution object,
as well as key-value pairs in the Properties member. You can manipulate a solution
through both of these.

Here’s a macro that lists the pairs in the Properties member of the current
Solution object:

Sub SolutionProperties()

Dim prop As EnvDTE.Property

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

For Each prop In DTE.Solution.Properties

Try

VBMacroUtilities.Print(prop.Name & _

“: “ & prop.Value.ToString())

Catch

VBMacroUtilities.Print(prop.Name & _

“: <None>”)

End Try

Next

End Sub

When you run this macro, you will see StartupProject, one of the more useful
properties from a macro perspective; by changing this property, you can set the startup
project. Here’s an example:

Sub SetStartupProperty()

Dim prop As EnvDTE.Property

prop = DTE.Solution.Properties.Item(“StartupProject”)

prop.Value = “TestCSharpProject”

End Sub

In my solution, I have a project called TestCSharpProject; when I run this macro, that
project becomes the new startup project. If you want to try out this macro, replace the
string with a project in your solution.

Using the Solution object, you can also add and remove projects. To add a project,
you start with a template. (The templates are sprinkled throughout the Visual Studio
.NET installation directory.) Here’s an example of a macro that creates a new Visual
Basic Windows Application and adds it to the current solution:

200 Chapter 9

Sub CreateVBApp()

Dim apath As String

apath = System.IO.Path.GetDirectoryName(_

DTE.Solution.FullName) & “\MyVBProj2”

DTE.Solution.AddFromTemplate(_

“C:\Program Files\Microsoft Visual Studio .NET\” & _

“Vb7\VBProjects\windowsapplication.vsz”, _

apath, “MyVBProj2”, False)

End Sub

Note that, to accommodate space restrictions in this book, I broke up the path to the
template into multiple lines; you can see that the first parameter is actually one long
string representing the path. The second parameter to AddFromTemplate is the full
path of where to put the project; I started with the solution’s own path and added my
own subdirectory, storing the string in the apath variable. The third parameter is the
name of the project to be created. The final parameter is a Boolean value representing
whether to create a new solution for the new project. I chose False, meaning I want to
add the project to the current solution.

In the preceding code, notice that the file I used for the first parameter is a
.vsz file. The online help has an error in it, stating that you should use a
project file. However, the correct way to use the AddFromTemplate function
is to use the .vsz wizard file. (For more information on .vsz files and wizards,
see Chapter 12, “Creating Project Wizards.”

To remove a project from the solution, you need a reference to the project’s Project
object. Then you simply call DTE.Solution.Remove(proj), where proj is the
Project object. Next, you can either remove the files from the project’s folder, in
which case the project will be permanently removed from the hard drive, or you can
leave the files in the project’s folder, in which case trying to re-create the project by call-
ing the CreateVBApp macro will fail, since the folder already has a project in it. (The
solution to calling CreateVBApp again would be to give the CreateVBApp macro a
new project name and project folder.)

Finally, here’s a short macro that creates a brand-new empty solution into which you
can add projects:

Sub CreateEmptySolution()

DTE.Solution.Create(“c:\dev”, “MySolution.sln”)

End Sub

When you run this macro, you will see a new solution in the main IDE, but note that
you will not see the solution on the disk until you choose File➪Save All.

Configuring Individual Files

In a C++ project, you can right-click on an individual file in the project and choose
Properties; from there you can set properties for the specific file that are exceptions to

Manipulating Solutions and Projects 201

the usual project properties. Say that you have turned on optimization for the project,
but want to exclude a single C++ file from being optimized. To do so, set the Opti-
mization property to disabled for only that file, while leaving the property Enabled
and set to, for example, Maximum Speed for the rest of the project. You would then set
the optimization property to Maximum Speed property for the entire project, while
setting the same property to Disabled for the individual file.

You can also set other properties, such as Exclude, from Build. During testing, there
may be times when you want to periodically exclude a particular set of files from the
build. While you could set a separate configuration for this purpose, you could also
write a macro to exclude the files and another macro to include the files.

All that said, be aware of this confusing element in Visual Studio .NET regarding the
configuration of individual files: You can find a Properties member for both a Pro-
jectItem and a ProjectItem object’s Configuration objects. Which do you use,
and when? It depends on the language. Take a look at this macro, then try running it
for various projects:

Sub GetProjectItemProps()

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

For Each pitem In proj.ProjectItems

VBMacroUtilities.Print(pitem.Name)

Dim prop As EnvDTE.Property

For Each prop In pitem.Properties

Try

If Not prop.Value Is Nothing Then

VBMacroUtilities.Print(“ “ & prop.Name & _

“: “ & prop.Value.ToString())

Else

VBMacroUtilities.Print(“ “ & prop.Name & _

“: <None>”)

End If

Catch

End Try

Next

Try

VBMacroUtilities.Print(_

“ ==Configuration properties==”)

For Each prop In pitem. _

ConfigurationManager.Item(1).Properties

If Not prop.Value Is Nothing Then

VBMacroUtilities.Print(“ “ & prop.Name & _

“: “ & prop.Value.ToString())

Else

202 Chapter 9

VBMacroUtilities.Print(“ “ & prop.Name & _

“: <None>”)

End If

Next

Catch

End Try

Next

End If

End Sub

If you look closely, you will see that the property to exclude a file from build in a
C++ project is a member of the Configuration object for a ProjectItem object. But
for a VB.NET or C# project, the property for excluding a file from build is buried inside
the BuildAction property; to exclude the file you set BuildAction to 0, meaning
None; to include it, you set it to 1, meaning Compile. But BuildAction is a property
of the ProjectItem, not a property of the Configuration object, so there’s a slight
inconsistency here. But that’s okay; the project types are different and your code would
have to be different anyway, if you want to set these properties.

Here’s a macro that will include or exclude a predefined set of files from a VB.NET
project:

Private Sub IncExcVBSet(ByVal value As Integer)

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

Dim prop As EnvDTE.Property

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

‘ Clear out Class1.vb

pitem = proj.ProjectItems.Item(“Class1.vb”)

prop = pitem.Properties.Item(“BuildAction”)

prop.Value = value

‘ Clear out Class2.vb

pitem = proj.ProjectItems.Item(“Class2.vb”)

prop = pitem.Properties.Item(“BuildAction”)

prop.Value = value

‘ Clear out Class3.vb

pitem = proj.ProjectItems.Item(“Class3.vb”)

prop = pitem.Properties.Item(“BuildAction”)

prop.Value = value

End If

End Sub

Manipulating Solutions and Projects 203

Sub IncludeVBSet()

IncExcVBSet(1)

End Sub

Sub ExcludeVBSet()

IncExcVBSet(0)

End Sub

Since the code for including and excluding is almost the same, I broke it out into its
own private function called IncExcVBSet, then I simply called that function from
each of the two macros, IncludeVBSet and ExcludeVBSet. (Notice in the code that
you set the BuildAction property value to 1 to include the file, and 0 to exclude it.)
To try out these macros, add these three files to a VB.NET project, called Class1.vb,
Class2.vb, and Class3.vb. Select the project and then run the ExcludeVBSet macro.
When the files are excluded, you will note two changes: First, when the file is in the
editor, the IDE does no syntax checking on the file as you type, and you don’t see
the drop-down listboxes above the editor showing information about the file. Second, the
icon beside the file in the Solution Explorer no longer has an arrow pointing down,
meaning the file does not get compiled.

Setting the BuildAction property value to 0 to exclude the file from a build
is not the same as right-clicking a file in the Solution Explorer and choosing
Exclude from Project. The Exclude from Project menu item completely
removes the file from the project. Instead, setting the value to 0 is the same
as right-clicking on the file, choosing Properties in the popup menu, and
setting the Build Action setting to None in the Properties dialog.

When you reinclude the files by running ExcludeVBSet, the syntax checking and
drop-down listboxes will return, along with the small arrow pointing down in the file
icons.

Now here’s a similar macro that operates on C++ projects:

Private Sub IncExcCPPSet(ByVal exclude As Boolean)

Dim projs As System.Array

Dim proj As Project

Dim pitem As ProjectItem

Dim prop As EnvDTE.Property

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

Dim cfg As Configuration

pitem = proj.ProjectItems.Item(“File1.cpp”)

For Each cfg In pitem.ConfigurationManager

prop = cfg.Properties.Item(“ExcludedFromBuild”)

204 Chapter 9

TE
AM
FL
Y

Team-Fly®

prop.Value = exclude

Next

pitem = proj.ProjectItems.Item(“File2.cpp”)

For Each cfg In pitem.ConfigurationManager

prop = cfg.Properties.Item(“ExcludedFromBuild”)

prop.Value = exclude

Next

pitem = proj.ProjectItems.Item(“File3.cpp”)

For Each cfg In pitem.ConfigurationManager

prop = cfg.Properties.Item(“ExcludedFromBuild”)

prop.Value = exclude

Next

End If

End Sub

Sub IncludeCPPSet()

IncExcCPPSet(False)

End Sub

Sub ExcludeCPPSet()

IncExcCPPSet(True)

End Sub

Manipulating Language-Specific Information

If you read Chapter 5, and if you’ve been reading this chapter straight through, at this
point you might be wondering if you even need language-specific project objects since
you can access all the configuration information directly through the Properties collec-
tions. The answer is yes!

To explain why, I’ll start with the VSProject object, which describes VB.NET and
C# projects and is part of the VSLangProj namespace. Remember, the properties that
I described in the previous sections apply to how a project builds, and they are the
items you see in the Property Pages dialog box. The VSProject object, in contrast,
gives you information about the project itself, including:

■■ List of event handlers

■■ List of imports

■■ List of references

This information is not available in the property pages. You can access this informa-
tion only after you have a reference to the VSProject object, which you obtain from
the Project object’s Object property. Once you have the VSProject object, you
can, for example, look at the list of references or even modify the list of references.

Manipulating Solutions and Projects 205

Say that you realize you’re always using a certain set of assemblies in your programs;
in that case, you can write a macro that automatically adds references to all these assem-
blies, so that you don’t have to add them manually. For instance, whenever I develop
an add-in, I typically need to add references to the System.Drawing.dll and System.
Windows.Forms.dll assemblies. Here’s a macro that adds these references for me:

Sub AddUsualReferences()

Dim projs As System.Array

Dim proj As Project

Dim vsproj As VSLangProj.VSProject

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

projs = DTE.ActiveSolutionProjects()

If projs.Length > 0 Then

proj = projs.GetValue(0)

If proj.Kind <> VSLangProj.PrjKind.prjKindCSharpProject And _

proj.Kind <> VSLangProj.PrjKind.prjKindVBProject Then

Exit Sub

End If

vsproj = proj.Object

vsproj.References.Add(“System.Drawing.dll”)

vsproj.References.Add(“System.Windows.Forms.dll”)

End If

End Sub

Normally, when you call References.Add, you need to pass a full path to the
assembly’s dll file. However, since the assemblies that I’m adding are part of the global
cache, the IDE is able to easily find the assembly in its latest and greatest version.

Moving Forward

In this chapter I expanded on the project and solution information that I introduced in
“The Macro and Add-in Models” section of Chapter 5. I also showed you how to:

■■ Determine the currently active project.

■■ Add, remove, and modify the items in a project.

■■ Modify a project’s settings.

■■ Control configurations.

■■ Work with language-specific information.

All of this information applies to both add-ins and macros. In the next chapter I
explain how to manage the Document objects and the various objects that deal with the
user interface. These techniques, too, apply to both add-ins and macros.

206 Chapter 9

207

I begin this chapter by showing you how you can use the Document and related
objects to create documents and modify, close, and save the documents the IDE user
has open. Then I move on to describe an interesting set of objects that let you traverse
a hierarchy within a tool window. For example, the Solution Explorer lists all the pro-
jects and project items in a hierarchical manner. I show you how you can move about
this hierarchy, accessing and modifying the information.

Managing Documents with the Document Classes

The IDE uses different editors for different types of documents, such as a code editor
for source files, a visual editor for forms, a data editor for .resx resource files, and so on.
When an editor is open and contains a document, the IDE maintains a Document
object. This Document object is generic in that its methods and properties apply to all
types of documents.

In Chapter 11, I show you how to modify code documents while taking the
language into consideration, as well as how to find out a particular
document’s language (C#, C++, VB.NET). In this chapter, I keep the
discussion generic.

Here’s a simple macro that lists all the documents:

Programming the Document
and User Interface Objects

C H A P T E R

10

Sub ListDocuments()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim d As Document

For Each d In DTE.Documents

VBMacroUtilities.Print(d.FullName & “ “ & d.Kind)

Next

End Sub

When you run this macro, you will see the names of all the documents that are cur-
rently open, along with the document types, which, like so many other objects in the
Visual Studio .NET IDE, are GUIDs.

The Document object provides basic member functions you would expect a generic
document to perform:

Activate. This function will bring the window containing the document to the
front, making it the active document. After this, the DTE.ActiveDocument
object will point to your Document object.

Close. This function causes the document to close. You pass vsSaveChangesYes
to it if you want to automatically save any changes before closing; vsSave-
ChangesNo if you want to abandon any changes (which, believe it or not, is the
default if you do not pass any parameters to Close); or vsSaveChangesPrompt
if you would like to prompt the user whether to save any changes for closing.

NewWindow. This function opens a second window for the document; the new
window will be added to the Document.Windows collection. If you are run-
ning in the default tabbed environment (which you set through Tools➪Options,
then Environment➪General), you will get a second tab for the single document.
The first tab will have a “:1” added to the filename caption; the second tab will
have a “:2” added to the filename caption. NewWindow is useful primarily for
text documents such as C++ source code files. If you attempt to call NewWindow
on a .vb file, you will get an exception with the message “Not Implemented.”

Undo and Redo. These two functions are equivalent to the IDE user choosing
Edit➪Undo and Edit➪Redo in the main IDE menu.

Save. This function saves the document.

Additionally, the Document object includes a function that you might not expect to
find: SaveAll. SaveAll saves all open documents that have changed. It takes no
parameters.

The collection of Document objects is housed within the DTE.Documents object,
which is an instance of class Documents. The Documents object has two methods that
operate on all documents: CloseAll and SaveAll. SaveAll performs the same as
SaveAll in the Document object, while CloseAll takes the same parameters as
Document.Close. Additionally, the Documents object has an Item method that lets
you find a document based on the document’s name.

Here is a simple macro that finds a particular document and activates it. To try out
this macro, you will want to have several files open, including one called Form1.vb.
Make sure the Form1.vb document is not the one in front.

208 Chapter 10

Sub ActivateForm1()

Dim doc As Document

Try

doc = DTE.Documents.Item(“Form1.vb”)

doc.Activate()

Catch

End Try

End Sub

Interestingly, you can instead pass the document’s full path and filename to the Item
function, as shown in the following line of code:

doc = DTE.Documents.Item(“C:\dev\Projects\VBFormTest1\Form1.vb”)

Therefore, depending on your situation, you can use either just the filename or the
full path and filename.

The Form Editor and Documents
If you have a form open and you run the earlier ListDocuments macro, you will see
two documents for the single form. One is the form editor, whose name will have a
.resx extension; the other is the document for the code, and will have either a .vb or .cs
extension, depending on whether the form is a Visual Basic or C# form.

You can find out the active document (that is, the document that has the focus) by
checking the DTE.ActiveDocument property. When you’re dealing with a visual
form, you’re going to see something a little strange. Take a look at this macro:

Sub ShowActiveDocument()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

VBMacroUtilities.Print(DTE.ActiveDocument.Name)

End Sub

If you open up both a form editor and a code editor for a single form (such as the
default Form1.vb in a VB.NET Windows application) and switch first to the code edi-
tor and run the preceding macro, you will see Form1.vb (the code document) as the
active document. Then if you switch to the form, instead of seeing Form1.resx, you will
again see the Form1.vb as the active document.

Now suppose you use the DTE.Documents.Item method to locate both the form
editor document and the code editor document, such as Form1.resx and Form1.vb,
respectively. If you call the Form1.vb Document object’s Activate method, you will
actually activate the form designer, not the code editor window, as you might expect.
Furthermore, if you call the Form1.resx Document object’s Activate method, you
will get an exception. So be careful when working with the Document and Docu-
ments objects while dealing with forms; also use care if you expect this odd behavior,
which has been documented by Microsoft and is expected to change it in the next edi-
tion of Visual Studio .NET.

Programming the Document and User Interface Objects 209

Opening or Creating a Document
To open an existing document or to create a new document, use the ItemOperations
object, which is a property of the DTE object. The ItemOperations object includes an
OpenFile member function and a NewFile member function.

To use the OpenFile function, pass the full path and filename as a string for the first
parameter, and, optionally, a constant to denote the type of file you wish to open.
Before I show you about these types, look at this quick sample of a call to OpenFile:

Sub DemoOpenFile()

Try

DTE.ItemOperations.OpenFile(“c:\myfile.txt”)

Catch

MsgBox(“Could not open the file.”)

End Try

End Sub

As you can see, I wrapped the OpenFile function with a Try/Catch block to
ensure that I properly handled the situation where the file cannot be opened, as would
be the case if the file didn’t exist.

You can also include a second parameter to the call to OpenFile. Take a look at this
code:

DTE.ItemOperations.OpenFile(“C:\dev\MyProject\Form1.vb”, _

EnvDTE.Constants.vsViewKindDesigner)

then compare it to this code:

DTE.ItemOperations.OpenFile(“C:\dev\MyProject\Form1.vb”, _

EnvDTE.Constants.vsViewKindCode)

As you can see, both sets of code open the same file; however, the first specifies
vsViewKindDesigner for the second parameter, while the second specifies
vsViewKindCode for the second parameter. The first version of the code causes the
IDE to open the Visual Basic code file in designer mode, so that you can draw compo-
nents on the form. The second version of the code causes the IDE to open the file as a
code file, so you can modify the code directly. For the first version to work, however,
you must have an actual VB.NET project, including a .resx file containing the form
information.

If you try to open a file that is not a form file (such as any C++ file) using the
vsViewKindDesigner parameter, the IDE will give an error, allowing you to look at
the XML source for the file. Of course, the file doesn’t have any XML; it’s a C++ source
file, and so the error message you see will be that the XML is not well formed.

You can also use the ItemOperations object to create a new file by calling the
NewFile function. Here’s a sample:

DTE.ItemOperations.NewFile(“General\HTML Page”, “myfile.html”)

210 Chapter 10

The first parameter corresponds to the items you can find in the New File dialog
box. From the main IDE, if you choose File-New➪File, the New File dialog box will
open, showing a list of categories on the left side. When you click on one of the cate-
gories, you will see a list of file templates on the right side. The first parameter to New-
File is a string of the form “Category\Template”; you replace Category with the
name of a category you can find on the left side of the New File dialog box, and you
replace Template with the name of the template on the right side of the New File dia-
log box. (Of course, when you run the NewFile function, the New File dialog box
doesn’t actually appear.)

The second parameter to NewFile is simply a suggestion for a new filename. By
that I mean, when the IDE user chooses File➪Save, the Save File As dialog box will
open, and the filename you specify in the second parameter will appear as the default
filename.

When you call NewFile, the file will not be written to disk until the IDE user
saves the file, or you save the file through a macro using the Document.Save
function. Further, the IDE ignores the path name when you specify a filename
for the second parameter in the call to NewFile. When the IDE user chooses
to save the file, the File Save As dialog box will open in the current working
directory, and the default filename will be that given in the second parameter
to NewFile. Consequently, you can actually call NewFile twice with the same
filename. Just be careful when you close a file that you called with NewFile
because if the IDE user makes no changes to the file and then closes it, the
file will not be saved to disk; that is, no file will be created!

You can also call NewFile with only a template name and no filename to create an
unnamed file:

DTE.ItemOperations.NewFile(“General\HTML Page”)

In this case, the IDE user would choose the filename when he or she saves the file, or
you would in your macro when you save the file.

In order for your macro to save a file that the macro creates, the NewFile function
returns an instance of Window, from which you can access the Document object. The
Document object has a Save method. Remember, since the second parameter to New-
File is simply a suggestion to the IDE user, if you plan to save the file from your
macro, you do not need to specify a second parameter to NewFile, since the name will
be ignored anyway. (If you do specify a name for the second parameter, it will not be
used anywhere.) Next shown is an example macro that creates a new file and saves it.
You can see that I did not provide a name for the second parameter to NewFile:

Sub DemoNewFile()

Dim win As Window

win = DTE.ItemOperations.NewFile(“General\HTML Page”)

win.Document.Save(“c:\myfile2.html”)

End Sub

Programming the Document and User Interface Objects 211

You may notice that if you open the New File dialog box, several items will not be
present. For instance, the dialog box contains no Visual Basic items, such as forms and
modules. When interacting with the IDE, you right-click on a project, and in the popup
menu choose Add➪Add New Item. The Add New Item menu item corresponds to a
separate function in the ItemOperations object called AddNewItem. You call this
item just as you would NewFile, passing a string representing the item in the Add
New Item dialog box. Since the tree on the left has a hierarchy, you separate the items
in the hierarchy with a backslash. Thus, if you want to add a new module to a VB.NET
project, you would make a call like this:

DTE.ItemOperations.AddNewItem(“Local Project Items\Code\Module”)

This creates a file with a default filename and immediately adds the file to the proj-
ect. Unlike NewFile, AddNewItem automatically saves the file to disk. In this code,
because I did not specify a filename, the IDE gives the filename a default name such as
Module1.vb. You can also specify a filename in the second parameter:

DTE.ItemOperations.AddNewItem (“Local Project Items\Code\Module”, _

“newmodule.vb”)

In this case, the filename is not a suggestion; the IDE actually saves the file into the
project directory with the name you specify.

Unlike the NewFile function, which returns a Window object, the AddNewItem
function returns a ProjectItem object.

Processing Text
The Document object gives you access to general information about a document, but
contains no text-specific information and operations. By keeping the Document object
generic, you can use it with any type of document, not just text documents such as
source files. To work with the text in a text document, you have at your disposal sev-
eral other classes.

Part of the fun of working with text is keeping all the classes straight. To that end, I
first provide you with a list of classes you can use, along with a brief description of
each; then I give you the details on how to work with them.

TextDocument. This is the primary entry point into the other objects. Through a
Document object you can obtain a TextDocument object, which includes a few
general methods and properties. However, most of the text-processing actions
you will perform are available through the objects in the rest of the list; you
obtain these objects through this TextDocument object.

TextSelection. This object includes all the operations you would expect to per-
form on text, focusing primarily on selections. You can manipulate the current
selection point of the text, that is, where the blinking cursor is in the text on the
screen and which text is highlighted; you can format the text, and so on. (You
can also access the TextSelection object directly from the Document object
through the Selection property.)

212 Chapter 10

EditPoint. An EditPoint object represents a particular position within a block
of text. It gives you direct access to the text in a document without being
affected by the text as it appears in the editor window due to the IDE user’s edi-
tor settings. Further, with an EditPoint object, you can modify the text
directly without affecting the insertion point.

TextRange. A TextRange object holds a pair of EditPoint objects, represent-
ing a range of text.

TextRanges. This is a collection of TextRange objects.

VirtualPoint. This is the whitespace in a code editor where there is no text.

Now look at this short example of the TextDocument and TextSelection
objects. You can see that I obtained the TextDocument object through the Object
property of the Document object; and from the TextDocument object I obtained the
TextSelection object through the Selection property.

Sub GetText()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim doc As Document

doc = DTE.ActiveDocument

Dim textdoc As TextDocument

textdoc = doc.Object

textdoc.Selection.SelectAll()

VBMacroUtilities.Print(textdoc.Selection.Text)

End Sub

This macro simply grabs the active document and copies the text to the output win-
dow. I didn’t put any error checking in it, so make sure your active document is a text
document such as a source file. You can see that I obtained the TextDocument object
by accessing the Document object’s Object property. Also note that the TextDocu-
ment object has a property, called Selection, which in turn has a method called
SelectAll. This method selects all the text in the document. The selection of the text
is not a behind-the-scenes operation; you will actually see the text in the document
become highlighted. Finally, I printed out the selection by accessing the Selection
property’s Text property (the Text property is a string).

The GetText macro simply obtains the text in the document; it does not modify the
text, whereas the TextDocument also lets you modify the text. The TextDocument
class includes a ReplacePattern method, which lets you do global replacements in
the document using regular expressions. (For an introduction to regular expressions,
see “Finding an Item Using Regular Expressions” later in this chapter.) Here’s an
example:

Sub ReplaceText()

Dim doc As Document

doc = DTE.ActiveDocument

Dim textdoc As TextDocument

Dim trange As TextRanges

textdoc = doc.Object

Programming the Document and User Interface Objects 213

textdoc.ReplacePattern(“/(.)/”, _

“zzz”, _

EnvDTE.vsFindOptions.vsFindOptionsRegularExpression, trange)

End Sub

This replaces any instance of a slash, followed by a single character, followed by a
slash, with the string “zzz”.

The TextSelection object lets you manipulate text using many of the features for
which you would normally use an editor. For example, you can move the insertion
point around, as in this code snippet:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.WordRight()

This code moves the insertion point one word to the left:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.WordLeft()

If you optionally pass True for the first parameter to WordRight or WordLeft,
instead of simply moving the insertion point right or left, you will also select the text.
Thus, this selects three words to the right and then selects one word to the left, which
has the net effect of unselecting the rightmost word, resulting in two words being
selected:

Sub DemoSelectSeveral()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.WordRight(True)

td.Selection.WordRight(True)

td.Selection.WordRight(True)

td.Selection.WordLeft(True)

End Sub

You can also specify a number for the second parameter to represent the number of
words to move or select. Thus, you could write the preceding DemoSelectSeveral
macro like so to have the same effect:

Sub DemoSelectSeveral2()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.WordRight(True, 3)

td.Selection.WordLeft(True)

End Sub

You can also move the insertion point up or down a line by calling
Selection.LineUp or Selection.LineDown, optionally passing True for the
first parameter if you want to select the text in the process, and optionally passing a
count for the second parameter, just as you can with WordRight and WordLeft.

214 Chapter 10

TE
AM
FL
Y

Team-Fly®

In the context of the TextSelection object, the term collapse means to remove a
selection point, leaving the insertion point in place. Thus, if you click in a document on
the letter “a” in the word “apple,” then hold down the Shift key and press the right-
arrow key twice (to select two characters), and then collapse the selection, the insertion
point will end up between the two p’s in “apple.” You can collapse a selection pro-
grammatically, by calling Collapse, like so:

Sub DemoCollapse()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.Collapse()

End Sub

You can also move to the start or end of the current line using the
Selection.StartOfLine and Selection.EndOfLine functions. When you’re
actually typing in the code editor, you have probably noticed that when you press the
Home key, initially, the insertion point moves to the first nonwhitespace character; that
is, if the code is indented, the insertion point moves to the start of the code, not the left-
most column) When you press Home a second time, the insertion point moves to the
first column. The StartOfLine function provides for this same functionality. The first
parameter, which is optional, can be either vsStartOfLineOptionsFirstColumn,
which moves the insertion point to the first column, or vsStartOfLineOptions-
FirstText, which moves the insertion point to the first nonwhitespace column, where
the text begins. (Both of these constants are part of the vsStartOfLine enumeration.)
You can also optionally pass True as a second parameter to StartOfLine if you want
to select the text between the current insertion point and the start of the line.

Here’s a sample piece of code that moves to the first column, selecting the text in the
process:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.StartOfLine(_

vsStartOfLineOptions.vsStartOfLineOptionsFirstColumn, True)

And here’s a sample piece of code that moves to the first nonwhitespace column, not
selecting the text:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.StartOfLine(_

vsStartOfLineOptions.vsStartOfLineOptionsFirstText)

If you pass no parameters to StartOfLine, the default is vsStartOfLineOp-
tionsFirstColumn; that is, the insertion point will move to the first column.

The EndOfLine function does not have a parameter analogous to the first parame-
ter in StartOfLine. Instead, the only parameter to EndOfLine is optional, and it’s a
Boolean representing whether to select the text. Here’s a sample line that selects from
the current position to the end of the line:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.EndOfLine()

Programming the Document and User Interface Objects 215

The TextSelection object also lets you modify the text. The following macro will
insert text at the current position in the document:

Sub DemoInsertText()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.Insert(“Hello”)

End Sub

If text is selected, you can have complete control of how you want to insert the new
text by passing an optional second parameter to Selection.Insert. Here are your
choices:

vsInsertFlagsCollapseToEnd. This will replace the selected text with the new
text and then move the insertion point to the end of the new text, leaving the
new text unselected.

vsInsertFlagsCollapseToStart. This will replace the selected text with the new
text and then move the insertion point to the beginning of the new text, leaving
the new text unselected.

vsInsertFlagsContainNewText. This will replace the selected text with the new
text and then leave the new text selected, without changing the position of the
insertion point. Thus, if you highlight some text from right to left, causing the
insertion point to be at the beginning of the text, then after calling Insert, speci-
fying vsInsertFlagsContainNewText for the second parameter, after the
insert the insertion point will remain at the beginning of the new text.

vsInsertFlagsInsertAtEnd. This will add the new text to the end of the selection,
keeping the original text present and selected, adding the new text to the selec-
tion. Thus, if your selected text is “HELLO “ and you call Insert(“There”,
vsInsertFlagsInsertAtEnd), then the new text will be “HELLO THERE”,
with the entire “HELLO THERE” highlighted.

vsInsertFlagsInsertAtStart. This has the same effect as vsInsertFlagsInsert-
AtEnd, except the text you are inserting will be inserted at the beginning of the
selection.

The default, without specifying a second parameter, is vsInsertFlags-
CollapseToEnd. Here’s a sample showing vsInsertFlagsContainNewText:

Sub DemoInsertTextContainNewText()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.Insert(“Hello”, _

vsInsertFlags.vsInsertFlagsContainNewText)

End Sub

Deleting is a bit less sophisticated than inserting. If you call Document.Delete
with no parameters, you will delete the current selection. Or, if there is no current selec-
tion, you will delete the current character that’s to the right of the insertion point.
Here’s a macro showing Delete:

Sub DemoDelete()

Dim td As TextDocument = ActiveDocument.Object

216 Chapter 10

td.Selection.Delete()

End Sub

You can optionally pass a count to Delete, specifying how many times to delete:

td.Selection.Delete(3)

If text is currently selected, then that text will be deleted first, representing the first
iteration. Then for each remaining iteration, the characters to the right will be deleted.
Thus, if you have the text “HELLO” and you have HE selected, calling Delete(3)
will first delete the selected text, HE, then the next character, L, and then the next char-
acter, another L, leaving only “O.”

To delete the current word, you first have to select it and then delete it. To select the
current word, first move to the left of the word without selecting, then move to the
right while selecting. Here’s a macro that deletes the current word:

Sub DeleteWord()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.WordLeft()

td.Selection.WordRight(True)

td.Selection.Delete()

End Sub

Deleting a line is slightly easier, because the TextSelection object has a Select-
Line function:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.SelectLine()

td.Selection.Delete()

You can also change the text itself. This code will capitalize the first letter of every
word in the selection text, while making the other words lowercase:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.ChangeCase(vsCaseOptions.vsCaseOptionsCapitalize)

Thus, if you highlight the following comment in your code:

When run, the Add-in wizard prepared the registry for the Add-in.

and then run the preceding code, the comment will change into:

When Run, The Add-In Wizard Prepared The Registry For The Add-In.

This code will change all letters into capitals; thus, if you select the word “Pre-
pared,” the word will turn into “PREPARED.”

Dim td As TextDocument = ActiveDocument.Object

td.Selection.ChangeCase(vsCaseOptions.vsCaseOptionsUppercase)

Programming the Document and User Interface Objects 217

And this will make all words in the selected text lowercase:

Dim td As TextDocument = ActiveDocument.Object

td.Selection.ChangeCase(vsCaseOptions.vsCaseOptionsLowercase)

As you can imagine, the ChangeCase member function is best used in a comment,
since, typically, you won’t want your macro or add-in changing the case of code, espe-
cially if the code is C++.

You can also perform standard copy, cut, and paste actions. The functions are Copy,
Cut, and Paste, each with no parameters. Using some of the functions I described
previously in this section, you can copy a line of text and paste a copy just below the
line, like so:

Sub CopyLine()

Dim td As TextDocument = ActiveDocument.Object

td.Selection.SelectLine()

td.Selection.Copy()

td.Selection.Collapse()

td.Selection.Paste()

End Sub

This CopyLine macro might look a little strange to you because I didn’t move the
cursor down a line. The reason is that the SelectLine selects the entire line, putting
the insertion point at the start of the next line. So after I call Copy, I collapse the selec-
tion, which leaves the insertion point at the start of the line below where I started.
Thus, the code implicitly moves the insertion point down a line. Then I just call Paste.

In addition to all the functions I just described, the TextSelection has numerous
other functions that let you edit the text in a document. I encourage you to take a look
at the online help to see the whole array of possibilities. To find the online help entry,
open the Index tool window for the online help, type Document Object, and press
Enter. In the Index Results pane, double-click Document Object Properties, Methods,
and Events. This will open the online help entry showing you all the members avail-
able to you in the Document object.

The EditPoint, TextPoint, and VirtualPoint Objects
An EditPoint is an object that serves two purposes: First, it represents a single posi-
tion within a document. Second, it allows you to modify the text in a document with-
out affecting the insertion point and selection of the document.

To see this second purpose, try opening a text file (such as a source code file). Make
sure the top of the document is in view, select some text in the middle of the document,
then run this macro:

Sub TestEditPoint()

Dim textdoc As TextDocument

textdoc = DTE.ActiveDocument.Object

Dim ep As EditPoint

218 Chapter 10

ep = textdoc.CreateEditPoint

ep.Insert(“Hello”)

End Sub

When you run it, you will see your selected text remains selected and unchanged,
while the word “Hello” gets inserted at the very beginning of the document.

In this next macro, I created an EditPoint object based on the starting position of
the current document’s TextDocument object. You can also create an EditPoint
object based on the currently selected text. Go ahead and select some text in your doc-
ument and then try running this macro:

Sub TestEditPoint2()

Dim ep As EditPoint

ep = DTE.ActiveDocument.Selection.ActivePoint.CreateEditPoint

ep.Insert(“Hello”)

End Sub

This code inserts text at the current insertion point, again without disturbing the
selection.

The EnvDTE namespace also includes two classes related to EditPoint, called
TextPoint and VirtualPoint. Think of EditPoint as an editable position in the
document, whereas TextPoint and VirtualPoint objects show a position, but you
cannot edit the text. If you have a TextPoint or a VirtualPoint representing a
position in the document, and you want to edit the text at that position, you must
obtain from the TextPoint or VirtualPoint object an EditPoint object. You do
so by calling either TextPoint.CreateEditPoint or VirtualPoint.Cre-
ateEditPoint.

Here are some different positions in a document, the way to find the position, and
the type of object associated with the position. For each of these, you can call the
returned object’s CreateEditPoint if you want an editable version of the position.

Start of document. Use TextDocument.StartPoint, which returns a
TextPoint object.

End of document. Use TextDocument.EndPoint, which returns a
TextPoint object.

Start of selected text. Use Document.Selection.TopPoint, which
returns a VirtualPoint object.

End of selected text. Use Document.Selection.BottomPoint, which returns
a VirtualPoint object.

Anchor Point. This refers to the position in the text at which the insertion point
started when the IDE user selected the text. It will correspond to either the start
or the end of the selected text, depending on which direction the IDE user high-
lighted the text. Use Document.Selection.AnchorPoint, which returns a
VirtualPoint object.

Active Point. This refers to the position at which the insertion point ended when
the IDE user selected the text. Use Document.Selection.ActivePoint,
which returns a VirtualPoint object.

Programming the Document and User Interface Objects 219

First displayed character in the pane. Since the text is displayed in a pane, use
TextPane.StartPoint to determine the first visible character in the pane.
(See “Working with Multiple Windows and Panes” later in this chapter for more
information on panes.)

You don’t always have to call CreateEditPoint when working with the positions
in the document. If you’re not interested in modifying text at a particular point, you
can simply use that point’s TextPoint or VirtualPoint object. Look at this macro:

Sub VBCommentSelection()

Dim start As EditPoint

Dim theend As VirtualPoint

start = DTE.ActiveDocument.Selection.TopPoint.CreateEditPoint()

theend = DTE.ActiveDocument.Selection.BottomPoint

start.StartOfLine()

Do While (start.LessThan(theend))

start.Insert(“‘“)

start.LineDown()

start.StartOfLine()

Loop

End Sub

This macro puts Visual Basic comment marks (an apostrophe) at the start of each
line that contains selected text. The macro uses two positions, the start point and the
end point of the selected text. It then moves to the beginning of the starting line and
inserts a comment mark, then moves down and back to the start of the line.

220 Chapter 10

HANDLING UNDO CONTEXTS

If your macro or add-in makes multiple changes to a document and you want to enable
the user to undo all the changes with a single press of Ctrl+Z or a single selection of
Edit➪Undo, you can wrap the changes in an undo context. First, you call
DTE.UndoContext.Open, passing a string representing the overall operation. Here’s a
modified form of an earlier macro, ReplaceText, with an undo context. After you run
this macro, you can undo its results simply by pressing Ctrl+Z one time. (With the
previous version of the macro, you had to press Ctrl+Z once for each replacement.)

Sub ReplaceText2()

Dim doc As Document

doc = DTE.ActiveDocument

Dim textdoc As TextDocument

Dim trange As TextRanges

DTE.UndoContext.Open(“Undo Replacement”)

textdoc = doc.Object

textdoc.ReplacePattern(“/(.)/”, _

“zzz”, _

EnvDTE.vsFindOptions.vsFindOptionsRegularExpression, trange)

DTE.UndoContext.Close()

End Sub

After calls to LineDown and StartOfLine, the EditPoint changed,
but the original highlighted text in the document did not. By calling
CreateEditPoint, you are effectively creating an object that is
disconnected from the original selection.

As the macro proceeds, it compares the start EditPoint object to the end Edit-
Point object, using the LessThan method. This method compares the positions
within the document, and if the object is earlier in the document than the parameter
(that is, if the start point is less than the end point), the function returns True. (You also
have at your disposal GreaterThan and EqualTo functions, which are members of
EditPoint, TextPoint, and VirtualPoint.)

There is really little difference between a TextPoint and a VirtualPoint,
except that a VirtualPoint can appear at the very end of a line,
representing the whitespace to the right of a line.

Working with Multiple Windows and Panes
In Visual Studio .NET, the IDE user can have multiple windows open, each containing
a copy of the same source code file. Additionally, the user can split each window verti-
cally into two panes, allowing two separate views of the same file. Changes to a docu-
ment affect not only the current pane or window, but all panes and windows
containing the same document. Such changes include undo and redo actions. How-
ever, each pane and window maintains its own insertion point and highlighted text.
You can highlight text in one pane, while highlighting separate text in another pane or
window for the same document. Similarly, you can have the insertion point at one
place in one pane or window and in another place within the same document but in
another pane or window.

When you have multiple windows showing the same document, the
Document.Selection object corresponds to the window that is active.
Further, if the windows have multiple panes, the Document.Selection
object will correspond to the pane that is active.

The following macro creates a new window for the currently active document.
(Note, however, that the NewWindow function is not available for VB.NET code files;
thus, this macro will function only for C++ and C# code files. Running it for a VB.NET
code file will generate a “Not implemented” error message.) In this macro I included a
Try/Catch block, because you cannot call NewWindow for every type of window.

Sub CreateNewWindow()

Dim doc As Document

Try

doc = DTE.ActiveDocument

doc.NewWindow()

Catch e As System.Exception

Programming the Document and User Interface Objects 221

MsgBox(e.Message)

End Try

End Sub

The Document object includes a Windows property that contains a collection of
Window objects. Normally this collection consists of only one Window object, repre-
senting the single window containing the document. But if you create a second win-
dow using the preceding macro, then you will find two Window objects in the
Windows collection.

When you create a second window for a single document, you will see either two
tabs, if you’re running in tabbed mode, or two windows, if you’re running in MDI
mode. (The default is tabbed mode.) However, even though you have two Window
objects, you still have only a single Document object. You can see this by running the
following macro:

Sub ListDocumentsWithCount()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim d As Document

For Each d In DTE.Documents

VBMacroUtilities.Print(d.FullName & “ “ & d.Windows.Count)

Next

End Sub

If you run the previous macro, CreateNewWindow, and then run this macro, List-
DocumentsWithCount, you will see that you still have only a single Document object
for the two windows. The ListDocumentsWithCount macro prints out the name of
each document, along with the Windows.Count property, which tells how many Win-
dow objects are in the Windows collection.

You can also split a single window into two panes. To do this, choose Window➪Split
(and then Window➪Remove Split to remerge the window).

To find out the panes, start with a Window object. From there, you obtain a Tex-
tWindow object, which includes a Panes collection. The following macro shows you
how to do this:

Sub ListPanes()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim tw As TextWindow

Dim panes As TextPanes

Dim pane As TextPane

tw = ActiveDocument.Windows.Item(1).Object

panes = tw.Panes

For Each pane In panes

VBMacroUtilities.Print(pane.Height)

Next

End Sub

222 Chapter 10

This macro operates on the first window of the active document. Make sure your
active document is a text window (such as a source code file); otherwise, you’ll get an
exception. You also might try splitting the window into two panes to see the results.

The macro also prints out the height of each pane. The Pane object has both a width
and a height, and, interestingly, the values of the width and height are in terms of char-
acters, not pixels. Thus, the width is the number of columns the editor window’s pane
can show, and the height is the number of rows it can show.

Navigating the User Interface Hierarchy

Many of the window objects in the IDE contain a hierarchy of some sort. For example,
the Solution Explorer contains a hierarchy that lists, first, the projects, and under each
project the project items. Inside the EnvDTE namespace is a class called UIHierarchy,
which contains the elements in a hierarchy. To obtain the UIHierarchy instance for a
particular window (such as for the Solution Explorer window), first access the Window
object for the window, and from the Window object access the Object property. The
Object property in such windows is an instance of UIHierarchy.

If the window is not one that shows a sort of hierarchy (for example, the Output
window does not), then the Object property is not an instance of UIHierarchy.
Therefore, before you can use the Object property, you must check its type. When I
was doing research for this chapter, I first checked the GUID of the Object property,
expecting it to be the same each time a UIHierarchy was present. That would have
made sense, since the UIHierarchy is a class. But I was wrong. The Object property
does, in fact, refer to a different type of COM object for each window, thus the Solution
Explorer window and the Server Explorer window, both of which have a UIHierar-
chy available, have different GUIDs for their Object properties. So instead of check-
ing the GUID, the correct way is to call the VB.NET function TypeName.

Interestingly, even though TypeName returns the correct string (such as “UIHierar-
chy”), you cannot call typeof, as typeof will return a COM type, but not the name
UIHierarchy. Therefore, in my code I am using TypeName.

Before using the UIHierarchy object, make sure the Object property for
the window is not set to Nothing. If the window has no hierarchy (or if the
window can support a hierarchy but does not currently have a hierarchy
showing), then the Object property will be set to Nothing, rather than to
an instance of UIHierarchy.

The following macro gets the active window, then the Object property, and makes
sure the Object property is not null (or, in VB.NET terminology, Nothing); next the
code gets the type name of the Object property. If the type name is UIHierarchy, the
code traverses through the hierarchy by calling a recursive function. Here’s the macro:

Sub Traverse(ByVal indent As Integer, ByVal items As UIHierarchyItems)

Dim subitem As UIHierarchyItem

For Each subitem In items

VBMacroUtilities.Print(“ “.PadLeft(indent * 4) & _

Programming the Document and User Interface Objects 223

subitem.Name & “ “ & subitem.IsSelected)

If Not subitem.UIHierarchyItems Is Nothing Then

Traverse(indent + 1, subitem.UIHierarchyItems)

End If

Next

End Sub

Sub UIHierTest()

Dim window As Window

VBMacroUtilities.Setup(DTE)

window = DTE.ActiveWindow

If Not window.Object Is Nothing Then

If TypeName(window.Object) = “UIHierarchy” Then

Dim UIH As UIHierarchy = window.Object

VBMacroUtilities.Print(window.Caption & “ “ & _

window.ObjectKind)

Traverse(0, UIH.UIHierarchyItems)

Else

VBMacroUtilities.Print(“ Not a UIHierarchy type: “ _

& TypeName(DTE.ActiveWindow.Object))

End If

Else

VBMacroUtilities.Print(“ No hierarchy is available.”)

End If

End Sub

This macro is primarily for informational purposes, as it does not modify anything
in the IDE. To try out the macro, make sure you have a solution open. Then, open the
Solution Explorer window, making sure it’s active (that is, its title bar is showing as the
active window). Run the macro by double-clicking the macro name in the Macro
Explorer.

When you click on a window and then double-click a macro in the Macro
Explorer, the DTE.CurrentWindow object will still contain a reference to
the window you clicked prior to running a macro. This is an advantage,
as it allows you to select a window and then run a macro without causing
the DTE object to treat the Macro Explorer as the active window. If you
want to traverse the Macro Explorer’s hierarchy, instead of using the
CurrentWindow property, you can use DTE.Windows.Item(Constants.

vsWindowKindMacroExplorer).

The macro will traverse through the hierarchy, starting at the top, listing the names
in the tree. Here’s a sample output:

Solution Explorer - Solution Items {3AE79031-E1BC-11D0-8F78-00A0C9110057}

MyProjects False

224 Chapter 10

TE
AM
FL
Y

Team-Fly®

CSharpWinApp1 False

References False

System False

System.Data False

System.Drawing False

System.Windows.Forms False

System.XML False

App.ico False

AssemblyInfo.cs False

Form1.cs True

test.xml False

XMLSchema1.xsd False

DatabaseProject1 False

Change Scripts False

Queries False

Database References False

FOXPRO.C:\dev\Projects\BOOKS.DBC False

The first line gives the name of the window (just to make sure I clicked the right one)
and then the GUID of the Object (stored in the ObjectKind property). I printed out
this GUID so you can see that the GUID is different for different windows. Next is the
name of the solution, which corresponds to the first item in the tree. This solution has
two projects in it, a C# program and a database application for a FoxPro database. I listed
the names of each project, along with the items inside the project. Now you’ll notice that
the hierarchy contains an item for every item in the Solution Explorer, including folders.

In addition to the name of each item in the tree, the macro prints out the value of the
item’s IsSelected property. This is where your macro can determine whether the
user has clicked on the item. You can see in my list that the C# form file, Form1.cs, is
the selected item. If you select multiple items (using the Shift or Ctrl keys), all the
selected items will have a True by them.

A quick aside on the recursive subroutine Traverse: Let me begin by explaining
how the UIHierarchy object works. It contains a property called UIHierar-
chyItems, which is a list of UIHierarchyItem objects. Each UIHierarchyItem
object, in turn, contains a UIHierarchyItems list. That means that the top item in the
hierarchy is a UIHierarchy object, whereas all the other items in the hierarchy are
UIHierarchyItem objects. Since I wanted to write my Traverse routine to handle
the general case, I made its parameter a UIHierarchyItems collection. That way,
whether I’m dealing with a UIHierarchy object or a UIHierarchyItem object, I can
always pass in the object’s UIHierarchyItems property.

Also, the Traverse routine takes an integer, which represents an indentation level.
You can think of this as how deep the current item is in the recursion. But the way I use
the item in the macro is to create a string of spaces whose length is four times the
indentation level. (I do that with the PadLeft function; there are probably other ways
to do the same thing.) Thus, when I print out the items, they have an indentation that
matches the indentation in the window’s tree.

You can traverse a window’s hierarchy even if the window is not currently
showing. For example, if you close the Solution Explorer window, the IDE is
still aware of the Solution Explorer, so you can still traverse its hierarchy.

Programming the Document and User Interface Objects 225

Finding a Hierarchy Item
If you want to find a particular hierarchy item, you can start by locating the window
for the hierarchy. Do so via the usual method, such as this:

Dim win As Window = DTE.Windows.Item(_

Constants.vsWindowKindSolutionExplorer)

The Constants class contains a list of window types, all of which start with the
vsWindowKind. The easiest way to locate the constant name is to know the name of
the window (such as Solution Explorer or Server Explorer), then type the word Con-
stants into the code editor, next the dot, and then slowly type the first few letters of
vsWindowKind. As you do, a popup window will appear showing a list of all the
members of the Constants class; the list will be centered on the names that start with
vsWindowKind. You can then scroll through the list, looking for the name of the win-
dow you’re trying to locate. The name will typically be the same as the window’s cap-
tion, but without the spaces. Thus, the Solution Explorer’s constant is
vsWindowKindSolutionExplorer, and the Server Explorer’s is vsWindowKind-
ServerExplorer.

After you have the Window object, grab the object’s UIHierarchy object through
the Object property:

Dim uih As UIHierarchy = win.Object

After you have the UIHierarchy item, you have some choices, depending on your
situation. If you know the name of the item (such as Form1.cs in the CSharpWinApp1
project), you can quickly find the item using the UIHierarchy object’s GetItem
function. For this function, however, you need the full path to the item inside the hier-
archy. So in the case of the Form1.cs item in the CSharpWinApp1 project, you would
use a couple of lines such as these:

Dim item As UIHierarchyItem

item = uih.GetItem(“MySolution\CSharpWinApp1\Form1.cs”)

You can see that I had to give the full path to the Form1.cs item, including the root
node in the hierarchy, which is the name of the solution. For all the items except the
root, the name is the same as it appears in the window’s tree. But the name is not as it
appears in the window for the root node; instead, the name is simply that of the solu-
tion. Interestingly, if you put an invalid name in the string, you will receive an error
message that reads, “The parameter is incorrect.”

Finding an Item Using Regular Expressions
If you’ve never worked with regular expressions, I strongly encourage you to learn
about them. Regular expressions make any string or text processing amazingly simple,
once you understand the somewhat cumbersome syntax. For years, regular expressions
were something that primarily Unix gurus understood; the rest of us simply didn’t like
to admit that we knew nothing about them.

226 Chapter 10

In this book, I can give you only a bit of introductory material on regular
expressions so I recommend you get a copy of Mastering Regular
Expressions, by Jeffrey E.F. Friedl (O’Reilly & Associates, 2nd ed., July 2002).
This is, by far, the best book on the topic, and one that every programmer
should own (in addition to the book in your hands, of course).

The beauty of regular expressions is that you can write a complex pattern and then
determine if a string matches it. This is a bit like the wildcard patterns you can use in a
DOS window, such as *.txt, which refers to every filename ending in “.txt.”

The .NET framework includes a set of full-featured regular-expression classes that
makes regular expression handling remarkably easy. To use the classes, you first define
your search string, passing it into the constructor of the Regex class:

reg = New Regex(“.*\.cs”)

This line of code defines a pattern that matches any filename ending in the string
“.cs”. The beginning of the pattern is .*, which means any string of characters. (It’s
equivalent to the single asterisk (*) in DOS filenaming; however, in this case, the dot
character refers to any character, and the asterisk means any number of the previous
special character. Thus .* means any number of any character.) Since the dot character is
special, you use a backslash followed by a dot if you really mean a dot. Thus, \.cs
means the literal string “.cs”. And so this particular Regex object is specifying a pat-
tern that will match any string ending in “.cs”.

The regular expression classes live in the System.Text.Regular
Expressions namespace. Thus, to access the classes, you either must fully
qualify them as System.Text.RegularExpressions.Regex; or, in VB.NET,
you need an imports statement at the beginning of your code, as in
Imports System.Text.RegularExpressions.

Then you can test a string to determine whether it matches the regular expression
using the Match class. Here’s an example:

reg = New Regex(“.*\.cs”)

VBMacroUtilities.Print(reg.Match(“hello”).Success)

VBMacroUtilities.Print(reg.Match(“MyFile.cs”).Success)

The first line results in the string False being written to the output window, since
the first string, “hello”, does not match the pattern. The second string,
“MyFile.cs”, however, does match the pattern, and so the second line writes the
string True to the output window.

Next is a macro that uses the previous regular expression pattern to search for all items
in the Solution Explorer that end in “.cs”—that is, the macro finds all C# source files.

‘ Need

‘ Imports System.Text.RegularExpressions

Private reg As Regex

Programming the Document and User Interface Objects 227

Sub RegTraverse(ByVal items As UIHierarchyItems)

Dim subitem As UIHierarchyItem

Dim m As Match

For Each subitem In items

m = reg.Match(subitem.Name)

If m.Success Then

VBMacroUtilities.Print(subitem.Name)

End If

If Not subitem.UIHierarchyItems Is Nothing Then

RegTraverse(subitem.UIHierarchyItems)

End If

Next

End Sub

Sub DemoRegExItems()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim win As Window = DTE.Windows.Item(_

Constants.vsWindowKindSolutionExplorer)

Dim uih As UIHierarchy = win.Object

reg = New Regex(“.*\.cs”)

RegTraverse(uih.UIHierarchyItems)

End Sub

You can see how I perform the match in this code: I call the Match function of the
Regex object; this function returns an object of class Match. This Match object has a
member called Success, which is either True or False, corresponding to whether
the match succeeded. If the match worked, then I print out the name of the item. Other-
wise, I just move on.

Selecting a Hierarchy Item
The UIHierarchy object has a property called SelectedItems, which is an array of,
as you can imagine, UIHierarchyItem objects that are currently selected. Now,
remember, you have a UIHierarchy object for each window that contains a hierarchy,
so if you have both the Solution Explorer and the Server Explorer windows open, each
window can have a set of selected items. When you switch to one window, the other
window’s selected items change color to indicate they’re still selected but not active.
Therefore, if you are using the UIHierarchy object for two different windows, you
might well find that both objects have a list of items in the SelectedItems array.

Each UIHierarchyItem object has a Selected property, meaning you have
two ways of finding which items are selected: If you are traversing the
hierarchy, you can simply look at an item’s Selected property; or, if you are
not traversing the hierarchy, you can obtain the list of selected items using
the root UIHierarchy object’s SelectedItems property.

Here’s a simple macro that lists all the items selected in both the Solution Explorer
and the Server Explorer windows:

228 Chapter 10

Sub ListSelectedItems()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim win As Window = DTE.Windows.Item(_

Constants.vsWindowKindSolutionExplorer)

Dim uih As UIHierarchy = win.Object

Dim uihitem As UIHierarchyItem

VBMacroUtilities.Print(“Solution Explorer”)

For Each uihitem In uih.SelectedItems

VBMacroUtilities.Print(“ “ & uihitem.Name)

Next

win = DTE.Windows.Item(_

Constants.vsWindowKindServerExplorer)

uih = win.Object

VBMacroUtilities.Print(“Server Explorer”)

For Each uihitem In uih.SelectedItems

VBMacroUtilities.Print(“ “ & uihitem.Name)

Next

End Sub

And here’s a sample output listing from this macro:

Solution Explorer

AssemblyInfo.cs

Form1.cs

Server Explorer

book_id

bookauth

Note: For the Server Explorer window, I had a books database open, and I had clicked
on two fields in the list, resulting in the book_id and bookauth items in this output.

Just as you can traverse a window’s hierarchy even if the window is closed,
you can also obtain a list of selected items. For example, if you select two
items in the Solution Explorer window and then close the window, you
would still see the selected items listed in the Solution Explorer’s
UIHierarchy.SelectedItems property. IDE users might not understand
this point and might get confused if you run an add-in or other program
based on a selected item when the window containing the selected item is
closed. I recommend, therefore, that you first check the Window object’s
Visible property, in addition to checking for selected items in the
hierarchy.

When you are traversing a hierarchy, you can cause the IDE to behave as if the user
double-clicked an item in the hierarchy. For example, if you have the UIHierar-
chyItem for a folder in the Solution Explorer, you can call the item’s Select method.
If the folder is currently expanded, then the folder will collapse. But if the folder is col-
lapsed, then it will expand.

Programming the Document and User Interface Objects 229

When you use the UIHierarchyItem.Select method, the focus does not
move to the window containing the UIHierarchyItem. Instead, the focus
will either remain on whichever window previously had the focus or, in the
case of double-clicking a macro’s name in the Macro Explorer, the focus will
return to whichever window previously had the focus. If you want to set the
focus to the window containing the item, call the Window object’s Activate
method.

Collapsing Nodes
Using a combination of the Document object, the Project object, and the various
hierarchy objects, you can write a macro that will collapse any project nodes in the
Solution Explorer that have no open documents. For example, if you have a solution
with 10 projects, with only one source file open, but the tree in the Solution Explorer
has several projects expanded (making for a somewhat messy view), then the follow-
ing macro will collapse all the nodes in the tree except for the project containing the
single file that is open.

Sub CollapseUnused()

‘ Gather all projects

Dim openprojects As New Collection()

Dim myproject As Project

For Each myproject In DTE.Solution.Projects

openprojects.Add(myproject, myproject.FullName)

Next

‘ Remove projects from list that

‘ have an open document

Dim doc As Document

Dim proj As Project

For Each doc In DTE.Documents

Try

proj = doc.ProjectItem.ContainingProject

openprojects.Remove(proj.FullName)

Catch

End Try

Next

‘ Close the projects in the list

Dim win As Window = DTE.Windows.Item(_

Constants.vsWindowKindSolutionExplorer)

Dim uih As UIHierarchy = win.Object

Dim item As UIHierarchyItem

Dim projitem As ProjectItem

Try

For Each item In uih.UIHierarchyItems.Item(1).UIHierarchyItems

Dim name As String = TypeName(item.Object)

If name = “Project” Then

230 Chapter 10

proj = item.Object

Try

If Not openprojects.Item(proj.FullName) _

Is Nothing Then

item.UIHierarchyItems.Expanded = False

End If

Catch

End Try

End If

Next

Catch

End Try

End Sub

This macro is rather straightforward: It first gathers up all the projects into a single
Collection object, which is a general-purpose object for storing collections of items.
Next, it iterates through the DTE.Documents list, obtaining the ProjectItem object
for each Document object, and then the associated Project object. The code then
removes the Project object from the collection. After the loop is finished, the Col-
lection object will contain a list of all the projects in the solution that have no open
documents.

In the third part of the macro, the code iterates through the list of projects. One inter-
esting caveat to this code, however: When I extracted the UIHierarchy object for the
Solution Explorer window, I noticed that the object contained only one entry, which
corresponded to the top node in the tree, which is the solution itself. To get the projects,
I therefore had to iterate through the UIHierarchyItems collection of that single
entry, not the UIHierarchyItems collection of the UIHierarchy object. And just to
make sure everything went smoothly, I put a try block around the code.

For each iteration, then, I grab the UIHierarchyItem object’s Object property,
and I check the type name. It should be “Project”, but I do a comparison, just in case.
Then I try to find the project in the Collection object. To find an item in a Collec-
tion, you call the Item method, passing the key, in this case the project’s full name.
Although I’m checking the results of Item against the Nothing value, in actuality the
Item method will throw an exception if the project is not present. However, I don’t
need the results of the Item call; I simply need to know if the project is present. There-
fore, I wrap the if statement in a Try/Catch block.

Moving Forward

In the next chapter I expand on the information introduced in this chapter and show
you how you can modify source code, taking into consideration the actual source code
elements. It will be as if your macro or add-in is aware of not only the text in the docu-
ment but the way the text represents code in a particular language as well. At the end
of Chapter 11, I also return to add-ins and demonstrate how you can use the informa-
tion in both these chapters to build an add-in that can easily modify your code.

Programming the Document and User Interface Objects 231

233

In the previous chapter, “Programming the Document and User Interface Objects,” I
described how you could modify the code inside the code editor by working directly
with the text. However, in the examples in Chapter 10, there was really no way to
determine what the different lines of code meant from a syntax point of view: Were you
looking at a class? Or perhaps a function? A variable declaration?

Using some of the good old techniques I learned back in school on how to parse a
file, I could show you how to figure out what the different code elements are; but, for-
tunately, I don’t have to: the .NET framework already has classes that can do that for
me. These classes have names such as CodeModel and CodeElement, and these dif-
ferent code-smart classes are the topic of this chapter.

Since the three main languages available for programming in .NET are
C++.NET, VB.NET, and C#, the various code model classes I discuss in this
chapter support only these three languages. Further, bear in mind that, like
other language-specific objects in .NET, the framework has two sets of
classes: one for C++.NET and one for both VB.NET and C#. Finally, be aware
that you cannot use the code model classes to modify VB.NET source code;
such source code is considered read-only by the code model classes. You
can, however, modify C++.NET and C# source code.

The CodeModel and
Build Objects

C H A P T E R

11

Manipulating Code with the CodeModel

Two classes exist in the .NET framework that are the primary entry points into the code
model. These are:

CodeModel. This object is accessible through the Project object’s CodeModel
property, and therefore is associated with an entire project.

FileCodeModel. This object is accessible through the ProjectItem object’s File-
CodeModel property, and therefore is associated with a single file within a project.

Although the CodeModel class has members such as AddClass and
AddFunction, at the time of this writing, the current version of Visual Studio.
Net (the first version) does not yet support these functions for C#; however,
it does for C++.

The CodeModel and FileCodeModel classes each contain a CodeElements
property. This is a collection of code element objects that describe the code within a
given file. The entire code system for a file is described hierarchically, which makes
sense: In the outermost layer you will have a set of elements, such as a namespace or a
class; then inside the namespaces and classes you will have members, such as variables
and functions; and inside the functions you will have more variables. Each of these
items—the namespaces, the classes, the variables, the functions—is a code element.

The code model system uses a separate class for each element, each of which is
derived from a base class called CodeElement. Therefore, you can either list each ele-
ment as a CodeElement object or as its own class. The classes have names such as
CodeClass, CodeNamespace, and CodeFunction.

Technically speaking, the individual code element classes are not derived
from CodeElement; rather, they provide the same interface as
CodeElement. The CodeElement class is actually a separate COM class
from the individual code element classes. However, the .NET framework lets
you treat them polymorphically.

Here are some of the more useful CodeElement classes:

CodeClass Object. Specifies a class.

CodeEnum Object. Specifies an enumeration.

CodeFunction Object. Specifies a function.

CodeNamespace Object. Specifies a namespace.

CodeProperty Object. Specifies a property.

CodeVariable Object. Specifies a variable.

234 Chapter 11

TE
AM
FL
Y

Team-Fly®

If you want to see an entire list of class names, you can find one by opening
the online help and going to the CodeElement Object entry. From there, click
the Object Properties, Methods, and Events link at the bottom of the entry.
Scroll down and click the Kind property. The Kind property’s entry has a list
of class names at the bottom of the page.

To obtain a CodeModel object, start with a Project object and access its CodeModel
object. Remember, a CodeModel object applies to the entire project. To obtain a File-
CodeModel object, start with a ProjectItem and access its FileCodeModel property.

The CodeModel and FileCodeModel objects both have a CodeElements prop-
erty. Similarly, each CodeElement object also has a CodeElements property. Since
the code elements are stored in a hierarchical manner, a recursive algorithm works best
to traverse through the elements. Here’s a macro that climbs through all the items in
the current document. First is the recursive subroutine, followed by the macro, called
TestCodeModel1.

Sub DumpElements(ByVal indent As Integer, ByVal ces As CodeElements)

Dim child As Object

For Each child In ces

Try

VBMacroUtilities.Print(“”.PadLeft(indent * 4) & _

child.Name.PadRight(45 - indent * 4) & _

“ “ & TypeName(child))

If Not child.Members Is Nothing Then

DumpElements(indent + 1, child.Members)

End If

Catch

End Try

Next

End Sub

Sub TestCodeModel1()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim fc As FileCodeModel =

DTE.ActiveDocument.ProjectItem.FileCodeModel

DumpElements(0, fc.CodeElements)

End Sub

As usual, this macro makes use of the VBMacroUtilities assembly covered in Chap-
ter 3, “Introducing the Visual Studio Macro IDE.” The macro obtains the current docu-
ment, and from that the associated project item, and finally the FileCodeModel
object. The FileCodeModel object contains a CodeElements collection, which itself
contains a list of CodeElement objects. It is this CodeElements collection that I pass
to the recursive subroutine called DumpElements.

The recursive DumpElements subroutine takes two parameters, an indentation
level, which allows me to print out the hierarchy with a respective indentations, and
a CodeElements collection. (I use the PadLeft function to indent the lines that I
print out.)

The CodeModel and Build Objects 235

For each CodeElement object in the CodeElements list, DumpElements prints
out the name of the elements and the type name. The reason I print out the type name
is so you can see that even though each item in the collection is a CodeElement item,
each has its own class name, such as CodeClass or CodeFunction or CodeName-
space. (They all start with the word “Code.”)

This macro uses a little trick: Not all the CodeElement classes have a member
called Members. Thus, the line that calls DumpElements recursively, passing
child.Members, will not always be valid. So I put a Try/Catch block around the
loop. If the Members member is not present, the empty catch block will step in and the
loop will continue along as if nothing had happened. (Some people have a problem
with this kind of code—that is, using an exception handler as a general-purpose mech-
anism rather than specifically for error conditions—but in my opinion, this makes for
simpler code.)

To try out this macro, open up a source code file. It can be a VB.NET file, a C# file, or
a C++ file. If you use a C++ file, you will see that each type name will be preceded by
“VC,” as in VCCodeClass or VCCodeFunction or VCCodeNamespace. The reason
for the name difference is that the .NET framework maintains two different processors,
one for the VB.NET and C# languages and one for the C++.NET language. However,
for each class in one set, there’s a corresponding class in the other set, and the corre-
sponding classes work similarly.

If you read Chapter 10, you are familiar with the EditPoint object. Each
CodeElement class includes a StartPoint and an EndPoint object, which specify
where the element begins and ends, respectively, in the code document. This way,
given a CodeElement object, you can position the insertion point at either the begin-
ning or ending of the code element’s position in the code; or you can highlight the
entire code element.

The following macro is an enhancement to the TestCodeModel macro shown ear-
lier in this section; it prints the elements and shows the starting and ending line num-
bers of each element as well:

Sub DumpElements2(ByVal indent As Integer, ByVal ces As CodeElements)

Dim child As Object

For Each child In ces

Try

Dim sp As TextPoint

Dim ep As TextPoint

sp = child.StartPoint

ep = child.EndPoint

VBMacroUtilities.Print(“”.PadLeft(indent * 4) & _

child.Name.PadRight(45 - indent * 4) & _

“ “ & TypeName(child) & “ “ & _

sp.Line & “-” & ep.Line)

If Not child.Members Is Nothing Then

DumpElements2(indent + 1, child.Members)

End If

Catch

End Try

Next

End Sub

236 Chapter 11

Sub TestCodeModel2()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim fc As FileCodeModel =

DTE.ActiveDocument.ProjectItem.FileCodeModel

DumpElements2(0, fc.CodeElements)

End Sub

A FileCodeModel Add-in
The best way to explore how you can use the various code model classes to access and
even modify the code is by seeing a real-live add-in that demonstrates some of the
functionality. Therefore, in this subsection, I guide you through putting together an
add-in that creates a tool window that contains a listbox. The listbox displays all the
classes in a document. When you activate a different document, the listbox updates
with the different document’s classes. The tool window also has two buttons, one that
refreshes the listbox (which you use the first time the add-in’s tool window opens) and
one that lets you create a new class.

But before we begin, I want to point out that the process of creating a class proved
somewhat interesting when I put this together because of the following issues:

■■ VB.NET is read-only. Therefore, the add-in cannot modify VB.NET code; it can
only show information about the code.

■■ C# worked as expected.

■■ C++.NET uses its own classes that do not behave as you might expect; there-
fore the code for modifying C++.NET code differs from that for modifying the
C# code.

Now let’s get started. Begin by creating a new add-in in VB.NET. (I used VB.NET for
this one because I was able to first prototype some of the functionality as a macro,
which requires VB.NET. Then when I had the parts ready to go, by making my add-in
also in VB.NET, I was able to simply paste in the code from the macros.) When you cre-
ate the add-in, check the box to create a toolbar menu.

When Visual Studio .NET creates the project for you, add references to Microsoft
.VisualStudio.VCCodeModel.dll and the VSUserControlHostLib library.

The VSUserControlHostLib is a library that you can download from
Microsoft’s Web site. I provided instructions for obtaining and building the
library in Chapter 7, “Creating Add-ins for the IDE,” in the section “Using the
Form Designer with a Tool Window.”

Here is the first portion of the Connect.vb file. You can see that my class is derived
from both IDTExtensibility2 and IDTCommandTarget, meaning that not only is
this an add-in, but it supports commands as well. You can also see I added code to the
OnDisconnection handler that hides the tool window. Further, I removed the
applicationInstance variable and replaced it with a global variable that I called

The CodeModel and Build Objects 237

DTE (the DTE variable is defined later in the ClassCommands.vb module). That way,
since my code started out in the macro editor, I can easily paste in the code directly,
without having to replace each instance of DTE with applicationInstance.

‘ Connect.vb

Imports Microsoft.Office.Core

Imports Extensibility

Imports System.Runtime.InteropServices

Imports EnvDTE

<GuidAttribute(“0F58522C-A2A6-42FE-9355-55761D369C4E”), _

ProgIdAttribute(“ClassManager.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Implements IDTCommandTarget

Dim addInInstance As EnvDTE.AddIn

Private doc As VSUserControlHostLib.IVSUserControlHostCtl = Nothing

Private toolwin As Window = Nothing

Public Sub OnBeginShutdown(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnBeginShutdown

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnStartupComplete

End Sub

Public Sub OnDisconnection(ByVal RemoveMode As Extensibility. _

ext_DisconnectMode, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnDisconnection

toolwin.Visible = False

End Sub

Next is the OnConnection handler. Very little of the original default code is left
here. I first store the DTE variable; then I create the tool window, as I described in Chap-
ter 7. Next I call SetupEvents, which is a global function in the ClassCommands.vb
module. (I’ll explain how it works when I discuss that module later in this section.)
After setting up the events, I set up the commands and menus as I did in many of the
add-ins earlier in this book.

Public Sub OnConnection(ByVal application As Object, _

ByVal connectMode As Extensibility.ext_ConnectMode, _

238 Chapter 11

ByVal addInInst As Object, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnConnection

DTE = CType(application, EnvDTE.DTE) ‘ This is in Commands.vb

addInInstance = CType(addInInst, EnvDTE.AddIn)

Dim tempdoc As Object

Dim newguid As String = “{1021AE39-169C-46d2-BA00-BE69EE944EC3}”

toolwin = DTE.Windows.CreateToolWindow(_

addInInstance, _

“VSUserControlHost.VSUserControlHostCtl”, _

“Form Host”, newguid, tempdoc)

toolwin.Visible = True

doc = CType(tempdoc, VSUserControlHostLib.IVSUserControlHostCtl)

Dim asm As System.Reflection.Assembly

asm = System.Reflection.Assembly.GetExecutingAssembly()

doc.HostUserControl(asm.Location, _

“ClassManager.ClassManagerForm”)

SetupEvents()

Try

Dim commands As Commands = DTE.Commands

Dim command1 As Command = commands.AddNamedCommand(_

addInInstance, _

“Show”, “Class Manager”, “Shows the Tool Window”, True,

_

59, Nothing, _

vsCommandStatus.vsCommandStatusSupported + _

vsCommandStatus.vsCommandStatusEnabled)

Dim viewMenu As CommandBarPopup = _

DTE.CommandBars(“MenuBar”). _

Controls(“&View”)

Dim viewMenuBar As CommandBar = viewMenu.CommandBar

Dim othersMenu As CommandBarPopup = _

viewMenu.Controls(“Oth&er Windows”)

Dim othersBar As CommandBar = othersMenu.CommandBar

command1.AddControl(othersBar, 1)

Catch

End Try

End Sub

The Exec and QueryStatus functions follow. The only command that this add-in
supports is the Show command, which works in conjunction with the menu item for
displaying the tool window. This is the same as described in Chapter 7 as well.

Public Sub Exec(ByVal cmdName As String, ByVal executeOption As _

vsCommandExecOption, ByRef varIn As Object, _

The CodeModel and Build Objects 239

ByRef varOut As Object, ByRef handled As Boolean) _

Implements IDTCommandTarget.Exec

handled = False

If (executeOption = _

vsCommandExecOption.vsCommandExecOptionDoDefault) Then

If cmdName = “ClassManager.Connect.Show” Then

toolwin.Visible = True

handled = True

Exit Sub

End If

End If

End Sub

Public Sub QueryStatus(ByVal cmdName As String, _

ByVal neededText As vsCommandStatusTextWanted, _

ByRef statusOption As vsCommandStatus, _

ByRef commandText As Object) _

Implements IDTCommandTarget.QueryStatus

If neededText = EnvDTE.vsCommandStatusTextWanted. _

vsCommandStatusTextWantedNone Then

If cmdName = “ClassManager.Connect.Show” Then

statusOption = CType(vsCommandStatus. _

vsCommandStatusEnabled + vsCommandStatus. _

vsCommandStatusSupported, vsCommandStatus)

Else

statusOption = vsCommandStatus. _

vsCommandStatusUnsupported

End If

End If

End Sub

End Class

Next is the ClassManagerForm.vb. Creating this form involves the same process as
described in Chapter 7: right-click on the project name, and in the popup menu choose
Add➪Add User Control. Call the form ClassManagerForm (even though it’s techni-
cally not a form). When the user control opens, you will build it as shown in Figure
11.1; place a large listbox on the left side and two buttons on the right. Then set the fol-
lowing: the listbox’s Dock property to Left; the Text property of the top button to Add
Class, and its Name property to AddClassButton; the Text property of the bottom but-
ton to Refresh, and its Name property to RefreshButton. Then right-click on the form
and choose View Code. The code for the form will open; expand the region called Win-
dows Form Designer-generated code by clicking on the small plus sign. Then add the
line shown inside the constructor (the New subroutine)—the line ManagerForm = Me.
This line is needed because the code in the third module, ClassCommands.vb, will be
accessing the ClassManagerForm object; the ManagerForm variable is in the Class-
Commands.vb module.

240 Chapter 11

Figure 11.1 The ClassManagerForm.

‘ Remember to add a reference to

‘ Microsoft.VisualStudio.VCCodeModel!

‘ Also, added these two imports lines

Imports EnvDTE

Imports Microsoft.VisualStudio.VCCodeModel

Public Class ClassManagerForm

Inherits System.Windows.Forms.UserControl

#Region “ Windows Form Designer generated code “

Public Sub New()

MyBase.New()

‘This call is required by the Windows Form Designer.

InitializeComponent()

‘Add any initialization after the InitializeComponent() call

‘ Added by Jeff

ManagerForm = Me

End Sub

‘UserControl overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As

Boolean)

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

‘Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

The CodeModel and Build Objects 241

‘NOTE: The following procedure is required by the

‘Windows Form Designer

‘It can be modified using the Windows Form Designer.

‘Do not modify it using the code editor.

Friend WithEvents ListBox1 As System.Windows.Forms.ListBox

Friend WithEvents AddClassButton As System.Windows.Forms.Button

Friend WithEvents RefreshButton As System.Windows.Forms.Button

<System.Diagnostics.DebuggerStepThrough()> Private Sub _

InitializeComponent()

Me.ListBox1 = New System.Windows.Forms.ListBox()

Me.AddClassButton = New System.Windows.Forms.Button()

Me.RefreshButton = New System.Windows.Forms.Button()

Me.SuspendLayout()

‘

‘ListBox1

‘

Me.ListBox1.Dock = System.Windows.Forms.DockStyle.Left

Me.ListBox1.Name = “ListBox1”

Me.ListBox1.Size = New System.Drawing.Size(240, 212)

Me.ListBox1.TabIndex = 0

‘

‘AddClassButton

‘

Me.AddClassButton.Location = New System.Drawing.Point(248, 8)

Me.AddClassButton.Name = “AddClassButton”

Me.AddClassButton.Size = New System.Drawing.Size(88, 23)

Me.AddClassButton.TabIndex = 1

Me.AddClassButton.Text = “Add Class...”

‘

‘RefreshButton

‘

Me.RefreshButton.Location = New System.Drawing.Point(248, 40)

Me.RefreshButton.Name = “RefreshButton”

Me.RefreshButton.Size = New System.Drawing.Size(88, 23)

Me.RefreshButton.TabIndex = 2

Me.RefreshButton.Text = “Refresh”

‘

‘ClassManagerForm

‘

Me.Controls.AddRange(New System.Windows.Forms.Control() _

{Me.RefreshButton, Me.AddClassButton, Me.ListBox1})

Me.Name = “ClassManagerForm”

Me.Size = New System.Drawing.Size(344, 216)

Me.ResumeLayout(False)

End Sub

#End Region

242 Chapter 11

Next come the form’s member functions. The Run function is the entry function that
calls a recursive function that climbs through the code elements, looking strictly for the
class elements, adding each one to the listbox. The handler for the Refresh button fol-
lows, which calls a RefreshVars function (which gets the latest Document object)
and then calls the Run subroutine. The handler for the Add Class button follows. This
handle simply calls the AddClass subroutine, which is part of the next module, Class-
Commands.vb. The subroutine adds a class to the code, thereby actually modifying the
code. Finally, the handler for the listbox control’s double-click event does some sanity
checks to make sure all is fine before calling HighlightClass, which is in the ClassCom-
mands.vb module, which I describe shortly.

Sub Run()

If DTE.ActiveDocument Is Nothing Then

Exit Sub

End If

ListBox1.Items.Clear()

RecurseExtract(0, RootElement.CodeElements)

End Sub

Sub RecurseExtract(ByVal indent As Integer, ByVal ces As _

EnvDTE.CodeElements)

Dim child As Object

For Each child In ces

Try

If TypeOf (child) Is EnvDTE.CodeClass Then

ListBox1.Items.Add(New AddinCodeClass(child, 0))

End If

If Not child.Members Is Nothing Then

RecurseExtract(indent + 1, child.Members)

End If

Catch

End Try

Next

End Sub

Private Sub AddClassButton_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles AddClassButton.Click

AddClass()

End Sub

Private Sub RefreshButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles RefreshButton.Click

UpdateVars()

Run()

End Sub

Private Sub ListBox1_DoubleClick(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles ListBox1.DoubleClick

If CurrentDocument Is Nothing Then

The CodeModel and Build Objects 243

Exit Sub

End If

Dim index As Integer = ListBox1.SelectedIndex

If index = -1 Then

Exit Sub

End If

Try

CurrentDocument.Activate()

Dim obj As Object = ListBox1.Items(index).codeinst

HighlightClass(obj)

Catch

End Try

End Sub

End Class

Now comes the ClassCommands.vb module. This module contains the work por-
tions of the add-in. Most people agree good programming practice includes separating
the user interface from the processing. However, in reality that’s easier said than done.
I did break away the processing from the interface in this program, with one main
exception: I stored the list of class objects in the listbox itself. I suppose if I were more
adventurous, I could subclass the Listbox class and override its protected Cre-
ateItemCollection method, providing access to my own collection that I would
store in the processing module called ClassCommands. But why add that kind of com-
plexity? If this were a large, production-scale project, perhaps that would be a good
idea, but for a small project such as this, I say leave well enough alone.

You can see that this module includes a class called AddinCodeClass. This class is
simply a wrapper around the CodeClass class. The primary purpose for this class is
to provide a ToString function that writes out the full name of the code element, with
an indentation level. Earlier, in the RecurseExtract function of the ClassManager-
Form.vb module, I populate the Listbox control with instances of AddinCodeClass.
The Listbox class includes a feature whereby you can fill the control with instances
of an object; then, for each line in the list, the Listbox class calls the object’s
ToString function. Thus, when I fill the Listbox control with instances of Addin-
CodeClass, the FullName of the element will display in the listbox. Further, when
the user double-clicks a line in the Listbox control, I’m able to immediately extract the
object associated with the line the user clicked.

This module also contains the AddClass subroutine. This subroutine first makes
sure the various variables have legitimate data in them, then it checks which program-
ming language the current document is in. If the language is C++ (that is, the File-
CodeModel.Language property is vsCMLanguageVC), then the code adds a class
using the FileCodeModel object’s AddClass function.

If the language is C#, then the code tries to add the class at the innermost position
possible, based on where the current insertion point is. (This functionality does not
work for C++, only C#, thus the difference in code based on the language.) If the inner-
most element does not have an AddClass function (in which case an exception will be
thrown), then the code will look to the parent element, trying again.

244 Chapter 11

TE
AM
FL
Y

Team-Fly®

You might be wondering why I chose to use an exception handler to
determine if the element has an AddClass function, rather than simply
using the runtime type information, which is available through the .NET
framework’s Type class. The reason is that although the TypeName function
returns the correct class name for COM objects stored in an Object variable,
the GetType function simply returns a COM object, with no knowledge of the
underlying class. Therefore, I could not make use of the Type class; it always
responded that there was no AddClass function even when there was.

‘ClassCommands.vb

Imports EnvDTE

Imports Microsoft.VisualStudio.VCCodeModel

Module ClassCommands

Public DTE As EnvDTE.DTE

Public Class AddinCodeClass

Public codeinst As Object

Public indent As Integer

Public Overrides Function ToString() As String

Return “”.PadLeft(indent * 4) & codeinst.FullName

End Function

Public Sub New(ByRef acodeinst As Object, _

ByVal aindent As Integer)

codeinst = acodeinst

indent = aindent

End Sub

End Class

Public CurrentDocument As Document = Nothing

Public RootElement As EnvDTE.FileCodeModel = Nothing

Public ManagerForm As ClassManagerForm = _

Nothing ‘ Set in ClassManagerForm constructor

Sub UpdateVars()

CurrentDocument = DTE.ActiveDocument

RootElement = DTE.ActiveDocument.ProjectItem.FileCodeModel

End Sub

Sub HighlightClass(ByVal CodeInst As Object)

Dim sel As TextSelection

sel = CurrentDocument.Selection

sel.MoveToPoint(CodeInst.StartPoint, False)

sel.StartOfLine(vsStartOfLineOptions. _

vsStartOfLineOptionsFirstColumn)

sel.MoveToPoint(CodeInst.EndPoint, True)

End Sub

The CodeModel and Build Objects 245

Sub AddClass()

‘ Obtain the current position in the

‘ code and insert the class there

If CurrentDocument Is Nothing Then

Exit Sub

End If

If Not TypeOf (CurrentDocument.Object) Is TextDocument Then

Exit Sub

End If

Dim tdoc As TextDocument = CurrentDocument.Object

‘ Find out the language

Dim lang As String = CurrentDocument.ProjectItem. _

FileCodeModel.Language

Dim newclass As String

‘ The online help fails to mention CodeModelLanguageConstants...

If lang = EnvDTE.CodeModelLanguageConstants.vsCMLanguageVC Then

newclass = InputBox(“Enter the class name”)

Try

Dim vcm As VCFileCodeModel = DTE.ActiveDocument. _

ProjectItem.FileCodeModel

vcm.AddClass(newclass)

Catch ex As Exception

MsgBox(ex.Message)

End Try

ElseIf lang = EnvDTE.CodeModelLanguageConstants. _

vsCMLanguageCSharp Then

newclass = InputBox(“Enter the class name”)

Try

Dim element As Object

Dim done As Boolean = False

Dim tname As String

element = tdoc.Selection.ActivePoint.CodeElement(_

vsCMElement.vsCMElementModule)

While Not done

Try

‘tname = TypeName(element)

‘ Can’t use typeinfo(element) and then

‘ GetMethod -- see text

‘MsgBox(“Trying class “ & tname)

element.AddClass(newclass)

done = True

Catch

element = element.Collection.Parent

End Try

End While

Catch ex As Exception

MsgBox(ex.Message)

246 Chapter 11

End Try

End If

End Sub

‘ Event Handlers

Dim WithEvents winevents As WindowEvents

Sub SetupEvents()

winevents = CType(DTE.Events.WindowEvents, EnvDTE.WindowEvents)

End Sub

Private Sub WindowEvent(ByVal GotFocus As Window, _

ByVal LostFocus As Window) Handles winevents.WindowActivated

If GotFocus.Kind = “Document” Then

‘ Can’t call UpdateVars at this point, since

‘ DTE.ActiveDocument isn’t set yet

CurrentDocument = GotFocus.Document

RootElement = GotFocus.Document.ProjectItem.FileCodeModel

ManagerForm.Run()

End If

End Sub

End Module

After you compile this add-in, the first time you run it, it will install a menu item,
View➪Other Windows➪Class Manager. In future runs of the add-in, you can use this
menu item to launch the add-in. You can also use this menu item to display the tool
window again after you close it. The first time you run the add-in, the tool window will
open automatically, as shown in Figure 11.2. The tool window contains the controls
you drew in the user control form. On the left is a listbox that will contain the names of
the classes in a code document. To see the classes, make sure you have a code file open.
If you already do, and you just opened the add-in tool window, click the tool window’s
Refresh button; or simply click on the document. The listbox will fill with the names of
the classes in the current document.

Figure 11.2 The add-in opens a tool window.

The CodeModel and Build Objects 247

You can then click the Add Class button to add a class to the document. The code
will insert the class in a logical place inside the code, formatted for either C# or C++.

Remember, you cannot use an add-in to modify VB.NET code using the code
model; to modify VB.NET code, you need to manually write your VB.NET
code to the document using the methods I described in Chapter 10.

If you’re interested in exploring the code model further, you might start by enhanc-
ing this Class Manager add-in. Here are some things to consider doing:

■■ Modify the code so that when it loads it automatically fills the listbox with the
classes for the active document, without you having to first click the Refresh
button.

■■ Add buttons for Add Function and Add Variable.

■■ Request the name, type, and parameters for your Add Function button. Take a
look at the online help for the AddFunction method to see how to specify
these. (Note: The type can be a string or an instance of the Type class.)

■■ Allow the user to specify additional information such as base classes for the
Add Class button. Take a look at the online help for the AddClass method to
see how.

Working with Build Objects

The automation model contains classes that let you interact with the IDE’s build process.
The main object you use is the SolutionBuild object, which includes functions that
let you: start a build of the entire solution or just a single project, start up a debug ses-
sion, or run a program. You can obtain the SolutionBuild object from the Solution
object’s SolutionBuild property. Thus, you use DTE.Solution.SolutionBuild.

To build an entire solution, use the SolutionBuild.Build method, which is
equivalent to choosing Build➪Build Solution. To build a particular project, use
SolutionBuild.BuildProject. (SolutionBuild.BuildProject doesn’t really
have an equivalent menu item, since the function can build any project in the solution,
whereas the Build Project section of the Build menu builds only the active project.)

When you build a solution or project from a macro, you pass either True or
False as a parameter, True meaning the call will pause and not return until
the build is complete. Be careful when you pass True, however, because
you really cannot interrupt the macro once the build has started, nor can
you interrupt the build. The IDE freezes as it normally does when you run a
macro, meaning you can’t halt the build. And if you abort the macro by
double-clicking the macro icon in the system tray, the macro won’t stop until
the build finishes. So use care when passing True to the build functions.

248 Chapter 11

Here’s an example. Suppose you have two related solutions, and while working in
one, you occasionally have to build the other, but you don’t want to interrupt your cur-
rent work by closing the present solution, loading the other, building it, closing it, and
returning to the first. I’ll call the present solution Solution One, and the solution that is
not loaded Solution Two. Now suppose that Solution Two contains projects whose files
live inside source code control and that other people can change the files. That means
that even though you may not have made any changes to Solution Two, your build of
it could be outdated. So before you complete your build of Solution One, you want to
go ahead and build Solution Two.

To build Solution Two, you could start up a second instance of Visual Studio .NET;
the IDE allows you to do so. But if you’re not going to be modifying code and working
on the projects in Solution Two, why mess around with two instances of the IDE?
Visual Studio .NET provides you with three ways you can build Solution Two:

■■ Open up a second instance of the IDE, even though I just suggested otherwise.
(You might be fine with having two instances running. Personally, I find it
cumbersome.)

■■ Open a command-line prompt (i.e., DOS window) and run the command-line
version of the Visual Studio .NET product.

■■ Invoke a macro that builds the solution for you.

The first of these, starting a second instance of the IDE, is pretty self-explanatory:
You just run Visual Studio .NET again. The second is quite simple, too, provided you
open a DOS window that has the paths and other environment variables set properly.
(The Start menu item in Microsoft Visual Studio .NET has a submenu called Visual
Studio .NET Tools that includes a Visual Studio .NET Command Prompt item, which I
suggest you use for opening your DOS window. It has all the path and other environ-
ment variables set up properly for you.)

As I mentioned in Chapter 7, “Creating Add-ins for the IDE,” you can invoke the
Visual Studio .NET program from the command prompt. Here’s the DOS command for
invoking devenv in command-line mode to build your solution for you:

devenv c:\dev\SolutionTwo\SolutionTwo.sln /build DEBUG

Easy enough. But if you want to automate the build, you can use a macro. Your macro
can take three different approaches:

■■ It could launch a DOS window and execute the devenv command.

■■ It could temporarily unload Solution One, load Solution Two, build it, unload
it, and then reload Solution One.

■■ It could launch another instance of the IDE, build the solution, and then close.

Each of these is reasonable, and the one you choose will depend simply on personal
taste. I kind of like the high-tech automation approach to unloading my current solu-
tion, loading and building another, and then returning to the first, although it might
seem like a bit of overkill. Nevertheless, I’ll show you macros for each of these three
possibilities in the following two sections.

The CodeModel and Build Objects 249

You might even be creative enough to come up with other approaches I haven’t con-
sidered. Remember, however, that the IDE is only capable of having one solution open
at a time. I suppose it’s possible to conceive of an IDE capable of managing multiple
solutions simultaneously, but for the majority of the users out there, such a feature
would probably cause more complications than it would be worth. Or, perhaps if you
need to build multiple solutions on a regular basis, you might write an add-in that
includes a tool window that holds a list of other solutions that you can edit. You could
then double-click one of the solution names, after which the add-in would spawn a
build process in the same way I describe in the next section. All that said, I’m not going
to present an add-in here that lists a group of solutions, as I doubt many readers would
have much use for it.

Spawning a Build Process

To spawn a program from a macro, you can use Visual Basic’s built-in Shell command.
Like MsgBox and InputQuery, Shell is not a part of the .NET framework; instead, it
is a keyword in the Visual Basic language.

Alternatively, you can tell Visual Studio .NET to spawn a command by issuing the
Tools.Shell command. Remember, the IDE maintains a list of commands (of which
your macros are a part, as are the commands you add to your add-ins). One such com-
mand is the Shell command, which is part of the Tools command namespace.

Later in this section I’ll show you two macros that perform these two spawn
processes. But first I need to mention that in order to run the devenv in the command-
line environment, the environment must be set up properly. Earlier I mentioned start-
ing the command prompt that’s configured for .NET. The catch is getting this
configuration into the command that you spawn. Here’s what I recommend you do: If
you are going to be launching the devenv process from within the IDE, start the IDE
from the .NET command prompt. But instead of just opening the .NET command
prompt and typing devenv to run the IDE (which you could do), I suggest you take a
slightly different approach. Normally, when you start the .NET command prompt, the
Windows shortcut spawns a command shell, executing a particular batch file called
vsvars32.bat. By default, the file is found here:

C:\Program Files\Microsoft Visual Studio .NET\Common7\Tools

This batch file sets up the environment for you. When the shortcut starts the com-
mand prompt, it uses the /k option, which instructs the command shell to run the
specified program (in this case, the batch file) and then remain open. Therefore, I sug-
gest you create another batch file by copying the vsvars32.bat to a new name, called
startenv.bat. Then open the startenv in a text editor of your choice (or in the IDE’s own
text editor) and go to the very bottom and add the following two lines (immediately
after the line “:end”):

devenv

exit

250 Chapter 11

The first line causes the batch file to launch the Visual Studio .NET IDE; but now the
IDE will inherit the path information and environment. The second line closes the tem-
porary DOS window that the batch file was running under.

Next, you can create a shortcut, on the desktop, on the start menu, or on the Quick
Launch bar. The shortcut’s command line (that is, the “target”) should be this:

%comspec% /k “c:\Program Files\Microsoft Visual Studio .NET\Common7\

Tools\startenv.bat”

(Note that %comspec% is simply a default environment variable for the command
line interpreted. On my Windows 2000 system, it points to C:\WINNT\system32\
cmd.exe.) You can leave the working directory (the “Start in” box) empty.

Now when you start Visual Studio .NET, use your new shortcut rather than the
default one. Then the IDE will inherit the proper environment, as will any programs
that your macros spawn.

Here, then, is a small macro that spawns the devenv command in a DOS window
using the built-in Visual Basic command called Shell:

Sub SpawnBuild()

Shell(_

“cmd /k devenv “”C:\dev\SolutionTwo\SolutionTwo.sln”” /build DEBUG”)

End Sub

In this command I launch the cmd command, which forces devenv, when running
in command-line mode, to send its output to a DOS window. (Otherwise, you won’t
see any output and devenv will run in the background, leaving you unable to see the
results of the build.) The /k option tells the cmd program to keep the DOS window
open after the following command—in this case devenv—finishes executing. That
way you can look at the output and then type exit to close the DOS window. If you pre-
fer to have the window close right away, you can replace /k with /c.

When I run the SpawnBuild macro on my computer, the DOS window does
not automatically come to the front; I have to click its icon on the task bar.
However, the following macro, SpawnBuild2, does bring the DOS window to
the front automatically.

Now here’s a macro that also spawns devenv, but instead using the Tools.Shell
command.

Sub SpawnBuild2()

DTE.ExecuteCommand(“Tools.Shell”, _

“cmd /k devenv “”C:\dev\SolutionTwo\SolutionTwo.sln”” /build DEBUG”)

End Sub

This macro works in precisely the same way as the previous SpawnBuild macro,
except it uses the IDE’s Tools.Shell command to spawn the devenv program.

The CodeModel and Build Objects 251

Building with the SolutionBuild Object

In addition to spawning a build, you can use the SolutionBuild object to build an object
in the IDE itself. To obtain the SolutionBuild object, use DTE.Solution.Solution-
Build. Then, to build the current solution, call Build. Here’s a simple example:

Sub BasicBuild()

Dim sln As Solution = DTE.Solution

If sln.FullName = “” Then

MsgBox(“No solution currently loaded”)

Else

sln.SolutionBuild.Build(False)

MsgBox(“Building!”)

End If

End Sub

In the previous section, the other macro option I mentioned was to momentarily
switch to another solution. Remember, however, that’s just an example of how you
might automate the process of building a solution. Here, then, is an example of a macro
that will switch to a different solution and then back again:

Sub SwitchAndBuild()

Dim win As Window = DTE.Windows.Item(_

EnvDTE.Constants.vsWindowKindOutput)

win.Activate()

Dim ow As OutputWindow = win.Object

Dim pane As OutputWindowPane = ow.OutputWindowPanes.Item(1)

pane.Clear()

pane.OutputString(“Opening solution...”)

Dim sln As Solution = DTE.Solution

Dim cursoln As String = DTE.Solution.FullName

sln.Open(“C:\dev\SolutionTwo\SolutionTwo.sln”)

sln.SolutionBuild.Build(True)

sln.Open(cursoln)

End Sub

When you build a solution using the SolutionBuild.Build function, you
will automatically use whichever configuration (e.g., Debug or Release) is
currently active. The Build function does not give you the option to choose.
However, the BuildProject function, which I discuss in the next section,
“More on the SolutionBuild Object,” does let you specify a configuration.

More on the SolutionBuild Object

The SolutionBuild object lets you build either an entire solution or an individual project.
To build an individual project, you call the BuildProject function. The parameters

252 Chapter 11

to BuildProject are a bit different from other functions in the automation model, in
that you don’t pass a Project object to the function. Instead, to specify the project you
wish to build, you pass the name of the project. But which name do you use? A Project
object has multiple names, including FullName and UniqueName. The name to use is
the UniqueName property.

Additionally, you pass the name of the configuration you want to build (e.g., Debug
or Release). Finally, you pass a True if you want the function to pause and wait until
the build process is finished before continuing; otherwise, you can pass False, which
is the default.

Here’s an example of a call to BuildProject:

Sub BuildProjectDemo()

Dim proj As Project

proj = DTE.Solution.Projects.Item(1)

MsgBox(proj.UniqueName)

DTE.Solution.SolutionBuild.BuildProject(_

“Debug”, proj.UniqueName, False)

End Sub

You can see that, oddly, the first parameter is the configuration, and then you pass
the project’s unique name. In this macro I included a message box that shows the
unique name of the project so that you can see the format. (It’s usually a local directory
name, followed by a backslash, followed by the project filename, as in myproject\
myproject.vbproj.) Also remember that the configuration name is the configuration
name for the solution, not for the project.

You can also clean the projects simply by calling SolutionBuild.Clean, passing
a True if you want the function to wait for the clean operation to complete, or passing
False or leaving the parameter blank if you don’t want to wait. The following macro
demonstrates this:

Sub CleanProjects()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

VBMacroUtilities.Print(“The following projects will be cleaned.”)

Dim solnctx As SolutionContext

Dim solncfg As SolutionConfiguration

solncfg = DTE.Solution.SolutionBuild. _

SolutionConfigurations.Item(“Debug”)

For Each solnctx In solncfg.SolutionContexts()

If solnctx.ShouldBuild = True Then

VBMacroUtilities.Print(solnctx.ProjectName)

End If

Next

DTE.Solution.SolutionBuild.Clean()

End Sub

In this macro, I also demonstrate how you can discover which projects are going to
be cleaned; the same list of projects will be built when you build the entire solution.
The SolutionBuild object contains a list of SolutionConfiguration objects, one

The CodeModel and Build Objects 253

for each project in the solution. The SolutionConfiguration object includes a
ShouldBuild property, which specifies whether the project is included in the build or
clean process. This list corresponds to the items that have checkmarks by them in the
Configuration Manager dialog. You can open this dialog by right-clicking the solution
name in the Solution Explorer and choosing Configuration Manager in the popup
menu. The dialog box contains a list of projects and a checkbox for each under the
header Build. Those projects that have a check in the Build column will have a value of
True for the ShouldBuild property.

The SolutionBuild object includes the following functions in addition to those
I’ve already described:

Run. This function takes no parameters; it runs the startup project.

Debug. This function also takes no parameters; it starts up the debugger, running
the startup project.

Deploy. This function, which takes a true or false stating whether you want the
function to wait for completion, causes the projects marked for deployment to
deploy, referring to the projects whose SolutionContext object has the
ShouldDeploy property set to True. (This is the same SolutionContext
that contains the ShouldBuild property.)

Moving Forward

In this chapter I introduced you to the classes you can use for analyzing and, in the case
of C++ and C#, modifying the code. I demonstrated some of the code analysis and
modification features using an add-in that looks for classes and lets you add a class.
And though the modification features are not available for Visual Basic, as an exercise,
you might think about how you can manually modify Visual Basic code by directly
editing the Document object’s Selection object.

In the next chapter, I move on to the topic of creating project wizards. When you cre-
ate a new project in the main IDE, the first thing you do is choose a template. The tem-
plates usually consist of wizards; using the techniques I describe in the next chapter,
you can create your own additional wizards.

254 Chapter 11

TE
AM
FL
Y

Team-Fly®

255

When you choose File➪New➪Project, the New Project dialog box opens. This dialog
contains the templates for the different projects available. The dialog will have different
categories depending on which products you have installed, such as just VB.NET or just
C#. The templates that you see in the New Project dialog are a mixture of projects and
wizards. For example, take a look at the following directory (which you’ll need to adjust
if you installed Visual Studio .NET in a different location on your hard drive.):

C:\Program Files\Microsoft Visual Studio .NET\Vb7\VBProjects

Here are two files I see in my VBProjects directory:

ConsoleApplication.vsz

EmptyProject.vbproj

The first file represents a wizard; the second file represents a project. If you open the
project file into a text editor, you will see some XML data that represents the project.
You will also see that the project contains no project items or files. Indeed, the one that
I list here is called EmptyProject.vbproj. When you create a project of type Empty Proj-
ect, you start out with no files, just a project.

But when you create a project of the type represented by the wizard, usually a sec-
ond dialog box will open following the New Project dialog box. This second dialog box
will let you choose various options regarding the project; then the wizard will create a
project for you with some default files. Or, if the second dialog box doesn’t open, the
wizard will start up and automatically create a set of files for you.

Creating Project Wizards

C H A P T E R

12

If you open the ConsoleApplication.vsz wizard file into a text editor, here is what
you will see:

VSWIZARD 6.0

Wizard=VsWizard.VsWizardEngine

Param=”WIZARD_NAME = ConsoleApplication”

Param=”WIZARD_UI = FALSE”

Param=”PROJECT_TYPE = VBPROJ”

The first line is simply the version of Visual Studio .NET for which this particular
wizard was written. (And note that the sample shows 6.0, which is the version that pre-
ceded .NET. Although the files that this wizard inserts into your project have changed,
the wizard is written to target the 6.0 engine. In general, any wizard you create will
have 7.0.)

The second line is the COM component the IDE runs to launch the wizard. This par-
ticular COM component is called VsWizard.VwWizardEngine (which in this chap-
ter I call the wizard engine). If you look inside the Registry Editor (regedit.exe) and
expand the HKEY_CLASSES_ROOT key, you can scroll down and find an entry for
VsWizard.VsWizardEngine.

The next three lines are parameters that the IDE passes to the wizard. The parame-
ters describe the wizard: its name, whether it displays a dialog box (UI for user inter-
face), and the type of project the wizard creates, in this case a VB.NET project.

This particular wizard, then, is really a set of parameters and, as you’ll see in the
next section, a set of files that communicate with the wizard engine, VsWizard
.VsWizardEngine.

From the preceding discussion, you can see two entries to the wizard
system: one is the COM component itself and the other is by passing
parameters to the VsWizard.VsWizardEngine COM component. Therefore,
you have two ways to create a wizard: either write a COM component or
provide information to the default VsWizard.VsWizardEngine component.

In the sections that follow, I only give you information on writing a wizard using the
default VsWizard.VsWizardEngine component. I steer clear of the COM compo-
nent method simply because you have much more flexibility when you use the wizard
engine. The wizard engine includes features such as file rendering, which enables you to
generate source code that is customized to the IDE user’s selections in the wizard. If
you write your own COM component from scratch, you would have to write your own
text-processing routines to handle such work. But why bother? The functionality is
already present, so I recommend that you simply use the default VsWizard.VsWiz-
ardEngine component.

Dissecting the Wizard Directory Structure
Writing a wizard that lives as a script interacting with the wizard engine involves writ-
ing a JScript file and, optionally, various HTML files. The HTML files represent the user

256 Chapter 12

interface for the script. The reason you use HTML is at the script engine displays the
wizards inside an Internet Explorer control (that is, the HTML-rendering control that is
the heart of Internet Explorer).

Wizards do not have to follow the model I’m describing in this section. It’s
just that the wizard engine, which is simply a COM component, uses this
model, so if you want to write a wizard that interacts with the wizard engine
(as opposed to writing your own COM component), then you must follow
this model.

Here are the files you create that interact with the wizard engine:

.vsz and .vsdir files. These files describe the wizard. I’ll explain where these go
in a moment, when I talk about the directory structure.

HTML files. These files represent the user interface. You will have a main file
called default.htm, which the script engine initially uses, and other files with
any names you prefer.

Images. These are the image files that the wizard displays in the HTML pages.

Script file. Usually written in JScript (although you can use VBScript if you pre-
fer), this file describes the actions for creating the project, copying the files into
the project directory, and setting up the project options. Normally, you only
have one script file, and it is called default.js.

Templates. These are the files that the script copies into the project directory.
These files have two possible variations. A template file can be a text file con-
taining symbols that the wizard will replace (such as a symbol representing the
project name, which the wizard replaces with the actual project name), or a file
that is not text, which the wizard simply copies into the project directory.

Although you can write your scripts in either JScript of VBScript, all of the
scripts that ship with Visual Studio .NET use JScript. Therefore, for
consistency, in this book I focus strictly on JScript. If you’re not familiar with
JScript, its syntax is very similar to that of C++ and C#.

The wizard files for a single product (that is, C++, VB.NET, and C#) live in two dif-
ferent directory areas. First, each product has a projects directory containing the gen-
eral information files about the wizards. This directory is where you will put your .vsz
and .vsdir files. However, the name of this directory differs for each product. Addi-
tionally, other project types inside Visual Studio .NET have their own project directo-
ries as well. Here are all the ones you are likely to find on your computer:

Visual Basic project wizards. c:\Program Files\Microsoft Visual Studio .NET\
Vb7\VBProjects

Deployment and Setup project wizards. c:\Program Files\Microsoft Visual
Studio .NET\Common7\Tools\Deployment\VsdProjects

Creating Project Wizards 257

Database project wizards. c:\Program Files\Microsoft Visual Studio .NET\
Common7\Tools\Templates\Database Projects

Add-in project wizards. c:\Program Files\Microsoft Visual Studio .NET\
Common7\IDE\Extensibility Projects

C++ project wizards. c:\Program Files\Microsoft Visual Studio .NET\Vc7\
VCProjects

C# project wizards. c:\Program Files\Microsoft Visual Studio .NET\VC#\
CSharpProjects

Additionally, the following directory holds the single solution template: c:\Program
Files\Microsoft Visual Studio .NET\Common7\IDE\SolutionTemplates.

Each of these directories contains the .vsz and .vsdir files that describe the wizards
available for the particular project type. Visual Studio .NET knows where these direc-
tories are located by looking in the Registry under the HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\VisualStudio\7.0\NewProjectTemplates\TemplateDirs key.
This key contains several subkeys that define the project types you see on the left side
of the New Project dialog box.

Although you might consider adding more keys to the Registry, hoping to
create more project types, I don’t recommend doing so, primarily because
you will be in for a major undertaking. Adding project types requires the
Software Development Kit (SDK) that you obtain when you join the Visual
Studio Integrator Program (VSIP). For each project type in the Registry there
exists a package under the Packages key, and building a package requires
the VSIP. Without the VSIP, you would be in for quite a job.

In addition to the .vsz and .vsdir files in the projects directory, you will find a wiz-
ards directory under most of the installations, with some exceptions. As before, the
actual name varies for each installation. Here are the directory names, along with
the exceptions:

Visual Basic project wizards. c:\Program Files\Microsoft Visual Studio .NET\
Vb7\VBWizards.

Deployment and Setup project wizards. The deployment and setup wizards
use a separate wizard from the VsWizard.VwWizardEngine wizard engine.
It is called Microsoft.VSWizards.Deploy.SetupWizard, and it finds the wizard
files in the same directory as the .vsz and .vsdir files.

Database project wizards. Visual Studio .NET has only one database project wiz-
ard, and it’s really just an empty project not a wizard. The empty project lives in
the same directory as the .vsdir file, C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools\Templates\Database Projects.

Add-in project wizards. These wizards live in subdirectories underneath the
c:\Program Files\Microsoft Visual Studio .NET\Common7\IDE\Extensibility
Projects directory.

258 Chapter 12

C++ project wizards. c:\Program Files\Microsoft Visual Studio .NET\Vc7\
VC#Wizards

C# project wizards. c:\Program Files\Microsoft Visual Studio .NET\VC#\
VCWizards

If you go to the wizard directories (VBWizards, VCWizards, etc.), you will
see several other wizards in addition to the project wizards. These are file
wizards. When you add an item to a project, you can add one of many types
of files. For example, in a VB.NET project, you can add a module file or a
class file, among others. Each of these file types has a wizard. The .vsz and
.vsdir files for these wizards are in the VBProjectItems directory, which is
also off the VB.NET main installation directory. The other installed products
have similar directories.

Because of the directory layout I have described, when you create a wizard, you will
put its files in two locations. First, you will put the description files (.vsz and .vsdir
files) in the projects directory for the particular installation (VB.NET, C#, C++). Second,
you will put the scripts and additional files (the files that make up the actual wizard)
in the wizards directory for the particular installation.

Wizard File Interactions and Symbols

Before I show you how to build a wizard, I want to take a moment to explain how all
the files fit together and how they communicate with one another.

To begin, take a look at an existing wizard. Using either an Explorer window or a
DOS prompt, head over to the projects directory for the C++ installation, which, by
default, is C:\Program Files\Microsoft Visual Studio .NET\Vc7\vcprojects. Inside
this directory, notice these two files:

Win32Wiz.vsz. This is the description for the Win32 project wizard.

Win32Wiz.ico. This is the icon for the Win32 project. It appears in the New
Project dialog box.

In the first section of this chapter, I showed you what’s inside a .vsz file. If you open
this Win32Wiz.vsz file in a text editor, such as Notepad, you will see similar informa-
tion: the name of the wizard COM component (VsWizard.VsWizardEngine) and
the name of the wizard, passed in as a parameter (“WIZARD_NAME = Win32Wiz”).

Now head up one directory then down to the VCWizards directory. Remember, the
wizard name is Win32Wiz, therefore, underneath the VCWizards directory is a subdi-
rectory called Win32Wiz. Move into this Win32Wiz directory and you’ll see four sub-
directories: html, images, scripts, and templates. These are the directories I described
in the previous section, “Dissecting the Wizard Directory Structure.” Under each of
these directories, in turn, is a subdirectory called 1033. This is the default culture direc-
tory, as I described in “About Culture-Specific Information” in Chapter 8. (If you hap-
pen to live in a non-English-speaking country and are fortunate enough to have a

Creating Project Wizards 259

Visual Studio .NET installation for your particular language, you will likely see an
additional directory here with a number representing your particular culture.)

The images directory does not have a culture directory associated with it.
Therefore, whereas you will find, for example, the directory HTML\1033
containing HTML files, and the directory scripts\1033 containing the script
files, you will find the images in the directory images, not images\1033.

In order for the different files to work together, a wizard contains a set of symbols
that represent the state of the IDE user’s choices while going through the wizard. With
that in mind, try the following: Choose File➪New➪Project. When the New Project dia-
log box opens, on the left side choose Visual C++ Projects. On the right side, choose
Win32 Project. Assign a name to the project (I called mine Win32proj1) and a directory.

When you click OK, the wizard opens. The left side of the wizard has a hyperlink
(remember, this is an HTML page) for Application Settings. When you click this link,
the page changes to a list of options. One of these options is Application Type, which
includes a set of radio buttons, one for each application type. As is typical with radio
buttons, you can select only one button at a time. Thus, you might choose a single
Application Type. The HTML page also has a set of options labeled Additional
Options. This set consists of Empty Project, Export Symbols, and Precompiled Header.
Each of these options is a checkbox, meaning you can select multiple options; the
options are not mutually exclusive. (However, the Export Symbols option is enabled
only when the application type is DLL; and the Precompiled Header option is always
checked, but disabled, unless you choose Static Library for the application type, in
which case the Precompiled Header option becomes enabled.) Additionally, the page
has options for ATL support and MFC support.

At this point you can either create the project or just press Cancel. Then return to the
Explorer or DOS window and move down into the VCWizards\win32wiz\scripts\
1033 subdirectory, found underneath the C++ installation. Inside this directory you
will find the single script file that processes the information you enter into the HTML
pages. This script file is called default.js. Open it in a text editor of your choice. You can
see the file looks similar to a C++ or C# program in its syntax. Search on the word
FindSymbol. Here are some of the lines that you will encounter:

var Pch = wizard.FindSymbol(“PRE_COMPILED_HEADER”);

wizard.FindSymbol(“SUPPORT_MFC”)

wizard.FindSymbol(“CONSOLE_APP”)

wizard.FindSymbol(“WIN_APP”)

Each of these symbols refers to an option the IDE user can choose when viewing the
HTML files of the wizard. For example, the WIN_APP option refers to the user’s choice
of the Windows application for the Application Type.

Now move up two directories, then down to the html\1033 directory. Inside this
directory you will see two .htm files. The one called default.htm is the HTML file that
opens when you first start the wizard. The second, AppSettings.htm, is the page that
displays the settings I described. Go ahead and open the AppSettings.htm file in a stan-
dard text editor of your choice. Now search on the string WIN_APP. Skip the first one

260 Chapter 12

you come to (it refers to an image) and look at the second line, which I show you here
(though spread out over several lines to accommodate the width of the book page). I’ve
boldfaced two items that I discuss next:

<INPUT TYPE=”radio” CLASS=”Radio” onPropertyChange=”InitControls();

”NAME=”apptype” ID=”WIN_APP” ACCESSKEY=”W” TITLE=”Creates a simple

Windows application. The application files include a <projectname>

.cpp file that contains the _tWinMain function, and stdafx.cpp and

stdafx.h files that are used to create the precompiled header file.”>

You can see that the input type is radio button (the first item in bold). You can also
see the button has an ID called WIN_APP (the second item in bold). This means the
selection state of the radio button will get stored in the WIN_APP variable that you can
access in your scripts.

Once you include an ID in the HTML control and, as a result, have a symbol defined,
you can use the symbol in the rendering of your template files, which is a topic I cover in
the next section, “Rendering the Template Files.” As a preview, I’ll say this: When you
render a template file, you copy the file from the templates directory to the project direc-
tory, and the wizard engine automatically replaces instances of your symbol within the
file with the string or value stored in the symbol. For example, if the symbol is called
GUID_COCLASS, and the value is 543E3E5D-40DA-4AAC-8C17-1481B30B693E, when
you render a source file, the wizard engine will replace all instances within the file of
[!output GUID_COCLASS] with 543E3E5D-40DA-4AAC-8C17-1481B30B693E.

In order to use a symbol in your scripts, you call the wizard engine’s FindSymbol
function, as in the following code:

var bAttributed = wizard.FindSymbol(“ATTRIBUTED”);

To use the FindSymbol function, you pass the name of the symbol and save the
results in a JScript variable.

There are three sources of symbols in your wizard:

■■ HTML files. You can define symbols in your HTML files, as I demonstrated with
the previous HTML code.

■■ JScript files. Your JScript files can create symbols by calling into the wizard
engine.

■■ Default symbols. Your JScript files can access several default symbols, such as
TEMPLATE_PATH, which gives the location of the template files.

To create symbols in your JScript files, you call the wizard engine’s AddSymbol
function. Here’s an example from the default.js script for the MFC Application Wizard:

wizard.AddSymbol(“ABOUTBOX_FONT_SIZE”, “8”);

This line creates a symbol called ABOUTBOX_FONT_SIZE and sets it equal to the
string “8”.

Creating Project Wizards 261

Depending on your level of HTML expertise, it may interest you to know that
you can type scripts directly into your HTML files (rather than having them
in their own .js files). These scripts, when embedded in an HTML file, can
call into the wizard engine just as the your default.js script file and other .js
files can. However, when the script is inside an HTML file, instead of using
the object name wizard, as you do in .js files, you use the object name
window.external.

You can also create symbols in the scripts within your HTML files, by calling the
same AddSymbol method; and, as usual, instead of the name wizard, you use the
name window.external, as in the following line:

window.external.AddSymbol(“HTML_VIEW”, true);

In the previous list I also mentioned default symbols. The wizard engine provides
many default symbols that your scripts can access. For these symbols’ names, you do not
need to call AddSymbol. Here are some of the more common predefined symbols:

HTML_PATH. This is the path where the HTML files reside. Normally, it will be
the wizard’s path, followed by the directory name HTML, followed by the locale
(such as 1033, which is the default).

IMAGES_PATH. This is the path where the image files reside. It will typically be
the wizard’s path, then the directory name Images.

PRODUCT_INSTALLATION_DIR. This is the root of the particular product for
which the wizard works, such as C++. For example, the default product installa-
tion for C++ is c:\Program Files\Microsoft Visual Studio .NET\Vc7\.

PROJECT_NAME. This is the name of the project, the name the IDE user typed
into the New Project dialog box.

PROJECT_PATH. This is the path to the project, the project path the IDE user
typed into the New Project dialog box, followed by the project name. Remember
that this symbol contains both the path and filename, not just the path.

SCRIPT_PATH. This is the path to the directory containing the scripts. Normally,
it will be the wizard’s path, followed by the directory name Scripts, followed by
the local, which is 1033 by default.

START_PATH. This is the wizard’s path, the path of the base directory contain-
ing the HTML, Scripts, Images, and Templates directory. It will be under the
main Wizards directory; for example, for the MFC Application Wizard it will be
c:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\mfcappwiz.

TEMPLATES_PATH. This is the path where you can find the template files. Nor-
mally, it will be the wizard’s path, followed by the name Templates, followed by
the locale, which, again, is 1033 by default.

WIZARD_NAME. This is the name of the wizard, such as mfcappwiz.

262 Chapter 12

To see the full list of predefined symbols, open the Visual Studio .NET online
help. Go to the Contents and drill down to Visual Studio .NET➪Visual
C++➪Creating and Managing Visual C++ Projects➪Designing a Wizard➪Files
Created For Your Project➪The .vsz File➪Custom Parameters in the Wizard
.vsz File.

You can control the values of the predefined symbols from with your .vsz file.
(Remember, the .vsz file is the file in the projects directory that provides information to
Visual Studio .NET about the wizard.) For example, if you add the line:

Param=”IMAGES_PATH = c:\MyImages”

to your file, the IMAGES_PATH symbol will get set to “c:\MyImages”. Make sure,
however, that you follow the format precisely: Start with the word Param with no
space after it, then an equal sign with no space after it, followed by a string in double
quotes. The format of this string in double quotes must also be exact. Start with the
name of the symbol, then a space, which is mandatory; next put an equal sign, followed
by another mandatory space; finally, put the value for the symbol, without its own
double quotes around it. (The final double quotes are for the string itself.)

You can also create your own symbols that you can pass into the scripts, as in this
line from a .vsz file.

Param=”MYSYMBOL = SOMENAME”

With this line in your .vsz file, the scripts will now be aware of the symbol MYSYM-
BOL, and the symbol’s value will be SOMENAME.

When you create a wizard, you may have multiple HTML pages, and if you give
your users the option to go to the various pages and make selections, they may choose
to skip some of the pages. For the selections on those pages, then, you’ll want to pro-
vide defaults for the symbols your HTML files set. The one HTML file that always
opens when the wizard runs is called default.htm; therefore, put the defaults in
default.htm. The defaults go in the <HEAD> section, and they look like this:

<HEAD>

<SYMBOL NAME=”APP_BASE_CLASS” TYPE=”text” VALUE=”CWinApp”></SYMBOL>

<SYMBOL NAME=”ATTRIBUTED” TYPE=”checkbox” VALUE=”true”></SYMBOL>

</HEAD>

These two SYMBOL lines provide default values for the APP_BASE_CLASS and
ATTRIBUTED symbols. For the former, which is a text box, the default is the string
“CWinApp”. For the latter, which is a checkbox, the default is the value true. (A
checkbox has only two values, true and false.)

Rendering the Template Files

When you copy the files from the templates directory to the project directory, you use
a process called rendering. The wizard engine can render files by scanning through the

Creating Project Wizards 263

text in the files, replacing various strings with other strings, and then copying the
resulting file into the project directory. Or, in the case of binary files, you can optionally
copy files directly without attempting to process them as text.

As an example of this process, open the following file in the text editor of your
choice:

C:\Program Files\Microsoft Visual Studio .NET\

Vb7\VBWizards\ComClass\Templates\1033\ComClass.vb

This is the template file that gets translated into the ComClass.vb file when you cre-
ate a new COM class in your VB.NET project. You can see this process at work if you
right-click a VB.NET project in the Solution Explorer, choose Add➪Add New Item,
scroll down, and choose COM Class. (Although this is for an item template rather than
a project template, the concept is the same, and this ComClass.vb file is a good exam-
ple.) Here’s one line from the template file:

Public Const ClassId As String = “[!output GUID_COCLASS]”

This line gets translated into a line such as the following:

Public Const ClassId As String = “543E3E5D-40DA-4AAC-8C17-1481B30B693E”

However, when you create a COM class, you will see a different GUID appear on this
line. In order to render the Connect.vb file, the wizard engine replaces the text [!output
GUID_COCLASS] with the GUID 543E3E5D-40DA-4AAC-8C17-1481B30B693E.
Where did this GUID come from? From the script. The script called a function to obtain
a unique GUID and stored it in the symbol called GUID_COCLASS. Then, when the
wizard engine renders the ComClass.vb file, the engine sees the symbol
GUID_COCLASS, preceded by the characters [!output, and followed by the character
]; the engine replaces the entire string with the value stored in the symbol. (If the script
engine only sees GUID_COCLASS without the preceding and following characters, the
engine will not replace the string.)

Now open the script file C:\Program Files\Microsoft Visual Studio .NET\Vb7\
VBWizards\ComClass\Scripts\1033\default.js. Here are the two lines of code from
the script that generate the GUID and store it in the GUID_COCLASS symbol:

var strRawGuid = wizard.CreateGuid();

wizard.AddSymbol(“GUID_COCLASS”, wizard.FormatGuid(strRawGuid, 0));

The first line generates a GUID and stores it in the strRawGuid variable. The sec-
ond line takes the strRawGuid variable and writes it to the symbol called
GUID_COCLASS, which is the symbol in the ComClass.vb template file. Thus, each
time the wizard runs, a new GUID ends up in the project’s ComClass.vb file.

Now take a look at the template file C:\Program Files\Microsoft Visual Studio
.NET\Vc7\VCWizards\mfcappwiz\templates\1033\childfrm.cpp. This file is part of
the MFC Application Wizard, and this wizard is for a project not a project item. (To see
the MFC Application Wizard, choose File➪New➪Project; in the New Project dialog
box on the left side, choose Visual C++ Projects, and on the right side, choose MFC
Application.)

264 Chapter 12

TE
AM
FL
Y

Team-Fly®

The childfrm.cpp template file contains several symbol replacements as you saw in
the ComClass.vb template file. However, this file also contains some if-statements.
Here’s one if-block:

[!if PROJECT_STYLE_EXPLORER]

#include “[!output TREE_VIEW_HEADER]”

#include “[!output VIEW_HEADER]”

[!endif]

The if lines go inside brackets; the left bracket is followed by an exclamation point and
then the word if. This time the symbol in question, PROJECT_STYLE_EXPLORER, is not
set by the script file but by an HTML file. The symbol is initialized by the default.htm file
found in the directory C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWiz-
ards\mfcappwiz\html\1033. Here’s the line from the default.htm file:

<SYMBOL NAME=”PROJECT_STYLE_EXPLORER” TYPE=”radio”

VALUE=”false”></SYMBOL>

The symbol is then set by this line from the AppType.htm file, found in the same
directory (I’ve broken the line up into four lines so it fits on the page):

<INPUT TYPE=”radio” CLASS=”Radio” ACCESSKEY=”x”

TITLE=”Select browser-style user interface.” NAME=”projtype”

VALUE=”radiobutton” ID=”PROJECT_STYLE_EXPLORER”

onClick=”OnProjectStyle();”>

When the user of the HTML page (that is, the user of the wizard) checks or unchecks
the radio button, the PROJECT_STYLE_EXPLORER symbol gets set to true or false,
respectively. (The user unchecks the radio button implicitly by checking another radio
button in the group.) When the user checks the radio button, the OnProjectStyle
function runs. This function is found in the same AppType.htm file, and you’re wel-
come to take a look at it if you want; it sets other symbols based on the project type that
you select.

To compare two symbols, you can use two comparison operators that have the same
syntax as their C++ equivalents: == and !=. You can also use + and - and to combine
two numeric symbols. And you can embed if-statements, like so:

[!if PROJECT_STYLE_EXPLORER]

[!if LIST_VIEW]

and then, later, end the inner if-statement:

[!endif]

and later still, to end the outer if-statement:

[!endif]

Creating Project Wizards 265

You can also use AND and OR relationships using the standard C++ like && for
AND and || for OR, as in the following two lines:

[!if APP_TYPE_MDI && SPLITTER]

and

[!if HTML_VIEW || HTML_EDITVIEW]

Here’s an example of a logical NOT operator, shown by an exclamation point imme-
diately before the symbol name:

[!if !DOCVIEW]

You can use an else-block in your if-statement:

[!if MYSYMBOL]

and

[!else]

and

[!endif]

You also can use a limited for loop. One way is to specify an exact count, as here:

[!loop = 5]

...

[!endloop]

This loops five times.
Another way is to use a symbol that contains a numeric value:

[!loop = MYCOUNT]

...

[!endloop]

Reading a template file can be a bit confusing at times. Take a look at this line from
the childfrm.cpp template file:

[!output CHILD_FRAME_CLASS]::~[!output CHILD_FRAME_CLASS]()

This generates a destructor header line as in:

MyChildFrm::~MyChildFrm()

266 Chapter 12

To recap what is happening with these symbols, when you render a template file,
the wizard engine replaces the symbols and processes the if-statements to generate a
final file. The wizard engine then copies the final file into the project directory. Here,
then, is a sample line from a script file that renders a template file:

wizard.RenderTemplate(strTemplate, strTarget, bCopyOnly, true);

The RenderTemplate function copies a template file (whose path and filename is
given by the first parameter, strTemplate) to a final file (given by the second param-
eter, strTarget). The third parameter specifies whether to render the file or to just
copy it without processing the text. Pass true if you want to copy the file without pro-
cessing the text (as in the case of a binary file) or false if you do want to process the
file. For the final parameter, pass true if you want to overwrite any preexisting file
during the copy process. (The third and fourth parameters are optional; the defaults
are both false, meaning the RenderTemplate function will process the text file and
will not overwrite an existing file.)

Be careful if you choose false for the fourth parameter of RenderTemplate (or if
you simply take the default), because, here, the opposite of overwrite is append. Thus, if
you choose false for the final parameter, instead of overwriting, each time your wiz-
ard runs, the target file will be appended to the end of the existing target file. If you’re
working with project or source files, this is probably not what you want. In most cases,
then, you will want to pass true for the final parameter.

If you look at the default.js file for the MFC Application Wizard, you will see
it contains no calls to RenderTemplate. The reason is that the file instead
calls the AddFilesToProject function, which is in a common JScript file
called common.js. I discuss this file in more detail in “The common.js File”
section later in this chapter.

Wizard Properties

When you interact with the wizard engine from within a script, you use the object
called wizard, as in the following line of code:

var strProjectName = wizard.FindSymbol(“PROJECT_NAME”);

This line of code calls the wizard object’s FindSymbolmethod. The wizard object
is an instance of the VCWizCtl class, which implements the COM interface IVCWiz-
CtrlUI. This is not the same interface that a wizard normally implements, the
IDTWizard interface. That’s because the wizard engine actually implements both
interfaces, and your script interacts with the engine through the IVCWizCtrlUI inter-
face by using the VCWizCtl object called wizard.

Creating Project Wizards 267

The VCWizCtl object has numerous members; you can see the whole list by looking
up VCWizCtl in online help index. Here are some of the more important members that
you will be using. First, two properties:

ActiveXControls. You use this object to obtain a reference to an ActiveX object.
For example, the line:

fso = new ActiveXObject(“Scripting.FileSystemObject”);

will store a reference to the FileSystemObject in the fso variable. You can
then use the fso to access the file system. (To see the properties and methods for
the FileSystemObject, look up FileSystemObject in the online help index.)

dte. This is a reference to the main DTE object that you can use just as you would
in macros and add-ins.

Now here are a few of the many member functions.

AddSymbol. Call this function to add a symbol to the symbol namespace. Pass
the symbol name as the first parameter, and the symbol value as the second
parameter. For the second parameter you can pass any type.

CreateGuid. This function returns a GUID in the form of a string. The string is
surrounded by curly braces and includes the hyphens in the GUID.

DoesFileExist. Pass a single string to this function. The string contains a path
and filename. The function returns a Boolean value indicating whether the file
exists.

FindSymbol. Call this function to retrieve a value from the symbol namespace.
Pass the name of the symbol. If the symbol is not present, the function returns a
0, meaning you can call the function, like so:

if (!window.external.FindSymbol(“MY_SYMBOL”))

{

window.external.AddSymbol(“MY_SYMBOL”, “Hello”);

}

GetSystemLCID. This function returns the identifier for the current locale. By
default, the identifier is 1033.

Navigate. Call this function to open up an external browser window. Pass the
URL (such as www.wiley.com) for the first parameter, and the number 1 or 0 for
the second parameter. The second parameter is an enumerator specifying
whether to open the URL in an external window. The function is borrowed from
the ItemOperations object, and that object allows you to pass 0, meaning the
current window. However, in this context, the Navigate function always opens
in an external window, so it does not matter if you pass 0 or 1.

OKCancelAlert. Call this function to display a message box to the IDE user,
along with an OK button and a Cancel button. Pass a string containing the mes-
sage to display. The function returns true if the user clicks OK and false if the
user clicks Cancel.

RemoveSymbol. Call this function to remove a symbol from the symbol name-
space. Pass the symbol name.

268 Chapter 12

RenderTemplate. Call this function to render a file from the templates directory.

RenderTemplateToString. Call this function to render a file to a string. When
you do so, the entire contents of the file will be returned by this function in the
form of a string. Here’s an example:

str1 = wizard.RenderTemplateToString(“myfile.txt”);

YesNoAlert. This function displays a message box to the user, along with Yes and
No buttons. Pass the message as a string. The function returns true if the user
clicks Yes and false if the user clicks No.

Regarding the type you can pass to AddSymbol, look closely at this code from a
default.js script:

var x = 10;

x = x + 1;

wizard.AddSymbol(“NUMBER”, x);

var y = wizard.FindSymbol(“NUMBER”);

y = y + 1;

wizard.OKCancelAlert(y);

The first line declares a variable called x and stores the number 10 in it. The next line
adds 1 to x. The third line adds a symbol called NUMBER, and stores the value of x in it,
which is 11. The next line creates a new variable called y, and retrieves the value of the
symbol called NUMBER. The next line adds 1 to the value. The final line displays the
value of y. Since the symbols can hold any type, not just strings, this piece of code func-
tions correctly. (If the symbols could only hold strings, it would probably throw an
exception.)

A Script Wizard Tutorial

Using the information in the preceding sections, you are now ready to build a wizard
script. To begin, use a text editor of your choice and create the following text file, which
you will save as testwiz1.vsz in the C:\Program Files\Microsoft Visual Studio .NET\
Vc7\vcprojects directory:

VSWIZARD 7.0

Wizard=VsWizard.VsWizardEngine

Param=”WIZARD_NAME = testwiz1”

Param=”WIZARD_UI = TRUE”

This will tell the Visual Studio .NET about your wizard, including the location.
Remember, the IDE obtains the location of the wizard based on the following:

■■ The wizard directory for the current product.

■■ The name of the wizard. This comes from the WIZARD_NAME line in the .vsz
file.

The IDE combines these two items to get the directory for your wizard. In this case,
that will be C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1.

Creating Project Wizards 269

In addition to the .vsz file, you can also have an icon file representing the icon that
will be displayed in the New Project dialog box. For this example, I chose to simply
copy another icon, rather than create my own. You can pick any of the .ico files in
one of the project directories and copy it to the same directory as the .vsz file and call it
testwiz1.ico. (Its name must match the name of the .vsz file, but it will have the .ico
extension.) The one I copied was C:\Program Files\Microsoft Visual Studio .NET\
Common7\IDE\Extensibility Projects\Visual Studio Add-in.ico. (If you create your
own icon, make sure the icon is 32 by 32 pixels in size and 16 colors.)

Now you have the information the IDE needs for displaying the icon in the New Pro-
jects dialog box, and for the IDE to find the wizard. Next you need to create the wizard.
The first thing you need to do is create the proper directory structure for the wizard. Here
are the directories you will need to create for this example:

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1\html

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1\
html\1033

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1\
scripts

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1\
scripts\1033

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1\
templates

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\testwiz1\
templates\1033

These directories comprise the root directory, the HTML and its 1033 directory, the
scripts and their 1033 directory, and the templates and their 1033 directory. Remember,
your files will go inside the 1033 directories.

If your computer is set up for a different culture, you can change the 1033 to
your own culture if you want. That way the IDE will be able to locate the
files for your specific culture. However, 1033 is the default, and so if you use
1033, you will still be able to use the script. (If you want to see an example
of different locales in action, take a look at C:\Program Files\Microsoft
Visual Studio .NET\Vc7\VCWizards\mfcappwiz\templates. This directory has
several locales under it.)

Now comes the fun part, where you will create the files. Remember, the files will sit
inside the 1033 directories. There are three such directories, and you will create one file
in each directory except for the templates\1033 directory, where you will create two
files. You will create a script file, which will perform the project creation. You will cre-
ate an HTML file, which will provide the user interface for the wizard. You will also
create .cpp and .h files in the templates\1033 directory, which will be rendered into the
final project. These two template files will contain various symbols that the wizard
engine will replace with strings based on the user’s selections in the user interface.

270 Chapter 12

The format of the HTML file is somewhat complex. For our purposes, here,
however, I’ll be keeping it simple; later in this chapter, in the section called
“Viewing Your HTML files,” I’ll give you more information about style sheets
and other aspects that can give your HTML files a common look and feel.

Here, then, is the HTML file. Save this in the HTML\1033 subdirectory and call it
default.htm:

<HTML DIR=”LTR”>

<HEAD>

<TITLE>Wizard</TITLE>

<STYLE TYPE=”text/css”>@@import url();</STYLE>

<SCRIPT>

try {

var strURL = “../../../”;

strURL += window.external.GetHostLocale();

strURL += “/NewStyles.css”;

document.styleSheets(0).imports(0).href = strURL;

}

catch (e) {

var strURL =

“C:/Program Files/Microsoft Visual Studio .NET” +

“/Vc7/VCWizards/1033/NewStyles.css”;

document.styleSheets(0).imports(0).href = strURL;

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=”BUTTONFACE” TOPMARGIN=”0” LEFTMARGIN=”0”

RIGHTMARGIN=”0” BOTTOMMARGIN=”0” >

 <p>

<SPAN CLASS=”itemText” TITLE=”Popup message over label.”

ID=”isapi_vroot”>

<LABEL CLASS=”INDENT” FOR=”CLASS_NAME”

ID=”CLASS_NAME_LABEL”><U>C</U>lass name:</LABEL>

<INPUT CLASS=”sideBtnIndent” ID=”CLASS_NAME” ACCESSKEY=”c” >

<p>

<INPUT CLASS=”CheckBox” TYPE=”checkbox” ID=”INCLUDE_CONST”

ACCESSKEY=”d”>

<LABEL FOR=”INCLUDE_CONST” ID=”INCLUDE_CONST_LABEL”>

 <U>I</U>nclude Constructor</LABEL>

</DIV>

Creating Project Wizards 271

<p>

<BUTTON CLASS=”BUTTONS” ID=”FinishBtn”

onClick=”window.external.Finish(document, ‘ok’);”>Finish</BUTTON>

<BUTTON CLASS=”BUTTONS” ID=”CancelBtn”

onClick=”window.external.Finish(document, ‘cancel’);”>Cancel</BUTTON>

</BODY>

</HTML>

This HTML file contains two main sections: the <HEAD> block, which sets up the
style sheets (which I explain in detail in “Viewing your HTML Files” later in this chap-
ter), and the <BODY> block, which contains the user interface elements. This particular
HTML file contains a label and a text box (here, a textbox means an edit control that
you can type into), a checkbox, another label, and two buttons. (The GUI here isn’t very
interesting; I chose to keep it simple for this tutorial.) You can see what the wizard will
look like by opening the default.htm file in your favorite browser. I’ve shown the wiz-
ard in Figure 12.1, although you’re not yet ready to run it, because you still need to type
in the script and the two template files.

Figure 12.1 The GUI for the testwiz1 wizard.

272 Chapter 12

Now we look at the script. This script does very little: First it grabs some directory
names and saves them in variables, next it creates the project, then it renders the two
template files. Type this script into a text editor and save it in the scripts\1033 subdi-
rectory with the filename default.js.

function OnFinish(selProj, selObj)

{

var temppath = wizard.FindSymbol(“TEMPLATES_PATH”);

var projname = wizard.FindSymbol(“PROJECT_NAME”);

var projpath = wizard.FindSymbol(“PROJECT_PATH”);

var proj = CreateProject(projname, projpath);

wizard.RenderTemplate(

temppath + “\\class.cpp”,

projpath + “\\” + projname + “.cpp”,

false,

true);

wizard.RenderTemplate(

temppath + “\\class.h”,

projpath + “\\” + projname + “.h”,

false,

true);

proj.Object.AddFile(projpath + “\\” + projname + “.cpp”);

proj.Object.AddFile(projpath + “\\” + projname + “.h”);

}

First, you will notice that the name of the function in this script is OnFinish. That is
the function that you override. The idea is that after the IDE user has filled out the GUI
items, the OnFinish method runs, which completes the task of creating the project.

The first line of the function obtains the path of the templates directory. Notice that
nowhere in the script did I need to tack on 1033 to the directory name; the wizard
engine found the correct locale, meaning that my temppath includes the 1033 directory
in the string. The second line obtains the project name, and the third line obtains the
project path.

The fourth line creates the project. I passed the project name and the project path. I
saved the results in a proj variable, which I use later. The next line (which actually
spans five lines) renders the class.cpp template file. Notice, however, that I change the
name of the template file: Instead of rendering it as class.cpp, I render it with the proj-
ect name followed by .cpp. The final line (again spanning five lines) renders class.h,
again changing its name to the project name followed by .h. Thus, if your project is
called MyProject, then your two files in the project will be called MyProject.cpp and
MyProject.h.

Finally, the last two lines add the two new files to the project. But just because they
were rendered into the project directory doesn’t mean they will be added to the proj-
ect. You must explicitly add them, using the AddFile function. But notice what I’m
doing here: I’m taking the proj variable, accessing its Object member, and calling
the AddFile function. If this looks familiar, it’s because the proj variable is an
instance of Project, one of the extensibility classes. The VCProject object has an
Object property, which is of class VCProject, which in turn has an AddFile func-
tion. As you can see, then, you can interact with the DTE objects in your scripts.

Creating Project Wizards 273

Now for the two template files. Put these files in the templates\1033 subdirectory.
Here’s the first one; call it class.cpp:

#include <iostream>

#include “[!output PROJECT_NAME].h”

using namespace std;

void main() {

[!output CLASS_NAME] inst;

cout << inst.ToString() << endl;

}

You can see this is a basic C++ source file, with a couple of include lines, a using
namespace line, and a main routine. However, notice the second include line has a
symbol name instead of a filename. Remember, the script file earlier renders the header
file’s name with the project name followed by the .h extension. Thus, the include line
needs the correct header filename, which is the project name followed by the .h exten-
sion. That’s why I put the symbol expansion there. The same is true for the first line
inside the main routine. This line creates an instance of the class name. Instead of hard-
coding a class name, I put the value of the CLASS_NAME symbol. Inside the wizard
GUI, the IDE user can type in a class name; that class name will end up in this first line
within the main.

Here’s the second one; call it class.h:

#include <string>

class [!output CLASS_NAME] {

public:

[!if INCLUDE_CONST]

[!output CLASS_NAME]() {}

~[!output CLASS_NAME]() {}

[!endif]

std::string ToString() {

return “[!output CLASS_NAME]”;

}

};

Once again, this header file uses the CLASS_NAME symbol for the class name,
instead of a hard-coded name. Further, one of the options in the wizard GUI was
whether to include the constructor. Therefore, I wrap the constructor (and the destruc-
tor, too) inside an if-statement, which checks the value of the INCLUDE_CONST sym-
bol. Finally, inside the ToString member function, I return a string constant. But that
string constant is the value of the CLASS_NAME.

At this point, believe it or not, the wizard is ready to run, so to show how these two
template files will render, go ahead and run the wizard now. You don’t need to do any
compilation or installation; all the files are interpreted, and you created the files in their
installation location.

To launch the wizard, start up Visual Studio .NET. You can either open an existing
solution or you can let the Add Project dialog box create a solution automatically for

274 Chapter 12

TE
AM
FL
Y

Team-Fly®

you when you create the project. Then choose File➪New➪Project. When the New Proj-
ect dialog box opens, in the Project Types, choose Visual C++ Projects. In the Tem-
plates, you should see your new wizard, testwiz1, along with the icon that you copied
from elsewhere. From there, create a project as you normally would, by typing in a
name and a location, and, if you have a solution already open, selecting either Add to
Solution or Close Solution. Then click OK.

At this point, your wizard will open. It won’t look like much (refer back to Figure
12.1). You will be able to type in a class name and you will be able to choose whether
to generate a constructor. You can either click Cancel, to abort the creation of the proj-
ect, or you can click Finish. (This GUI does not feature multiple pages in the wizard; if
it did, the other pages would be separate HTML files. I show you how to do this in the
sidebar titled “Using the Wizard-Wizard.”)

If you click Finish, your script will begin running and you will see a new project get
created and added to your current solution. Or, if you don’t have a solution open, you
will first see a new solution get created and your project added to it. Although this
project creation feature is coded into your script, the capability to automatically create
a solution if you don’t have one already open is built into the IDE, so you don’t need to
code it into your scripts. Next, your script will render the two files and then add them
to the project. When all is done, you will see your project in the Solution Explorer with
the two files, just as any other project. And you will see that the filenames of the two
rendered files will be the same as the project name, but with the .cpp and .h extensions.

If you double-click the .h file, it will open in the editor and you can see how the sym-
bols were rendered. For example, when I ran the script, I called my class GreatClass,
and I chose to add a constructor. Here’s the resulting .h file:

#include <string>

class GreatClass {

public:

GreatClass() {}

~GreatClass() {}

std::string ToString() {

return “GreatClass”;

}

};

And here’s the resulting .cpp file:

#include <iostream>

#include “Project1.h”

using namespace std;

void main() {

GreatClass inst;

cout << inst.ToString() << endl;

}

These files can be compiled without error. As you can see, the wizard did its job
properly.

Creating Project Wizards 275

The common.js File

If you look through existing default.js script files, you might notice they contain calls
to various functions that are neither present in the script file nor part of the wizard
object. These functions exist in a file called common.js, which contains common rou-
tines that are useful in creating the projects.

Each installed product (C++, C#, VB.NET) has its own common.js file. These files are
not identical; rather, they provide routines that are more useful to the particular lan-
guage. The common.js files exist in a 1033 directory off the main wizards directory for
each installation. Here are the directories where you can find the common.js files:

■■ C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards\1033

■■ C:\Program Files\Microsoft Visual Studio .NET\Vb7\VBWizards\1033

■■ C:\Program Files\Microsoft Visual Studio .NET\VC#\VC#Wizards\1033

There are too many functions in these files to list here, so I encourage you to take a
look at the files and see what functions are useful to you in your script writing. (All the
functions in the C++ version of common.js are documented in the online help.) How-
ever, one function in particular that I want to bring to your attention is the
AddFilesToProject function in the C++ version of common.js. This function shows
up frequently in the wizards that ship with Visual Studio .NET. If you’re writing a wiz-
ard that has several files in the templates directory, it can become rather cumbersome
to go through all the files, rendering them one by one, and adding them one by one, to
the project, with each iteration hard-coded into your default.js script file.

Fortunately, you don’t have to. The common.js file for C++ has a function called
AddFilesToProject. To use this function, simply create a text file called Tem-
plates.inf and put the file in your templates\1033 directory. Inside the Templates.inf
file, list the files that you want rendered. And, note, this file is itself a template file,
meaning you can embed the symbol comparisons in it. Here’s an example Template.inf
file from the MFC DLL wizard that ships with Visual Studio .NET:

readme.txt

root.cpp

[!if DLL_TYPE_REGULAR || DLL_TYPE_REGULAR_STATIC]

root.h

[!endif]

root.def

[!if AUTOMATION]

root.idl

[!endif]

stdafx.h

stdafx.cpp

resource.h

all.rc

root.rc2

This file indicates, first, that the readme.txt, root.cpp, root.def, stdafx.h, stdafx.cpp,
resource.h, all.rc, and root.rc2 files will always be rendered, regardless of the settings
the IDE user chooses in the wizard GUI; and, second, that the root.h file will render

276 Chapter 12

only if either the DLL_TYPE_REGULAR symbol is set to true or the DLL_TYPE_
REGULAR_STATIC symbol is set. Finally, the root.idl file will be rendered only if the
AUTOMATION symbol is set to true.

For the testwiz1 wizard that I showed you in the previous section, the templates\
1033 directory contains only two files, class.cpp and class.h, and they always get ren-
dered regardless of the project settings. This implies a very simple Templates.inf file.
You can, therefore, simplify your wizard a bit by creating the following text file, calling
it Templates.inf file, and putting it in the templates\1033 directory:

class.cpp

class.h

Next, you can modify your script, as follows:

function OnFinish(selProj, selObj)

{

var temppath = wizard.FindSymbol(“TEMPLATES_PATH”);

var projname = wizard.FindSymbol(“PROJECT_NAME”);

var projpath = wizard.FindSymbol(“PROJECT_PATH”);

var proj = CreateProject(projname, projpath);

var InfFile = CreateInfFile();

AddFilesToProject(proj, projname, InfFile);

}

function GetTargetName(strName, strProjectName, strResPath, strHelpPath)

{

if (strName == “class.cpp”) {

return strProjectName + “.cpp”;

}

if (strName == “class.h”) {

return strProjectName + “.h”;

}

return strName;

}

function SetFileProperties(projfile, strName)

{

return false;

}

function DoOpenFile(strTarget)

{

return false;

}

As you can see, this script is longer than the previous script because it has three
additional functions. However, if you’re creating a wizard that generates a very
lengthy script, and you have numerous files in your templates directory, then this will
save significant space.

Creating Project Wizards 277

Note in this code how I simultaneously rendered the files and added them to the
project: First I called CreateInfFile, which sets up the use of the Templates.inf file.
Then I called AddFilesToProject, which does the hard work of rendering and
adding each file to the project.

The three functions that follow are called by the AddFilesToProject function.
These functions are required; without them, you will get an exception. You can use the
first one, GetTargetName, if you want to modify one of the names. I did just that in my
GetTargetName function: Although the template filenames are class.cpp and class.h, I
wanted them to have the name of the project, followed by .cpp or .h, respectively. So in
the GetTargetName function, I checked for the template filename and returned the
modified filename.

For the SetFileProperties and DoOpenFile functions, I simply returned
false. (Even if, as in my case, you don’t want these functions to do anything, you still
need to include them.) The SetFileProperties function takes as a parameter a
ProjectItem object and the original template filename (not the rendered filename).
You can use the ProjectItem object to set various configuration properties. (The
return value of your SetFileProperties function is ignored, so if you process the
item, you don’t have to return true.) The DoOpenFile function, on the other hand,
instructs the wizard to automatically open the file. In this function, you check the file-
name passed into the function; and if you want to immediately open the file into the
source editor, return true; otherwise return false.

If you want to see an example where SetFileProperties and
DoOpenFile don’t simply return false, take a look at the C:\Program
Files\Microsoft Visual Studio .NET\VC#\VC#WizardsCSharpConsoleWiz\
Scripts\1033\default.js script file. This is the console wizard for a C# file,
and it makes use of these functions.

278 Chapter 12

DEBUGGING A SCRIPT

Debugging a script is a bit awkward at first, but once you get the hang of it, it’s rather
easy. To debug a script, anywhere in your script add the line:

debugger;

That line is equivalent to setting a breakpoint. Then, when you run the script, you will get
a message that an exception occurred. You then will be asked if you wish to debug, and,
if so, which debugger. Depending on which version of Visual Studio you have installed,
you may be given the choice of several different debuggers. You can choose whichever
you want and then click Yes. (I use the Visual Interdev, which shipped with Visual Studio
6.0, for the sole reason that it loads faster than Visual Studio .NET.) An instance of your
chosen debugger will then start and you can trace through the code as you would any
other program you are debugging.

Viewing Your HTML Files

In this section I assume you have Internet Explorer’s script debugging turned
off. So if you want your files to behave the same as I describe here, turn off
debugging by opening up Internet Explorer. Choose Tools➪Internet Options;
click on the Advanced tab. Find the Disable script debugging option and
uncheck it. (Checking it will turn on script debugging.)

If you look at the HTML files that exist in the various wizard directories, you will
quickly see an enormous amount of information, and if you try to open the HTML files
in Internet Explorer, you will find that the pages don’t look like they do when the wiz-
ard runs. The reason for the difference in appearance is in one block of scripting code
embedded in the HTML files:

<STYLE TYPE=”text/css”>@@import url();</STYLE>

<SCRIPT>

var strURL = window.external.FindSymbol(“PRODUCT_INSTALLATION_DIR”);

strURL += “VCWizards/”;

strURL += window.external.GetHostLocale();

strURL += “/NewStyles.css”;

document.styleSheets(0).imports(0).href = strURL;

</SCRIPT>

This code might vary a bit depending on who wrote the script, but the idea will be the
same: The script calls into FindSymbol method of the VCWizCtl object (represented in
the HTML files as window.external, and in the JScript files as wizard). When you
pass PRODUCT_INSTALLATION_DIR to FindSymbol, you will get back the installation
directory for the current product—not the installation of Visual Studio .NET, but rather
C++ or VB.NET or C#. (For example, the default product installation directory for C++ is
C:\Program Files\Microsoft Visual Studio .NET\Vc7\.) The next line adds the VCWiz-
ards path to the string. (Notice the script allows paths to have a forward slash.) Then the
script adds the locale, which by default is 1033. (See “About Culture-Specific Informa-
tion” in Chapter 8 for more information.) The script then adds the NewStyles.css file.
Thus, by default, for C++, this script creates the following string: C:\Program
Files\Microsoft Visual Studio .NET\Vc7\VCWizards\1033\NewStyles.css

This NewStyles.css file is an HTML style sheet, which sets the font sizes and styles,
the background color, the margins, and other layout information. When you open the
wizard in Visual Studio .NET, the wizard engine is able to locate the NewStyles.css file.
The reason is that the Visual Studio .NET IDE hosts the Internet Explorer control that
displays the HTML file. In doing so, the IDE assigns the VCWizCtl to the
window.external object. The window object is part of the Internet Explorer object
model and represents the host containing the Internet Explorer control. The host can
then store an object reference in the window.external object. In the case of Visual
Studio .NET, the IDE stores the wizard object in the window.external object.

Creating Project Wizards 279

Now here’s the problem in displaying your HTML files inside Internet Explorer but
outside the wizard: The preceding script fails because the window.external object is
not set to a VCWizCtl object, causing an exception. You can see the error if you turn on
Internet Explorer’s script debugging. Here’s the error that I see:

A Runtime Error has occurred.

Do you wish to debug?

Line 10

Error: Object doesn’t support this property or method.

(Turn script debugging back off now, since it tends to get in the way when you’re
surfing the Web.)

Following is an updated form of the preceding script that includes an exception han-
dler. In the exception handler I’ve hard-coded the path to my local style sheet file,
which enables me to look at my HTML files in Internet Explorer, or even in the HTML
editor in Visual Studio .NET. Here’s the revised script:

try {

var strURL = “../../../”;

strURL += window.external.GetHostLocale();

strURL += “/NewStyles.css”;

document.styleSheets(0).imports(0).href = strURL;

}

catch (e) {

var strURL =

280 Chapter 12

USING THE WIZARD-WIZARD

Included with the wizards that come with Visual Studio .NET is a wizard called Custom
Wizard (which I prefer to call Wizard-Wizard). This wizard creates a starting point from
which you can create your own wizards. When you run this wizard, you can choose
whether you want a user interface with your wizard (that is, whether you want HTML
files) and, if so, how many HTML pages you want in your wizard. You also get to choose
the name of your wizard. When you run the Wizard-Wizard, you will end up with a .vsz
file already installed in the wizard directory for the product installation, along with a set
of directories arranged in the proper hierarchy. These directories are HTML, Images,
Scripts, and Templates. Additionally, you will have a directory off the root, called 1033,
which contains style sheet information for the HTML files. Finally, each directory will
contain starter files from which you can modify the code.

Using the techniques in this chapter, you will be well on your way to easily modifying
this code and creating your own wizard. I recommend using this wizard, but with one
modification: The .vsz file that the wizard generates causes the IDE to point to the
installation directory for your wizard. I suggest you copy the entire installation into the
main wizard directory for the product and modify the .vsz file, to give the name without
the location. That way you can easily ship the wizard to others without including
absolute paths in it.

“C:/Program Files/Microsoft Visual Studio .NET” +

“/Vc7/VCWizards/1033/NewStyles.css”;

document.styleSheets(0).imports(0).href = strURL;

}

When you replace the old script with this new script, you will be able to see your
HTML pages in a browser as they will appear inside the wizard. (Make sure, however,
that you use your own Visual Studio .NET installation directory if you installed it
somewhere other than the default.)

Moving Forward

This chapter showed you how to use the wizard engine to create your own wizards.
Remember, the wizard engine is simply a general-purpose COM component that pro-
vides wizard functionality. Using this component, you can easily create your own
scripts and HTML files that work together to create a wizard that maintains the same
look and feel as the other wizards.

In the next chapter, “Writing .NET Add-ins for Microsoft Office,” which begins
Part III, I show you how you can take the same concepts on writing add-ins and use
them to build add-ins for other Microsoft products.

Creating Project Wizards 281

PA R T

Three

VS.NET and
Other Products

TE
AM
FL
Y

Team-Fly®

285

If you’ve been reading this book straight through, by now you’re well aware of how to
create add-ins for Visual Studio .NET using the IDTExtensibility2 interface. This
interface was developed by Microsoft before Visual Studio .NET came out; it was orig-
inally created for the Office 2000 line of software. In other words, now that you know
how to create add-ins for Visual Studio .NET, you can use the same techniques to cre-
ate add-ins for Microsoft Office products.

Introducing Office Add-ins

It’s important to remember that the Visual Studio .NET IDE is not itself really a .NET
program, and its add-ins are not assemblies; they’re COM objects. You could, in fact,
write a Visual Studio .NET add-in using Visual Studio 6.0 without using any .NET fea-
tures. But when you use C# or VB.NET or C++.NET to develop an add-in, you’re
developing a library that is both a COM object and an assembly. The COM portion
allows the library to serve as the add-in, whereas the assembly portion allows the
library to access the .NET framework. (Technically speaking, the add-in library you
create using Visual Studio .NET is not actually a COM library; rather, it includes a
COM type library and it works together with the mscoree.dll found in the win-
dows\system32 directory to play the part of a COM component.)

Before delving into the topic of writing add-ins for Office products, let me briefly
review the concept of an add-in. When you use Visual Studio .NET to write an add-in,
you create an assembly that serves as a COM add-in to a product; this add-in in turn

Writing .NET Add-ins for
Microsoft Office

C H A P T E R

13

uses the COM automation system to automate the target application. In the case of
Visual Studio .NET, you are creating a COM add-in that accesses the DTE object, which
is the automation object for Visual Studio .NET. Through this DTE object, you can access
all the features of the IDE that are made available through the automation model.

The same scenario holds for writing add-ins for Office products. When you write an
add-in for an Office product, you first obtain a root object (simply called the Appli-
cation object, which is analogous to the DTE object). Through this root object, you can
control the features made available through the automation model.

Visual Studio .NET includes a wizard for creating add-ins for Office products.
When you use this wizard, you may notice that you have the option of
creating the add-in for products that you don’t actually have installed on
your computer. Theoretically, you could create add-ins for such products;
however, I do not recommend doing so. You certainly want to be able to test
out your add-ins before sending them to people; therefore, if you want to
develop an add-in for a particular product, make sure you first obtain the
product.

Here are the products for which the wizard in Visual Studio .NET lets you develop
add-ins:

■■ Word

■■ Visio

■■ Project

■■ PowerPoint

■■ Microsoft Outlook

■■ FrontPage

■■ Excel

■■ Access

Be careful if you’re developing add-ins for Visio. Visio 2000, although part of
the Office 2000 product line, does not support add-ins. This has been a
source of a great deal of confusion among developers: If you start Visio
2000 and choose Tools➪Options and click on the Advanced tab, you will see
a checkbox labeled Enable COM add-ins. But the checkbox is disabled. Why?
For some reason, Microsoft decided to ship Visio 2000 without COM add-in
capabilities, but included this checkbox in the event it ship a patch that
added COM add-in support. This never happened, so if you want to use COM
add-ins in Visio, you must get Visio XP/2002 or later.

You can also use the same wizard to create add-ins for the Visual Studio .NET IDE
and Macros IDE just as you can with the standard Add-in wizard.

286 Chapter 13

Writing Add-ins for Other Products

In order to write an add-in for an Office application, it’s a good idea to perform two
tasks that will make your life easier:

■■ Turn on the COM Add-ins dialog box feature of the Office application.

■■ Create the assemblies that reference the COM system.

In the next section I show you how to perform the first of these two tasks. In the sub-
sequent two sections, respectively, I show you how to create an Office add-in and how
to perform the second of these two tasks.

Preparing the Office Application
Although the process of writing a COM add-in for an Office product is a no secret, for
some reason the dialog box for controlling the COM add-ins is not accessible by
default. Instead, you have to configure the menus to show the COM Add-ins dialog
box. Further, you have to do this for each Office application. Here are the steps:

1. Right-click the blank area around a toolbar in the Office application.

2. Choose Customize. The Customize dialog box will open.

3. Click the Commands tab.

4. In the Categories list, click Tools.

5. In the Commands list, find the COM Add-ins command. (On my computer it’s
the first in the list.) Click it and drag it to the menu bar.

I dragged my COM Add-ins command to the Tools menu and put it toward the bot-
tom. In Microsoft Word, I put it immediately under Templates and Add-ins, as that
seemed like a more-or-less logical place for it. In Microsoft Excel, I put it under Add-ins.

Writing .NET Add-ins for Microsoft Office 287

TWO KINDS OF OFFICE ADD-INS

Before Microsoft developed the concept of a COM add-in, most Office products had
software development kits (SDKs) that programmers could use to write add-ins for those
products. Using these SDKs along with a C or C++ compiler, the programmer would
develop a DLL that the Office product could load. (The DLL would get a different
extension, such as .XLL for Excel add-ins.) But these add-ins did not make use of the
COM automation model, and the technique for building each add-in different from
product to product. Further, you could not share a single add-in among multiple
products. Therefore, Microsoft developed COM add-ins, which make use of the COM
automation model, have common interfaces and can be shared among Office
applications. Today’s Office applications still support the older add-ins, along with the
newer COM add-ins, and the products have two separate dialog boxes for the two kinds
of add-ins. Normally, the user interfaces distinguish between Add-ins (the older style
add-ins) and COM Add-ins (the newer COM style). Today, Microsoft encourages us to
create the newer COM add-ins. Therefore, I discuss only the COM add-ins in this book.

(Remember, the Add-ins menu item is an older kind of Add-in that I’m not covering in
this book.) After you complete these steps, you can open the COM Add-ins dialog box
by choosing the COM Add-ins menu item.

When you create an Office add-in, you have the choice of whether to make the add-
in available to all users or only to the current user. Each option works as you might
expect; however, be aware that add-ins that are installed for all users do not show up in
the COM Add-ins dialog box. At first this might seem like a bug (and I’m sure many
people have reported it as a bug), but it is, in fact, a design decision by Microsoft. The
rationale is that an individual user shouldn’t be able to add and remove add-ins that
have been installed for all users to use. You can, of course, imagine a scenario where a
systems administrator installs an add-in for all users, but at least one user doesn’t want
to use it and tries to remove it; he or she would be unable to do so. Thus, the add-ins
for all users do not appear in the COM Add-ins dialog box.

Creating the Add-in
To create the Office add-in, start up Visual Studio .NET and create a new solution. Then
choose File➪Add Project➪New Project. The Add New Project dialog box will open. In
the Project Types treeview on the left, expand the Other Projects node; underneath it,
choose Extensibility Projects. In the Templates list on the right, click Shared Add-in.
Type a name and location for your project and click OK.

The Extensibility Wizard will open. The first screen is simply a splash screen; click
Next. In the second screen, shown in Figure 13.1, you can choose the language you pre-
fer: C#, VB.NET, or C++ with ATL. As with add-ins for Visual Studio .NET, I usually
prefer VB.NET or C#, as these two languages are more cleanly integrated to .NET.

Figure 13.1 Choose the language you prefer for your Office add-in.

288 Chapter 13

Figure 13.2 Choose the application hosts for the add-in.

After you choose your language, click Next. The Application Host screen opens, as
shown in Figure 13.2. This is a list of applications you can pick for your add-in to serve.
Because the interface is the same for all these products, a single add-in can support any
number of these products simultaneously. (However, sometimes it’s hard to think of an
example of an add-in that would be useful in both—say, Microsoft Word and the Visual
Studio .NET Macros IDE—although I’m sure there are examples, such as those dealing
with version control and event logging.)

After you choose your application hosts, click Next. The Name and Description
screen comes up next, as shown in Figure 13.3. Here you give a friendly name and a
description for your add-in.

After entering a name and description, click Next. The Add-in Options screen
appears, shown in Figure 13.4. Your two choices are:

■■ Have the add-in load when the application starts.

■■ Make the add-in available to all users on the computer.

When you click Next, you will see a summary of your options, shown in Figure 13.5.
Look over these options, and if you want to change anything, click Back. Otherwise,
click Finish to create the add-in and automatically add it to the existing solution.

Writing .NET Add-ins for Microsoft Office 289

Figure 13.3 Enter a name and description for your add-in.

Figure 13.4 Check the options for the add-in.

290 Chapter 13

Figure 13.5 The final screen shows you a summary of your options.

Before typing in the code, you need to add references to the products you’re going
to support, and I show you how to do this in the next section, “Adding References to
Office Products.”

Adding References to Office Products
The nature of COM lets you access objects without the compiler actually knowing the
object’s members. If you declare an object as type Object, you are free to call whichever
methods you want; the compiler will not issue an error. However, if those methods are
not actually present when your program runs, you will get a runtime error.

When you create a COM add-in, you can use such a blind approach or you can set
up a reference to a COM type library describing the objects you are accessing. Then
both the IDE and the compiler will be aware of the types and can let you know if you
call a method incorrectly or if you attempt to access a nonexistent member.

You have different choices for how to set up the references to the COM type libraries
representing the Office products. These are:

■■ Run the tlbimp command-line tool to generate an assembly based on the COM
type library.

■■ Add a reference to the type library file itself. This causes the IDE to run the
command-line tool for you, generating the assembly for you. If you use this
method, the IDE will generate the assembly every time you build your add-in.

Writing .NET Add-ins for Microsoft Office 291

■■ Download the official assemblies from Microsoft that interoperate through
COM with the Office applications.

■■ Let the IDE generate the assembly for you, then add a reference to the gener-
ated assembly.

Of these choices, I use the third and fourth, depending on which version of Office I’m
targeting. The third choice applies only to Office XP/2002. The second choice is pretty
much required for Office 2000, because official assemblies are not available; and due to
some issues, you cannot simply add references to some of the Office COM type libraries.
(I discuss these issues in the sidebar titled “Important: Fixing Excel and Outlook.”)

To get started, you simply add the references as I describe in the second option in the
preceding list. After the following important note, I show you how to do this.

In this section I describe the process for adding references to the COM
objects that represent the Microsoft Office products. This process will work
with Office 2000 and later; however, if you’re using Office XP/2002,
Microsoft recommends that you instead download the prebuilt interop
assemblies. These interop assemblies contain the official type information
and, as such, are deemed the PIAs, which stands for Primary Interop
Assemblies. To obtain the PIAs for Office XP, visit
http://support.microsoft.com and enter 328912 into the search box to locate
Knowledge Base Article 328912. (Note: As of November 2002, Microsoft’s
Knowledge Base articles no longer begin with a “Q.” Thus, what previously
would have been Q328912 is now 328912. At the time of this writing, the
direct link to the article is:

http://support.microsoft.com/default.aspx?sd=msdn&scid=kb;en-us;328912

Moreover, at the time of this writing, the article contained a broken link to
the download page. Here’s the direct link:

http://msdn.microsoft.com/downloads/sample.asp?url=/MSDN-FILES/027/

001/999/msdncompositedoc.xml

To add a reference to the Office products, start by right-clicking the References item
in the Solution Explorer under your project name; and in the popup menu choose Add
Reference. The Add Reference dialog box will open.

The next step depends on whether you’re using the PIAs with Office XP. If you are
using the PIAs with Office XP, click the PIA in the list under the .NET tab. You will have
one PIA for each Office product, and the name will be, for instance, Microsoft.Office.
Interop.Outlook.dll. Then click Select (or double-click the name). Do this for each
Office product, then click OK. You’re finished; the remainder of this section applies
only if you’re not using XP or the PIAs.

If you are not using Office XP (that is, you’re using Office 2000), or if you are but are
not using the PIAs, then you can instead reference the COM component. Remember,
you will be making some changes, as I describe in the sidebar, “Important: Fixing Excel

292 Chapter 13

and Outlook,” but this is what you do first: In the Add Reference dialog box, click the
COM tab. A few moments might pass as the dialog box gathers up the COM compo-
nents. Scroll down the list until you get to the items whose names start with
“Microsoft.” Then find the products you are supporting. You might see more than one
for a single product, as in:

■■ Microsoft Excel 5.0 Object Library

■■ Microsoft Excel 9.0 Object Library

Obviously, these are both for Excel, but you want the 9.0 version if you’re develop-
ing for Office 2000. Don’t use the 5.0 or any earlier version. If you’re developing for
Office XP, the version will be 10.0. Click the COM component for the Office product
you want to support and then click Select. Repeat this for all the products your add-in
is supporting. When you’re finished, click OK.

When you do this process, the IDE takes the COM library, finds the file containing
the type information (in the case of the Office products, the type files have an OLB
extension and are in the C:\Program Files\Microsoft Office\Office directory), runs the
tlbimp utility for you, and places the resulting assembly in your project’s output direc-
tory. Interestingly, the IDE does the type library importing each time you build your
project as well. For this reason, when you fix these assemblies, you need to remove the
reference from the COM library and add a reference directly to the fixed assembly.

Now’s a good time to read through the sidebar I’ve been referencing.

Writing .NET Add-ins for Microsoft Office 293

IMPORTANT: FIXING EXCEL AND OUTLOOK

If you simply import the COM libraries for the Office applications, you will find that
everything is fine until you try to work with the events, at least when working with Excel
and Outlook. The applications can send out event notifications (for instance, Excel can
notify your add-in when the Excel user creates a new workbook). Unfortunately, for Excel
and Outlook, the types for the events have a private, rather than public, access level,
making them inaccessible to your add-ins. (This is a bug that Microsoft is aware of.)

The following process is clumsy at best, but it’s the official Microsoft-sanctioned way
of fixing the problem, as described in its Knowledge Base articles 309336 and 316653, so
please follow these steps very carefully. (Note: If you’re not working with events, then
you really don’t need to do this process.)

1. Make sure you have already added a reference to the COM component for the
Office product your add-in is supporting. (You will be removing this reference
shortly.)

2. From the Windows Start Menu, choose Programs➪Microsoft Visual Studio .NET➪

Visual Studio .NET Tools➪Visual Studio .NET Command Prompt.

3. Inside the Command Prompt, “cd” to the output directory for your project. (That’s
the bin directory, possibly followed by a configuration name such as debug.) In this
directory you will find a DLL for each product you added, such as Interop.Excel.dll.
You will be modifying this DLL.

(continued)

294 Chapter 13

IMPORTANT: FIXING EXCEL AND OUTLOOK (continued)

4. Type the following:

ildasm.exe /source Interop.Excel.dll /output=Interop.Excel.il

substituting Outlook for Excel if you’re doing this for Outlook. Press Enter. This
command disassembles the DLL and creates a Microsoft Intermediate Language
file called Interop.Excel.il.

5. Return to Visual Studio .NET. Choose File➪Open➪File. In the Open File dialog box,
locate the Interop.Excel.il file (or Interop.Outlook.il), click it, then OK. You are open-
ing this file in Visual Studio .NET.

6. When the Interop.Excel.il (or Interop.Outlook.il) file opens, you need to perform a
carefully crafted search and replace. This is cumbersome, so here I show you how
to use regular expressions to do the trick in one step. Press Ctrl+H or choose
Edit➪Find and Replace➪Replace. In the Replace dialog box, type the following in
the Find What box:

private{.*}_SinkHelper

And in the Replace With box, type:

public\1_SinkHelper

Check the Use box in the lower left, and in the drop-down box next to this box,
choose Regular expressions. Click Replace All. (This is why it’s important to learn reg-
ular expressions. Without them you would have to manually change some 30 lines.)

7. Save the Interop.Excel.il (or Interop.Outlook.il) file and close it.

8. Remove the reference to Excel or Outlook (whichever you’re currently working on,
but only that one) by right-clicking the name Excel or Outlook in the References
section under your project’s name in the Solution Explorer, and in the popup menu
choosing Remove.

9. Return to the Command Prompt window. In the same directory as step 4, type the
following and press Enter:

ilasm.exe /dll Interop.Excel.il / output=Interop.Excel.dll

(Substitute Outlook if you’re doing this for Outlook.) This rebuilds the DLL based
on the modified IL code.

10. Return to Visual Studio .NET. Right-click on the References name under your project
in the Solution Explorer and choose Add Reference. In the Add Reference dialog
box, choose Browse. In the Select Component dialog box, switch to the Bin direc-
tory of your project, and click either Interop.Excel.dll or Interop.Outlook.dll,
whichever you just updated (but only that one). Click Open. Back in the Add Refer-
ence dialog box, click OK.

That’s it. The assembly is “repaired” and can now handle events properly. At this point
you should have the following files in your bin directory. For Excel: Interop.Excel.dll,
Interop.Office.dll, and Interop.VBIDE.dll. For Outlook: Interop.Outlook.dll. You will also
have a couple .res files and .il files, which at this point are not needed. Fortunately, you
only have to do this once for the project.

TE
AM
FL
Y

Team-Fly®

Writing the Add-in
Now you’re ready to write the code for the add-in. Following is a simple add-in that
supports Microsoft Word and Excel. Simply for variety, I chose C# for this add-in. This
add-in displays a dialog box that allows you to quickly back up all the files in a source
directory to a target directory, optionally putting the files in a subdirectory under the
target directory named for the current date and time. (This is an add-in I plan to keep
and use, as it provides an archiving feature.)

To create this add-in, create a new Shared Add-in project and follow the instructions
in the preceding sections for adding references to Excel and Word. Here’s the code for
the Connect class:

namespace CSharpGeneral

{

using System;

using Microsoft.Office.Core;

using Extensibility;

using System.Runtime.InteropServices;

[GuidAttribute(“9A98275B-F196-48BD-AC0E-1DD90934A543”),

ProgId(“CSharpGeneral.Connect”)]

public class Connect : Object, Extensibility.IDTExtensibility2

{

public Connect()

{

}

public void OnConnection(object application,

Extensibility.ext_ConnectMode connectMode,

object addInInst, ref System.Array custom)

{

applicationObject = application;

addInInstance = addInInst;

}

public void OnDisconnection(Extensibility.

ext_DisconnectMode disconnectMode, ref System.Array custom)

{

}

public void OnAddInsUpdate(ref System.Array custom)

{

}

public void OnStartupComplete(ref System.Array custom)

{

// Alternatively, if you know the application, you can

// do this:

Writing .NET Add-ins for Microsoft Office 295

// Word.Application WordApp = applicationObject;

// CommandBars bars = WordApp.CommandBars;

// which is handy because the IDE pops up the

// members of WordApp, showing CommandBars as

// a member.

CommandBars bars = (CommandBars)applicationObject.

GetType().InvokeMember(“CommandBars”,

System.Reflection.BindingFlags.GetProperty,

null, applicationObject, null);

CommandBar bar;

CommandBarButton button;

bar = bars[“Standard”];

try

{

// Look for an existing button

button = (CommandBarButton)bar.Controls[“Backup”];

}

catch

{

object omissing = System.Reflection.Missing.Value ;

button = (CommandBarButton)bar.Controls.Add(

1, omissing, omissing, omissing, omissing);

button.Caption = “Backup”;

button.Style = MsoButtonStyle.msoButtonCaption;

}

// Microsoft recommends that you always include a tag,

// which is a description of the button.

button.Tag = “Backup Files”;

button.OnAction = “!<CSharpGeneral.Connect>”;

button.Visible = true;

button.Click += new Microsoft.Office.Core.

_CommandBarButtonEvents_ClickEventHandler(

this.MyButton_Click);

}

public void OnBeginShutdown(ref System.Array custom)

{

}

private void MyButton_Click(CommandBarButton cmdBarbutton,

ref bool cancel)

{

BackupForm form = new BackupForm();

form.ShowDialog();

}

private object applicationObject;

private object addInInstance;

}

}

296 Chapter 13

Figure 13.6 The completed form with the labels, edit controls, a checkbox, and buttons.

This add-in uses a form, but unlike Visual Studio .NET add-ins, it is a popup form,
not a tool window; therefore, I do not use the VSUserControlHost that I described in
“Using the Form Designer with a Tool Window” in Chapter 7, “Creating Add-ins for
the IDE.” To create this form, simply right-click the project name in the Solution
Explorer, and in the popup menu choose Add➪Add Windows Form. The form that
you will be designing is shown in Figure 13.6.

Now here’s the code for the form, in which you can see the various properties I set
in the designer, as well as the event handlers that I added. Notice that I make use of the
System.IO classes to perform the file backup operations. Also notice the special way
I create the subdirectory name by passing a string to the DateTime instance’s
ToString method.

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.IO;

namespace CSharpGeneral

{

public class BackupForm : System.Windows.Forms.Form

{

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Button button1;

private System.Windows.Forms.Button button2;

private System.Windows.Forms.TextBox SourceText;

private System.Windows.Forms.TextBox DestText;

private System.Windows.Forms.CheckBox CreateSubdirCheck;

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components = null;

public BackupForm()

{

Writing .NET Add-ins for Microsoft Office 297

InitializeComponent();

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if(components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

private void InitializeComponent()

{

this.label1 = new System.Windows.Forms.Label();

this.label2 = new System.Windows.Forms.Label();

this.SourceText = new System.Windows.Forms.TextBox();

this.DestText = new System.Windows.Forms.TextBox();

this.CreateSubdirCheck = new

System.Windows.Forms.CheckBox();

this.button1 = new System.Windows.Forms.Button();

this.button2 = new System.Windows.Forms.Button();

this.SuspendLayout();

//

// label1

//

this.label1.Location = new System.Drawing.Point(8, 8);

this.label1.Name = “label1”;

this.label1.Size = new System.Drawing.Size(152, 16);

this.label1.TabIndex = 0;

this.label1.Text = “Source Directory”;

//

// label2

//

this.label2.Location = new System.Drawing.Point(8, 56);

this.label2.Name = “label2”;

this.label2.Size = new System.Drawing.Size(160, 16);

this.label2.TabIndex = 1;

this.label2.Text = “Destination Directory”;

//

// SourceText

//

this.SourceText.Location = new System.Drawing.Point(8, 24);

this.SourceText.Name = “SourceText”;

this.SourceText.Size = new System.Drawing.Size(272, 20);

this.SourceText.TabIndex = 2;

this.SourceText.Text = “”;

298 Chapter 13

//

// DestText

//

this.DestText.Location = new System.Drawing.Point(8, 72);

this.DestText.Name = “DestText”;

this.DestText.Size = new System.Drawing.Size(272, 20);

this.DestText.TabIndex = 3;

this.DestText.Text = “”;

//

// CreateSubdirCheck

//

this.CreateSubdirCheck.Location = new System.Drawing.

Point(16, 112);

this.CreateSubdirCheck.Name = “CreateSubdirCheck”;

this.CreateSubdirCheck.Size = new System.Drawing.

Size(216, 24);

this.CreateSubdirCheck.TabIndex = 4;

this.CreateSubdirCheck.Text =

“Create Date/Time Subdirectory”;

//

// button1

//

this.button1.Location = new System.Drawing.Point(8, 152);

this.button1.Name = “button1”;

this.button1.TabIndex = 5;

this.button1.Text = “Backup”;

this.button1.Click += new System.EventHandler(

this.button1_Click);

//

// button2

//

this.button2.Location = new System.Drawing.Point(200, 152);

this.button2.Name = “button2”;

this.button2.TabIndex = 6;

this.button2.Text = “Cancel”;

this.button2.Click += new System.EventHandler(

this.button2_Click);

//

// BackupForm

//

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

this.ClientSize = new System.Drawing.Size(288, 197);

this.Controls.AddRange(new System.Windows.Forms.Control[] {

this.button2,

this.button1,

this.CreateSubdirCheck,

this.DestText,

this.SourceText,

this.label2,

this.label1});

this.Name = “BackupForm”;

this.StartPosition = System.Windows.Forms.

Writing .NET Add-ins for Microsoft Office 299

FormStartPosition.CenterParent;

this.Text = “Backup”;

this.ResumeLayout(false);

}

#endregion

private void button1_Click(object sender, System.EventArgs e)

{

if (!Directory.Exists(SourceText.Text)) return;

if (!Directory.Exists(DestText.Text)) return;

String SourceDir = SourceText.Text;

String DestDir;

if (CreateSubdirCheck.Checked)

{

DateTime now = DateTime.Now;

DestDir = Path.Combine(DestText.Text,

DateTime.Now.ToString(“yy.MM.dd.HH.mm”));

Directory.CreateDirectory(DestDir);

}

else

{

DestDir = DestText.Text;

}

foreach (String filename in Directory.GetFiles(SourceDir))

{

String DestFile = Path.Combine(DestDir,

Path.GetFileName(filename));

File.Copy(filename, DestFile, false);

}

MessageBox.Show(“Finished copying.”);

Close();

}

private void button2_Click(object sender, System.EventArgs e)

{

Close();

}

}

}

After you get this add-in built and you run Word or Excel, you will be able to install
the add-in by choosing Tools➪COM Addins. (If you don’t see this menu item, refer to
“Preparing the Office Application” earlier in this chapter.) You will see your backup
add-in listed, possibly along with other add-ins, depending on what you’ve installed.
If you check the box next to the add-in, when you close the dialog box you will see a
button with the word Backup appear on the Standard toolbar. If you click this, the form
you created will open, allowing you to back up your file.

300 Chapter 13

Debugging for Multiple Products

If you create a single add-in that will support multiple products (for example, you
write a single add-in to be used in both Word and Excel), debugging the add-in can be
a bit frazzling. Remember that an add-in essentially becomes a part of the target pro-
gram; the example add-in, then, would be parts of both Word and Excel. Although you
have only a single copy of the add-in on your hard drive, if you run Word and Excel
simultaneously, you are running two separate copies of your add-in in separate
address spaces. Since a debugger (such as the Visual Studio .NET IDE’s debugger) can
only debug a single application at a time, a single instance of Visual Studio .NET can
debug either Word or Excel but not both at once. If you want to debug both at once, you
have to start another instance of Visual Studio .NET and run two simultaneous debug
sessions, one in each Visual Studio .NET instance. But such simultaneous debugging
sessions would probably be a bit confusing. Your other option is, simply, to not debug
the two target applications, Word and Excel, simultaneously.

To simplify debugging of different target applications, I recommend setting up dif-
ferent configurations for your project, with each configuration set to launch a different
application. For example, you would create one configuration for debugging the add-in
under Excel, one for debugging the add-in under Word, and so on for each application.

Remember that (for better or for worse) your configurations are tied to the solution.
Here are the steps to set up a special configuration for debugging an Excel add-in:

1. Open the Configuration Manager (either right-click the solution name in the
Solution Explorer, and in the popup menu choose Configuration Manager, or
choose Build➪Configuration Manager).

2. When the Configuration Manager opens, click the Active Solution Configura-
tion drop-down list and choose New (as shown in Figure 13.7). The New Solu-
tion Configuration dialog box will open.

Figure 13.7 Use the Configuration Manager to add a separate Excel configuration.

Writing .NET Add-ins for Microsoft Office 301

Figure 13.8 Use the New Solution Configuration to create the new configuration.

3. Type in a name for the configuration (such as DebugExcel), then choose Debug
from the Copy Settings From drop-down list (as shown in Figure 13.8). Check
Also Create New Project Configuration(s), if it’s not checked already. Then click
OK. Close the Configuration Manager.

4. Open your add-in project’s Property Pages (by right-clicking the project, and in
the popup menu choosing Properties). In the left treeview, choose Configura-
tion Properties.

5. In the Configuration drop-down list, choose DebugExcel. (It might already be
chosen as active.)

6. Under the Start Action category, click on the Start Application property and
type in the full path to the EXCEL.EXE program, as shown in Figure 13.9. (By
default, the path is C:\Program Files\Microsoft Office\Office\EXCEL.EXE.)
Click OK.

Your project is now ready to debug an add-in that is running in Excel. You can fol-
low these same steps to create a configuration for other Office products such as Word
and Outlook. Then, when you want to switch quickly between configurations to debug
a different Office product, you can easily choose the configuration from the drop-down
list in the Standard toolbar of the main IDE, as shown in Figure 13.10.

Figure 13.9 In the Property Pages dialog box, specify the path to Excel.

302 Chapter 13

Figure 13.10 Use the Standard toolbar to quickly switch configurations.

Finally, when you are ready to debug, you can follow the same procedures as those
used to debug an add-in in Visual Studio .NET. Set your breakpoints in the add-in
(such as in the OnConnection function) and then run in Debug mode. But instead of
Visual Studio .NET, Excel will start up.

Responding to Office Events

The Office objects include several events to which your code can respond. For example,
the Excel.Application object includes an event called WorkbookOpen, which
occurs when the Excel user opens a workbook or when an automation program causes
Excel to open a workbook.

The application object of each Office application includes several events, as do many
of the other objects within the application. For example, the Excel.Application
object includes events such as NewWorkbook, SheetActivate, SheetBeforeDou-
bleClick, SheetBeforeRightClick, and SheetCalculate, whose names are
self-explanatory. You can find out all the events by starting the Office application for
which you’re writing the add-in, then opening the application’s Visual Basic for Appli-
cations (VBA) IDE by choosing Tools➪Macro➪Visual Basic Editor. Inside the VBA IDE,
choose Microsoft Visual Basic Help. Inside the online help is a reference for all the
objects and their events.

Before you can properly respond to events, make sure the interop
assemblies are correct. Before trying out this example, refer to the sidebar,
“Important: Fixing Excel and Outlook.”

Writing .NET Add-ins for Microsoft Office 303

To respond to an event, you need to create a delegate object, which, in the case of a
static function, is really the address of a function, or, in the case of a member function,
the address of a function and an object instance. You then assign the delegate object to
the event object. First I show you an example in VB.NET, followed by the same exam-
ple in C#:

Dim excelevent As Excel.AppEvents_WorkbookOpenEventHandler

excelevent = New Excel. _

AppEvents_WorkbookOpenEventHandler(_

AddressOf ExcelWorkbookOpen)

AddHandler ExcelApp.WorkbookOpen, excelevent

The first line declares the delegate type. Delegates are heavily typed, consequently
you must declare the delegate specifically for the type of event it will handle. In this
case, the excelevent delegate will specifically handle a WorkbookOpen event. The
second line creates the object declared in the first by calling the New operator, passing
to the parameter the address of a function. The third line uses the VB.NET AddHan-
dler keyword to assign the delegate to the WorkbookOpen event. Note that the
WorkbookOpen event is a member of the Excel.Application object; in this code
snippet, the Excel.Application object is called ExcelApp.

Now look at the same example in C#, which contains other code to make up a com-
plete console application. I chose to demonstrate a complete application here since the
main example shown later in this section is a VB.NET sample; this will enable you to
see an entire C# example. Specifically, this is a simple automation program that
launches Excel; it is not an add-in. Also, note that, in this example, instead of using the
WorkbookOpen event, I demonstrate the NewWorkbook event, primarily because I
didn’t want to assume a particular workbook already existed.

When you write an add-in for an Office 2000 product, you will want to make
good use of exception handlers. If an Office product encounters an error
while running your add-in, and your add-in has no exception handler to
catch the error, instead of notifying you as Visual Studio .NET does, the
application will simply abort the add-in and set the add-in’s load behavior
to not run upon startup. This can be frustrating if you don’t know what’s
happening.

using System;

namespace CSharpExcelAuto

{

/// <summary>

/// Summary description for Class1.

/// </summary>

class Class1

{

/// <summary>

304 Chapter 13

TE
AM
FL
Y

Team-Fly®

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

Excel.Application ExcelApp = new Excel.Application();

ExcelApp.Visible = true;

Excel.AppEvents_NewWorkbookEventHandler excelevent;

excelevent = new

Excel.AppEvents_NewWorkbookEventHandler(

ExcelNewWorkbook);

ExcelApp.NewWorkbook += excelevent;

Excel.Workbook book = ExcelApp.Workbooks.Add(

System.Reflection.Missing.Value);

Excel.Worksheet sheet = (Excel.Worksheet)book.ActiveSheet;

sheet.Cells[1,1] = “10”;

sheet.Cells[2,1] = “20”;

Excel.Range range = sheet.get_Range(“A3”, “A3”);

range.Formula = “=Sum(A1:A2)”;

}

static void ExcelNewWorkbook(Excel.Workbook Wb)

{

System.IO.TextWriter f =

System.IO.File.AppendText(“c:\\automation.log”);

f.WriteLine(“Excel: NewWorkbook “ + Wb.FullName);

f.Close();

}

}

}

To use this sample, create a new C# console application and type the code shown
into the Class1.cs file; then compile it. If you run the code in a command (DOS) win-
dow, you will see Excel start up, a new sheet gets created and filled with some values.
Meanwhile, you can check that the c:\automation.log file was indeed created, meaning
the event fired.

Next is an entire add-in that can be used in three different Office applications: Word,
Excel, and Outlook. This add-in is written in VB.NET and includes the earlier code
snippet demonstrating how to set up an event. To use this code, create a new Shared
Add-in, choose VB.NET for the language, and choose Word, Excel, and Outlook for the
supported applications. Add references to all three applications, as I described earlier
in this chapter in the section “Adding References to Office Products.” Then fix up the
Outlook and Excel interop assemblies.

Once you’ve fixed up the interop assemblies, you can save them in a
common directory (such as C:\Program Files\Microsoft Visual Studio .NET\
Common7\IDE\PublicAssemblies) and reuse them in future projects. But if
you do this, don’t forget to include them when you deploy your add-in.

Writing .NET Add-ins for Microsoft Office 305

This add-in sets up separate event handlers based on which application is running,
as you can see in the OnConnection function. You can also see in the OnDisconnec-
tion function that I unhooked the event handlers by calling the RemoveHandler
function, which mirrors the AddHandler function. Unhooking the event handlers is
important because if you don’t, the COM system will see that the event objects are still
in use, hence will not allow the Office application to exit even after the application user
chooses File➪Exit in the application.

When writing an add-in, always remember to unhook your events. If you
find that the application for which you’re writing the add-in appears to quit
(its window will disappear) but the application still appears in the Task
Manager’s processes list, the likely solution is to add code to unhook the
events. Meanwhile, to end the process, you can right-click the application
name in the processes list of the Task Manager and choose End Process.

Here, now, is the code for the add-in:

Imports Microsoft.Office.Core

imports Extensibility

imports System.Runtime.InteropServices

<GuidAttribute(“E2E96CEA-0629-4177-AEC8-34302224502E”), _

ProgIdAttribute(“OfficeVSAddin.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Dim applicationObject As Object

Dim addInInstance As Object

‘ Event handlers

Dim excelevent As Excel.AppEvents_WorkbookOpenEventHandler

Dim wordevent As Word.ApplicationEvents2_DocumentOpenEventHandler

Dim outlookevent As Outlook.ApplicationEvents_NewMailEventHandler

Public Sub OnBeginShutdown(ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnBeginShutdown

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnStartupComplete

Dim f As System.IO.TextWriter = System.IO.File.AppendText(_

“c:\multiaddin.log”)

f.WriteLine(“OnStartupComplete”)

306 Chapter 13

f.Close()

End Sub

Public Sub OnDisconnection(ByVal RemoveMode As Extensibility. _

ext_DisconnectMode, ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnDisconnection

‘ Unhook the handlers. This is important

‘ especially for Outlook; otherwise it

‘ will hang around in memory.

Try

If applicationObject.Name = “Microsoft Excel” Then

Dim ExcelApp As Excel.Application = applicationObject

‘ See text about fixing Excel interop before

‘ attempting to use this sample code!

RemoveHandler ExcelApp.WorkbookOpen, excelevent

ElseIf applicationObject.Name = “Microsoft Word” Then

Dim WordApp As Word.Application = applicationObject

RemoveHandler WordApp.DocumentOpen, wordevent

ElseIf applicationObject.Name = “Outlook” Then

Dim OutlookApp As Outlook.Application =

applicationObject

RemoveHandler OutlookApp.NewMail, outlookevent

End If

Catch e As System.Exception

Dim f2 As System.IO.TextWriter = _

System.IO.File.AppendText(“c:\addinerror.log”)

f2.WriteLine(“OfficeVSAddin: OnDisconnection “ & e.Message)

f2.Close()

End Try

End Sub

Public Sub OnConnection(ByVal application As Object, ByVal _

connectMode As Extensibility.ext_ConnectMode, ByVal _

addInInst As Object, ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnConnection

Try

applicationObject = application

addInInstance = addInInst

If application.Name = “Microsoft Excel” Then

Dim ExcelApp As Excel.Application = application

‘ See text about fixing Excel interop before

‘ attempting to use this sample code!

excelevent = New Excel. _

AppEvents_WorkbookOpenEventHandler(_

AddressOf ExcelWorkbookOpen)

AddHandler ExcelApp.WorkbookOpen, excelevent

ElseIf application.Name = “Microsoft Word” Then

Writing .NET Add-ins for Microsoft Office 307

Dim WordApp As Word.Application = application

wordevent = New Word. _

ApplicationEvents2_DocumentOpenEventHandler(_

AddressOf WordDocumentOpen)

AddHandler WordApp.DocumentOpen, wordevent

ElseIf application.Name = “Outlook” Then

Dim OutlookApp As Outlook.Application = application

outlookevent = New Outlook. _

ApplicationEvents_NewMailEventHandler(_

AddressOf OutlookNewMail)

AddHandler OutlookApp.NewMail, outlookevent

End If

Dim f As System.IO.TextWriter = System.IO.File. _

AppendText(“c:\multiaddin.log”)

f.WriteLine(“OnConnection: “ & application.Name)

f.Close()

Catch e As System.Exception

Dim f2 As System.IO.TextWriter = _

System.IO.File.AppendText(“c:\addinerror.log”)

f2.WriteLine(“OfficeVSAddin” & e.Message)

f2.Close()

End Try

End Sub

Sub OutlookNewMail()

Try

Dim f As System.IO.TextWriter = _

System.IO.File.AppendText(“c:\multiaddin.log”)

f.WriteLine(“New Mail “ & Now().ToShortDateString & “ “ _

& Now().ToShortTimeString)

f.Close()

Catch e As System.Exception

Dim f2 As System.IO.TextWriter = _

System.IO.File.AppendText(“c:\addinerror.log”)

f2.WriteLine(“OfficeVSAddin” & e.Message)

f2.Close()

End Try

End Sub

Sub ExcelWorkbookOpen(ByVal Wb As Excel.Workbook)

Dim f As System.IO.TextWriter = _

System.IO.File.AppendText(“c:\multiaddin.log”)

f.WriteLine(“Excel: Open workbook “ & Wb.FullName)

f.Close()

End Sub

Sub WordDocumentOpen(ByVal Doc As Word.Document)

Dim f As System.IO.TextWriter = _

System.IO.File.AppendText(“c:\multiaddin.log”)

f.WriteLine(“Word: Open document “ & Doc.FullName)

f.Close()

308 Chapter 13

End Sub

End Class

Next is a sample multiaddin.log file from running the add-in in Word, Outlook, and
Excel:

OnConnection: Microsoft Excel

OnStartupComplete

Excel: Open workbook C:\Book2.xls

OnConnection: Microsoft Word

OnStartupComplete

Word: Open document C:\Write\MacrosAddins\Text\ch13.doc

OnConnection: Outlook

OnStartupComplete

New Mail 11/24/2002 5:32 PM

You can see I started up Excel, opened Book2.xls, and then started up Word and
loaded the ch13.doc document (the chapter you’re reading); then I started Outlook and
received one new email message.

As you can see from the output, I’m using Word to write this book while developing
an add-in for Word, which required me to engage in some interesting electronic acro-
batics. The point is, just as you need to consider the effects of a Visual Studio .NET add-
in that you’re writing while using Visual Studio .NET, you also need to consider what
happens if you’re using various Office products while trying to develop them. In my
case, any time I wanted to rebuild the add-in, I had to first shut down Word, since
Word had a lock on the file, preventing me from rebuilding the add-in. (I could have
investigated unloading the add-in from within Word, but I wanted to be sure every-
thing went smoothly. Therefore, I simply exited out of Word whenever I rebuilt the
add-in.)

I also encountered another interesting situation that you might be able to learn from.
While researching this chapter, I had, at any given moment, five or six test add-ins run-
ning. Some of these I simply forgot about. But just because I forgot about them didn’t
mean they weren’t still there. Consequently, when the preceding code listing wrote to
a file called c:\multiaddin.log, so did another, earlier add-in that I was testing. That
add-in, however, had an unhandled exception that occurred after opening the c:\mul-
tiaddin.log file but before closing it. This resulted in the operating system placing a
lock on the file, which prevented the add-in I was working on from writing to the file,
resulting in seemingly inexplicable exceptions (but at least these exceptions were han-
dled). The moral here is to monitor the state of your add-ins to make sure you don’t
have any old skeleton add-ins hanging around in the closet, as I did.

To help you in this matter, here’s a macro that lists all the registered add-ins. Like so
many of the other macros in this book, this macro requires the VBMacroUtilities assem-
bly, which allows the macro to write to its own Output pane.

Function BreakdownLoadBits(ByVal Bits As Integer) As String

BreakdownLoadBits = “”

‘ Bit value 4 is reserved.

‘ The parens are important in these comparisons

Writing .NET Add-ins for Microsoft Office 309

If (Bits And 1) = 1 Then

BreakdownLoadBits = “Connected “

End If

If (Bits And 2) = 2 Then

BreakdownLoadBits += “BootLoad “

End If

If (Bits And 8) = 8 Then

BreakdownLoadBits += “DemandLoad “

End If

If (Bits And 16) = 16 Then

BreakdownLoadBits += “ConnectFirstTime”

End If

BreakdownLoadBits += “(“ & Bits & “)”

End Function

Sub ListSpecificOffice(ByVal OfficeName As String, _

ByVal RootKey As Microsoft.Win32.RegistryKey)

VBMacroUtilities.Print(OfficeName & “ “ & RootKey.Name)

Dim regkey As Microsoft.Win32.RegistryKey

regkey = RootKey.OpenSubKey(_

“Software\Microsoft\Office\” & OfficeName & “\Addins”)

Dim strs As String()

strs = regkey.GetSubKeyNames()

Dim key As String

For Each key In strs

VBMacroUtilities.Print(“ “ & key)

Dim subkey As Microsoft.Win32.RegistryKey

subkey = regkey.OpenSubKey(key)

Dim loadbehavior As Integer = subkey.GetValue(“LoadBehavior”)

VBMacroUtilities.Print(“ LoadBehavior: “ _

& BreakdownLoadBits(loadbehavior))

Next

End Sub

‘ The actual macro

Sub ListOfficeAddins()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

ListSpecificOffice(“Outlook”, Microsoft.Win32.Registry.CurrentUser)

ListSpecificOffice(“Outlook”, Microsoft.Win32.Registry.LocalMachine)

ListSpecificOffice(“Word”, Microsoft.Win32.Registry.CurrentUser)

ListSpecificOffice(“Word”, Microsoft.Win32.Registry.CurrentUser)

ListSpecificOffice(“Excel”, Microsoft.Win32.Registry.CurrentUser)

ListSpecificOffice(“Excel”, Microsoft.Win32.Registry.LocalMachine)

End Sub

To save space, I only listed the three Office applications that I focus on in this chapter,
Outlook, Word, and Excel. You’re welcome to add more lines to the ListOfficeAddins
subroutine for other Office applications you might have on your computer.

310 Chapter 13

Moving Forward

This chapter guided you through the process of writing add-ins for various Microsoft
Office products. I showed you how to add the COM Addins menu item to the Office
products and how to fix Excel and Outlook if you’re using Office 2000. (Remember, for
Office XP, be sure to obtain the PIAs.) I also pointed out that if you’re using Visio 2000,
you cannot create add-ins, even though a disabled checkbox in the options dialog box
would suggest you can.

In the next chapter, I take you in the opposite direction: Instead of using Visual Stu-
dio .NET to write an add-in for an Office application, I show how you can take an
Office application and either embed it inside Visual Studio .NET or simply make use of
the Office application’s services through the COM and automation interfaces.

Writing .NET Add-ins for Microsoft Office 311

313

In this chapter, I show you how to integrate Visual Studio .NET with various Microsoft
Office programs. This chapter is meant to be more “hands-on” than the others, there-
fore you’ll find more code samples.

Many products that you use on Windows—including all Microsoft Office products, as
well as many products for which you can’t write add-ins—are COM servers. By this I
mean that a program running on Windows (such as Visual Studio .NET) can communi-
cate with the other programs, manipulate them, or use their services to manipulate data.

To access the other programs, you create a COM object representing the program.
That object then has methods and properties just like any other object. In the next section
I show you different ways to create a COM object for another program. Then I show
you how you can determine which services the object has available; finally, I show you
several examples of automating and accessing the services of other programs, such as
Microsoft Word and Microsoft Outlook.

In Chapter 13, “Writing .NET Add-ins for Microsoft Office,” in the section “Adding
References to Office Products,” I showed you ways to add references to other COM
objects, including the Office products. Recall that once you add a reference to an Office
product, you can automate the Office product from within your add-ins and macros
just as you can automate Visual Studio .NET through the DTE object. In the following
sections I use these techniques to automate the Office products, resulting in the inte-
gration of the Office products and Visual Studio .NET.

Integrating Visual Studio .NET
with Microsoft Office

C H A P T E R

14

Adding a Spelling Checker

In the following example, I create an add-in that uses the spell check features of
Microsoft Word to check the spelling of highlighted text in your code. Of course, such
a feature is mainly useful for the comments in your code, as checking the spelling of
your source code is a hopeless exercise.

This add-in uses the VSUserControlHost that I described in “Using the Form
Designer with a Tool Window” in Chapter 7, “Creating Add-ins for the IDE.”
Refer to that section for more information on building the VSUserControlHost
library. Also, remember to add a COM reference to the VSUserControlHost 1.0
Type Library when you build the following program. And be sure to add a
reference to Microsoft Word, as I described in Chapter 13, “Writing .NET
Add-ins for Microsoft Office.”

To create the spell check add-in, add a new Visual Studio .NET add-in project (not a
shared add-in project). Call the add-in SpellingAddinThis add-in uses VB.NET for the
language. Like other add-ins that create a tool window, select the Tool menu option so
the Connect class will implement the IDTCommandTarget interface.

When I wrote this add-in, I was in for a bit of surprise. I originally tried
the line:

doc.Close()

to close the document. But I got an error:

C:\Write2001\VS.NET-IDE\dev\Chapter13\VBWord\Module1.vb(37):

‘Close’ is ambiguous across the inherited interfaces

‘Word._Document’ and ‘Word.DocumentEvents_Event’.

To fix this error, I had to cast the doc object to Word._Document. You will
see this cast in the code for the form.

314 Chapter 14

FINDING REFERENCE INFORMATION

As you develop software (including macros and add-ins) that integrates with the various
Microsoft Office components, you’ll need access to online help for the objects and
classes. But if you look in the online help that comes with Visual Studio .NET, you won’t
find what you need. Instead, where you need to look is in the Office Developer
Documentation, which you can find in two places: If you have the Microsoft Developer
Network (MSDN) CD, the Office Developer Documentation item is immediately off the
root in the table of contents; and if you don’t have the MSDN CD, you can find the
information online: go to http://msdn.microsoft.com/library/default.asp; in the tree on
the left, you will see an item called Office Solutions Developer, which contains all the
office documentation.

TE
AM
FL
Y

Team-Fly®

In the following add-in, I make reference to a Document object. This is not the same
Document object that you find in the DTE library for Visual Studio .NET. Rather, it is
part of the Microsoft Word library. Be careful not to confuse the two.

Here’s the code for the Connect module:

Imports Microsoft.Office.Core

imports Extensibility

imports System.Runtime.InteropServices

Imports EnvDTE

<GuidAttribute(“AC9C3239-E46A-453A-9BCE-30AB383E75CB”), _

ProgIdAttribute(“SpellingAddin.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Implements IDTCommandTarget

‘ Note: I changed applicationObject to Public Shared!

Public Shared applicationObject As EnvDTE.DTE

Dim addInInstance As EnvDTE.AddIn

Private doc As VSUserControlHostLib.IVSUserControlHostCtl = Nothing

Private toolwin As Window = Nothing

Public Shared wapp As Word.Application

Public Sub OnBeginShutdown(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnBeginShutdown

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnStartupComplete

End Sub

Public Sub OnDisconnection(ByVal RemoveMode As _

Extensibility.ext_DisconnectMode, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnDisconnection

CType(wapp, Word._Application).Quit(False)

End Sub

Public Sub OnConnection(ByVal application As Object, ByVal _

connectMode As Extensibility.ext_ConnectMode, _

ByVal addInInst As Object, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnConnection

‘ Create the instance of Microsoft Word

wapp = New Word.Application()

wapp.Visible = False

Integrating Visual Studio .NET with Microsoft Office 315

applicationObject = CType(application, EnvDTE.DTE)

addInInstance = CType(addInInst, EnvDTE.AddIn)

Dim tempdoc As Object

Dim newguid As String = “{6961A5CB-51EB-4cbf-ABD3-E39671FED89A}”

toolwin = applicationObject.Windows.CreateToolWindow(_

addInInstance, _

“VSUserControlHost.VSUserControlHostCtl”, _

“Spelling”, newguid, tempdoc)

toolwin.Visible = True

doc = CType(tempdoc, VSUserControlHostLib.IVSUserControlHostCtl)

Dim asm As System.Reflection.Assembly

asm = System.Reflection.Assembly.GetExecutingAssembly()

doc.HostUserControl(asm.Location, _

“SpellingAddin.SpellForm”)

Try

Dim commands As Commands = applicationObject.Commands

Dim command1 As Command = commands.AddNamedCommand(_

addInInstance, _

“Show”, “Check Spelling”, “Shows the Spelling Window”, _

True, 59, Nothing, _

vsCommandStatus.vsCommandStatusSupported + _

vsCommandStatus.vsCommandStatusEnabled)

Dim viewMenu As CommandBarPopup = _

applicationObject.CommandBars(“MenuBar”). _

Controls(“&View”)

Dim viewMenuBar As CommandBar = viewMenu.CommandBar

Dim othersMenu As CommandBarPopup = _

viewMenu.Controls(“Other Windows”)

Dim othersBar As CommandBar = othersMenu.CommandBar

command1.AddControl(othersBar, 1)

Catch

End Try

End Sub

Public Sub Exec(ByVal cmdName As String, ByVal executeOption As _

vsCommandExecOption, ByRef varIn As Object, ByRef varOut As Object,

_

ByRef handled As Boolean) Implements IDTCommandTarget.Exec

handled = False

If (executeOption = vsCommandExecOption. _

vsCommandExecOptionDoDefault) Then

If cmdName = “SpellingAddin.Connect.Show” Then

toolwin.Visible = True

handled = True

Exit Sub

End If

End If

316 Chapter 14

End Sub

Public Sub QueryStatus(ByVal cmdName As String, ByVal neededText _

As vsCommandStatusTextWanted, ByRef statusOption As _

vsCommandStatus, ByRef commandText As Object) _

Implements IDTCommandTarget.QueryStatus

If neededText = EnvDTE.vsCommandStatusTextWanted. _

vsCommandStatusTextWantedNone Then

If cmdName = “SpellingAddin.Connect.Show” Then

statusOption = CType(vsCommandStatus. _

vsCommandStatusEnabled + vsCommandStatus. _

vsCommandStatusSupported, vsCommandStatus)

Else

statusOption = vsCommandStatus. _

vsCommandStatusUnsupported

End If

End If

End Sub

End Class

Now I will show you the form and code that you’ll create for the SpellForm form.
Figure 14.1 shows you the layout for the form. Remember, to create this form, right-
click the project name in the Solution Explorer, and in the popup menu choose
Add➪Add User Control.

Public Class SpellForm

Inherits System.Windows.Forms.UserControl

#Region “ Windows Form Designer generated code “

Public Sub New()

MyBase.New()

‘This call is required by the Windows Form Designer.

InitializeComponent()

‘Add any initialization after the InitializeComponent() call

Figure 14.1 The SpellForm.vb form layout.

Integrating Visual Studio .NET with Microsoft Office 317

End Sub

‘UserControl overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As

Boolean)

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

‘Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

Friend WithEvents Label1 As System.Windows.Forms.Label

Friend WithEvents IgnoreButton As System.Windows.Forms.Button

Friend WithEvents ChangeButton As System.Windows.Forms.Button

Friend WithEvents StartButton As System.Windows.Forms.Button

Friend WithEvents SuggestionList As System.Windows.Forms.ListBox

Friend WithEvents WordEdit As System.Windows.Forms.TextBox

<System.Diagnostics.DebuggerStepThrough()> Private Sub _

InitializeComponent()

Me.WordEdit = New System.Windows.Forms.TextBox()

Me.Label1 = New System.Windows.Forms.Label()

Me.SuggestionList = New System.Windows.Forms.ListBox()

Me.IgnoreButton = New System.Windows.Forms.Button()

Me.ChangeButton = New System.Windows.Forms.Button()

Me.StartButton = New System.Windows.Forms.Button()

Me.SuspendLayout()

‘

‘WordEdit

‘

Me.WordEdit.Location = New System.Drawing.Point(8, 8)

Me.WordEdit.Name = “WordEdit”

Me.WordEdit.ReadOnly = True

Me.WordEdit.Size = New System.Drawing.Size(216, 20)

Me.WordEdit.TabIndex = 0

Me.WordEdit.Text = “”

‘

‘Label1

‘

Me.Label1.Location = New System.Drawing.Point(8, 32)

Me.Label1.Name = “Label1”

Me.Label1.Size = New System.Drawing.Size(100, 16)

Me.Label1.TabIndex = 1

Me.Label1.Text = “Suggestions:”

‘

‘SuggestionList

318 Chapter 14

‘

Me.SuggestionList.Location = New System.Drawing.Point(8, 48)

Me.SuggestionList.Name = “SuggestionList”

Me.SuggestionList.Size = New System.Drawing.Size(216, 95)

Me.SuggestionList.TabIndex = 2

‘

‘IgnoreButton

‘

Me.IgnoreButton.Enabled = False

Me.IgnoreButton.Location = New System.Drawing.Point(232, 8)

Me.IgnoreButton.Name = “IgnoreButton”

Me.IgnoreButton.TabIndex = 3

Me.IgnoreButton.Text = “Ignore”

‘

‘ChangeButton

‘

Me.ChangeButton.Enabled = False

Me.ChangeButton.Location = New System.Drawing.Point(232, 48)

Me.ChangeButton.Name = “ChangeButton”

Me.ChangeButton.TabIndex = 4

Me.ChangeButton.Text = “Change”

‘

‘StartButton

‘

Me.StartButton.Location = New System.Drawing.Point(232, 120)

Me.StartButton.Name = “StartButton”

Me.StartButton.TabIndex = 5

Me.StartButton.Text = “Start”

‘

‘SpellForm

‘

Me.Controls.AddRange(New System.Windows.Forms.Control() _

{Me.StartButton, Me.ChangeButton, Me.IgnoreButton, _

Me.SuggestionList, Me.Label1, Me.WordEdit})

Me.Name = “SpellForm”

Me.Size = New System.Drawing.Size(320, 150)

Me.ResumeLayout(False)

End Sub

#End Region

‘ Remember to add reference to Microsoft Word

Private Running As Boolean = False

Private doc As Word.Document

Private WordNum As Integer = 0

Private range As Word.Range = Nothing

Private Sub SetupSpell()

Integrating Visual Studio .NET with Microsoft Office 319

IgnoreButton.Enabled = True

ChangeButton.Enabled = True

StartButton.Text = “Stop”

doc = Connect.wapp.Documents.Add()

Dim clp As System.Windows.Forms.Clipboard

clp.SetDataObject(Connect.applicationObject.ActiveDocument. _

Selection.text)

doc.Content.Paste()

Running = True

WordNum = 1

DoNextSpell()

End Sub

Private Sub DoNextSpell()

range = doc.Words.Item(WordNum)

While range.SpellingErrors.Count = 0 And _

WordNum < doc.Words.Count

WordNum += 1

range = doc.Words.Item(WordNum)

End While

If range.SpellingErrors.Count > 0 Then

WordEdit.Text = range.Text

Dim spell As Word.SpellingSuggestion

Dim spells As Word.SpellingSuggestions

spells = range.GetSpellingSuggestions()

SuggestionList.Items.Clear()

For Each spell In spells

SuggestionList.Items.Add(spell.Name)

Next

End If

WordNum += 1

If WordNum > doc.Words.Count Then

WordEdit.Text = “”

SuggestionList.Items.Clear()

SuggestionList.Items.Add(“No more misspellings.”)

StopSpell()

End If

End Sub

Private Sub StopSpell()

IgnoreButton.Enabled = False

ChangeButton.Enabled = False

StartButton.Text = “Start”

Running = False

If MsgBox(“Apply changes?”, MsgBoxStyle.YesNo) = _

MsgBoxResult.Yes Then

320 Chapter 14

Connect.applicationObject.ActiveDocument.Selection.text = _

doc.Content.Text

End If

CType(doc, Word._Document).Close(False)

End Sub

Private Sub StartButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles StartButton.Click

If Running = False Then

SetupSpell()

Else

StopSpell()

End If

End Sub

Private Sub IgnoreButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles IgnoreButton.Click

DoNextSpell()

End Sub

Private Sub ChangeButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ChangeButton.Click

Dim ind As Integer = SuggestionList.SelectedIndex

If ind = -1 Then

Exit Sub

End If

Dim replace As String = SuggestionList.Items.Item(ind)

If Not range Is Nothing Then

Dim trimmed As String = range.Text.TrimEnd()

Dim pad As String = range.Text.Substring(trimmed.Length())

range.Text = replace & pad

End If

DoNextSpell()

End Sub

End Class

Loading another program such as Microsoft Word can take some time, so I
recommend that you load the program once, when your add-in begins (that
is, in the OnConnection function), then shut down the program when your
add-in unloads (in the OnDisconnection function). When I wrote the spell
check add-in, I initially loaded Microsoft Word each time I was ready to
check the spelling. But this took awhile, so I moved the load process to the
OnConnection and then had to load Word only once. Also, don’t forget to
unload the program, because it won’t automatically do so and your IDE
users could end up with numerous instances running every time they restart
your add-in.

Integrating Visual Studio .NET with Microsoft Office 321

After you create the add-in, you can use it by starting up a new session of Visual
Studio .NET and then loading the add-in as you would any other add-in. When you
do, a new tool window will appear that looks just like the one you designed (refer back
to Figure 14.1). (Note that, initially, the window might be kind of small; you can resize
it or simply dock it.) Next highlight some comments in your code. (You can highlight
code, too, but be prepared for lots of spelling errors since the Word dictionary doesn’t
recognize many code identifiers. That’s why I recommend checking only your com-
ments.) Then click the Start button. If the add-in finds any spelling errors, it will show
them in the Spelling and Suggestions boxes, allowing you to click Ignore or Change.
When the spell check session is finished, a message box will appear asking if you’d like
to apply the changes. (This is slightly different from spell check sessions in Microsoft
Word, which applies each change as you make it.)

Integrating an Excel Spreadsheet

If you use Excel a lot, you can easily write an add-in that lets you work with a particu-
lar Excel spreadsheet in a tool window inside Visual Studio .NET. But before I show
you the add-in, I want to point out that there’s a quick and easy way to load a spread-
sheet into Visual Studio .NET. But I also want to point out that this method is a bit lim-
ited. To use the quickie method, all you have to do is type the full path and filename of
the .xls workbook file into the URL edit box of the built-in browser. When you do so, the
built-in browser will launch Excel and embed it into the browser window, displaying

322 Chapter 14

HINT FOR PROGRAMMING OFFICE OBJECTS

Here’s a hint that will make your Office programming adventures easier: If you’re not
sure how to accomplish something, remember that normally you do not simply create a
new instance of an Office object; rather, you start with another object (such as the
Application object) and request a new instance. For example, I wanted to write a
macro that would use Outlook to email my code file to someone. To do so, I needed a
new MailItem object. Although traditional programming experience would suggest that
I simply needed to call the new operator on the MailItem class, I knew I would not be
able to do so, thanks to my knowledge of Office programming. Instead, I looked at the
Application object for Outlook, where I found a function called CreateItem. This
function takes an enumerated parameter, which can be:

OlItemType.olAppointmentItem

OlItemType.olContactItem

OlItemType.olDistributionListItem

OlItemType.olJournalItem

OlItemType.olMailItem

OlItemType.olNoteItem

OlItemType.olPostItem

OlItemType.olTaskItem.

The one I wanted, of course, was OlItemType.olMailItem.

the spreadsheet. However, you won’t see the Excel toolbars, limiting what you can do
with the spreadsheet. In contrast, the add-in I show you here does display the toolbars,
adding to your capabilities.

To create this add-in, start a new Visual Studio .NET add-in project (not a shared
add-in project). Call the project ExcelInVisualStudio, and choose VB.NET for the lan-
guage of this add-in. Choose only Microsoft Visual Studio .NET for the host. Select the
Tool menu option so that the add-in’s Connect class will implement the IDTCom-
mandTarget interface.

Next add a reference to Excel. Remember, if you’re using XP and plan to support XP,
use the Primary Interop Assemblies; or, if you’re planning on using and supporting
Excel 2000, use the Microsoft Excel 9.0 Type Library, found under the COM tab of the
Add References dialog box.

This add-in does not make use of Excel’s events; therefore, you can get
away with not fixing it up as I described in the sidebar titled “Important:
Fixing Excel and Outlook,” in Chapter 13, “Writing .NET Add-ins for Microsoft
Office.” However, if later you plan to enhance this add-in to support events,
then I recommend that you fix the Excel interop.

The goal here is to get an Excel window into a tool window. Earlier versions of Excel
included a COM component (called an OCX component, which is today known as an
ActiveX component) that allowed you to drop an instance of Excel into any program
that could host ActiveX controls. Unfortunately, Microsoft no longer provides such a
control. But Microsoft did enable an alternate way of getting Excel to appear inside
another application (which is documented in its online Knowledge Base article num-
ber 304662). Internet Explorer serves two sides in the COM world: It can host COM
servers such as Excel, and it can serve as an ActiveX component. So that’s what I use
here: I am going to place an Internet Explorer control in a tool window and then
request that IE load an Excel spreadsheet, which will embed Excel inside the IE win-
dow, which is inside the tool window.

Since IE already has an ActiveX control, I don’t need to use the VSUserControlHost,
as I did in many other add-ins in this book. Instead, I can embed IE directly into a tool
window. Here’s the code for the Connect module, which does so:

Imports Microsoft.Office.Core

imports Extensibility

imports System.Runtime.InteropServices

Imports EnvDTE

<GuidAttribute(“4B8A3716-3DA1-47CB-83BF-EB57BB61ACAE”), _

ProgIdAttribute(“ExcelInVisualStudio2.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Implements IDTCommandTarget

Integrating Visual Studio .NET with Microsoft Office 323

Dim applicationObject As EnvDTE.DTE

Dim addInInstance As EnvDTE.AddIn

Dim doc As SHDocVw.WebBrowser = Nothing

Dim toolwin As Window = Nothing

Public Sub OnBeginShutdown(ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnBeginShutdown

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnStartupComplete

End Sub

Public Sub OnDisconnection(ByVal RemoveMode As Extensibility. _

ext_DisconnectMode, ByRef custom As System.Array) Implements _

Extensibility.IDTExtensibility2.OnDisconnection

End Sub

Public Sub OnConnection(ByVal application As Object, _

ByVal connectMode As Extensibility.ext_ConnectMode, _

ByVal addInInst As Object, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnConnection

applicationObject = CType(application, EnvDTE.DTE)

addInInstance = CType(addInInst, EnvDTE.AddIn)

Dim objAddIn As AddIn = CType(addInInst, AddIn)

Dim CommandObj As Command

Try

Dim newguid As String = _

“{5010CCC1-9C64-46d1-8460-73A92681552A}”

Dim tempdoc As Object = Nothing

Dim macroexp As Window = applicationObject.Windows.Item(_

Constants.vsWindowKindMacroExplorer)

Dim objkind As String = macroexp.ObjectKind

toolwin = applicationObject.Windows.CreateToolWindow(_

addInInstance, “Shell.Explorer”, _

“New Tool Window”, newguid, tempdoc)

toolwin.Visible = True

doc = CType(tempdoc, SHDocVw.IWebBrowser)

Dim emptyobj As Object = Nothing

AddHandler doc.NavigateComplete2, AddressOf _

Me.NavigateComplete2

doc.Navigate2(“file://c:\book1.xls”)

Catch e As System.Exception

324 Chapter 14

TE
AM
FL
Y

Team-Fly®

MsgBox(e.Message)

End Try

End Sub

Private Sub ToggleToolbars()

doc.ExecWB(SHDocVw.OLECMDID.OLECMDID_HIDETOOLBARS, _

SHDocVw.OLECMDEXECOPT.OLECMDEXECOPT_DONTPROMPTUSER)

End Sub

Public Sub NavigateComplete2(ByVal sender As Object, _

ByRef URL As Object)

Try

Dim exceldoc As Excel.Workbook = doc.Document

If exceldoc Is Nothing Then

Exit Sub

End If

If TypeName(exceldoc) <> “Workbook” Then

Exit Sub

End If

exceldoc.Windows.Item(1).Zoom = 80.0

ToggleToolbars()

Catch e As Exception

MsgBox(e.Message)

End Try

End Sub

Public Sub Exec(ByVal cmdName As String, ByVal executeOption As _

vsCommandExecOption, ByRef varIn As Object, ByRef varOut As Object, _

ByRef handled As Boolean) Implements IDTCommandTarget.Exec

handled = False

If (executeOption = vsCommandExecOption. _

vsCommandExecOptionDoDefault) Then

If cmdName = _

“ExcelInVisualStudio2.Connect.ExcelInVisualStudio2” Then

handled = True

Exit Sub

End If

End If

End Sub

Public Sub QueryStatus(ByVal cmdName As String, ByVal neededText _

As vsCommandStatusTextWanted, ByRef statusOption As _

vsCommandStatus, ByRef commandText As Object) Implements _

IDTCommandTarget.QueryStatus

If neededText = EnvDTE.vsCommandStatusTextWanted. _

vsCommandStatusTextWantedNone Then

If cmdName = _

“ExcelInVisualStudio2.Connect.ExcelInVisualStudio2” Then

statusOption = CType(vsCommandStatus. _

Integrating Visual Studio .NET with Microsoft Office 325

vsCommandStatusEnabled + _

vsCommandStatus.vsCommandStatusSupported, vsCommandStatus)

Else

statusOption =

vsCommandStatus.vsCommandStatusUnsupported

End If

End If

End Sub

End Class

You will notice in this code that I hard-coded the name of a spreadsheet,
c:\book1.xls. My assumption here is that you would be working on a single spread-
sheet. If that’s not true for you, at the end of this section I offer some tips for enhancing
this add-in. Note, however, that as it stands, you will need to create a spreadsheet
whose filename is c:\book1.xls before running this add-in, or change the code to point
to a spreadsheet file of your choice.

When you run this add-in, you will get a tool window that contains the spreadsheet.
Like any tool window, you will be able to dock or close it. Like my other tool window
add-ins, this one includes a menu item on the View➪Other Windows menu bar that
lets you reopen the tool window.

Now here are the promised tips for enhancing this add-in:

■■ Presently, this add-in does not include a Show command that displays the tool
window; rather, the tool window opens when the add-in loads. You could add
a command such as Show, and perhaps a command that includes an .xls file-
name as a parameter. The command would open the .xls spreadsheet file in the
tool window. Using the Command window, the IDE user could type the com-
mand followed by a spreadsheet filename, thereby opening the spreadsheet.

■■ You might add a menu item to the Visual Studio .NET IDE that displays the
OpenFile dialog box, from which the IDE user could choose a file to display. To
do this, you would probably want to have the menu item execute another com-
mand in your add-in that first displays the OpenFile dialog box and then opens
the spreadsheet. This would be a separate command from the one in the pre-
ceding paragraph.

■■ Since this add-in uses Internet Explorer, it can display any type of file that Inter-
net Explorer can display, including any Office application. This means this add-
in is not limited to Excel files. Simply choosing a different file type will cause
your built-in Internet Explorer control to launch a different Office application.

Automating from Macros

Though you are free to automate other programs from the Visual Studio .NET macros,
doing so requires climbing a short ladder to make the automation happen. Whereas a
VB.NET or C# project in the main IDE can reference COM components, the macros can

326 Chapter 14

reference only assemblies. Therefore, to access a COM component from a macro, you
need to create an assembly wrapper. Fortunately, this is pretty easy to do. When you
are working in the main IDE and you add a reference to a COM component, behind the
scenes the main IDE runs the tlbimp program to build an assembly wrapper for the
COM component. For the Macros IDE, you need to do this yourself. Here’s how:

1. Open the Visual Studio Command Prompt window.

2. Use the cd command to switch to the directory containing the type library. In
the case of Office applications such as Word, Excel, and Outlook, this is, by
default, C:\Program Files\Microsoft Office\Office. The type library files will
have various extensions, including .tlb, .olb, or even .exe and .dll. For the Office
applications, the extensions are .olb, as in the following command output,
which shows a few of the possible Office applications for Office 2000.

Directory of C:\Program Files\Microsoft Office\Office

03/19/1999 02:00p 638,976 EXCEL9.OLB

03/19/1999 01:31p 131,072 GRAPH9.OLB

02/01/1999 04:15p 20,480 MSBDR9.OLB

03/02/1999 12:53p 163,840 MSOUTL9.OLB

03/17/1999 03:42p 548,864 MSWORD9.OLB

01/06/1999 05:50p 228,864 XL5EN32.OLB

6 File(s) 1,732,096 bytes

0 Dir(s) 238,598,656 bytes free

C:\Program Files\Microsoft Office\Office>

3. Run the following command, changing the application name to whichever
application you’re working with; this command will generate an assembly
for you.

C:\Program Files\Microsoft Office\Office>tlbimp MSOUTL9.OLB

Microsoft (R) .NET Framework Type Library to Assembly Converter

1.0.3705.0

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Type library imported to Outlook.dll

C:\Program Files\Microsoft Office\Office>copy

4. Note the resulting assembly (in this case, Outlook.dll) and copy or move the
assembly to the public assemblies directory. (I prefer to move the assembly, so
that I don’t have custom files sitting in the Office directory.) Note that the fol-
lowing two lines actually comprise a single line that had to be divided to fit on
the page:

move Outlook.dll “c:\Program Files\Microsoft Visual

Studio .NET\Common7\IDE\PulicAssemblies”

Integrating Visual Studio .NET with Microsoft Office 327

You might be wondering why I’m doing steps significantly differently here
from those outlined in Chapter 13. The reason is twofold: First, for macros to
find these assemblies they must be in the publicassemblies directory, not a
project directory. Second, I’m not using any events, so I didn’t see a need to
fix up the assemblies. But if you prefer, you can combine things here: You
can fix the assemblies, and then you’ll have them in the publicassemblies
folder, in which case you can simply reference these fixed-up assemblies in
the future, rather than fixing them up on a per-project basis.

You now have an assembly for the Outlook application or whichever application
you chose. You can access all the types within this assembly just as you would any
other assembly. I did this process for both Outlook 2000 (starting with the
MSOUTL9.OLB file) and Excel 2000 (starting with the EXCEL9.OLB file). Here, then,
are several macros that demonstrate how you can use these assemblies. These macros
use my VBMacroUtilities assembly, which I described in Chapter 3, “Introducing the
Visual Studio Macros IDE.”

Now that you have assemblies representing the types in the COM libraries,
and you access the Auto List Members option (found in the Options dialog
box through Tools➪Options under the All Languages section), you will see
the different types and members available in the Office applications as you
type the names into the editor, just as you do any other types.

Here’s a quick demo of the Contacts database in Outlook:

Sub DemoOutlookContacts()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim outapp As New Outlook.Application()

Dim myitems As Outlook.Items

myitems = outapp.GetNamespace _

(“MAPI”).GetDefaultFolder _

(Outlook.OlDefaultFolders.olFolderContacts).Items

Dim obj As Outlook.ContactItem = _

myitems.Find(“[Company] = “”Whitehouse”””)

While Not obj Is Nothing

VBMacroUtilities.Print(obj.FullName & “ “ & obj.Email1Address)

obj = myitems.FindNext()

End While

CType(outapp, Outlook._Application).Quit()

End Sub

This looks up any contacts where the company is listed as Whitehouse. To make this
work, I added email addresses for the U.S. president and vice president to my Contacts
list (so I can make my global concerns about computers and software known). Here’s a
sample output:

328 Chapter 14

Mr. President president@@whitehouse.gov

Mr. Vice President vicepresident@@whitehouse.gov

Next I show you a slightly more sophisticated macro, one that looks up any flagged
mail items in the Outlook Inbox. (To flag an item in Outlook, double-click the email to
open it in its own window; then in the toolbar, click the little flag icon.)

In this macro I use the Outlook Find feature to locate all the email messages that
match a particular criteria, which here is: [FlagStatus] = ‘Flagged’. (I had to a
do a bit of digging to figure out which words to put here. Ultimately, I realized that the
best way to determine these names (such as FlagStatus and Flagged) was to open
Outlook, choose Tools➪Advanced Find, click the Advanced field, click the Field drop-
down, and choose All Mail Fields➪Flag Status. The Value drop-down list contained
the possible values, including Flagged. (I used my common sense to figure that for
Flag Status I had to remove the space to get FlagStatus.)

Sub ListFlaggedInbox()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim outapp As New Outlook.Application()

Dim myitems As Outlook.Items

myitems = outapp.GetNamespace _

(“MAPI”).GetDefaultFolder _

(Outlook.OlDefaultFolders.olFolderInbox).Items

Dim mymailitem As Outlook.MailItem = _

myitems.Find(“[FlagStatus] = ‘Flagged’”)

While Not mymailitem Is Nothing

‘ Write out the subject

‘ (We can also grab the body for parsing!!!)

VBMacroUtilities.Print(mymailitem.Subject)

‘ Reset the flag to complete. (Remember to call save!)

mymailitem.FlagStatus = Outlook.OlFlagStatus.olFlagComplete

mymailitem.Save()

‘ Get the next item!

mymailitem = myitems.FindNext()

End While

CType(outapp, Outlook._Application).Quit()

End Sub

In case you’re curious why, in the final line, I cast outapp to Outlook._
Application, I did so because Outlook has multiple interfaces, and more than one
has a Quit function. I want the one that goes with the Application interface, so I
cast directly to that interface. But because I’m using an interface, not a class, I preceded
the name Application with an underscore—not because that’s standard but because
that’s the way Outlook is coded.

Integrating Visual Studio .NET with Microsoft Office 329

Now here’s an interesting macro that actually puts Outlook to work. This macro
takes the current source code file and emails it to someone. (I’ve hard-coded my Yahoo!
email address, and although you’re welcome to use this address, you might want to
change it to one of your own to confirm that it works.)

Sub MailCode()

VBMacroUtilities.Setup(DTE)

VBMacroUtilities.Clear()

Dim outapp As New Outlook.Application()

Dim mitem As Outlook.MailItem

mitem = outapp.CreateItem(Outlook.OlItemType.olMailItem)

mitem.To = “jeffcogs@yahoo.com”

mitem.Subject = “Hello from Visual Studio”

mitem.Body = “This is a message from Visual Studio!”

Dim filename As String

filename = DTE.ActiveDocument.FullName

Dim sendname As String

sendname = System.IO.Path.GetFileName(filename)

sendname = “Latest - “ & sendname

mitem.Attachments.Add(filename, _

Outlook.OlAttachmentType.olByValue, 1, sendname)

CType(mitem, Outlook._MailItem).Send()

End Sub

When you attach a file to a mail item, remove the path name of the
attachment, as I did in my examples. That way, the recipient won’t see an
entire path name in the attachment. Also note that you can change the
filename associated with the item using the fourth parameter of the
Attachments.Add method. If you do so, however, I recommend that you
maintain the filename extension (such as .cpp or .vb). If you leave off an
extension, neither the recipient nor the recipient’s computer will know the
file type, in which case, the recipient might be afraid to open the file, the
computer might not be able to open it, or the mail program might trash the
mail altogether, as a virus protection feature.

To conclude this chapter, look at this rather lengthy macro I wrote that takes special
fields in your source code and uses the names in these fields to extract information
from an Excel spreadsheet. This can be useful if you want various data in your com-
ments or even in your source code strings.

To try out this macro, add some comment lines to a source code file, such as:

‘ --MY_DATE-- 0 --

‘ --MY_TIME-- 0 --

330 Chapter 14

Figure 14.2 You can name a single cell and reference it through a Visual Studio macro.

Then create a spreadsheet file in Excel. (This macro has the name c:\Book1.xls hard-
coded; if you prefer to use a different name, be sure to change the macro). In the
spreadsheet file, type a formula or value into a cell and then name the cell the same as
that in your comment (such as MY_DATE or MY_TIME, without the hyphens; the
hyphens enable the macro to locate the names). To name a cell in Excel, take a look at
Figure 14.2: Simply click on the cell and then, in the upper-left corner of Excel, where
you see the location name of the cell (such as A1), type a new name and press Enter.
You can see how I did this in Figure 14.2, where I named the cell MY_DATE. When you
run this macro, the macro will replace the 0 in your comment with the value from the
spreadsheet, such as:

—MY_DATE— 12/20/02 —

Sub UpdateFieldsFromExcel()

‘ Remember to create the Microsoft Excel

‘ assembly wrapper and reference it

‘ tlbimp excel9.olb

‘ Note: Importing Excel results in two

‘ assemblies, excel.dll and vbide.dll. You

‘ Need to put both in the publicassemblies

‘ directory.

‘

‘ Example of fields (which are named cells in the spreadsheet)

‘ --MY_DATE-- 12/20/02 --

‘ --MY_TIME-- 08:45:00 --

Dim doc As Document = DTE.ActiveDocument

Dim UndoWasOpen As Boolean = DTE.UndoContext.IsOpen

Integrating Visual Studio .NET with Microsoft Office 331

If Not UndoWasOpen Then

DTE.UndoContext.Open(“FillFields”, False)

End If

Dim excelapp As New Excel.Application()

Dim book As Excel.Workbook = _

excelapp.Workbooks.Open(“c:\Book1.xls”)

excelapp.Visible = True

Dim sheet As Excel.Worksheet = book.ActiveSheet

Dim range As Excel.Range

Dim textdoc As TextDocument = doc.Object

Dim sel As TextSelection = doc.Selection

Dim spt As EditPoint = textdoc.StartPoint.CreateEditPoint

Dim ept As EditPoint = textdoc.EndPoint.CreateEditPoint

Dim text As String = spt.GetLines(1, ept.Line + 1)

Dim re As New System.Text.RegularExpressions.Regex(“--.*?--.*?--”)

Dim fieldre As New _

System.Text.RegularExpressions.Regex(“--(.*?)--(.*?)--”)

Dim ms As System.Text.RegularExpressions.MatchCollection

Dim ma As System.Text.RegularExpressions.Match

ms = re.Matches(text)

Dim itemnum As Integer

For itemnum = ms.Count - 1 To 0 Step -1

ma = ms.Item(itemnum)

Dim m As System.Text.RegularExpressions.Match

m = fieldre.Match(ma.Value)

Dim group As System.Text.RegularExpressions.Group

If m.Groups.Count = 3 Then

‘ This regex returns the whole item as the first

‘ group member (making a total of 3), so I skip

‘ that one and just use the 2nd and 3rd (index 1 and 2).

Dim group1 As System.Text.RegularExpressions.Group = _

m.Groups.Item(1)

Dim group2 As System.Text.RegularExpressions.Group = _

m.Groups.Item(2)

Try

range = sheet.Range(group1.Value)

Dim replace As String = “--” & group1.Value & _

“-- “ & range.Value & “ --”

text = text.Remove(ma.Index, ma.Length)

text = text.Insert(ma.Index, replace)

Catch

End Try

End If

Next

spt.Delete(ept)

spt.Insert(text)

If Not UndoWasOpen Then

DTE.UndoContext.Close()

End If

End Sub

332 Chapter 14

Notice that this macro makes heavy use of regular expressions. The regular expres-
sion —.*?—.*?— finds each occurrence of two hyphens followed by any characters,
then two hyphens followed by any characters, ending with two hyphens. Thus, the
expression will find —MY_DATE— 12/20/02 —. (The .* is shorthand for any number
of any characters, and the question mark is shorthand for “do not include the hyphen
characters” that follow in the regular expression.)

Moving Forward

In this chapter I showed you how you can use Visual Studio .NET to work together with
various Office products. This included making use of services from Office (the exam-
ple was a spell checker that used Microsoft Word’s spell check features), embedding an
Office document in a tool window, and automating an Office product from a macro.

In the next chapter I continue with the theme of product integration by demonstrating
how to automate Visual Studio .NET from other products, including various scripting
languages. Since these scripts automate Visual Studio .NET in the same manner as the
macros, in one sense you can actually write macros in these other scripting languages.

Integrating Visual Studio .NET with Microsoft Office 333

TE
AM
FL
Y

Team-Fly®

335

In this chapter I show you how you can use other languages to automate the Visual
Studio .NET IDE. Any language that has access to the COM system can automate
Visual Studio .NET. In a sense, this means you can write macros in any language you
want, although you won’t be able to use the Macros IDE to manipulate these macros.

As a self-professed computer language junkie, I have found numerous languages
that work well as automation programs. In this chapter I describe two of my favorite
languages, Delphi and Python, as well as the Windows Script Host and its two default
languages, VBScript and JScript. You can also obtain versions of Perl and Tcl that have
access to the COM system, allowing you to write macros in those languages as well.
Take a look at the concepts I present in this chapter, and if you have a preferred lan-
guage, give it a shot.

Windows Script Host
Starting with Windows 2000, Microsoft has included as a standard feature in all ver-
sions of Windows a Windows Scripting Host, or WSH for short. The WSH is a big secret
in Windows, because for some reason very few programmers even know of its exis-
tence. If you’re old enough to remember the old DOS batch files, WSH is the modern
version of batch files. Or, if you’re a Unix head, as many of us are, WSH scripts are akin
to Unix scripts. You can use scripts to automate many processes in Windows, and in
your scripts you can open applications, send keystrokes to the applications, and so on.

Integrating with Other Products

C H A P T E R

15

As an example of WSH scripts in one of my previous books, I wrote a script
that automatically did a screen capture, then launched a graphics program,
pasted the screen capture into the program, saved the file, and closed the
program. (I also mentioned this script in Chapter 1, “All about Macros and
Add-ins.”) This script was written in VBScript, which is a simplified version
of Visual Basic developed specifically for scripting.

By default, the WSH language handles two languages (although technically speak-
ing, it can support any language with the right software): VBScript and JScript. JScript
is a language that has its roots in Java, although, in fact, it bears very little resemblance
to Java.

The WSH scripting languages let you obtain COM objects just as you can in other
languages on Windows. Because of this single feature, you can write automation pro-
grams that control the Visual Studio .NET through the DTE object.

To begin this discussion, look at this VBScript program that, first, obtains the DTE
object, then obtains the list of Document objects. It then steps through that list, using a
for each construct, obtaining the name of each document, appending them to a
string, and tacking on a carriage return after each string. Finally, after obtaining the list
of documents, the script displays a message box showing the names of the documents.

Type this script into a text editor and save it with a .vbs filename extension (I called
mine runvsnet.vbs).

Dim WshShell

set WshShell = WScript.CreateObject(“WScript.Shell”)

Function Control()

Dim dte, docs, doc

set dte = GetObject(, “VisualStudio.DTE”)

set docs = dte.Documents

text = “”

name = “”

for each doc in docs

name = doc.FullName

text = text + name

text = text + chr(13)

next

WshShell.Popup(text)

End Function

Control()

There are two ways you can run the script. By default, files with a .vbs extension are
associated with the script engine. Thus, if you locate your .vbs file in a folder, you can
double-click the file and Windows will run it in the script engine. Or you can manually
start up the script engine. One way is through the DOS command prompt. If you’re in
the directory containing your script file, you can type the following:

336 Chapter 15

wscript runvsnet.vbs

But a little-known fact about DOS prompts on WinNT-based systems, including
Windows 2000 and XP, is that you can run a program from the DOS prompt simply by
typing in the filename. If you have a file called, for example Letter.doc, and you type:

Letter.doc

the DOS shell will launch Microsoft Word, opening Letter.doc. Thus, you can simply
run your script by typing its filename at the prompt, provided you’re in the directory
containing the file:

runvsnet.vbs

You can also do this trick from the Run box, which is accessible from Start
Menu➪Run. In the Run dialog box, if you type the full path to the file (such as
c:\scripts\runvsnet.vbs), or if you browse to the file, you can directly run the program.

If you’re new to the Windows Script Host engine, I encourage you to explore
it. WSH is both powerful and surprisingly useful for automating repetitive
tasks in Windows. For information about WSH, go to
http://search.microsoft.com and type WSH into the search form.

If, however, you prefer a more C++ like syntax, you can use JScript instead of Visual
Basic. Here’s the same script as the preceding one, rewritten in JScript. The code is
pretty much a one-to-one translation, with a syntax that resembles C++. Save this file
with a .js extension, which by default is associated with the WSH engine. I called this
file runvsnet.js.

var WshShell = WScript.CreateObject(“WScript.Shell”);

function Control() {

var dte, docs, doc;

dte = GetObject(“”, “VisualStudio.DTE”);

docs = dte.Documents;

docname = “”;

for (i = 1; i <= docs.Count; i++) {

doc = docs.Item(i);

docname = docname + doc.FullName + “\n”;

}

WshShell.Popup(docname);

}

Control();

You can run this file just as you did the runvsnet.vbs file, by double-clicking it, by
running it directly, or by launching it in the wscript program.

Integrating with Other Products 337

The Windows Script Host engine has two entry points, the wscript.exe
program and the cscript.exe program. The only difference is that cscript
opens a console window so that your script can write to the console,
whereas wscript does not. You can use either to run your scripts, based on
whether you need console output or not.

Delphi
My heart is in Delphi. I began using the language the day version 1.0 was released, and
to this day I think it is a beautiful language, especially after I wrote a few books about
it. But readers of computer books don’t want to hear this kind of thing, so let me get to
the point here: If you like Delphi, you can use it to write your automation clients.

Interestingly, I chose to use an earlier version of Delphi (Delphi 3.0) for this sample,
so that regardless of which version you have (7.0 is current as of this writing), you
should be able to use this example. To create this project, follow these steps carefully.
The form you’re developing is shown in Figure 15.1.

1. Create a new application, and resize the form so its Width is about 500 pixels
and its Height is about 250 pixels. (You don’t have to be exact.)

2. Drop a Panel on the form. Set its Align property to alTop. Set its Caption
property to an empty string, and set its BevelOuter property to bvLowered.

3. Drop a Button on the Panel (not on the main part of the form; the Button
must be a child of the Panel). Put the Button toward the left edge, as shown
in Figure 15.1. Set the Button’s Caption property to Docs.

4. Drop a Memo on the form below the Panel. (Don’t put the Memo on the Panel.)
Set the Memo’s Align property to alClient. This will cause the Memo to fill
the part of the form not taken up by the panel, allowing you to resize the
Memo by resizing the form.

5. Now double-click the button and add the code shown in the Button1Click
handler in the code below.

Figure 15.1 The Delphi form has a Panel, a Button, and a Memo control.

338 Chapter 15

Following is the code for the entire unit:

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,

StdCtrls, ExtCtrls;

type

TForm1 = class(TForm)

Panel1: TPanel;

Button1: TButton;

Memo1: TMemo;

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

uses ComObj;

procedure TForm1.Button1Click(Sender: TObject);

var

dte, docs, doc: Variant;

i: Integer;

begin

try

dte := GetActiveOleObject(‘VisualStudio.DTE’);

except

dte := CreateOleObject(‘VisualStudio.DTE’);

end;

docs := dte.Documents;

for i := 1 to docs.Count do

begin

doc := docs.Item(i);

Memo1.Lines.Add(doc.FullName);

end;

end;

end.

Integrating with Other Products 339

Notice how I obtained the object in this code: First, I had to use the ComObj unit.
Next, I called GetActiveOleObject in an attempt to get the currently running
instance of Visual Studio .NET. (If one isn’t running, the GetActiveOleObject func-
tion will throw an exception, rather than return a null object.) Thus, I provide an excep-
tion handler that instead calls CreateOleObject, which is the Delphi function for
creating a new COM object.

The Delphi COM objects are instances of type Variant, which tells the Delphi com-
piler to allow any members for the variables, recognizing that the COM system will
determine at runtime whether the members are valid. Thus, unlike Visual Studio .NET,
you won’t see the members pop up. (Delphi does provide extended ways to import a
COM object and generate a Delphi unit for the COM object, but this way is easier.) You
can see that I simply accessed the members of the DTE object, starting with Documents.
From there I accessed the items just as I did in the WSH examples in the section,
“Windows Script Host.” But instead of populating a string, I populated the memo on
the form.

When you run this program, you will get a form that looks just like the one you laid
out at design time. When you click the button, you will see a list of the open docu-
ments, just as you did in the sample WSH scripts.

Python
Python is an amazing language. Although it’s considered a script language, it has sev-
eral wonderful features, such as dynamic classes. This means you can add new mem-
bers to an object at runtime, which makes for an extremely powerful language. Not
many languages have this feature.

If you download the version of Python created by ActiveState Corporation
(www.activestate.com), you also get a module that allows your Python programs to
interact with the COM system. The Python language includes a command-line inter-
face that you can use for testing your COM objects on the fly. Here’s a sample session,
including an error I encountered because I couldn’t remember whether Python has
predefined names for true and false (it doesn’t):

C:\Program Files\ActivePython22>python

ActivePython 2.2.1 Build 222 (ActiveState Corp.) based on

Python 2.2.1 (#34, Apr 15 2002, 09:51:39) [MSC 32 bit (Intel)] on win32

Type “help”, “copyright”, “credits” or “license” for more information.

>>> import win32com.client

>>> obj = win32com.client.Dispatch(“VisualStudio.DTE”)

>>> doc = obj.ActiveDocument

>>> doc.FullName

u’C:\\\\dev\\Chapter13\\CSharpConsoleTest\\Class1.cs’

>>> doc.Kind

u’{8E7B96A8-E33D-11D0-A6D5-00C04FB67F6A}’

>>> sel = doc.Selection

>>> sel.LineDown(true)

340 Chapter 15

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

NameError: name ‘true’ is not defined

>>> sel.LineDown(1)

>>> sel.Text

u’ public static void Main()\r\n’

>>>

You can see in the first line that I started up the python command-line interface.
Then I imported the win32com.client library, giving me COM capabilities. Next, I
located the existing instance of the Visual Studio .NET’s DTE object using the Dis-
patch function, and I saved the object in the obj variable. Notice that I didn’t provide
a type name for the obj variable; Python is not a strongly typed language like C++.
(This loosely typed feature allows you to create a single array or list and place any
objects in the array or list, regardless of type.)

After obtaining the DTE object, I grabbed the ActiveDocument object, saving it in
the doc variable (again, without having to specify any type information). I then
retrieved the FullName member of the doc variable. When you call a function that
returns a value, or simply obtain a value as I did by retrieving the FullName member,
the Python command-line interpreter immediately prints the results to the screen. You
can see that it printed out:

u’C:\\dev\\Chapter13\\CSharpConsoleTest\\Class1.cs’

The u at the beginning indicates this is a Unicode string. Python encloses strings in
single quotes, but the language lets you choose if you want to surround a string in sin-
gle or double quotes. (That way, if you have to put quotes inside the string, you can
often get away with not escaping them; you just use the other type of quotes to sur-
round the string, assuming you don’t have the other type of quotes also inside the
string. Otherwise, you have to escape them as you do in C++ and other languages.)

Next I obtained the doc.Kind variable just to see what I would get back. As I
expected, I got back the string for the GUID. Since, by default, Python on WinNT-based
systems (such as 2000 and XP) uses Unicode, I once again got back a Unicode string.

Remember, this is all happening in real time. As I type a line, the interpreter interacts
with Visual Studio .NET and immediately performs the task. This became apparent in
the next steps I took, as I interacted with the editor. In the next line I obtained the
Selection object and saved it to the sel variable. The Selection object includes a
member function called LineDown that takes a single parameter, a Boolean variable,
specifying whether to select the text while moving down or to just move the cursor
down. (An overloaded version of LineDown takes a second parameter, the number of
lines to move down. The version I used here moves down just one line.) I wanted to
select the text, so I was hoping to pass a true. However, I forgot that Python does not
have Boolean variables (which has caused some lively debates on the online boards).
So when I tried passing true, I received an error. (The error message indicated that the
first line of my standard input had an error.) So I tried the statement again (by pressing

Integrating with Other Products 341

the up arrow key), but this time passed a 1, and it worked. As soon as I pressed Enter,
I saw in the Visual Studio .NET window (which I had carefully positioned so I could
see it alongside my Python command-line window) that the cursor had moved down,
and that the line it was on previously became selected—all in real time!

Finally, I obtained the Text property of the sel object, and Python printed the
results to the screen. What appeared was exactly the text that was selected in the Visual
Studio .NET editor.

Next check out this simple script that I called runvsnet.py. I created this using a text
editor and saved it with the .py extension. This script does the same thing as the pre-
vious WSH scripts and Delphi program, but instead of displaying the document
names in a window, it prints them out to the console window. After you look at the
script, I have a few comments to share before I show you how to run it. (Type this script
into an editor, and save the file as runvsnet.py.)

import win32com.client

class Controller:

def __init__(self):

self.DTE = win32com.client.Dispatch(“VisualStudio.DTE”)

def ListDocuments(self):

docs = self.DTE.Documents

for doc in docs:

print doc.FullName

print “===Documents===”

c = Controller()

c.ListDocuments()

As you can see, rather than using braces, Python relies on the indentations to deter-
mine when blocks finish. Thus, the class declaration ends with the line print
doc.FullName. Python also runs the outermost lines first in order. Thus, for this
code, it first runs the import statement; next it processes the class block (that is, it sim-
ply learns about the Controller class), then the print statement, then the c = assign-
ment, and finally the c.ListDocuments() line. Notice also that to create a new
object, Python has no new keyword. Instead, you just call the class like a function.

The following line runs the python interpreter. (I was in the directory containing the
python interpreter. Alternatively, you can add the interpreter’s directory to your path.)

C:\Program Files\ActivePython22>python runvsnet.py

Here’s the output after I ran the preceding line:

===Documents===

C:\Write2001\VS.NET-IDE\dev\Chapter13\OfficeVSAddin\Connect.vb

File System (CSharpGeneralSetup)

342 Chapter 15

C:\Write2001\VS.NET-IDE\dev\Chapter13\CSharpGeneral\Connect.cs

C:\Write2001\VS.NET-IDE\dev\Chapter13\TestData.txt

C:\Write2001\VS.NET-IDE\dev\Chapter13\CSharpConsoleTest\Class1.cs

Here’s another, slightly modified, Python script. This one matches the functionality
of the sample VBScript and JScript scripts shown in the “Windows Script Host” section
earlier in this chapter.

import win32com.client

import win32gui

class Controller:

def __init__(self):

self.DTE = win32com.client.Dispatch(“VisualStudio.DTE”)

def ListDocuments(self):

text = “”

docs = self.DTE.Documents

for doc in docs:

text = text + doc.FullName + “\n”

win32gui.MessageBox(0,text,”Documents”, 0)

c = Controller()

c.ListDocuments()

I called this script runvsnet2.py. When you run this script like so:

C:\Program Files\ActivePython22>python runvsnet2.py

you will see a message box appear, listing the names of the currently opened documents
in Visual Studio .NET. You can see how I called the MessageBox function. This is part
of the Win32 API (which you may or may not be familiar with depending on your age).
The Win32 API functions that deal with the windowing system are in the win32gui
Python module. Thus, I import the win32gui module and then fully qualify the Mes-
sageBox function name as win32gui.MessageBox. The first parameter is the handle
to an existing window that will serve as a parent to the message box (I always just pass
0, meaning no parent). The second parameter is the message to display; the third
parameter is the title bar for the message box. The final parameter is a constant repre-
senting the buttons to include on the message box; 0 means a single OK button.

Script Explorer Add-in

So far in this chapter I’ve shown you that you can automate Visual Studio .NET using
pretty much any language you want, provided that language has access to the COM
system. Therefore, it seemed logical that Visual Studio .NET should have a tool window

Integrating with Other Products 343

similar to the Macro Explorer that lists scripts in other languages, enabling you to
double-click the scripts in this window to run them.

The add-in I describe here does just that. It has a tool window containing a treeview
control that lists the scripts in a given directory. If you double-click the script, the script
runs. Like many of the previous add-ins, this one uses the VSUserControlHost that I
described in “Using the Form Designer with a Tool Window” in Chapter 7. And as for
the other add-ins, be sure to add a COM reference to the VSUserControlHost 1.0 Type
Library.

Here’s the Connect module for the add-in:

Imports Microsoft.Office.Core

imports Extensibility

imports System.Runtime.InteropServices

Imports EnvDTE

<GuidAttribute(“F3D6C34F-CCDB-4D03-94D3-C9E5A15A9491”), _

ProgIdAttribute(“ScriptExplorer.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Implements IDTCommandTarget

‘ Note: I changed applicationObject to public shared!

Public Shared applicationObject As EnvDTE.DTE

Dim addInInstance As EnvDTE.AddIn

Private doc As VSUserControlHostLib.IVSUserControlHostCtl = Nothing

Private toolwin As Window = Nothing

Public Sub OnBeginShutdown(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnBeginShutdown

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnStartupComplete

End Sub

Public Sub OnDisconnection(ByVal RemoveMode As _

Extensibility.ext_DisconnectMode, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnDisconnection

End Sub

Public Sub OnConnection(ByVal application As Object, _

ByVal connectMode As Extensibility.ext_ConnectMode, _

ByVal addInInst As Object, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnConnection

344 Chapter 15

TE
AM
FL
Y

Team-Fly®

applicationObject = CType(application, EnvDTE.DTE)

addInInstance = CType(addInInst, EnvDTE.AddIn)

Dim tempdoc As Object

Dim newguid As String = “{779C198F-F4AC-4d21-A06A-EF710D3946A5}”

toolwin = applicationObject.Windows.CreateToolWindow(_

addInInstance, _

“VSUserControlHost.VSUserControlHostCtl”, _

“Scripts”, newguid, tempdoc)

toolwin.Visible = True

doc = CType(tempdoc, VSUserControlHostLib.IVSUserControlHostCtl)

Dim asm As System.Reflection.Assembly

asm = System.Reflection.Assembly.GetExecutingAssembly()

doc.HostUserControl(asm.Location, _

“ScriptExplorer.ScriptExplorerForm”)

Try

Dim commands As Commands = applicationObject.Commands

Dim command1 As Command = commands.AddNamedCommand(_

addInInstance, _

“Show”, “Script Explorer”, “Shows the Script Explorer”, _

True, 59, Nothing, _

vsCommandStatus.vsCommandStatusSupported + _

vsCommandStatus.vsCommandStatusEnabled)

Dim viewMenu As CommandBarPopup = _

applicationObject.CommandBars(“MenuBar”). _

Controls(“&View”)

Dim viewMenuBar As CommandBar = viewMenu.CommandBar

Dim othersMenu As CommandBarPopup = _

viewMenu.Controls(“Other Windows”)

Dim othersBar As CommandBar = othersMenu.CommandBar

command1.AddControl(othersBar, 1)

Catch

End Try

End Sub

Public Sub Exec(ByVal cmdName As String, ByVal executeOption As _

vsCommandExecOption, ByRef varIn As Object, ByRef varOut As Object, _

ByRef handled As Boolean) Implements IDTCommandTarget.Exec

handled = False

If (executeOption = vsCommandExecOption. _

vsCommandExecOptionDoDefault) Then

If cmdName = “ScriptExplorer.Connect.Show” Then

toolwin.Visible = True

handled = True

Exit Sub

End If

End If

End Sub

Integrating with Other Products 345

Public Sub QueryStatus(ByVal cmdName As String, ByVal neededText _

As vsCommandStatusTextWanted, ByRef statusOption As _

vsCommandStatus, ByRef commandText As Object) _

Implements IDTCommandTarget.QueryStatus

If neededText = EnvDTE.vsCommandStatusTextWanted. _

vsCommandStatusTextWantedNone Then

If cmdName = “ScriptExplorer.Connect.Show” Then

statusOption = CType(vsCommandStatus. _

vsCommandStatusEnabled + vsCommandStatus. _

vsCommandStatusSupported, vsCommandStatus)

Else

statusOption = vsCommandStatus.vsCommandStatusUnsupported

End If

End If

End Sub

End Class

Now here’s the form, as shown in Figure 15.2. To create this form, follow these steps:

1. Add a new User Control.

2. Place a StatusBar control on the form.

3. Place a TreeView control on the form.

4. Set the TreeView’s Dock property to Fill. Make sure its ShowPlusMinus
property is True, and its ShowRootLines property is True.

5. Click the Nodes property to select it, then click the button with an ellipses (...)
on it to open the TreeNode Editor, which is shown in Figure 15.3.

6. In the TreeNode Editor, click the Add Root button. Then type the word
Scripts into the Label box. Click OK to close the TreeNode Editor.

7. In the Toolbox, double-click the ContextMenu control to add a context menu
to the form.

8. Click the ContextMenu control in the component tray beneath the form; the
menu editor will open, as shown in Figure 15.4. Add the names Choose
directory and Edit, as shown in the figure.

Figure 15.2 The form for the add-in has a StatusBar and a TreeView control.

346 Chapter 15

Figure 15.3 Use the TreeNode Editor to add a root node to the TreeView control.

9. Now switch to the code editor by right-clicking on the form, and in the popup
menu choosing View Code.

10. In the drop-down list in the upper left of the code editor, choose MenuItem1.
Then in the drop-down list on the right, choose Click to add a new Click handler
for the menu item, as shown in Figure 15.5. Then do the same to add handlers
for the DoubleClick event of TreeView1 and the Click event for MenuItem2.

Figure 15.4 Use the Menu Editor to add two menu items.

Integrating with Other Products 347

Figure 15.5 The drop-down listboxes let you add event handlers.

11. Now enter the following code, some of which will already be present, so you
won’t have to type it in. Specifically, notice that I added some initialization
code to the New constructor; I also added the event handlers after the #End
Region statement.

Imports System.IO

Imports System.Windows.Forms

Public Class ScriptExplorerForm

Inherits System.Windows.Forms.UserControl

#Region “ Windows Form Designer generated code “

Public Sub New()

MyBase.New()

‘This call is required by the Windows Form Designer.

InitializeComponent()

‘Add any initialization after the InitializeComponent() call

TopNode = TreeView1.Nodes.Item(0)

348 Chapter 15

If Not Directory.Exists(ScriptDir) Then

Directory.CreateDirectory(ScriptDir)

End If

UpdateScripts()

End Sub

‘UserControl overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As

Boolean)

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

‘Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

Friend WithEvents TreeView1 As System.Windows.Forms.TreeView

Friend WithEvents ContextMenu1 As

System.Windows.Forms.ContextMenu

Friend WithEvents MenuItem1 As System.Windows.Forms.MenuItem

Friend WithEvents StatusBar1 As System.Windows.Forms.StatusBar

Friend WithEvents MenuItem2 As System.Windows.Forms.MenuItem

<System.Diagnostics.DebuggerStepThrough()> Private Sub _

InitializeComponent()

Me.TreeView1 = New System.Windows.Forms.TreeView()

Me.ContextMenu1 = New System.Windows.Forms.ContextMenu()

Me.MenuItem1 = New System.Windows.Forms.MenuItem()

Me.StatusBar1 = New System.Windows.Forms.StatusBar()

Me.MenuItem2 = New System.Windows.Forms.MenuItem()

Me.SuspendLayout()

‘

‘TreeView1

‘

Me.TreeView1.ContextMenu = Me.ContextMenu1

Me.TreeView1.Dock = System.Windows.Forms.DockStyle.Fill

Me.TreeView1.ImageIndex = -1

Me.TreeView1.Name = “TreeView1”

Me.TreeView1.Nodes.AddRange(New

System.Windows.Forms.TreeNode() _

{New System.Windows.Forms.TreeNode(“Scripts”)})

Me.TreeView1.SelectedImageIndex = -1

Me.TreeView1.Size = New System.Drawing.Size(456, 150)

Integrating with Other Products 349

Me.TreeView1.TabIndex = 0

‘

‘ContextMenu1

‘

Me.ContextMenu1.MenuItems.AddRange(New System.Windows.Forms. _

MenuItem() {Me.MenuItem1, Me.MenuItem2})

‘

‘MenuItem1

‘

Me.MenuItem1.Index = 0

Me.MenuItem1.Text = “Choose directory”

‘

‘StatusBar1

‘

Me.StatusBar1.Location = New System.Drawing.Point(0, 134)

Me.StatusBar1.Name = “StatusBar1”

Me.StatusBar1.Size = New System.Drawing.Size(456, 16)

Me.StatusBar1.TabIndex = 1

Me.StatusBar1.Text = “StatusBar1”

‘

‘MenuItem2

‘

Me.MenuItem2.Index = 1

Me.MenuItem2.Text = “Edit”

‘

‘ScriptExplorerForm

‘

Me.Controls.AddRange(New System.Windows.Forms.Control() { _

Me.StatusBar1, Me.TreeView1})

Me.Name = “ScriptExplorerForm”

Me.Size = New System.Drawing.Size(456, 150)

Me.ResumeLayout(False)

End Sub

#End Region

Private Sub MenuItem1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MenuItem1.Click

Dim newdir As String = InputBox(“Enter the new directory”)

If newdir <> “” Then

If Directory.Exists(newdir) Then

ScriptDir = newdir

End If

350 Chapter 15

End If

UpdateScripts()

End Sub

Private Sub UpdateScripts()

TreeView1.BeginUpdate()

TopNode.Nodes.Clear()

Dim filename As String

For Each filename In Directory.GetFiles(ScriptDir)

Dim node As New TreeNode(Path.GetFileName(filename))

node.Tag = filename

TopNode.Nodes.Add(node)

Next

TreeView1.ExpandAll()

TreeView1.EndUpdate()

StatusBar1.Text = ScriptDir

End Sub

Private Sub TreeView1_DoubleClick(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles TreeView1.DoubleClick

Dim node As TreeNode = TreeView1.SelectedNode

If Not node Is Nothing Then

If node Is TopNode Then Exit Sub

Dim procinfo As New ProcessStartInfo()

procinfo.UseShellExecute = True

procinfo.FileName = node.Tag

Dim proc As Process = Process.Start(procinfo)

End If

End Sub

Private Sub MenuItem2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MenuItem2.Click

Dim node As TreeNode = TreeView1.SelectedNode

If Not node Is Nothing Then

If node Is TopNode Then Exit Sub

Connect.applicationObject.ItemOperations.OpenFile(node.Tag)

End If

End Sub

Private ScriptDir As String = “c:\scripts”

Private TopNode As TreeNode = Nothing

End Class

Integrating with Other Products 351

When you build this add-in and run it, Visual Studio .NET will now have a tool win-
dow that lists scripts. I put all my scripts in a single directory called c:\scripts, which
this tool window lists by default. If you double-click a script in the list, the script will
run. If you right-click the script’s name, you can choose Edit to edit the script right
inside the Visual Studio .NET IDE. Or you can right-click and type in a new directory.
(You’re welcome to enhance the form to include an OpenFile dialog to choose a dif-
ferent directory.)

As you can see, this add-in simply executes whichever file you double-click.
Thus, you can also use this add-in to spawn other programs besides scripts. And
if you’re adventurous, you can play with the procinfo and Process.Start items
in the TreeView1.DoubleClick event handler to capture the standard output
and standard error, writing it to a tool window. (If you do this, drop me a line at
readers@jeffcogswell.com; I’ll add a couple of the ones that work to the official
Web site for this book. And if you have other additions, don’t hesitate to share them
with me and the other readers in the forum on the book’s Web site.)

Moving Forward

This chapter showed you how you can take the automation object exposed by Visual
Studio .NET and control the IDE from pretty much any program that supports COM
automation. To demonstrate this capability, I used Delphi, Python, and the Windows
Script Host, or WSH. I then took you through an interesting add-in that lets you spawn
these other programs so you can, effectively, write your macros in any language you
want.

The next chapter, “Deploying Your Macros and Add-ins,” begins Part IV, “Deploying
and Supercharging.” In it, I talk about the various issues regarding the deployment of
your add-ins to other computers, focusing in particular on some important points
regarding Office add-ins. In the final chapter of this book, Chapter 17, “Supercharging
Visual Studio .NET,” I close some open ends about add-ins and macros.

352 Chapter 15

PA R T

Four

Deploying and
Supercharging

TE
AM
FL
Y

Team-Fly®

355

Deploying add-ins is easy, because when you use the Add-in wizard, you automati-
cally get a Setup project, which you can provide to your users. That said, some security
issues come into play if your add-ins are for Microsoft Office. In the first of two main
sections in this chapter I discuss these security issues. In the second, I show you how
you can easily deploy your macros to your end users.

All about Security and Add-ins

Security is an important aspect of all software, not just add-ins. By security, I mean
whether or not a program that’s running is allowed, for example, to access important
system files such as those in the C:\Windows\System32 directory. Security can also
mean whether a program can modify the system Registry, and if so, which portions of it.

When dealing with .NET, security issues are handled on two levels:

Operating system level. The operating system limits various users from per-
forming certain operations based on the access granted by the system adminis-
trator. Windows NT, 2000, and XP all provide such security measures. Systems
administrators can prevent, for example, various users from running programs
that write to the Windows directory.

.NET system level. The .NET system includes additional security described by
Microsoft as “finer-grained” than at the operating system level. The .NET sys-
tem can determine, for example, that one .NET program can create files on the
local disk drive, while another program cannot, even though the user who is
logged on to the computer may have full permissions to write to the hard drive.

Deploying Your Macros
and Add-ins

C H A P T E R

16

In addition to these two levels, security has two sides:

System administration side. This refers to the security levels the user or systems
administrator sets for the computer.

Application side. The security access an application requires to run.

In the following sections I provide you with information on software and security,
in particular how it pertains to add-ins and macros. An understanding of this informa-
tion is essential to have before you attempt to deploy an add-in or macro on another
user’s computer. The last thing you want to do is make an add-in available to hun-
dreds of users, only to find out that none of the users can run the add-in because it
lacks the needed security privileges.

.NET Security
Before delving into the details of .NET security, you must thoroughly understand what
is meant by managed code. When you run managed code under .NET, you load code in
the form of Microsoft Intermediate Language (MSIL). MSIL code is a low-level byte-
code that can easily be translated to native machine code. The MSIL code lives in an
executable file that also contains high-level information, called metadata, which
describes the code and its data structures. The .NET runtime is then able to carefully
inspect the code and make sure it is safe. For example, if you download code from the
Internet, and you’re not sure the code behaves the way it’s expected to (such as
whether the code will attempt to delete important system files or upload your address
book to a Web site), the .NET runtime can inspect the code and make sure it doesn’t
perform any secret, dangerous tasks. In other words, the .NET runtime manages the
code before and while it runs. All calls the program makes into the operating system
are watched by the .NET system. If the program attempts to open a file, for example,
the program calls the static (or shared) members of the File class, which is part of the
.NET framework. The program does not call directly into the operating system. (Of
course, you can write .NET code in C# and VB.NET that calls directly into the operat-
ing system, but to do that, you have to use unmanaged code, which is untrusted.)

In addition, managed code implements managed objects. These managed objects are
allocated in the managed heap, rather than a program’s own heap. While in the man-
aged heap, the .NET system can watch over them and control them, performing such
tasks as deleting them when they are no longer used. (That’s why you don’t have to
delete your managed objects; the Common Language Runtime, or CLR, does it for you.)

Thus, a program can have two types of code:

Managed. This is code that runs under the .NET system, including the Common
Language Runtime.

Unmanaged. This is straight machine code that does not run under the .NET sys-
tem and its Common Language Runtime.

Since one main feature of .NET is distributed programming, users can download
managed .NET code from the Internet and run it locally on their own computer. Certainly,

356 Chapter 16

the users don’t want any potentially damaging or dangerous code to run; thus, the
.NET system includes strict security under which managed code runs. (Unmanaged
code, when not used in conjunction with other security tools such as Microsoft Authen-
ticode, is by default considered untrusted and is akin to downloading some strange
.EXE file attached to an email message sent by someone you don’t know with a subject
like “My party was a blast! Run this program to see!”)

Valid and Verified .NET Code

When you run a .NET program, the .NET system loads the program from an assembly
(which is just an .EXE or a .DLL file). Since the code exists in the form of intermediate
language (MSIL), the code must be compiled by the Just-in-Time (JIT) compiler. But
before compiling the code, the .NET system first inspects the code to make sure it is:

Valid. The .NET system makes sure the code is legitimate. For example, the
system makes sure the code doesn’t contain incorrect bytes that cannot be
compiled, and that the code conforms to valid MSIL grammar; in other words,
validation operates at the syntax level.

Verified. This means the code does what it claims to do. In other words, verifica-
tion operates at the semantic level.

To make sure the code is valid, the JIT compiler inspects it and looks for errors. Ver-
ifying the code is considerably more complex, and to do the verification the .NET sys-
tem uses a complex algorithm. This involves processes such as making sure objects are
initialized before being used (remember, such code may be syntactically correct but not
semantically correct) and making sure the code doesn’t use pointers to reach into the
protected areas of objects.

As a first step, then, before managed code can be considered trusted, it must be con-
firmed as both valid and verified. In addition, the .NET system also makes sure the
metadata is valid, that is, that it makes sense and is legitimate. Only then does the sys-
tem run the JIT compiler to generate machine code. But even after the machine code is
generated, remember that such code still calls into the .NET framework to perform its
operating system requests such as file creation and opening. Thus, the code, although
now in machine format, is still managed.

Security Permissions

In addition to checking that the code is valid and verified, the .NET system also deter-
mines whether a program is allowed to have access to various system resources such
as files and the system Registry. To do so, the .NET system gathers up various pieces of
information about the code that is trying to run, including who created it, where it
came from, and, if it came from the Internet, which site, and whether it has a Microsoft
Authenticode certificate. The .NET system collects all this information and produces a
security level for the .NET program.

Deploying Your Macros and Add-ins 357

When you deploy a .NET program onto another computer, although you can
let the computer determine the security level of your program, your program
can also request a certain security level. For example, if you know that your
program will need to write to the administrator-only sections of the Registry,
you can write code in your program stating that your program will need this
high level of security. To find out more about how to do this, open the .NET
online help, and in the index type “declarative security syntax.” Click the
entry, and in the Index results, choose Declarative Security.

After obtaining a security level, the .NET system checks which processes the local
computer allows programs with that security level to perform. These are configurable
by the system administrator (or, in the case of home computers, the user him- or her-
self). The .NET system then determines whether the .NET program is allowed to per-
form the requested tasks.

These tasks include the capability to read, write, create, and append files, to print to
the printers, to call into unmanaged code, to skip code verification, to access system
services, to access user-interface functionality, to make and accept socket (i.e., Internet)
connections, to modify the Registry, and to access the system logs.

To see the complete list of tasks that require permission, open the .NET
online help, and type “code access security” into the index. Under the Code
Access Security heading, click the item called Permissions.

Security Administration for .NET

The user or system administrator of a computer decides which permissions to grant to
programs; however, the .NET installation program creates a set of defaults that are suf-
ficient for most situations. To administer such security grants for the .NET system, you
use the .NET Framework Configuration program, shown in Figure 16.1.

You can access this program from three places:

■■ Directly open C:\Windows\Microsoft.NET\Framework\v1.0.3705\mscor-
cfg.msc. (Version 1.0.3705 was current at the time of this writing.) The file has
an .msc application, which means it will open inside the program C:\Win-
dows\System32\mmc.exe, the Microsoft Management Console.

■■ From the Windows desktop choose Start➪Programs➪Administrative
Tools➪Microsoft .NET Framework Configuration.

■■ Open the Control Panel, double-click Administrative Tools, then double-click
Microsoft .NET Framework Configuration.

358 Chapter 16

Figure 16.1 .NET Framework Configuration Program.

Security in Action

If you want to see .NET security in action, open your favorite text editor, type in the fol-
lowing program, and save it with the filename security.cs.

using System;

using System.IO;

public class printClass

{

public static void Main()

{

StreamWriter f = File.CreateText(“c:\\security.txt”);

f.WriteLine(“Hello”);

f.WriteLine(System.DateTime.Now);

f.Close();

}

}

This program is rather benign; it simply opens a file called security.txt in the root
directory of the C: drive and writes the string “Hello” followed by the current date and
time. Then it closes the file.

Compile the file by typing this at a DOS prompt:

csc security.cs

Deploying Your Macros and Add-ins 359

If there are no typos, you should see no compiler errors. Then you can run the file:

security

Look at the root directory of your C: drive, where you should see the security.txt file,
meaning the program worked. But now try this: If you have access to Web space,
upload the executable file, security.exe, to it. Then try to open the file in your browser.
I uploaded mine to the root of my www.jeffcogswell.com Web server; then went to my
Web browser and typed this:

http://www.jeffcogswell.com/security.exe

You would, of course, substitute whichever Web server you chose. Internet Explorer
will download the file and look it over. When it detects that it’s a .NET file, it will
begin running the program—without first asking whether it should (as it normally
would with an executable file). However, the program is managed, so the .NET system
will be watching it carefully to make sure the program doesn’t do anything it’s not
supposed to do, which includes writing to the local disk drive. And when the
CreateText function occurs, the .NET system will throw an exception, either
System.Security.SecurityException or System.Security.Policy.Policy-
Exception, depending on your operating system, as shown in Figure 16.2.

If you decide to try this experiment—that is, putting the security.exe file on
your own Web server—do not put it on a secure (https) site. Microsoft has
acknowledged a bug wherein Internet Explorer may shut down or you will
get a FileNotFound exception. Refer to Microsoft Knowledge Base article
number 312546 for more information.

Figure 16.2 The program runs, but throws an exception.

360 Chapter 16

If you then start the debugger (I usually use the Microsoft CLR Debugger, simply
because it loads quickly), you will see the full exception information, as shown in Fig-
ure 16.3. In the output window in the debugger, you can see the full information for the
error. Depending on the operating system version, your message will be something
like the message shown in Figure 16.3

The error was due to lack of permission of type FileIOPermission. This is no sur-
prise, since the program was written specifically to write to the disk drive. The pro-
gram that generated the error was IEExec.exe. This program is part of the .NET system,
and is called the Microsoft IE Execute Shell. The full path to the program is
C:\WINNT\Microsoft.NET\Framework\v1.0.3705\IEExec.exe.

By default, here are the permissions that are allowed by a program that you run
from the Internet:

File Dialog. Open

Isolated Storage File. Domain isolation by user; disk quota 10240

Security. Enable Code Execution

User Interface. Safe top-level windows; own clipboard

Printing. Safe printing

To see which permissions are set on your computer, open the .NET Framework
Configuration utility and drill down to My Computer➪Runtime Security Policy➪

Machine➪Permission Sets➪Internet. In the right-hand pane you will see the permis-
sion groups. Double-click to see the individual permissions.

Here’s the source code for another test you can try:

using System;

using System.IO;

public class printClass

{

public static void Main()

{

System.Windows.Forms.MessageBox.Show(

“Hello from C#”, “Security2”);

}

}

Figure 16.3 You can see the full exception information inside the debugger.

Deploying Your Macros and Add-ins 361

This code opens a top-level window, which is allowed. If you compile this and
upload it (I put it at www.jeffcogswell.com/security2.exe), then, depending on the
basic security levels you choose for Internet Explorer, Internet Explorer will simply run
the program, no questions asked. But if this makes you uncomfortable, you can change
it. You can either set up the .NET system so it won’t run such code at all, or you can
limit the permissions even further, such as by revoking permission to display a user
interface. (You could, I suppose, grant additional permissions, but I don’t recommend
that, as that would allow untrustworthy code to do the things you grant permission
for, such as write to the hard drive.

COM Security
When you develop an add-in, remember, you are developing a .NET assembly and reg-
istering it as a COM component. The COM component is, in turn, an add-in to either
Visual Studio .NET or an Office application. In the case of Office applications, the add-
in is subject to the security imposed by the Office products. This security system is com-
pletely independent of the .NET security system.

To see the security settings, start Microsoft Word (or any Office application) and
choose Tools➪Macro➪Security. You will be presented with three choices: high,
medium, and low. Most system administrators prefer to set the security to high, which
forbids any nondigitally signed add-ins and macros from running. When running at
the medium level, the Office application prompts the user before running the add-in.
In low security, the application runs all add-ins.

This presents a problem for the add-ins that are also .NET-managed assemblies.
Because the add-in is actually an assembly, not directly a COM component, when you
install a managed add-in, the shared add-in wizard registers the file mscoree.dll (nor-
mally found in C:\Windows\System32) as the COM file. The add-in is registered with
the COM system as a COM component, which has its own GUID listed in with the
classes in the Registry; however, the server is given as mscoree.dll. For example, here
are the keys in the Registry from a test add-in that I wrote:

HKEY_CLASSES_ROOT

CLSID

{24224495-7902-494B-B749-E3247D233BF1}

Implemented Categories

InprocServer32

ProgId

The InprocServer32 entry, in turn, has these named values:

(default)=”C:\\WINNT\\System32\\mscoree.dll”

ThreadingModel=”Both”

Class=”OfficeVSAddin2.Connect”

Assembly=”OfficeVSAddin2, Version=1.0.1063.30401,

Culture=neutral, PublicKeyToken=null”

RuntimeVersion=”v1.0.3705”

CodeBase=”file:///C:/dev/OfficeVSAddin2/bin/OfficeVSAddin2.DLL”

362 Chapter 16

The default item is the actual server that the Office product calls into. The
mscoree.dll file, in turn, looks in the Registry to determine the assembly information.
The mscoree.dll file uses the .NET interop features to expose the assembly’s IDTEx-
tensibility2 interface to the Office product, allowing the add-in to run.

And that’s where the problem lies: The add-in itself is separate from the COM com-
ponent. The Office application doesn’t care which files the COM component ultimately
uses to obtain its code; all the Office application cares is that the COM component itself
is digitally signed. And guess what? The mscoree.dll file is not digitally signed; it can’t
be, because the digital signature is affiliated with a person or organization, and all peo-
ple and organizations developing managed add-ins share this same mscoree.dll file
(unless they create their own unmanaged COM component). And since this file is not
signed, when Office runs in high security mode, it will refuse to let the mscoree.dll
add-in run. (Remember, Office considers the COM component itself the add-in, even
though you and I both know the real add-in is in your assembly that mscoree.dll calls
into.) What does this mean? When Office runs in high security mode, it won’t run your
add-in, and you can’t change the situation simply by obtaining a digital signature,
because you can’t sign the mscoree.dll file.

The solution, then, is to build your own COM component. This is the second time
you’ve done this in this book. If you’ve been creating tool windows throughout this
book, you’ve been using a “go-between” COM component that loads the .NET custom
control that you build with the Visual Studio .NET form designer. This COM control is
VSUserControlHost, which is not a managed .NET assembly; it’s just a plain old COM
component. If you recall, VSUserControlHost is an example of a shim component; it’s a
COM control that acts as a go-between, allowing you to use an assembly as a COM
control. Now you can build another shim component, this time one that goes between
the Office application and the add-in. But unlike the mscoree.dll file, which you cannot
digitally sign, this shim component you can.

The concept of using a shim component to assist in digitally signing your
add-in is not new. Microsoft described the procedure in an article on the
MSDN site. To read the article, visit http://msdn.microsoft.com/library. In the
contents on the left, drill down to Office Solutions Development➪Microsoft
Office➪Microsoft Office XP➪Technical Articles➪Deployment of Managed
COM Add-ins in Office XP.

Microsoft has created a control that does the job for you, which you need to down-
load from the MS site. Go to http://msdn.microsoft.com/code/default.asp; in the con-
tents on the left, drill down to Code Examples➪Office Solutions Development➪
Microsoft Office XP➪Deployment of Managed COM Add-ins in Office XP➪General
Information. From there you can download the component; it’s called odc_shim.exe.

The idea behind the odc_shim.exe control is simple: It does the same job as
mscoree.dll, except that you get your own private copy of it, which you can digitally
sign and distribute with your application. Then, when you install your add-in, instead
of pointing the COM server to mscoree.dll, you point it to your own shim control.

Because Microsoft has provided a comprehensive step-by-step tutorial on using this
shim control, I’m not going to waste space here by rehashing the instructions; I’ll simply

Deploying Your Macros and Add-ins 363

point you to the online tutorial: Head over to http://msdn.microsoft.com/library. In
the contents on the left, expand down to Office Solutions Development➪Microsoft
Office➪Microsoft Office XP➪Technical Articles➪Using the COM Add-in Shim Solu-
tion to Deploy Managed COM Add-ins in Office XP. (If you don’t see a contents on the
left—as seems to be the case with some versions of Netscape—instead, in the upper-
left corner, in the search box, type: COM Add-in Shim Deploy; and in the drop-down
box choose MSDN Library. The article should appear first in the search results after the
Best Bets section.)

Deploying Macros

Before I get into the details of deploying a macro, I want to emphasize one very impor-
tant point: When you are ready to deploy a macro, shut down Visual Studio .NET before
you copy the macro files. The reason is that if you make changes to your macro, it’s pos-
sible that your changes won’t get written to the macro file even though you think they
will. The only sure way to have your changes written is by shutting down Visual Stu-
dio .NET, allowing it to save all changes.

Throughout this discussion of macro deployment, keep these factors in mind:

■■ The macros are for Visual Studio .NET, so you can assume the deployment sys-
tem has all the standard assemblies, as well as the necessary COM components
that provide support through the DTE object.

■■ All the modules for a single macro project live within a single file with a
.vsmacros extension.

■■ Users of the macros have full access to the source code.

■■ If your macros call into an assembly (many of mine call into VBMacroUtilities),
you will want to distribute the assembly with the macros.

If you have a simple set of macros, all in a single project, and the macros do not use
any special assemblies besides those that are standard with the Visual Studio .NET and
the .NET framework, then deployment is simple: Distribute a copy of your .vsmacros
file. The recipients can copy the file into whichever directory they want and then install
the file by opening the Macro Explorer (choose View➪Other Windows➪Macro
Explorer), then right-clicking the Macros item in the Macro Explorer, and in the popup
menu choosing Load Macro Project, and, finally, browsing to the .vsmacros file and
opening it. The file will then be installed.

But there’s an even easier way to install the .vsmacros file: Simply run it. Have the
user copy the file into whichever directory he or she wants and then run the file using
one of the many ways, such as double-clicking its name in an Explorer window, brows-
ing to it in the Run dialog box, or typing its name into a DOS prompt. If Visual Studio
.NET is installed properly, Windows will then automatically launch the devenv pro-
gram (the Visual Studio .NET IDE), passing the filename as a parameter; the IDE will
install the file, again, automatically. Done deal.

But if you have additional files you want to ship with your macro file, you have
some choices to make. You can zip them all up into a single file and let the user unzip

364 Chapter 16

TE
AM
FL
Y

Team-Fly®

them and copy them into a directory. (Remember, these are users of Visual Studio
.NET, hence you can assume, programmers.) Then the users can install the .vsmacros
file as before. Or you can get fancy and build a Setup project. I consider a Setup project
a mark of professionalism. If somebody gives me a zip file and I create a directory and
unzip the files, I’m usually okay with it. But if they give me an installer, I assume they
care a great deal about their product and want me to take it seriously.

If you already know how to use the various deployment projects, the following
points are for you. And if you aren’t familiar with the deployment projects, please read
the following points anyway, because afterward, I’ll walk you through a setup process:

■■ If you use the Setup Wizard (rather than the blank Setup project) and add an
assembly, the wizard automatically adds the referenced assemblies, such as
EnvDTE. You can remove these.

■■ If you are shipping additional assemblies, make sure you install them into the
PublicAssemblies directory.

■■ Unload the macro project in the Macros Explorer before building the Setup
project.

The reason for the first point is that if the users have a valid installation of Visual
Studio .NET (which they should, otherwise they wouldn’t be downloading macros for
Visual Studio .NET), they will already have these additional assemblies. To remove
these files from the setup, open the file’s properties in the File System Editor and set the
Exclude property to True.

As for the second point, you must install the assemblies in the Common7\IDE\
PublicAssemblies directory under the main Visual Studio .NET installation directory.
Although in the main IDE you can put your assemblies elsewhere and then add a key
under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\7.0\Assembly-
Folders, setting the default to a directory containing your assemblies, unfortunately
this technique does not work for the Macros IDE. Therefore, you must put your assem-
blies in the PublicAssemblies directory.

The reason for the third point is that Visual Studio .NET puts a lock on any macro
project files that are loaded. This will cause the Setup project to refuse to build, dis-
playing the following message:

Unable to find source file ‘C:\dev\Projects\MiscWork\Visual Studio

Projects\VSMacros\OLEProjects\OLEProjects.vsmacros’ for file

‘OLEProjects.vsmacros’, located in ‘[TARGETDIR]’, the file may be absent

or locked.

In the sections that follow I show you how to set up the deployment project and an
associated project, the custom step project.

Setting Up the Deployment Project
A deployment project (also called a Setup project) describes what the end-user’s com-
puter will look like after your software is installed on it. With a Setup project you get

Deploying Your Macros and Add-ins 365

several editors that you can use to describe the end-user’s computer. Here are the areas
you can configure:

File System. This includes the user’s desktop, application directory, and system
directory.

Registry. This is the user’s system Registry; the editor looks like a typical Reg-
istry editor.

File types. This refers to associations between file extensions and a program.

User interface. This includes various dialog boxes for the setup program.

Custom actions. These are scripts or external programs that your setup program
will launch to assist in the deployment procedure.

Launch conditions. These are conditions that must exist on the user’s computer
in order for your setup program to run. The idea here is that you can test for
various system requirements before installing your software.

Here are the steps to create a deployment project:

1. Either choose File➪New➪Project (if you want to create a new solution) or
File➪Add Project➪New Project (if you want to use an existing solution). The
New Project dialog box will open.

2. In the New Project dialog box, for the Project Types, click Setup and Deploy-
ment Projects. For the Templates, click Setup Wizard Project. Type a name and
choose a location for your project. Click OK. The Setup Wizard will begin, as
shown in Figure 16.4.

Figure 16.4 The Setup Wizard begins.

366 Chapter 16

The difference between the Setup project and Setup Wizard project is that
the Setup Wizard includes a wizard at the beginning that walks you through
some steps in filling in a deployment application. The Setup project simply
opens with a blank deployment application.

3. On page 1 of the Setup Wizard, the splash screen, click Next.

4. Page 2 of the Setup Wizard, shown in Figure 16.5, asks what type of setup pro-
gram you want to create. For the macro installer, choose “Create a setup for a
Windows application.” Leave the second set of radio buttons, titled “Do you
want to create a redistributable package?” blank. (Be careful: as radio buttons,
if you click one of them and realize you don’t want either checked, you cannot
undo it. You will have to cancel and restart the wizard.) Click Next.

5. Page 3 of the Setup Wizard, shown in Figure 16.6, will appear only if you
already have other projects in your solution. Here you can select other projects
whose output you want added to the setup. Normally, you would check the
project for the program this deployment application is installing. Since you’re
installing a macro, not an application, you can leave these blank. Click Next.

6. Page 4 of the Setup Wizard, shown in Figure 16.7, allows you to add files to
your deployment project. This is where you choose the assemblies that the
macro files require, if any, and the .vsmacros project files. To add a file, click
Add; the standard Windows File Open dialog box will open. Browse to your
.vsmacros files and click Open; also browse to any assemblies the macro
requires, such as my VBMacroUtilities assembly found in the PublicAssemblies
directory. Click Next.

Figure 16.5 Page 2 of the Setup Wizard.

Deploying Your Macros and Add-ins 367

Figure 16.6 Page 3 of the Setup Wizard.

7. Page 5 of the Setup Wizard, shown in Figure 16.8, lists the settings you have
chosen. If your settings are the way you want them, click Finish.

Figure 16.7 Page 4 of the Setup Wizard.

368 Chapter 16

Figure 16.8 Page 5 of the Setup Wizard.

After you click Finish, Visual Studio .NET will create a deployment project for you.
At this point, you can simply leave the project as-is, if you want, and you will have a
basic installer; all you have to do is build the deployment project. The resulting project
will have an .msi extension, which Windows associates with the Windows Installer.
Therefore, the end users can simply run the .msi file, and the Windows installer (which
is now an official part of Windows, which you can be assured is present) will start up
and use the .msi file to install your software.

The deployment project’s defaults are pretty good; the final deployment program,
when run, will create a directory under the end-user’s c:\Program Files directory con-
taining your company name; and under that directory, you’ll get a subdirectory with
the name of your application.

If you want to change the company name and application name, you can set the
properties for the deployment project. To set the properties, single-click the project
name in Solution Explorer; then open the Properties Window by choosing View➪Prop-
erties Window. The company name is called Manufacturer in the property window,
while the application name is called ProductName.

A deployment project has two property sets. You get one set if you right-
click the project in the Solution Explorer, and in the popup menu choose
Properties; this opens the window called Property Pages. You can get
the second set, called Properties Window, if you single-click the project
in the Solution Explorer and then click on the Properties window. It is
inside the second set, the Properties Window, where you will find
Manufacturer and ProductName.

Deploying Your Macros and Add-ins 369

After you choose your company name and application name, there are two addi-
tional actions you can take beyond accepting the defaults. I strongly recommend that
you always do the second if you have developed an assembly that you need to ship
with your macro. The two actions are:

■■ Set up the deployment project to create an icon on the user’s desktop that
installs the .vsmacros file into the user’s Visual Studio .NET program. (Remem-
ber, the deployment project installs the files on the user’s computer. The next
step is to install the macro project to Visual Studio .NET, which is what I’m
talking about here.)

■■ Add code to the deployment project to copy the additional assemblies into the
PublicAssemblies directory. Unfortunately, the Macros IDE will not look in
other directories for its referenced assemblies, even if you add entries to the
system Registry.

The first of these involves setting up the File System editor. The second involves cre-
ating a Custom Action. In the following two sections I show you how to do both.

To get to the different editors, click on the name of the deployment project
in the Solution Explorer. Then click the View menu, where you will find an
Editor menu item that otherwise is not present. This Editor menu item has a
submenu containing the different deployment editors. Or you can right-click
the deployment project in the Solution Explorer, and in the popup menu
click View. A submenu will appear listing the editors.

Adding a Shortcut to the .vsmacros File
Probably one of the tasks of your deployment application is to install the .vsmacros file
on the user’s copy of Visual Studio .NET. When you create a deployment project, your
setup can optionally include shortcut icons on the user’s desktop. This is handy
because you can put a shortcut to the .vsmacros file. The user can then double-click this
shortcut, which will launch Visual Studio .NET and automatically install the .vsmacros
file.

Remember, the .vsmacros file will be in the subdirectory under Program Files,
which your deployment program created on the user’s computer. The shortcut on the
desktop will be a link to the .vsmacros file. Therefore, after the user installs the
.vsmacros file to Visual Studio .NET, he or she is free to delete the shortcut.

The following steps show you how to add a shortcut icon to your application:

1. Open the File System Editor.

You can see the different directories on the user’s computer to which you
have access by right-clicking the top node on the File System Editor tree on
the left, called File System on Target Machine, and in the popup menu
choosing Add Special Folder. A submenu will appear listing the different
directories.

370 Chapter 16

2. Click Application Folder in the tree on the left. The list of files in the Applica-
tion Folder will appear in the pane on the right, including any files you added
during the wizard process. (Remember, the Application Folder corresponds to
the application’s directory under the c:\Program Files directory on the user’s
computer.)

3. Right-click the .vsmacros file in the right pane, and in the popup menu choose
Create Shortcut to MyMacros.vsmacros (or whatever your .vsmacros file is
called). Optionally, you might type a new name for the shortcut, such as Install
MyMacros.vsmacros. Remember, this icon will install the macros into Visual
Studio .NET, so make this an appropriate name.

4. The shortcut is now in the Application Folder, but you want it in the User’s
Desktop folder. To get it there, simply drag it from the right pane to the tree-
view on the left over the item called User’s Desktop.

That’s it. Now when you build the deployment project, the resulting deployment
program, when run, will also create an icon on the user’s desktop. The user can double-
click this icon to install the .vsmacros file into Visual Studio .NET.

When you are developing a deployment application, don’t use the Control
Panel’s Add/Remove Programs setting to uninstall your application. Instead,
simply right-click the deployment project in the Solution Explorer, and in the
popup menu choose Uninstall. Although the process is the same, it’s much
faster to do it this way because you don’t have to wait for the Add/Remove
Program’s control panel application to load.

At this point, if you haven’t done so already, you can try out your deployment proj-
ect. Build the project as you would any other project. Then right-click the deployment
project and choose Install. This will run the installation program that you just built.
After you run the installation, you can uninstall it by right-clicking the project and
choosing Uninstall.

After you run your installer, make sure the resulting .vsmacros file is not in
use. (It’s okay if you have the original source .vsmacros file open.) If you run
your installer and your macro is loaded in the IDE, and you then uninstall
the macro product, the Windows Installer will complain that the .vsmacros
file is in use. To prevent this, make sure you unload the .vsmacros project
before uninstalling.

Creating the Custom Action Project
If you want to copy any assemblies to the PublicAssemblies directory, the first thing
you will want to do is set up the deployment project so the assemblies will get installed
in the application directory. Then you will add a custom step that is a VB.NET program

Deploying Your Macros and Add-ins 371

that copies the files to the PublicAssemblies directory. To determine where the Publi-
cAssemblies directory is, the VB.NET program can use the Registry.

To do this, first create a new Visual Basic .NET Class Library. Make sure you add this
project to the existing solution, the one containing your deployment project. To create
the Class Library, choose File➪Add Project➪New Project. In the New Projects dialog
box, in the left pane choose Visual Basic Projects. In the right pane choose Class Library.
(This is just a .DLL.) Type a name for the DLL, such as MacroExtras.dll. Type a location
and click OK.

Now here’s the fun part. Many people aren’t aware of this next step. In the Solution
Explorer, right-click the new MacroExtras project, and in the popup choose Add➪Add
New Item. In the Templates list in the right pane, scroll down and click Installer Class.
Type a name for the class or just leave the default. (I left the default on mine, since the
name isn’t particularly important here.) Then click Open to create the new source file.

The form designer will open; right-click anywhere on it, and in the popup menu
choose View Code. Here’s the code you want to type in:

Imports System.ComponentModel

Imports System.Configuration.Install

Imports Microsoft.Win32

Imports System.IO

<RunInstaller(True)> Public Class Installer1

Inherits System.Configuration.Install.Installer

#Region “ Component Designer generated code “

Public Sub New()

MyBase.New()

‘This call is required by the Component Designer.

InitializeComponent()

‘Add any initialization after the InitializeComponent() call

End Sub

‘Installer overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As

Boolean)

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

‘Required by the Component Designer

Private components As System.ComponentModel.IContainer

372 Chapter 16

‘NOTE: The following procedure is required by the Component Designer

‘It can be modified using the Component Designer.

‘Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

components = New System.ComponentModel.Container()

End Sub

#End Region

Private Sub CopyAssembly(ByVal AssemName As String)

Try

Dim reg As RegistryKey

reg = Registry.LocalMachine.OpenSubKey(_

“SOFTWARE\Microsoft\VisualStudio\7.0”)

Dim destpath As String = reg.GetValue(“InstallDir”)

destpath = Path.Combine(destpath, “PublicAssemblies”)

Dim sourcepath As String = _

Me.Context.Parameters.Item(“InstallPath”)

Dim destfile As String = Path.Combine(_

destpath, AssemName)

Dim sourcefile As String = Path.Combine(_

sourcepath, AssemName)

File.Copy(sourcefile, destfile)

Catch

End Try

End Sub

‘ Add custom action for Install to make sure this gets called.

‘ You can click Overrides in upper-left listbox

‘ and then Install in upper-right to add this header.

Public Overrides Sub Install(ByVal stateSaver As _

System.Collections.IDictionary)

MyBase.Install(stateSaver)

Try

CopyAssembly(“VBMacroUtilities.dll”)

Catch e As Exception

MsgBox(“Exception caught: “ & e.Message)

End Try

End Sub

End Class

The installer will ultimately call the Install function of this code. In this code I call
my own CopyAssembly function, which reads the Registry and then copies the
assembly to the PublicAssemblies directory. Since I broke out this functionality into its
own subroutine, you can easily add more assemblies if you have them. I also included
a Try/Catch block for debugging purposes in case anything went wrong.

Deploying Your Macros and Add-ins 373

Now you need to set up the deployment project to run the functions in this library.
This involves two steps: adding the project output to your deployment project and set-
ting up the custom action. First, here is how you add the project output:

1. In the Solution Explorer, right-click the deployment project, and in the popup
menu choose View➪File System. In the treeview on the left, right-click Applica-
tion Folder, and in the popup menu choose Add➪Project Output. The Add
Project Output Group dialog box will appear, as shown in Figure 16.9.

2. Choose the CustomAction1 project in the drop-down box at the top.

3. Click Primary output in the listbox. Set the Configuration set to Active.

4. Click OK.

This adds the project output. Now you can add the custom action. In the Solution
Explorer, right-click the deployment project, and in the popup menu choose View➪

Custom Actions. The Custom Actions window will open, as shown in Figure 16.10.
(Note that the figure shows what the window will look like after the following steps.)

Now perform these steps:

1. Right-click the word Install in the treeview on the left.

2. In the popup menu choose Add Custom Action. The Select Item in Project dia-
log box will open.

3. In the Select Item in Project dialog box, double-click Application Folder to
switch to the Application folder.

4. Click Primary Output from MacroExtras.dll (active).

5. Click OK.

6. By default, the new item’s entry in the treeview will be in edit mode. You can
leave the name as-is by clicking anywhere in the tree away from the new item.

Figure 16.9 The Add Project Output Group dialog box.

374 Chapter 16

TE
AM
FL
Y

Team-Fly®

Figure 16.10 The Custom Actions window.

Save your project and you’re done. Now when you build the project, the resulting
setup will call into the Install subroutine of your MacroExtras.dll.

Here’s a code display of the setup at this stage:

File System Editor

Application Folder

VBMacroUtilities.dll

Primary Output from CustomAction1 (Active)

User’s Desktop

Shortcut to OLEProjects.vsmacros

User’s Program Menu

Custom Actions Editor

Install

Primary Output from CustomActive1 (Active)

Commit

Rollback

Uninstall

As you can see, there’s not much there. The deployment project does most of the
work for you.

Moving Forward

In this chapter I discussed the security issues you will face when deploying a Microsoft
Office add-in to a user’s computer. Remember, you do not want to force your users to

Deploying Your Macros and Add-ins 375

lower the security on their application, even if most developers prefer lower security.
Many large companies have an IT group that sets up the computers and requires the
users to maintain the higher security level.

I also showed you how you can put together a Setup project that will deploy your
macros for you. If you’re really adventurous, you might want to take another step and
create a wizard that builds Setup projects specifically for macros. To do so, use the tech-
niques for creating a wizard that I described in Chapter 12. And if you’d like to share it
with me, send it to readers@jeffcogswell.com; if it works, I’ll upload it to the Web site
for this book.

376 Chapter 16

377

In this, the final chapter of the book, I wrap-up add-in development in Visual Studio
.NET by, first, showing you how you can create a new page in the Options dialog box
through which the IDE users can configure your add-in; next, providing another add-
in I’ve found a need for and thought you might, too; and then listing a few handy
third-party add-ins that you might want to obtain.

I close the chapter and the book by talking a bit about the Common Language Infra-
structure (CLI) and where to go if you want to take your development further. This
final section doesn’t mention add-ins and macros, but when your mind-set is on
enhancing Visual Studio .NET, you’ll find that a whole world exists beyond them. For
example, you can enhance your .NET programming by buying another language add-
in, such as Python or Perl, and I’ll tell you where you can find such products.

Creating an Options Page for Your Add-in

If the add-in you’re creating has various options that the IDE user can configure, a
good place to put the options is directly in the main IDE’s Options dialog box, which is
available by choosing Tools➪Options. Creating an options page involves writing an
ActiveX control that implements the IDTToolsOptionsPage interface and register-
ing the options page in the Visual Studio .NET section of the Registry.

Keep in mind that when I say that your control must implement the IDTToolsOp-
tionsPage, I mean that your control must contain a class derived from it, overriding
the member functions of IDTToolsOptionsPage. These members are:

Supercharging
Visual Studio .NET

C H A P T E R

17

GetProperties. The options page can return a set of properties, although it doesn’t
have to. (But you still must implement this function, even if you return a null
value.)

OnAfterCreated. This event occurs the first time the options page is loaded dur-
ing the Visual Studio .NET session. (The next time the IDE user restarts Visual
Studio .NET and opens the options page, this event will again occur.)

OnCancel. This event occurs when the IDE user clicks the Cancel button in the
Options dialog box.

OnHelp. This event occurs when the IDE user has your options page open and
clicks the Help button.

OnOK. This event occurs when the user clicks the OK button in the Options dia-
log box.

In Chapter 7, “Creating Add-ins for the IDE,” in the section “Using the Form
Designer with a Tool Window,” I introduced the idea of a shim control, a control that
provides the necessary COM portions for a .NET control so that the .NET control can
perform where an ActiveX control is required. In order to create an options page, you
must provide Visual Studio .NET with an ActiveX control. Since the .NET assemblies
do not serve as COM components (and therefore do not serve as ActiveX controls,
either), you must either develop a non-.NET ActiveX control using C++ (or resort to an
earlier version of Visual Basic) or you must use a shim control, which allows you to do
the rest of your development in Visual Studio .NET using VB.NET or C#. The latter
option is the approach I take here.

The shim control used in the first sample here is available free for
download from the Microsoft Web site. The control was originally included
in an article in MSDN Magazine titled “Custom Add-ins Help You Maximize
the Productivity of Visual Studio .NET” (February 2002). You can find both
the article and the control at
http://msdn.microsoft.com/msdnmag/issues/02/02/VSIDE/default.aspx.
The shim control is the VSIDE.exe file at the top; it’s a self-extracting
executable that also contains a sample project. (Also note that MSDN
Magazine works closely with Microsoft, and you can download all of the
publication’s source code from the msdn.Microsoft.com site.)

Once you have obtained the shim control, go ahead and build the sample solution
that accompanies it. Doing so will both build the shim control and register it with the
operating system, as well as allow you to poke around the sample add-in that accom-
panies the control. Next start a new solution and create a new add-in project. Create
this project in VB.NET and select the Tools Menu option so that your add-in will imple-
ment the IDTCommandTarget interface.

In order to focus on the options page and not get bogged down in the add-in itself,
I decided to make this a simple, yet useful add-in, one that does not involve a tool win-
dow; rather, it simply scans through all the documents in the current project and prints
document statistics to the output window, specifically character count and line count.

378 Chapter 17

The shim control for options pages work a little differently from the shim control for
tool windows. With the add-in projects that use the tool windows, you need to add a
reference to the tool window shim control; here you do not. Instead, you reference the
shim control through the code using a GUID. As you’ll see in the following sample
code, in the code for the user control, you will provide a GuidAttribute like so:

<GuidAttribute(“55B20E98-768F-4d16-BAEB-B613B49653B9”), _

ProgId(“StatsAddin.OptionsControl”)>

Or, if your code is C#, the same code will look like this:

[GuidAttribute(“55B20E98-768F-4d16-BAEB-B613B49653B9”),

ProgId(“StatsAddin.OptionsControl”)]

Note that you must use the GUID that I’m providing here, which matches the GUID
in the shim control; that’s how you reference the shim control in your code. For the
ProgId, however, you provide a new name for each add-in. The name I’m giving here,
StatsAddin, goes with my sample statistics add-in. (I recommend following the
name by a dot and the word OptionsControl, for consistency with other add-ins
that use this shim control.)

And now on to the add-in code itself, which is straightforward:

Imports Microsoft.Office.Core

imports Extensibility

imports System.Runtime.InteropServices

Imports EnvDTE

<GuidAttribute(“27ABE2EA-CB9A-4F2D-A046-6C6EA5AC5C64”), _

ProgIdAttribute(“StatsAddin.Connect”)> _

Public Class Connect

Implements Extensibility.IDTExtensibility2

Implements IDTCommandTarget

Dim applicationObject As EnvDTE.DTE

Dim addInInstance As EnvDTE.AddIn

Dim pane As OutputWindowPane

Public Sub OnBeginShutdown(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnBeginShutdown

End Sub

Public Sub OnAddInsUpdate(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnAddInsUpdate

End Sub

Public Sub OnStartupComplete(ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnStartupComplete

End Sub

Supercharging Visual Studio .NET 379

Public Sub OnDisconnection(ByVal RemoveMode As _

Extensibility.ext_DisconnectMode, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnDisconnection

End Sub

Public Sub OnConnection(ByVal application As Object, _

ByVal connectMode As Extensibility.ext_ConnectMode, _

ByVal addInInst As Object, ByRef custom As System.Array) _

Implements Extensibility.IDTExtensibility2.OnConnection

applicationObject = CType(application, EnvDTE.DTE)

addInInstance = CType(addInInst, EnvDTE.AddIn)

If connectMode = Extensibility.ext_ConnectMode.ext_cm_UISetup

Then

Dim objAddIn As AddIn = CType(addInInst, AddIn)

Dim CommandObj As Command

Try

CommandObj = applicationObject.Commands.AddNamedCommand _

(objAddIn, “StatsAddin”, “StatsAddin”, _

“Executes the command for StatsAddin”, True, 59, _

Nothing, 1 + 2)

CommandObj.AddControl(applicationObject.CommandBars. _

Item(“Tools”))

Catch e As System.Exception

End Try

End If

‘ Create the output pane

Dim outwin As Window = applicationObject.Windows.Item(_

EnvDTE.Constants.vsWindowKindOutput)

outwin.Visible = True

pane = outwin.Object.OutputWindowPanes.Add(“Statistics”)

WriteAllStats()

End Sub

Public Sub Exec(ByVal cmdName As String, _

ByVal executeOption As vsCommandExecOption, _

ByRef varIn As Object, ByRef varOut As Object, _

ByRef handled As Boolean) Implements IDTCommandTarget.Exec

handled = False

If (executeOption = _

vsCommandExecOption.vsCommandExecOptionDoDefault) Then

If cmdName = “StatsAddin.Connect.StatsAddin” Then

WriteAllStats()

handled = True

Exit Sub

380 Chapter 17

End If

End If

End Sub

Public Sub QueryStatus(ByVal cmdName As String, _

ByVal neededText As vsCommandStatusTextWanted, _

ByRef statusOption As vsCommandStatus, ByRef commandText As Object) _

Implements IDTCommandTarget.QueryStatus

If neededText = EnvDTE.vsCommandStatusTextWanted. _

vsCommandStatusTextWantedNone Then

If cmdName = “StatsAddin.Connect.StatsAddin” Then

statusOption = CType(vsCommandStatus. _

vsCommandStatusEnabled + vsCommandStatus. _

vsCommandStatusSupported, vsCommandStatus)

Else

statusOption = vsCommandStatus. _

vsCommandStatusUnsupported

End If

End If

End Sub

Public Sub WriteAllStats()

pane.OutputString(“Statistics” & Chr(13))

Dim proj As Project

For Each proj In applicationObject.ActiveSolutionProjects

pane.OutputString(proj.Name & Chr(13))

WriteStats(proj)

Next

End Sub

Public Sub WriteStats(ByVal proj As Project)

Dim DoLineCount As Integer

Dim DoCharCount As Integer

Dim key As Microsoft.Win32.RegistryKey

key = Microsoft.Win32.Registry.LocalMachine.OpenSubKey(_

“Software\Microsoft\VisualStudio\7.0\” & _

“Addins\StatsAddin.Connect\Options”)

DoLineCount = key.GetValue(“LineCount”, 1)

DoCharCount = key.GetValue(“CharCount”, 1)

Dim pitem As ProjectItem

For Each pitem In proj.ProjectItems

Dim filename As String

Dim filenum As Integer

For filenum = 1 To pitem.FileCount

filename = pitem.FileNames(filenum)

Dim ext As String

ext = System.IO.Path.GetExtension(filename)

If ext = “.vb” Or ext = “.cpp” Or ext = “.cs” Then

Dim shortname As String

Supercharging Visual Studio .NET 381

Dim reader As System.IO.StreamReader

shortname = System.IO.Path.GetFileName(filename)

reader = System.IO.File.OpenText(filename)

pane.OutputString(“ “ & shortname & “ “)

If DoCharCount = 1 Then

pane.OutputString(reader.BaseStream.Length & “ “)

End If

If DoLineCount = 1 Then

pane.OutputString(LineCount(reader))

End If

pane.OutputString(Chr(13))

End If

Next

Next

End Sub

Private Function LineCount(_

ByRef reader As System.IO.StreamReader) As Integer

Dim line As String

line = reader.ReadLine()

If line = “” Then

Return 0

End If

Dim count As Integer = 1

While (reader.Peek() > -1)

line = reader.ReadLine()

count += 1

End While

Return count

End Function

End Class

When you add the code to save the changes in the form, you may be tempted to save
them to local variables that the Connect module can access. However, that’s not the
correct way to write the code, since you want the settings to be available the next time
the IDE user starts the IDE, even if he or she doesn’t open the options page during this
second session. The correct approach, then, is to save the changes to the Registry under
your add-in entry. Your Connect module then reads the entries in the Registry, not the
data stored in the form.

Figure 17.1 shows the layout for the form, which includes two checkboxes. To create
this form, add a new user control to the project (not a new form). To do this, right-click
the project in the Solution Explorer, and in the popup menu choose Add➪Add User
Control. In the Add New Item dialog box, I chose to call the control filename StatsCon-
trol.vb. Set the top checkbox’s name to CharCountCheck and its Text property to
Character Count. Set the bottom checkbox’s name to LineCountCheck, and its
Text property to Line Count.

382 Chapter 17

Figure 17.1 The layout for the form includes two checkboxes.

Following is the code for the form. Notice that I’ve changed the header for the class
by adding the GuidAttribute section that I mentioned earlier; I also added a class,
IDTToolsOptionsPage, to the base class list.

Imports System.Runtime.InteropServices ‘ For GuidAttribute

<GuidAttribute(“55B20E98-768F-4d16-BAEB-B613B49653B9”), _

ProgId(“StatsAddin.OptionsControl”)> _

Public Class StatsControl

Inherits System.Windows.Forms.UserControl

Implements EnvDTE.IDTToolsOptionsPage

#Region “ Windows Form Designer generated code “

Public Sub New()

MyBase.New()

‘This call is required by the Windows Form Designer.

InitializeComponent()

‘Add any initialization after the InitializeComponent() call

End Sub

‘UserControl overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As

Boolean)

If disposing Then

If Not (components Is Nothing) Then

components.Dispose()

End If

End If

MyBase.Dispose(disposing)

End Sub

‘Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

Supercharging Visual Studio .NET 383

‘NOTE: The following procedure is required by the Windows Form

‘Designer

‘It can be modified using the Windows Form Designer.

‘Do not modify it using the code editor.

Friend WithEvents CharCountCheck As System.Windows.Forms.CheckBox

Friend WithEvents LineCountCheck As System.Windows.Forms.CheckBox

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

Me.CharCountCheck = New System.Windows.Forms.CheckBox()

Me.LineCountCheck = New System.Windows.Forms.CheckBox()

Me.SuspendLayout()

‘

‘CharCountCheck

‘

Me.CharCountCheck.Location = New System.Drawing.Point(8, 32)

Me.CharCountCheck.Name = “CharCountCheck”

Me.CharCountCheck.Size = New System.Drawing.Size(120, 24)

Me.CharCountCheck.TabIndex = 0

Me.CharCountCheck.Text = “Character Count”

‘

‘LineCountCheck

‘

Me.LineCountCheck.Location = New System.Drawing.Point(8, 72)

Me.LineCountCheck.Name = “LineCountCheck”

Me.LineCountCheck.TabIndex = 1

Me.LineCountCheck.Text = “Line Count”

‘

‘StatsControl

‘

Me.Controls.AddRange(New System.Windows.Forms.Control() { _

Me.LineCountCheck, Me.CharCountCheck})

Me.Name = “StatsControl”

Me.ResumeLayout(False)

End Sub

#End Region

‘ Note: This function’s param is ByRef not ByVal

Public Sub GetProperties(ByRef PropertiesObject As Object) _

Implements EnvDTE.IDTToolsOptionsPage.GetProperties

PropertiesObject = Nothing

End Sub

Public Sub OnAfterCreated(ByVal DTEObject As EnvDTE.DTE) _

Implements EnvDTE.IDTToolsOptionsPage.OnAfterCreated

‘ Read the entries from the registry

‘ and fill in the form based on the entries

Dim DoLineCount As Integer

Dim DoCharCount As Integer

384 Chapter 17

TE
AM
FL
Y

Team-Fly®

Dim key As Microsoft.Win32.RegistryKey

key = Microsoft.Win32.Registry.LocalMachine.OpenSubKey(_

“Software\Microsoft\VisualStudio\7.0\” & _

“Addins\StatsAddin.Connect\Options”)

DoLineCount = key.GetValue(“LineCount”, 1)

DoCharCount = key.GetValue(“CharCount”, 1)

If DoLineCount = 1 Then

LineCountCheck.Checked = True

Else

LineCountCheck.Checked = False

End If

If DoCharCount = 1 Then

CharCountCheck.Checked = True

Else

CharCountCheck.Checked = False

End If

End Sub

Public Sub OnCancel() _

Implements EnvDTE.IDTToolsOptionsPage.OnCancel

‘ Don’t save the entries, since the user

‘ clicked Cancel.

End Sub

Public Sub OnHelp() _

Implements EnvDTE.IDTToolsOptionsPage.OnHelp

End Sub

Public Sub OnOK() _

Implements EnvDTE.IDTToolsOptionsPage.OnOK

‘ Save the entries into the registry

Dim DoLineCount As Integer

Dim DoCharCount As Integer

Dim key As Microsoft.Win32.RegistryKey

‘ Remember to pass True for the second

‘ parameter to OpenSubKey, which will

‘ allow write access to the key.

key = Microsoft.Win32.Registry.LocalMachine.OpenSubKey(_

“Software\Microsoft\VisualStudio\7.0\” & _

“Addins\StatsAddin.Connect\Options”, True)

If LineCountCheck.Checked Then

DoLineCount = 1

Else

DoLineCount = 0

End If

If CharCountCheck.Checked Then

DoCharCount = 1

Supercharging Visual Studio .NET 385

	sample.pdf
	sterling.com
	Welcome to Sterling Software

