
P r o g r a m m e r t o P r o g r a m m e r TM

Ashish Banerjee, Aravind Corera, Zach Greenvoss, Andrew Krowczyk,

Christian Nagel, Chris Peiris, Thiru Thangarathinam, Brad Maiani

Building Web Services with
.NET Remoting and ASP.NET

C#
Web Services
C#

Web Services

Summary of Contents

Introduction 1

Section One – Getting Started 9

Chapter 1: What is a Web Service? 11

Chapter 2: Web Service Protocols 27

Chapter 3: Web Services and the .NET Framework 49

Section Two – ASP.NET Web Services 65

Chapter 4: Building an ASP.NET Web Service 67

Chapter 5: Consuming ASP.NET Web Services 105

Section Three – .NET Remoting 129

Chapter 6: .NET Remoting Architecture 131

Chapter 7: Web Services Anywhere 175

Chapter 8: Building a Web Service with .NET Remoting 201

Chapter 9: Building a .NET Remoting Client 231

Section Four – Advanced Topics 253

Chapter 10: Universal Description, Discovery and Integration (UDDI) 255

Chapter 11: .NET Security and Cryptography 275

Chapter 12: Web Services As Application Plug-Ins 333

Section Five – Case Studies 367

Case Study 1: ASP.NET 369

Case Study 2: P2P .NET Remoting 423

Section Six – Appendix 493

Appendix A: .NET Remoting Object Model 495

Index 581

.NET Remoting Architecture

In the last few chapters, we have seen how ASP.NET web services can be created and used. ASP.NET
web services require the ASP.NET runtime as hosting environment. Using .NET Remoting directly, we
can host a web service in any application we want. .NET Remoting allows much more flexibility
because different transport protocols may be used, we can get a performance increase with different
formatting options, and it's possible to host the server in different application types.

The next four chapters will deal with .NET Remoting. In this chapter, we will look at the architecture of
.NET Remoting, and go into detail in the following areas:

❑ What is .NET Remoting?

❑ .NET Remoting Fundamentals

❑ Object Types

❑ Activation

❑ Marshaling

❑ Asynchronous Remoting

❑ Call Contexts

The next chapter will show different application types, transport protocols, and formatting options, and
Chapters 8 and 9 will show an example of using .NET Remoting. Let's begin the chapter with a look at
.NET Remoting.

As with the previous chapters, the code for the examples in this chapter can be downloaded from
http://www.wrox.com.

6

Chapter 6

132

What is .NET Remoting?
.NET Remoting is the replacement for DCOM. As we have seen in the last chapters, ASP.NET web services
are an easy-to use-technology to call services across a network. ASP.NET web services can be used as a
communication link with different technologies, for example to have a COM or a Java client talk to web
services developed with ASP.NET. As good as this technology is, however, it is not fast and flexible enough
for some business requirements in intranet solutions, and ASP.NET web services requires the ASP.NET
runtime. With .NET Remoting we get Web Services Anywhere that can run in every application type.

Web Services Anywhere
The term "Web Services Anywhere" means that web services can not only be used in any application, but
any application can offer web services. ASP.NET web services require the IIS to run; web services that make
use of .NET Remoting can run in any application type: console applications, Windows Forms applications,
Windows services, and so on. These web services can use any transport with any payload encoding.

In the next chapter we will talk about when and how to use .NET Remoting with different transports
(TCP and HTTP) and about different payload encoding mechanisms (SOAP and binary).

CLR Object Remoting
The next part of .NET Remoting that we need to be aware of is CLR Object Remoting. With CLR
Object Remoting we can call objects across the network, as if they were being called locally.

With CLR Object Remoting we have:

❑ Distributed Identities – Remote objects can have a distributed identity. If we pass a reference
to a remote object, we will always access the same object using this reference.

❑ Activation – Remote objects can be activated using the new operator. Of course, there are
other ways to activate remote objects, as we will see later.

❑ Lease-Based Lifetime – How long should the object be activated on the server? At what time
can we assume that the client no longer needs the remote object? DCOM uses a ping
mechanism that is not scalable to internet solutions. .NET Remoting takes a different
approach with a lease-based lifetime that is scalable.

❑ Call Context – With the SOAP header, additional information can be passed with every
method call that is not passed as an argument.

We will cover all of these CLR Object Remoting features in detail later on in this chapter.

.NET Remoting Fundamentals
The methods that will be called from the client are implemented in a remote object class. In the figure
opposite we can see an instance of this class as the Remote Object. Because this remote object runs inside a
process that is different from the client process – usually also on a different system – the client can't call it
directly. Instead the client uses a proxy. For the client, the proxy looks like the real object with the same
public methods. When the methods of the proxy are called, messages will be created. These are serialized
using a formatter class, and are sent into a client channel. The client channel communicates with the server
part of the channel to transfer the message across the network. The server channel uses a formatter to
deserialize the message, so that the methods can be dispatched to the remote object:

.NET Remoting Architecture

133

Client Process Server Process

Formatter

Client Channel

Proxy Remote Object

Formatter

Sever Channel

In the simplest case, we have to create a remote object class and instantiate a channel for a .NET
Remoting application. The formatter and the proxy will be supplied automatically. The architecture is
very flexible in that different formatters and channels can be used. We cover the use of the TCP and
HTTP channels, and the SOAP and binary formatters in the next chapter.

In the next section we'll start with the simplest case to develop a remoting object, server, and client. In
this section we will not go into the details of the remoting architecture, as we will cover this later after
we've finished a simple client and server.

Remote Object
A remote object is implemented in a class that derives from System.MarshalByRefObject.
MarshalByRefObject defines methods for lifetime services that will be described later when we use
the leasing features. A remote object is confined to the application domain where it is created. As we
already know, a client doesn't call the methods directly; instead a proxy object is used to invoke
methods on the remote object. Every public method that we define in the remote object class is
available to be called from clients.

What is an application domain? Before .NET, processes were used as a security boundary so that one
process couldn't crash another process because it used private virtual memory. With the help of the
managed environment of .NET, the code of an application can be checked, and there's no way to crash the
process. To reduce the overhead with different processes, the concept of an application domain was
introduced with .NET. Multiple applications can run in the same process without influencing each other
if they are called within different application domains. If one of these applications throws an exception
that isn't handled, only the application domain is terminated, and not the complete process. To invoke a
method in an object running in a different application domain, .NET remoting must be used.

The following code sample shows a simple remote object class, and the code for this simple example can be
found in the SimpleTest folder of the code download for this chapter, which is available from
http://www.wrox.com. The method Hello() is declared public to make it available for a remoting client:

// MyRemoteObject.cs

using System;
namespace Wrox.Samples
{

Chapter 6

134

 public class MyRemoteObject : System.MarshalByRefObject
 {
 public MyRemoteObject()
 {
 Console.WriteLine("Constructor called");
 }
 public string Hello()
 {
 Console.WriteLine("Hello called");
 return "Hello, .NET Client!";
 }
 }
}

It is useful to implement the class of the remote object in a different assembly from that of
the remote server itself. This assembly can then be used in different server applications,
and the client application can use it to get the metadata needed to build the proxy.

We build the assembly MyRemoteObject from the class MyRemoteObject as follows:

csc /t:library /out:MyRemoteObject.dll MyRemoteObject.cs

Server
The remote object needs a server process where it will be instantiated. This server has to create a
channel and put it into listening mode so that clients can connect to this channel. In this chapter, we will
use simple console applications as hosting servers, and in the next chapter we will look at the different
application types.

Server Configuration File
The server channel can be configured programmatically or by using a configuration file.

Using configuration files for remoting clients and servers has the advantage that the
channel and remote object can be configured without changing a single line of code
and without the need to recompile. Another advantage is that the remoting code we
have to write is very short.

Specifying the options programmatically has the advantage that we could get to the
information during runtime. One way to implement this can be that the client uses a
directory service to locate a server that has registered its long running objects there.

Configuration files have the advantage that the channel, endpoint name, and so on, can be changed
without changing a single line of code and without doing a recompile. We will use configuration files
first before we look at what happens behind the scenes when doing the configuration programmatically.

.NET Remoting Architecture

135

For versioning and probing of assemblies, we can have application configuration files with the same name
as the executable, but with a .config file extension, such as SimpleServer.exe.config. The
.NET Remoting configuration can be put into a different file or the same file. We have to read the .NET
Remoting configuration explicitly, so it doesn't matter from a programming viewpoint. From the
administrator viewpoint it would be useful to put the .NET Remoting configuration inside the same file
as this can be used to configure the channel with the .NET Admin tool.

When the client connects to the remote object it needs to know the URI of the object, that is, the name
of the host where the remote object is running, the protocol and port number to connect to, the name of
the server, and the name of the remote object. Such a connection string can look like this:

tcp://localhost:9000/SimpleServer/MyRemoteObject

With the exception of the host name we have to specify all these items in the configuration file.

In the following configuration file, SimpleServer.exe.config, all of the remoting configurations must
be added as child elements to <system.runtime.remoting>. The <application> element specifies
the name of the server with the name attribute. The application offers a service and requires the
configureation of channels for the service. Correspondingly we have the <service> and <channels>
elements. The service that is offered from the application must be listed as a child of <service>. This is
the remote object itself. The remote object is specified with the <wellknown> element.

The remoting framework uses the information to create an object from the type specified. For instantiating
the object the framework requires the name of the assembly to know where the type of this object can be
loaded from. We can set this information with the XML attribute type. type="Wrox.Samples.
MyRemoteObject, MyRemoteObject" defines that the type of the remote object is MyRemoteObject in
the namespace Wrox.Samples, and it can be found in the assembly MyRemoteObject. The mode
attribute is set to SingleCall. We will talk later about all the different object types and modes. With
objectURI we set the endpoint name of the remote object that will be used from the client.

The name of the assembly is often confused with the name of the file in which the assembly is stored.
The assembly name is MyRemoteObject, while the file of the assembly is
MyRemoteObject.dll. With method calls where an assembly name is needed as argument,
never use the file extension.

In the <channels> section we define the channels that will be used from the server. There are already
some channels defined in the machine configuration file machine.config that we can use from our
applications. Such a predefined channel can be referenced using the ref attribute of the <channel>
element. Here we reference the predefined server channel using the TCP protocol: tcp server. We
have to assign the port of this channel with the port attribute, as the server must have a well-known
port number that the client must be aware of:

<configuration>
 <system.runtime.remoting>
 <application name="SimpleServer">
 <service>
 <wellknown
 mode="SingleCall"
 type="Wrox.Samples.MyRemoteObject, MyRemoteObject"
 objectUri="MyRemoteObject" />

Chapter 6

136

 </service>
 <channels>
 <channel ref="tcp server" port="9000" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

Machine.config
We can find predefined channels in the machine-wide configuration file machine.config. This
configuration file is in the directory %SystemRoot%\Microsoft.NET\Framework\<vx.x.x>\CONFIG.

Six channels are predefined in this file, as we can see in the following XML segment. The id attribute
defines the identifier of the channel that can be used with the ref attribute as we have done in the
application configuration file to reference the tcp server channel. The type attribute defines the class
and assembly name of the channel. With the id we can easily guess the protocol that is used by
channel. The id also if the channel can be used on the client or server side. The http and tcp
channels include both client and server functionality:

 <channels>
 <channel
 id="http"
 type="System.Runtime.Remoting.Channels.Http.HttpChannel,
 System.Runtime.Remoting,
 Version=1.0.3300.0, Culture-Neutral,PublicKeyToken-b77a5c561934e089" />
 <channel
 id="http client"
 type="System.Runtime.Remoting.Channels.Http.HttpClientChannel,
 System.Runtime.Remoting,
 Version=1.0.3300.0, Culture-Neutral,PublicKey Token-b77a5c561934e089" />
 <channel
 id="http server"
 type="System.Runtime.Remoting.Channels.Http.HttpServerChannel,
 System.Runtime.Remoting,
 Version=1.0.3300.0, Culture-Neutral,PublicKey Token-b77a5c561934e089" />
 <channel
 id="tcp"
 type="System.Runtime.Remoting.Channels.Tcp.TcpChannel,
 System.Runtime.Remoting,
 Version=1.0.3300.0, Culture-Neutral,PublicKey Token-b77a5c561934e089" />
 <channel
 id="tcp client"
 type="System.Runtime.Remoting.Channels.Tcp.TcpClientChannel,
 System.Runtime.Remoting,
 Version=1.0.3300.0, Culture-Neutral,PublicKey Token-b77a5c561934e089" />
 <channel
 id="tcp server"
 type="System.Runtime.Remoting.Channels.Tcp.TcpServerChannel,
 System.Runtime.Remoting,
 Version=1.0.3300.0, Culture-Neutral,PublicKey Token-b77a5c561934e089" />
 </channels>

Starting the Channel
All the server has to do is read the configuration file and activate the channel. This can be done with a
single call to the static method RemotingConfiguration.Configure().

.NET Remoting Architecture

137

Here the server is implemented in a console application. RemotingConfiguration.Configure()
reads the configuration file SimpleServer.exe.config to configure and activate the channel. The
creation of the remote object and communication with the client is done by the remoting infrastructure;
we just have to make sure that the process doesn't end. We do this with Console.ReadLine() that
will end the process when the user enters the return key:

// SimpleServer.cs

using System;
using System.Runtime.Remoting;
namespace Wrox.Samples
{
 class SimpleServer
 {
 static void Main(string[] args)
 {
 RemotingConfiguration.Configure("SimpleServer.exe.config");
 Console.WriteLine("Press return to exit");
 Console.ReadLine();
 }
 }
}

We compile the file SimpleServer.cs to a console application:

csc /target:exe SimpleServer.cs

We have to either copy the assembly of the remote object class to the directory of the server
executable, or make a shared assembly and install it in the global assembly cache. The
compiler doesn't complain that we are not referencing it because we didn't use the type
MyRemoteObject in our server application. But the class will be instantiated from the
remoting framework by reading the configuration file, so the assembly must be in a place
where it can be found. If you get the exception System.Runtime.Remoting.
RemotingException: cannot load type Wrox.Samples.MyRemoteObject while
running the client application, remember this issue.

Client
Creating the client is as simple as creating the server. Here we will create a client using a configuration file.

Client Configuration File
The client configuration file SimpleClient.exe.config uses the XML <client> element to specify
the URL of the server using protocol://hostname:port/application. In this example we use tcp
as the protocol, and the server runs on localhost with the port number 9000. The application name of the
server is defined with the name attribute of the <application> element in the server configuration file.

Chapter 6

138

The <wellknown> element specifies the remote object we want to access. As in the server configuration
file, the type attribute defines the type of the remote object and the assembly. The url attribute defines
the path to the remote object. Appended to the URL of the application is the endpoint name
MyRemoteObject. The channel that is configured with the client can again be found in the
configuration file machine.config, but this time it is the client channel:

<configuration>
 <system.runtime.remoting>
 <application name="SimpleClient">
 <client url="tcp://localhost:9000/SimpleServer">
 <wellknown
 type="Wrox.Samples.MyRemoteObject, MyRemoteObject"
 url =
 "tcp://localhost:9000/SimpleServer/MyRemoteObject"
 />
 </client>
 <channels>
 <channel ref="tcp client" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

Client Application
As in the server, we can activate the client channel by calling
RemotingConfiguration.Configure(). Using configuration files we can simply use new to create
the remote object. Next we call the method Hello() of this object:

// SimpleClient.cs

using System;
using System.Runtime.Remoting;
namespace Wrox.Samples
{
 class SimpleClient
 {
 static void Main(string[] args)
 {
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject();
 Console.WriteLine(obj.Hello());
 }
 }
}

We can compile the client to a console application as we've done before with the server:

csc /target:exe /reference:MyRemoteObject.dll SimpleClient.cs

The assembly of the remote object must also be copied for the client application as well, but here it is
clearer as we have to reference it explicitly in the compiler command.

.NET Remoting Architecture

139

Running the Server and the Client
Let's take a step back to look at the files we created so far. This table helps to summarize the files and
assemblies and their purposes:

Class Source File Assembly File Description

MyRemote
Object

MyRemote
Object.cs

MyRemote
Object.dll

Remote object class. We offer the
Hello() method.

SimpleServer Simple
Server.cs

Simple
Server.exe

The server creates and registers a server
channel. We use the configuration file
SimpleServer.exe.config to
configure the channel and the remote
object.

SimpleClient Simple
Client.cs

Simple
Client.exe

The client application. The
configuration file SimpleClient.
exe.config defines how to connect
to the remote object.

Starting the server and then the client we get the following output from the client:

This is the output screen from the server. We can see that the constructor of the remote object is called twice.
The remoting infrastructure instantiates the remote object once before the client activation takes place:

As we have seen it was an easy task to build a simple client and server: create a remote object class, and
implement a client and a server. If we are using configuration files, only one remoting call is necessary
to read the configuration file and start the channel.

Chapter 6

140

There's a lot more that is provided by .NET remoting. In the next section we will look at more of the
terms of this architecture, and discuss all the sub-namespaces and their purpose.

More .NET Remoting
As we have seen it was an easy task to build a simple client and server. We created a remote object that will run
on the server, and registered a channel using a configuration file. For simple remoting applications that's all what
is needed, but a lot more is possible with .NET Remoting. Let us discuss some terms of the architecture:

❑ Remote Objects

As we have seen now, a remote object class must derive from the class MarshalByRefObject.
Calling this object across application domains requires a proxy. .NET Remoting supports two types
of remote objects: well-known and client-activated. For well-known objects a URI is used for
identification. The client uses the URI to access such objects, which is why they are called well-
known. For well-known objects we have two modes: SingleCall and Singleton. With a
SingleCall object, the object is created new with every method call; it is a stateless object. A
Singleton object is created only once. Singleton objects share state for all clients.

The other object type that is supported with .NET Remoting is client-activated. This object type
uses the type of the class for activation. The URI is created dynamically behind the scenes and
returned to the client. In further calls to the remote object this URI is used automatically to call
methods in the same instance that was created. Client-activated objects are stateful.

❑ Activation

Well-known SingleCall objects are not created at the time when the client invokes the new
method. Instead, they are created with every method call. They could also be called server-
activated. Client-activated objects are created at the time when the client instantiates the
object; that's why they are called client-activated. In both cases the client gets a proxy of the
remote object. We have to differentiate a transparent proxy from a real proxy. The
transparent proxy is created dynamically using the metadata of the remote object class. At
proxy creation the methods and arguments of the public methods of the remote object are
read from the metadata, and the proxy makes these methods available to the client. For the
client the transparent proxy looks like the remote object class, but instead it calls methods of
the real proxy to send the method calls across the network.

❑ Marshaling

The process when data is sent across application domains is called marshaling. Sending a
variable as argument of a remote method, this variable must be converted so that it can be
sent across application domains. We differentiate two kinds of marshaling: Marshal-by-value
(MBV) and Marshal-by-reference (MBR). With Marshal-by-value the data is serialized to a
stream, and this stream is sent across. Marshal-by-reference creates a proxy on the client that
is used to communicate with the remote object.

.NET Remoting Architecture

141

❑ Interception

To fully understand the remoting architecture we have to discuss interception. With interception
we can put some functionality into the method call chain. For example, if we call a method of an
object, the interception layer could catch the call to convert the method call, or do some logging.
Interception is used in every part of the call chain with .NET remoting.

For interception sink objects are used. A sink can perform some actions with messages it receives,
for example conversions or logging. Sinks are connected in sink chains; one sink passes the
message to the next sink. We can differentiate formatter sinks, custom channel sinks, and transport
sinks. Formatter sinks transform the messages into a message stream. The transport sink is the last
sink in the chain in the client to send the message into the channel, and the first sink in the server
to receive the message. Transport sinks are built into the channel. With custom channel sinks the
interception mechanism can be used to add custom functionality to read and write the data
received and implement logging, add additional headers, or to redirect messages, for example.

Now that we are more familiar with remoting terms we can look into the classes of the remoting namespace.

System.Runtime.Remoting Namespace
If we use configuration files, only one remoting call is necessary to read the configuration file and start the
channel. The only class we used from the System.Runtime.Remoting namespace was Remoting
Configuration. Instead of using configuration, files the channel startup can be done programmatically.
Before we do this let's get an overview of the classes that can be found in the remoting namespaces.

The System.Runtime.Remoting namespaces are contained in the assemblies mscorlib and
System.Runtime.Remoting:

❑ In the namespace System.Runtime.Remoting some utility classes such as
RemotingConfiguration and RemotingServices can be found.
RemotingConfiguration is used to read configuration files and to get information about
the registered channels; RemotingServices is used to publish remote objects.

❑ System.Runtime.Remoting.Activation: The channel uses the class
RemotingDispatcher to dispatch method calls to the remote object. In this namespace, we
can also find some interfaces for the activation of remote objects: IActivator,
IConstructionCallMessage, and IConstructionReturnMessage.

❑ The namespace System.Runtime.Remoting.Channels has base classes for channels, and
channel registration. An important class in this namespace is ChannelServices. This utility
class can be used to register and to unregister a channel with the methods
RegisterChannel() and UnRegisterChannel(), and it is also used to dispatch messages
into a channel using SyncDispatchMessage()or AsyncDispatchMessage().

❑ With the .NETF we get two channel types: TCP and HTTP. The TCP channels can be found
in the namespace System.Runtime.Remoting.Channels.Tcp, where as the HTTP
channels are in System.Runtime.Remoting.Channels.Http. In the next chapter we will
look into the differences between these channels.

❑ The System.Runtime.Remoting.Contexts namespace not only has classes for the context
management inside an application domain, but also defines IContribute<XX> interfaces to
intercept remoting calls.

Chapter 6

142

❑ The lifetime of remote stateful objects is defined by a leasing mechanism. The namespace
System.Runtime.Remoting.Lifetime defines the classes LifetimeServices and
ClientSponsor, and the interfaces ISponsor and ILease.

❑ The namespace System.Runtime.Remoting.Messaging defines some interfaces for
messages, such as IMessage, IMethodCallMessage, and IMethodReturnMessage.
Method calls are converted to messages that are passed between message sinks. Message sinks
are interceptors that can change messages before they are passed into the channel.

❑ The soapsuds tool converts assembly metadata to WSDL. The classes that help with these actions can
be found in the namespaces System.Runtime.Remoting.Metadata and System.Runtime.
Remoting.MetadataServices. We will use the soapsuds tool in Chapter 9.

❑ The namespace System.Runtime.Remoting.Proxies contains classes that control and
provide proxies.

The classes in the System.Runtime.Remoting.Services namespace provide services to the remoting
framework. The class EnterpriseServicesHelper provides remoting functionality for COM+ services,
RemotingService can be used to access ASP.NET properties like Application, Session, and User for
web services running in Internet Information Services. RemotingClientProxy is a base class for a proxy that
is generated from the soapsuds utility, and TrackingServices provides a way to register tracking
handlers.

Let's look in more detail at how to use the .NET Remoting architecture.

Remote Objects
With remote objects we have to differentiate between well-known objects and client-activated objects.

Well-known objects are stateless; client-activated objects hold state.

If we use client-activated objects that hold state we should bear in mind that every call across the network
takes time. It is not a good idea to use properties to set some state of the remote object. Instead, it would be
much faster to use method calls with more arguments and so use fewer calls that are sent across the network.
With COM it was said that a COM object could similarly be used locally, or across the network. The reality
showed that if a COM object was implemented with properties to be easy to use from the client, it was not
efficient on the network, and if it was efficient on the network it was not easy to use from a scripting client.
With .NET we already have the advantage that remote object classes must derive from
MarshalByRefObject, and such objects should implemented in a way that is efficient when used across
the network. Classes that don't derive from MarshalByRefObject can never be called across the network.

Well-Known Objects
For well-known objects, the client must know the endpoint of the object – that's why they are called
well-known. The endpoint is used to identify the remote object. In contrast to that, with client-activated
objects the type of the class is used to activate the remote object.

Instead of using a configuration file as we have done earlier to register a channel and define a well-
known object, we can do this programmatically. To get the same result as with the configuration file we
have to do some more coding steps:

.NET Remoting Architecture

143

❑ Create a server channel

❑ Register the channel in the .NET remoting runtime

❑ Register a well-known object

Removing the configuration file and the call to RemotingConfiguration.Configure(), the
implementation of the server can look like the following sample. In the configuration file we specified
the TCP Server channel in the <channels> section. Here, we create an instance of the class
TcpServerChannel programmatically, and define 9000 as listening port in the constructor.

Next we register the channel in the .NET Remoting runtime with the static method
ChannelServices.RegisterChannel(). ChannelServices is a utility class to help with channel
registration and discovery.

Using the RemotingConfiguration class we register a well-known object on the server by calling
RegisterWellKnownServiceType(). The helper class WellKnownServiceTypeEntry can be used
to specify all the values that are required for well-known objects that are registered on the server.
Calling the constructor of this class we specify the type of the remote object MyRemoteObject, the
endpoint name SimpleServer/MyRemoteObject, and the mode that is one value of the enumeration
WellKnownObjectMode: SingleCall:

// SimpleServer.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
namespace Wrox.Samples
{
 class SimpleServer
 {
 static void Main(string[] args)
 {

 // Create and register the server channel

 TcpServerChannel channel = new TcpServerChannel(9000);
 ChannelServices.RegisterChannel(channel);

 // Register the remote object type and endpoint

 WellKnownServiceTypeEntry remObj = new
 WellKnownServiceTypeEntry(
 typeof(MyRemoteObject),
 "SimpleServer/MyRemoteObject",
 WellKnownObjectMode.SingleCall);
 RemotingConfiguration.RegisterWellKnownServiceType(remObj);
 Console.WriteLine("Press return to exit");
 Console.ReadLine();
 }
 }
}

With the compilation of the server we now have to reference the assembly of the remote object as the
type is used in our code:

Chapter 6

144

csc /target:exe /reference:MyRemoteObject.dll SimpleServer.cs

Nothing has really changed with the server and the remote object, so we can use the same client
application we created earlier to communicate with the new server. To complete the picture, we will
change the client code as can be seen below:

// SimpleClient.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
namespace Wrox.Samples
{
 class SimpleClient
 {
 static void Main(string[] args)
 {

 // Create and register the client channel

 TcpClientChannel channel = new TcpClientChannel();
 ChannelServices.RegisterChannel(channel);

 // Register the name and port of the remote object

 WellKnownClientTypeEntry entry = new WellKnownClientTypeEntry(
 typeof(MyRemoteObject),
 "tcp://localhost:9000/SimpleServer/MyRemoteObject");
 RemotingConfiguration.RegisterWellKnownClientType(entry);

Now a client channel from the class TcpClientChannel is instantiated and registered. We use the
WellKnownClientTypeEntry class to define the remote object. In contrast to the server version of
this class, the complete path to the remote object must be specified here as we have to know the server
name in the client, but the mode is not specified because this is defined from the server. The
RemotingConfiguration class is then used to register this remote object in the remoting runtime.

As we saw earlier, the remote object can be instantiated with the new operator. To demonstrate that a well-
known object gets activated with every method call, the method Hello() is now called five times in a for loop:

 MyRemoteObject obj = new MyRemoteObject();
 for (int i=0; i < 5; i++)
 Console.WriteLine(obj.Hello());
 }
 }
}

Running this program we can see in the output of the server (see screenshot opposite) that a new instance of the
remote object is not created by calling the new operator in the client code, but with every method call instead.
Well-known objects could also be called server-activated objects as compared to client-activated objects. With
client-activated objects a new object gets instantiated on the server when the client invokes the new operator:

.NET Remoting Architecture

145

One important fact that we should remember with well-known objects:

A well-known object doesn't have state. A new instance is created with every method call.

Activator.GetObject
Instead of using the new operator to instantiate remote objects, we can use the Activator class. Behind
the scenes in the implementation of the new operator this class is used not only for remote but also for
local object instantiations. For well-known objects the static method GetObject() returns a proxy to
the remote object.

Using Activator.GetObject() instead of the new operator we no longer need to register the well known
client type, because the URL to the remote object must be passed as argument to the GetObject() method:

 // Create and register the client channel

 TcpClientChannel channel = new TcpClientChannel();
 ChannelServices.RegisterChannel(channel);
 MyRemoteObject obj = (MyRemoteObject)Activator.GetObject(
 typeof(MyRemoteObject),
 "tcp://localhost:9000/SimpleServer/MyRemoteObject");

Whether we use the new operator or the Activator.GetObject() method is just a matter of choice.
The new operator is easier to use and hides the fact that we deal with remote objects. GetObject() is
nearer to the reality as the name of this method clearly shows that a new object does not get
instantiated. We already know that with both versions when we use well-known objects a proxy is
returned, and no connection to the server happens at this time.

Singletons
Well-known objects can be in SingleCall mode or Singleton. With the SingleCall mode an
object is created with every method call; with a Singleton only one object is created in all.
Singleton objects can be used to share information between multiple clients.

Chapter 6

146

Using a configuration file the only change that must be done to the server is setting the mode attribute
of the <wellknown> element to Singleton:

 <wellknown
 mode="Singleton"
 type="Wrox.Samples.MyRemoteObject, MyRemoteObject"
 objectUri="MyRemoteObject" />

Without using a configuration file, the enumeration WellKnownObjectMode.SingleCall has to be
replaced with WellKnownObjectMode.Singleton:

 WellKnownServiceTypeEntry remObj = new WellKnownServiceTypeEntry(
 typeof(MyRemoteObject),
 "SimpleServer/MyRemoteObject",
 WellKnownObjectMode.Singleton);
 RemotingConfiguration.RegisterWellKnownServiceType(remObj);

No changes are required for the client.

Multiple threads are used on the server to fulfill concurrent requests from clients. We have to develop this
remote object in a thread-safe manner. For more about thread issues see the Wrox book Professional C#.

One more aspect of singletons that must be thought of is scalability. A Singleton
object can't be spread across multiple servers. If scalability across multiple servers
may be needed, don't use singletons.

Client-Activated Objects
Unlike well-known objects, client-activated objects can have state. A client-activated object is
instantiated on the server when the client creates it, and not with every method call.

We can define properties in a client-activated object. The client can set values and get
these values back, but we should be aware that every call across the network takes
time. For performance reasons, it is better to pass more data with a single method call
instead of doing multiple calls across the network.

Configuration Files
For client-activated objects the server configuration file must set the tag <activated> instead of
<wellknown>. With the <activated> tag, only the type attribute with the class and assembly name must
be defined. It is not necessary to define a URL for the remote object because it will be instantiated by its type.
For well-known objects, a URL is required, but client-activated objects use the type for activation. The .NET
Runtime automatically creates a unique URL to the remote object instance for client-activated objects. The
URL that we defined for well-known objects is not unique for a single instance, but because a well-known
instance is newly created with every method call a unique URL is not required:

.NET Remoting Architecture

147

<configuration>
 <system.runtime.remoting>
 <application name="SimpleServer">
 <service>
 <activated type="Wrox.Samples.MyRemoteObject,
 MyRemoteObject" />
 </service>
 <channels>
 <channel ref="tcp server" port="9000" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

The client configuration file requires a similar change:

<configuration>
 <system.runtime.remoting>
 <application name="SimpleClient">
 <client url="tcp://localhost:9000/SimpleServer">
 <activated
 type="Wrox.Samples.MyRemoteObject, MyRemoteObject" />
 </client>
 <channels>
 <channel ref="tcp client" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

Using the same code for the server and the client that we used before with the old configuration files,
the constructor of the remote object is just called once for every calling of the new operator. Calling
methods doesn't create new objects.

RemotingConfiguration
As we have seen before with well-known objects, we can register client-activated objects programmatically
too. The server has to call RemotingConfiguration.RegisterActivatedServiceType(), and the
client RemotingConfiguration.RegisterActivatedClientType() if we want to create and
register the remote object programmatically. Similar to using the configuration file we have to set the type of
the remote object using this method.

Non-default Constructor
With client-activated remote objects, it is possible to use a non-default constructor. This is not possible
with well-known objects because a new object is created with every method call. We'll change the class
MyRemoteObject in the file MyRemoteObject.cs to demonstrate non-default constructors and
keeping state with client-activated remote objects:

 public class MyRemoteObject : System.MarshalByRefObject
 {
 public MyRemoteObject(int state)
 {
 Console.WriteLine("Constructor called");
 this.state = state;

Chapter 6

148

 }
 private int state;
 public int State
 {
 get
 {
 return state;
 }
 set
 {
 state = value;
 }
 }
 public string Hello()
 {
 Console.WriteLine("Hello called");
 return "Hello, .NET Client!";
 }
 }

Now, in SimpleClient.cs we can invoke the constructor using the new operator as can be seen in
this example:

 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject(333);
 int x = obj.State;
 Console.WriteLine(x);

Activator.CreateInstance
Instead of using the new operator, we can create client-activated objects with the Activator class.
Well-known objects have to be created with the GetObject() method; client-activated objects require
the method CreateInstance() because here the remote object really is instantiated on request of the
client. With the method CreateInstance()it is also possible to invoke non-default constructors.

The following code example shows a client without a configuration file. The channel is created and
registered as before. With Activator.CreateInstance() we instantiate a client-activated remote
object. This method accepts activation attributes. One of these attributes must be the URL to the remote
server. The class System.Runtime.Remoting.Activation.UrlAttribute can be used to define
the URL of the remote object that is passed to the CreateInstance() method.

We can also use overloaded versions of CreateInstance() that don't accept activation
arguments if we use a configuration file or the utility class RemotingConfiguration to define
the URL to the remote object.

The second argument of CreateInstance allows passing arguments to the constructor. To allow a flexible
number of arguments, this parameter is of type object[] where we can pass any data type. In the
MyRemoteObject class we now have a constructor that accepts a single int value, so we create an object
array with one element, and assign an int value to that element of the array. The attrs array that is also an
object array also has only one element. This is a URLAttribute where we pass the URL to the remote object
to the constructor of this class. Both arrays are passed into the CreateInstance() method together with the
type of the remote object to create the remote object in the right place using the appropriate constructor:

.NET Remoting Architecture

149

// SimpleClient.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Activation;

namespace Wrox.Samples
{
 class SimpleClient
 {
 static void Main(string[] args)
 {
 TcpClientChannel channel = new TcpClientChannel();
 ChannelServices.RegisterChannel(channel);
 object[] constr = new object[1];
 constr[0] = 333;
 object[] attrs = {
 new UrlAttribute("tcp://localhost:9000/SimpleServer") };
 MyRemoteObject obj = (MyRemoteObject)Activator.CreateInstance(
 typeof(MyRemoteObject), constr, attrs);
 int x = obj.State;
 Console.WriteLine(x);
 }
 }
}

Lease-Based Lifetime
A well-known single-call object can be garbage-collected after the method call of the client because it doesn't
hold state. This is different for long-lived objects, which means both client-activated and well-known singleton
objects. If the remote object is deactivated before the client stops using it, the client will get a
RemotingException that the object has been disconnected with the next method call that is made from
the client. The object has to be activated as long as the client needs it. What if the client crashes and if it
cannot inform the server that the object is not needed any more? Microsoft's DCOM technology used a ping
mechanism where the client regularly pings the server to inform it that the client is still alive and which
objects it needs, but this is not scalable to internet solutions. Imagine thousands or millions of continuous ping
requests going through the server. The network and the server would be loaded unnecessarily. .NET
Remoting uses a lease-based lifetime mechanism instead. Comparing this mechanism to cars, if we lease a car
we do not hear anything from the leasing company for months after the lease was instantiated. The object
also remains activated until the lease time runs out with the .NET Remoting leasing facility.

If the exception RemotingException: Object <URI> has been disconnected or
does not exist at the server occurs, this may be because of an expired lease time.

There are some ways in which we can influence leasing times of objects. One way is to use
configuration files, and another way is to do it programmatically for the server, the remote object, or in
the client. Let us look at what can be configured first.

The remote object has a maximum time to lease which is defined with the LeaseTime option. If the
client does not need the remote object for this time period, the object will be deactivated. Every time
the client invokes a method with the remote object the leasing time is incremented by a value that is
defined with RenewOnCallTime.

Chapter 6

150

Sponsor
Let's compare.NET Remoting leasing again with the leasing of cars. If someone pays for the lease of the
car, they are a sponsor. We have sponsors with .NET Remoting, too. If we don't want to rely on the
client to invoke methods to extend the lifetime, we can use a sponsor. Using a sponsor is a good way to
have long-running objects where we don't know how long the object will be needed for, or when the
time intervals at which the client makes calls to the object are unforeseeable. The sponsor can extend
the lease of the remote object. If the leasing time is expired, the sponsor is asked if it extends the lease.
The default time until a call to a sponsor is timed out is defined with the SponsorshipTimeout option.
If that time is reached, another sponsor can be asked. The option LeaseManagerPollTime defines the
time the sponsor has to return a lease time extension.

The default values for the lease configuration options are listed in this table:

Lease Configuration Default Value (seconds)

leaseTime 300

renewOnCallTime 120

sponsorshipTimeout 120

leaseManagerPollTime 10

LifetimeServices
There are several methods available to change the options for lifetime services. With the
System.Runtime.Remoting.Lifetime.LifetimeServices class we can set default leasing time
options that are valid for all objects in the application domain using static properties of this class.

Configuration Files
We can also write the lifetime configuration in the application configuration file of the server. This way
this configuration is valid for the complete application. For the application configuration file we have the
<lifetime> tag where leaseTime, sponsorshipTimeout, renewOnCallTime, and pollTime can
be configured using attributes:

<configuration>
 <system.runtime.remoting>
 <application name="SimpleServer">
 <lifetime
 leaseTime = "15M"
 sponsorshipTimeOut = "4M"
 renewOnCallTime = "3M"
 pollTime = "30S" />
 </application>
 </system.runtime.remoting>
</configuration>

.NET Remoting Architecture

151

Overriding InitializeLifetimeService
Setting the lifetime options in the configuration file is useful if we want to have the same lifetime management
for all objects of the server. If we have remote objects with different lifetime requirements, it would be better to
set the lifetime for the object programmatically. In the remote object class we can override the method
InitializeLifetimeService() as we can see in the following example. The method
InitializeLifetimeService() of the base class MarshalByRefObject returns a reference to the
ILease interface that can be used to change the default values. Changing the values is only possible as long as
the lease has not been activated, so that's why we check for the current state to compare it with the enumeration
value LeaseState.Initial. We set the InitialLeaseTime to the very short value of one minute and the
RenewOnCallTime to 20 seconds so that we soon see the results of the new behavior in the client application:

// MyRemoteObject.cs

using System;
using System.Runtime.Remoting.Lifetime;
namespace Wrox.Samples
{
 public class MyRemoteObject : System.MarshalByRefObject
 {
 public MyRemoteObject(int state)
 {
 Console.WriteLine("Constructor called");
 this.state = state;
 }
 public override object InitializeLifetimeService()
 {
 ILease lease = (ILease)base.InitializeLifetimeService();
 if (lease.CurrentState == LeaseState.Initial)
 {
 lease.InitialLeaseTime = TimeSpan.FromMinutes(1);
 lease.RenewOnCallTime = TimeSpan.FromSeconds(20);
 }
 return lease;
 }
 private int state;
 public int State
 {
 get
 {
 return state;
 }
 set
 {
 state = value;
 }
 }
 public string Hello()
 {
 Console.WriteLine("Hello called");
 return "Hello, .NET Client!";
 }
 }

Chapter 6

152

I'm changing the client code a little bit so that we can see the effects of the lease time. After the remote
object is created, we do a loop five times to call the helper method DisplayLease() before we sleep
for 20 seconds. The method DisplayLease() gets the ILease interface of the remote object by
calling the method GetLifetimeService(). No exception is thrown if the object that is returned
from GetLifetimeService() is not a ILease interface. This can be the case if the remote object is a
well-known type that doesn't support the leasing mechanism. Calling the property CurrentLeaseTime
we access the actual value of the lease to display it in the console.

// SimpleClient.cs

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Lifetime;
using System.Threading;
namespace Wrox.Samples
{
 class SimpleClient
 {
 static void Main(string[] args)
 {
 try
 {
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject(33);
 for (int i=0; i < 5; i++)
 {
 DisplayLease("In loop: " + i, obj);
 Thread.Sleep(20000);
 }
 Thread.Sleep(30000);
 obj.Hello();
 }
 catch(RemotingException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 public static void DisplayLease(string s, MarshalByRefObject o)
 {
 ILease lease = o.GetLifetimeService() as ILease;
 if (lease != null)
 {
 Console.WriteLine(s + " - remaining lease time: " +
 lease.CurrentLeaseTime);
 }
 }
 }
}

Running the client application we now see the displays from the loop. The initial lifetime of the remote object is
nearly 60 seconds because we have set the InitialLeaseTime property to one minute. The lifetime is
reduced with the following loops. Starting with loop number two, the lifetime remains constant with 20 seconds.
This is because we have set RenewOnCallTime property to 20 seconds. Every time we ask for the current
value of the lifetime we do a new call on the remote object, so the lease time is set to 20 seconds. After we exit
the loop we wait another 30 seconds, and this time the remote object is already garbage-collected because the
lifetime has been exceeded, so we get a RemotingException the next time we call a method:

.NET Remoting Architecture

153

ClientSponsor
The third option to change the values for the lifetime services is by implementing a sponsor. A sponsor
for an Indy cart team gives money to the team, so that the team can do its job. This is similar to
remoting: a sponsor extends the lifetime of an object so that the object can do its job. Without a
sponsor, the client would have to make method calls on the remote object to keep it alive.

The .NET Remoting runtime uses the ISponsor interface to extend the lifetime of remote objects using
sponsoring. ISponsor defines the method Renewal(), which is called by the .NET remoting
infrastructure to extend the lease time of the current object. This method has the following signature:

TimeSpan Renewal(ILease lease);

With the lease argument we can read the current configuration and the actual status of the lease time;
with the return value we have to define the additional lease time for the object.

The class ClientSponsor provides a default implementation for a sponsor. ClientSponsor
implements the interface ISponsor. ClientSponsor also derives from MarshalByRefObject, so it
can be called across the network:

ClientSponsor Properties
and Methods

Description

RenewalTime This property defines the time that is used to extend the leasing
time of the remote object.

Register() With this method we can register a specified remote object
with the sponsor, so that the sponsor answers requests for this
object. The challenge with this method is that it must be called
in the process of the remote object, because it adds the
managed object to the sponsor table of this process.

Unregister() Sponsorship is canceled. Unregister() removes the remote
object from the sponsor table.

Renewal() Renewal() is the method that is called by the runtime to
extend the lifetime.

Close() Close() clears the list of objects managed with this sponsor.

Chapter 6

154

ClientSponsor Example

A useful place to put the sponsor is in the client process as shown in the next diagram. This has the advantage
that the sponsor will not extend the lifetime of the remote object when the client is not reachable:

SimpleClient

+Main()

<<interface>>
ISponsor

+Renewal()

ClientSponsor

+Renewal()
+Register()

MyRemoteObject

+Hello()

SimpleServer

+Main()

Client Process Server Process

The client must create an instance of the ClientSponsor class, and call the Register() method
where the remote object must be registered. As a result of this registration, the remoting runtime calls
the Renewal() method that is defined with the ISponsor interface to renew the lifetime.

To demonstrate the calls to the sponsor in action I have created a MySponsor class that derives from
ClientSponsor in the client application. The only thing that this class should do differently from the
base class is answering Renewal() requests and writing Renew called to the console.

Renewal() is not declared virtual in the base class so we have to add an implements declaration
of the ISponsor interface and implement this method explicitly. After writing "Renew called" to
the console we just return the renewal time value that is defined by the RenewalTime property of
the client sponsor.

// SimpleClient.cs

// ...

public class MySponsor: ClientSponsor, ISponsor
{
 TimeSpan ISponsor.Renewal(ILease lease)
 {
 Console.WriteLine("Renewal called");
 return this.RenewalTime;
 }
}

.NET Remoting Architecture

155

The following code example shows the Main() method of the client that creates a sponsor and sets the
RenewalTime of the sponsor:

// SimpleClient.cs

// ...

static void Main(string[] args)
{
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject(333);
 MySponsor sponsor = new MySponsor();
 sponsor.RenewalTime = TimeSpan.FromMinutes(2);
 sponsor.Register(obj);

The sponsor is a remote object created in the client process. Here, the server acts as a client when doing the
renewal, and the client acts as server when the sponsor is called. To support this, the channel for the client
must support a client and a server channel, and the same is also true for the channel running on the server.

To see the sponsor in action we'll add a for loop to the Main() method in the file SimpleClient.cs.
The time to sleep is longer than the configured RenewalTime, so we should see calls to the sponsor:

 for (int i=0; i < 20; i++)
 {
 DisplayLease("In loop: " + i, obj);
 obj.Hello();
 Thread.Sleep(25000);
 }

We have to change the configuration files and use the TcpChannel instead of the TcpClientChannel in the
client configuration file SimpleClient.exe.config, because this channel has the functionality of both a
client and server channel. If we start both the client and server application on the same system, we also have to
configure a different port. Here I'm using port 9002, so we can run the application on a single system:

<channels>
 <channel ref="tcp" port="9002" />
</channels>

The server configuration file SimpleServer.exe.config needs a similar change:

<channels>
 <channel ref="tcp" port="9000" />
</channels>

Running the Example

The console output of the client application in the screenshot overleaf lists the lease times of the remote object.
The first line shows a lease time value that is near to 60 seconds; this was the initial lease time. 25 seconds later
the second iteration of the loop happened. The garbage collection doesn't happen immediately after the time 0
is reached, so the remote object was lucky that the lease time was extended twice to 20 seconds after a wait
(loops 2 and 3), but the Renewal() method still wasn't called. Before loop 4, the Renewal() method was
called for the first time, and here the lease was extended to the value that the sponsor supports, 2 minutes. The
lease time again is decremented, before Renewal() is called again before loop 10:

Chapter 6

156

Remote Object Types Summary
We have now seen the types of the remote objects and their purpose. Let's summarize the features of
these objects in the following table.

Object Type Time of Object Activation State Leasing

Well-known SingleCall With every method call Stateless No

Well-known Singleton Only once with the first
method call

State shared
for all
clients

Yes

Client-Activated When the client instantiates
the remote object

State Yes

Activation
So far we have seen different object types and how these remote objects can be activated using the new
operator and the Activator class. Depending whether the object type is a well-known object or a
client-activated object we can use GetObject() or CreateInstance(). Let us look further into the
client side to see what happens on the client that we can also make use of.

.NET Remoting Architecture

157

RemotingServices.Connect
Instead of using the new operator or the Activator class it is also possible to use the static method
Connect() of the class RemotingServices for well-known objects. This method doesn't really instantiate
the connection as we maybe would assume from its name. A connection is not needed at this point, but all
the information passed here will be used to build up the connection when the first method call is made.

In this code example below, we create a proxy by calling RemotingServices.Connect(). This
method requires the type of the remote object as we have seen with the Activator class, and the URL
string to the remote object:

static void Main(string[] args)
{
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj =
 (MyRemoteObject)RemotingServices.Connect(
 typeof(MyRemoteObject),
 "tcp://localhost:9000/SimpleServer/MyRemoteObject");

Error Messages
If the connection string that is used with the Connect() method is wrong, we get an error the first time
that a remote method is called.

The possible error messages we can get are listed here:

❑ SocketException: No such host is known.

This error message occurs when the host name cannot be resolved.

❑ SocketException: No connection could be made because the target machine actively refused it.

If the specified port number is incorrect or the server is not started, we will get this error message.

❑ RemotingException: Object <Name> has been disconnected or does not exist at the server.

This error message occurs if the name of the endpoint is incorrectly specified, or when the
leasing time has expired when using a client-activated object.

Proxy
RemotingServices.Connect() defines the connection and creates a proxy. No matter which options
are used to create remote objects, it is always a proxy that is created and returned by the creation
methods. The proxy looks just like the real object as it has the same public methods; but the proxy just
converts the method call to a message so that it can be sent across the network.

We actually create two objects in this case: the transparent proxy and the real proxy. The transparent proxy is
the one used by the client. It looks like the remote object with the same public methods. This proxy is created
dynamically by reading the metadata of the assembly from the remote object. The transparent proxy itself uses
the real proxy to create messages from method calls. The transparent proxy is an instance of the class
System.Runtime.Remoting.Proxies.__ TransparentProxy. This class is internal to the mscorlib
assembly, so we cannot derive custom proxies from it, and we won't find it in the MSDN documentation.

Chapter 6

158

In the picture below we can see that the client uses the __TransparentProxy. The transparent proxy
has the method Hello() because this method is available from the remote object. The transparent
proxy creates an object that implements the interface IMessage to pass it to the Invoke() method of
the RealProxy. IMessage contains the method name and parameters that can be accessed through the
property IMessage.Properties. The real proxy transforms this into an IMethodCallMessage and
sends it to the remote object through the channel.

Client

+Main()

__TransparentProxy

+Hello()

RealProxy

+Invoke()

With the utility class RemotingServices we can check if the object really is a proxy to the remote
object and not the remote object itself with the static method IsTransparentProxy(). The method
RemotingServices.GetRealProxy() returns a reference to the RealProxy class:

MyRemoteObject obj = new MyRemoteObject();
if (RemotingServices.IsTransparentProxy(obj))
{
 Console.WriteLine("a transparent proxy!");
 RealProxy proxy = RemotingServices.GetRealProxy(obj);
}

An example where the method IsTransparentProxy() returns false is the case where the
remote object is instantiated locally in the application domain. This would be the case if we do a
new of the remote object class inside the server application. No proxy is needed for the server, of
course, because it won't need to invoke the object on a different system.

Messages
The proxy deals with messages. All message objects implement the interface IMessage. IMessage
contains a dictionary of the method name and parameters that can be accessed through the property
IMessage.Properties.

In the namespace System.Runtime.Remoting.Messaging more message interfaces and classes are
defined. The interfaces are specialized versions for passing and returning methods for example
IMethodMessage, IMethodCallMessage, and IMethodReturnMessage. These interfaces have
specialized properties that give faster access to method names and parameters. With these interfaces, it
is not necessary to deal with the dictionary to access this data.

.NET Remoting Architecture

159

Marshaling
Marshaling is the term used when an object is converted so that it can be sent across the network (or
across processes or application domains). Unmarshaling creates an object from the marshaled data.

With marshal-by-value (MBV) the object is serialized into the channel, and a copy of the object is created on
the other side of the network. The object to marshal is stored into a stream, and the stream is used to build a
copy of the object on the other side with the unmarshaling sequence. Marshaling-by-reference (MBR) creates
a proxy on the client that is used to communicate with the remote object. The marshaling sequence of a
remote object creates an ObjRef instance that itself can be serialized across the network.

Objects that are derived from MarshalByRefObject are always marshaled by reference – as the name of the
base class says. To marshal a remote object the static method RemotingServices.Marshal() is used.

RemotingServices.Marshal() has these overloaded versions:

public static ObjRef Marshal(MarshalByRefObject obj);
public static ObjRef Marshal(MarshalByRefObject obj, string objUri);
public static ObjRef Marshal(MarshalByRefObject obj, string objUri,
 Type requestedType);

The first argument obj specifies the object to marshal. The objUri is the path that is stored within the
marshaled object reference; it can be used to access the remote object. The requestedType can be
used to pass a different type of the object to the object reference. This is useful if the client using the
remote object shouldn't use the object class but an interface that the remote object class implements
instead. In this scenario the interface is the requestedType that should be used for marshaling.

ObjRef
With all these Marshal() methods an ObjRef is returned. The ObjRef is serializable because it
implements the interface ISerializable, and can be marshaled by value. The ObjRef knows about
the location of the remote object: the host name, the port number, and the object name.
RemotingServices.Unmarshal() uses the ObjRef to create a proxy that will be used by the client.

Passing Objects
With methods of remote objects we can pass basic data types and classes that we define. Whether an
object is passed by value or by reference depends on the class declaration, as we will see next. We will
add two methods to the class MyRemoteObject that return objects of class A and B. Class A will be
serializable and passed using MBV to the client, B will be remotable and passed using MBR.

Chapter 6

160

SimpleClient

+Main()

<<serializable>>
A <<remotable>>

B-data
-data

<<remotable>>
MyRemote Object

+Hello()
+RegisterSponsor()
+GetA()
+GetB()

SimpleServer

+Main()

<<call>>

<<creates>>
<<creates>>

<<call>>

Client Process Server Process

Let's start by adding two methods to the remote object class MyRemoteObject in the file
MyRemoteObject.cs that returns objects of class A and B with the methods GetA() and GetB(). We
will create the classes A and B in the next section:

// MyRemoteObject.cs

using System;

namespace Wrox.Samples
{
 public class MyRemoteObject : System.MarshalByRefObject
 {
 public MyRemoteObject()
 {
 Console.WriteLine("MyRemoteObject constructor called");
 }

 // serialized version

 public A GetA()
 {
 return new A(11);
 }

 // remote version

 public B GetB()
 {
 return new B(22);
 }

.NET Remoting Architecture

161

 public string Hello()
 {
 Console.WriteLine("Hello called");
 return "Hello, .NET Client!";
 }
 }
}

Marshal-By-Value
To create a class that will be serialized across the network, the class must be marked with the attribute
[Serializable]. Objects of these classes don't have a remote identity, as they are marshaled to a
stream before they're sent to the channel, and unmarshaled on the other side.

We add class A to the file MyRemoteObject.cs. This class has a field of type int that is also
serializable. If a class is marked serializable, but has a reference to a class that is not serializable, the
exception SerializationException will be thrown when marshaling this class. The class A defines
the read-only property Data where the value of the field data is returned:

[Serializable]
public class A
{
 private int data;
 public A(int data)
 {
 Console.WriteLine("Constructor of serializable class A called");
 this.data = data;
 }
 public int Data
 {
 get
 {
 Console.WriteLine("A.Data called");
 return data;
 }
 }
}

Marshal-By-Reference
A class that should be called remotely is derived from MarshalByRefObject. We have used this class
already for our remote object.

We add class B also to MyRemoteObject.cs. This class is similar to class A with the exception that it is
not marked serializable; instead it derives from the class MarshalByRefObject. When we pass class B
across the network, a proxy will be created.

Behind the scenes, RemotingServices.Marshal() is called to create an ObjRef, this object
reference is sent across the channel, and with RemotingServices.Unmarshal() this object reference
is used to create a proxy:

public class B : MarshalByRefObject
{
 private int data;

Chapter 6

162

 public B(int data)
 {
 Console.WriteLine("Constructor of remotable class B called");
 this.data = data;
 }
 public int Data
 {
 get
 {
 Console.WriteLine("B.Data called");
 return data;
 }
 }
}

Client Example
The server is the same as we have created previously. It is entirely our choice whether we create the channel
programmatically or with a configuration file, and whether we use a well-known or a client-activated object.

In the client we can now call the new methods of the remote object class. Let us change the Main()
method in the file SimpleClient.cs to call the newly created remote methods:

 static void Main(string[] args)
 {
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject();
 obj.Hello();
 A a = obj.GetA();
 int a1 = a.Data;
 B b = obj.GetB();
 int b1 = b.Data;
 }

The remote object class, the server, and the client can be compiled as we saw earlier. When we start the
server and the client, we get the console output of the server. B is a remote class, so B.Data is called on
the server as we can see here:

In the client console window we can see the Console.WriteLine() output of the A class because this
class was serialized to the client.

.NET Remoting Architecture

163

Passing objects of classes that are neither marked [Serializable] nor derived from
MarshalByRefObject will generate the exception System.Runtime.Serialization.
SerializationException: The type typename is not marked as serializable.

Sending MBR Objects to the Server
Sending marshal-by-value objects from the client to the server is very similar to sending them in the other direction,
but what about sending a remotable object to the server? How does the server come back to the client?

Instead of showing the derivation of MarshalByRefObject in this picture, I've introduced a stereotype
<<remotable>> to make it easier to read. We can see <<remotable>> as indicatng inheritance from
MarshalByRefObject. The MBR class B will be instantiated from the client, and passed with the
method SetB() to the remote object MyRemoteObject. The remote object will use the object that was
instantiated on the client across the network:

<<remotable>>
B

<<remotable>>
MyRemote Object

+SetB(in b : B)
=UseB()

Client Process Server Process

SimpleClient

+Main()

SimpleServer

+Main()

creates

uses

Let's add two methods to the remote object class in the file MyRemoteObject.cs. With the method SetB() the
client can pass a remotable object of type B to the server. The method SetB() accepts an object of class B. In the
last section we created class B so that it derives from MarshalByRefObject, so the object will not be copied but
a proxy will be created instead. The method SetB() stores the reference to the proxy of B in the field b. The
method UseB() uses the field b to call the property Data and passes the value returned to the client.

Chapter 6

164

public class MyRemoteObject : System.MarshalByRefObject
{
 public MyRemoteObject()
 {
 Console.WriteLine("MyRemoteObject Constructor called");
 }
 private B b;
 public void SetB(B b)
 {
 Console.WriteLine("SetB called");
 this.b = b;
 }
 public int UseB()
 {
 Console.WriteLine("UseB called");
 return b.Data;
 }

// ...

One important thing to note here is that the class MyRemoteObject now has state.
Using this class as a well-known object would result in b being set to null with every
method call, so UseB() wouldn't work. This remote object class can only be used in
client-activated object configurations.

The client can be changed to call the remote object. In the client code, we create a new instance of the
class B and initialize it with the value 44. While obj is instantiated remotely with the new operator, b is
created locally because the class B is not listed in the client configuration file, but the class
MyRemoteObject is. Accessing the Data property merely performs a local call:

// SimpleClient.cs

class SimpleClient
{
 static void Main(string[] args)
 {
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject(333);
 obj.Hello();
 B b = new B(44);

 // This is a local call!

 int b1 = b.Data;

When calling SetB() with MyRemoteObject, we pass a reference to b to the server. Because B is
derived from MarshalByRefObject a reference can be passed. Next we call the UseB() method
where this reference is used within the server. The remote object will try to access the object that is
running in the client process:

 // Pass a reference to the object running in the client
 // to the server

.NET Remoting Architecture

165

 obj.SetB(b);

 // Use the object in the client from the server

 b1 = obj.UseB();

To run this application we have to use a bi-directional channel. Because the client application now has
to act both as a client to call methods in the remote object, and as a server where the instance b is
invoked from the server, we must use the TcpChannel that can do both. If we use the wrong channel,
the result will be a RemotingException with the following error message:

The remoting proxy has no channel sinks which means either the server has no registered server
channels that are listening, or this application has no suitable client channel to talk to the server.

Be sure to specify a reference to the channel tcp in both the client and server configuration files as we
did earlier instead of tcp client and tcp server.

Running the server and client application, we get this output in the client:

The first time we see the output of the B.Data is when we access this property locally. The second
output we see is when a method of the object running in the client is invoked from the server by calling
obj.UseB() in the client application.

Tracking Services
A great feature for analyzing a running application is Tracking Services. This service can be used to
observe the marshaling process of MBR objects. Indeed it can be very simply activated: we have only to
create a tracking handler and register this handler with the utility class TrackingServices.

Tracking Handler
A tracking handler implements the interface ITrackingHandler. This interface defines three methods
that are called by the remoting infrastructure when marshaling and unmarshaling occurs:

ITrackingHandler methods Description

MarshaledObject This method is called when an MBR object is marshaled

UnmarshaledObject This method is called when an MBR object is unmarshaled

DisconnectedObject DisconnectedObject() is called when an MBR object is
disconnected, for example when the lease time of an client-activated
object expires

Chapter 6

166

The class MyTrackingHandler is implemented in the assembly MyTrackingHandler that is available both
for the client and the server to make this tracking available both for clients and servers. This class implements
the interface ITrackingHandler, so we have to implement the methods MarshaledObject(),
UnmarshaledObject(), and DisconnectedObject(). We use the URI property of the ObjRef that is
passed to output the path to the object; in addition, we output the type of the marshaled object. With the first
argument, it would also be possible to access the properties of the object to marshal:

// MyTrackingHandler.cs
using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Services;

namespace Wrox.Samples
{
 public class MyTrackingHandler: ITrackingHandler
 {
 public void MarshaledObject(object obj, ObjRef or)
 {
 Console.WriteLine();
 Console.WriteLine("The object " + or.URI + " is marshaled");
 Console.WriteLine("Type: " + or.TypeInfo.TypeName);
 }
 public void UnmarshaledObject(object obj, ObjRef or)
 {
 Console.WriteLine();
 Console.WriteLine("The object " + or.URI + " is unmarshaled");
 Console.WriteLine("Type: " + or.TypeInfo.TypeName);
 }
 public void DisconnectedObject(object obj)
 {
 Console.WriteLine(obj.ToString() + " is disconnected");
 }
 }
}

Register Tracking Handler
Both in the server and in the client application, in the files SimpleClient.cs and SimpleServer.cs,
we can create a new instance of the MyTrackingHandler class and register it with the tracking service:

static void Main(string[] args)
{
 RemotingConfiguration.Configure("SimpleServer.exe.config");
 TrackingServices.RegisterTrackingHandler(new MyTrackingHandler());

Running the Program
We run the application with a client that will:

1. Create the remote object MyRemoteObject

2. Call the method obj.GetB() to return the MBR object of class B to the client

3. Call the method obj.SetB() to pass the MBR object of class B to the server

.NET Remoting Architecture

167

We can see the output in the following screenshots. The first picture shows the server output where
MyRemoteObject and B are marshaled, and with the call to SetB(), B is unmarshaled. The last line of
the output shows that the lease time of the remote object expired, so it was disconnected:

In the client output MyRemoteObject and B are unmarshaled before the call to SetB(), where B is marshaled:

Asynchronous Remoting
Calling remote methods across the network can take some time. We can call the methods
asynchronously, which means that we start the methods, and during the time the method call is running
on the server we can do some other tasks on the client. .NET Remoting can be used asynchronously in
the same way as local methods.

Chapter 6

168

Calling Local Methods Asynchronously
One way to do this is to create a thread that makes the remote call while another thread answers users'
requests or does something else. It is a lot easier, however, to do it with the built-in support provided in
the .NET Framework in the form of delegates. With delegates, threads are created automatically, and we
don't have to do it ourselves.

First, let us look at an asynchronous example without calling remote methods.

In the sample class AsyncLocal we can see the LongCall() method, which takes some time to
process. We want to call this method asynchronously:

using System;
using System.Threading;
namespace Wrox.Samples
{
 class AsyncLocal
 {
 public void LongCall()
 {
 Console.WriteLine("LongCall started");
 Thread.Sleep(5000);
 Console.WriteLine("LongCall finished");
 }

To make this method asynchronous we have to declare a delegate. The delegate must have the same
signature and return type as the method that should be called asynchronously. The method
LongCall() accepts no arguments and has a void return type, and the same is true for the defined
delegate LongCallDelegate. With the keyword delegate the C# compiler creates a class that is
derived either from Delegate or from MulticastDelegate, depending whether there is a return
type or not. We can see this generated class by opening the generated assembly with the ildasm utility:

 private delegate void LongCallDelegate();
 public AsyncLocal()
 {
 }

In the Main() method we can now create a new instance of the class LongCallDelegate, and pass
obj.LongCall. The constructor of the delegate class requires the target as an argument. We can look
at the delegate as a type-safe, object-oriented function pointer. The object itself is passed with the
method name of the function to the constructor:

 static void Main(string[] args)
 {
 AsyncLocal obj = new AsyncLocal();
 LongCallDelegate d = new LongCallDelegate(obj.LongCall);

Now we can start the method by calling BeginInvoke() on the delegate. Visual Studio .NET does not display
this method with the IntelliSense feature because it is not available at the time of programming this method call;
instead, it will be created as soon as we compile the project. The compiler creates three methods for the delegate
class: Invoke(), BeginInvoke(), and EndInvoke(). Invoke() can be used to call the method
synchronously, whereas BeginInvoke() and EndInvoke() are used to call the method asynchronously.

.NET Remoting Architecture

169

BeginInvoke() has two arguments in addition to the arguments that are declared with the delegate.
With the first argument, an AsyncCallback delegate can be passed to this method. With the
asynchronous callback, we can define a method with an IAsyncResult argument that will be called
when the method is finished. In this sample, we pass null with both arguments, and put the returned
reference to IAsyncResult into the variable ar:

 IAsyncResult ar = d.BeginInvoke(null, null);

The method call is started asynchronously. We can now doing something else in the main thread at the
same time:

 Thread.Sleep(1000);
 Console.WriteLine("Main running concurrently");

As soon as we want to be sure that the asynchronous method completed (maybe we need some result
from this method), the reference to the IAsyncResult interface can be used. With the IAsyncResult
interface, we can check if the method is finished by checking the IsCompleted property. We can wait
until the method completes by using the AsyncWaitHandle property and call WaitOne().
WaitOne() is a blocking call that waits until the method that belongs to the IAsyncResult is finished:

 ar.AsyncWaitHandle.WaitOne();
 if (ar.IsCompleted)
 d.EndInvoke(ar);
 Console.WriteLine("Main finished");
 }
 }
}

Calling Remote Methods Asynchronously
The same programming model used for local calls can also be used for remote calls. We will extend the
remoting example by using some arguments and return values with a remote method.

First, we extend the remote object class MyRemoteObject with the long-running method
LongTimeAdd(). Nothing else changes with the server:

// MyRemoteObject.cs

// ...

 public int LongTimeAdd(int val1, int val2, int ms)
 {
 Thread.Sleep(ms);
 return val1 + val2;
 }

In the client program, we have to declare a delegate with the same parameters as the LongTimeAdd() method:

// SimpleClient.cs

// ...

Chapter 6

170

 class SimpleClient
 {
 private delegate int LongTimeAddDelegate(int val1, int val2,
 int ms);

In the Main() method after creating the remote object we create a instance of the delegate and pass the
method LongTimeAdd to the constructor:

 static void Main(string[] args)
 {
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject();
 LongTimeAddDelegate d = new LongTimeAddDelegate(obj.LongTimeAdd);

The remote method can now be started asynchronously with the BeginInvoke() method of the delegate
class. Instead of two arguments BeginInvoke() now has five arguments – the first three arguments are the
ones that are passed to the remote method. Here we pass the values 3 and 4 to add with a sleep time of 100
ms. The method BeginInvoke() will return immediately; we can do some other stuff in the main thread:

 IAsyncResult ar = d.BeginInvoke(3, 4, 100, null, null);
 Console.WriteLine("LongTimeAdd started");

To get the result that is returned with the method LongTimeAdd() we have to wait until the method is
completed. This is done using ar.AsyncWaitHandle.WaitOne(). Calling the delegate method
EndInvoke() we get the result that is returned from LongTimeAdd():

 ar.AsyncWaitHandle.WaitOne();
 if (ar.IsCompleted)
 {
 Console.WriteLine("LongTimeAdd finished");
 int result = d.EndInvoke(ar);
 Console.WriteLine("result: " + result);
 }

Callbacks with Delegates
.NET Remoting supports two types of callbacks: with remote objects that are passed to the server, and
with delegates. Using a delegate we can pass a AsyncCallback delegate when calling the method
BeginInvoke() to have a callback when the asynchronous remote method completes. We have to
define a method that has the same signature and return type that the delegate AsyncCallback defines.
The delegate AsyncCallback is defined with this signature in the assembly mscorlib:

public delegate void AsyncCallback(IAsyncResult ar);

We implement the method LongTimeAddCallback that has the same signature and return type. The
implementation of this method is similar to how we handled the asynchronous method in the last code
sample. It doesn't matter if the method is implemented as a class method or an instance method. We
only need access to the delegate that is used to start the remote method. To make the delegate available
to the static method we'll now declare d as static member variable:

.NET Remoting Architecture

171

 private delegate int LongTimeAddDelegate(int val1, int val2, int ms);
 private static LongTimeAddDelegate d;
 public static void LongTimeAddCallback(IAsyncResult ar)
 {
 if (ar.IsCompleted)
 {
 Console.WriteLine("LongTimeAdd finished");
 int result = d.EndInvoke(ar);
 Console.WriteLine("result: " + result);
 }
 }

In the Main() method, we have to create a new instance of the AsyncCallback delegate and pass a
reference to the function that should be called asynchronously. With the BeginInvoke() method we
pass the instance of the AsyncCallback so that the method LongTimeAddCallback() will be
invoked when the remote method LongTimeAdd() completes:

 static void Main(string[] args)
 {
 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject();
 d = new LongTimeAddDelegate(obj.LongTimeAdd);
 AsyncCallback cb =
 new AsyncCallback(SimpleClient.LongTimeAddCallback);
 IAsyncResult ar = d.BeginInvoke(3, 4, 3000, cb, null);
 Console.WriteLine("LongTimeAdd started");

One Way
If a remote method doesn't return a result to the client we can call the method in a fire-and-forget style:
we call the method asynchronously, but there is no requirement to wait for the method to complete.
With .NET Remoting such a method is called OneWay: data is sent to the server, but none is returned.

A one way method must be declared with the OneWay attribute in the remote object class. The attribute
class OneWayAttribute is part of the namespace System.Runtime.Remoting.Messaging. We add
the TakeAWhile() method to the RemoteObjectClass:

 [OneWay]
 public void TakeAWhile(int ms)
 {
 Console.WriteLine("TakeAWhile started");
 Thread.Sleep(ms);
 Console.WriteLine("TakeAWhile completed");
 }

In the client the one way method TakeAWhile() can be called like a synchronous method, but it will
be completed asynchronously. The method call will return immediately:

 MyRemoteObject obj = new MyRemoteObject();
 obj.TakeAWhile(5000);

If a synchronous method of a remote object throws an exception this exception will be propagated to
the client. This is different with OneWay methods:

If a OneWay method throws an exception this exception will not be propagated to the client.

Chapter 6

172

Call Contexts
Client-activated objects can hold state. For this kind of object we must hold state on the server. Well-
known objects are stateless. Every time we call a method a new object gets instantiated on the server.
We have to pass all the data that we need on the server with every method call, but it is not necessary to
pass the data with method arguments. If, for example, a user ID is needed with every method call to the
remote object, the call context can be used.

The call context flows with the logical thread and is passed with every remote method call. A logical thread is
started from the calling thread and flows through all method calls that are started from the calling thread, and
passes through different contexts, different application domains, and different processes.

The CallContext class is a utility class in the namespace System.Runtime.Remoting.Messaging.
We can add data to the context with CallContext.SetData(), and reading the data can be done
with CallContext.GetData().

We cannot pass basic data types with the context, but only objects of classes that
implement the interface ILogicalThreadAffinative.

A class that can be passed with the call context must implement the interface ILogicalThreadAffinative.
This interface doesn't define a single method; it is just a marker to the .NET Remoting runtime. A logical thread
can spawn multiple physical threads as such a call can cross process boundaries, but it is bound to a flow of
method calls. Implementing the interface ILogicalThread
Affinative in a class means that objects of this class can flow with the logical thread. Additionally, the class is
marked with the Serializable attribute, so that the object can be marshaled into the channel. The class
UserName defines a LastName and FirstName property that will flow with every method call:

[Serializable]
public class UserName : ILogicalThreadAffinative
{
 public UserName()
 {
 }
 private string lastName;
 public string LastName
 {
 get
 {
 return lastName;
 }
 set
 {
 lastName = value;
 }
 }
 private string firstName;
 public string FirstName
 {
 get
 {
 return firstName;
 }

.NET Remoting Architecture

173

 set
 {
 firstName = value;
 }
 }
}

In the client program we can create a UserName object that will be passed with the remote method
Hello(). CallContext.SetData() assigns the UserName object to the call context:

 RemotingConfiguration.Configure("SimpleClient.exe.config");
 MyRemoteObject obj = new MyRemoteObject();
 UserName user = new UserName();
 user.FirstName = "Christian";
 user.LastName = "Nagel";
 CallContext.SetData("User", user);
 obj.Hello();

In the remote object we can read the call context by calling CallContext.GetData(). For the context
name "User" a UserName object was passed, so we can cast the return value of GetData() to UserName:

 public string Hello()
 {
 Console.WriteLine("Hello called");
 UserName user = (UserName)CallContext.GetData("User");
 if (user != null)
 {
 Console.WriteLine("context passed from {0} {1}",
 user.FirstName, user.LastName);
 }
 return "Hello, Client!";
 }

Summary
In this chapter we have covered the .NET Remoting architecture. We looked into the parts of a client /
server application using:

❑ The remote object that derives from MarshalByRefObject

❑ A channel that is used for the communication between client and server (we used the TCP channels)

❑ The proxy that is used by the client to create messages that are marshaled into the channel

.NET Remoting applications can make use of application configuration files where we can specify
channels and remote objects, or all of this can be done programmatically.

.NET Remoting supports both stateful and stateless solutions with client-activated and well-known
objects. Stateful objects have a leasing mechanism that is scalable to solutions with thousand of clients.
We saw how to pass call contexts to the server.

In the next chapter we will look in more detail at the different channels and formatters that come with the
framework, and consider some application scenarios that will illustrate how this technology can be used.

Chapter 6

174

