
F
Unicode®

Objectives
• To become familiar with Unicode.
• To discuss the mission of the Unicode Consortium.
• To discuss the design basis of Unicode.
• To understand the three Unicode encoding forms:

UTF-8, UTF-16 and UTF-32.
• To introduce characters and glyphs.
• To discuss the advantages and disadvantages of using

Unicode.
• To provide a brief tour of the Unicode Consortium’s

Web site.

Appendix F Unicode® 1321

F.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) in the developing of global software products causes serious problems, because com-
puters process information as numbers. For instance, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed their own encoding systems that are incompatible with the en-
coding systems of other countries and corporations. For example, the Microsoft Windows
operating system assigns the value 0xC0 to the character “A with a grave accent”; the Ap-
ple Macintosh operating system assigns that same value to an upside-down question mark.
This results in the misrepresentation and possible corruption of data when data is not pro-
cessed as intended.

In the absence of a widely-implemented universal character-encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process of
localization usually includes significant modifications to the source code (such as the con-
version of numeric values and the underlying assumptions made by programmers), which
results in increased costs and delays releasing the software. For example, some English-
speaking programmers might design global software products assuming that a single char-
acter can be represented by one byte. However, when those products are localized for Asian
markets, the programmer’s assumptions are no longer valid; thus, the majority, if not the
entirety, of the code needs to be rewritten. Localization is necessary with each release of a
version. By the time a software product is localized for a particular market, a newer version,
which needs to be localized as well, may be ready for distribution. As a result, it is cumber-
some and costly to produce and distribute global software products in a market where there
is no universal character-encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facili-
tates the production and distribution of software, was created. The Unicode Standard out-
lines a specification to produce consistent encoding of the world’s characters and symbols.
Software products that handle text encoded in the Unicode Standard need to be localized,
but the localization process is simpler and more efficient because the numeric values need
not be converted and the assumptions made by programmers about the character encoding
are universal. The Unicode Standard is maintained by a nonprofit organization called the

Outline

F.1 Introduction
F.2 Unicode Transformation Formats
F.3 Characters and Glyphs
F.4 Advantages/Disadvantages of Unicode
F.5 Unicode Consortium’s Web Site
F.6 Using Unicode
F.7 Character Ranges

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1322 Unicode® Appendix F

Unicode Consortium, whose members include Apple, IBM, Microsoft, Oracle, Sun Micro-
systems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

F.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255; thus, ASCII-based
systems can support only 256 characters, a tiny fraction of world’s characters. Unicode ex-
tends the ASCII character set by encoding the vast majority of the world’s characters. The
Unicode Standard encodes all of those characters in a uniform numerical space from 0 to
10FFFF hexadecimal. An implementation will express these numbers in one of several
transformation formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on the
size of the units—in bits—being used. UTF-8, a variable-width encoding form, requires
one to four bytes to express each Unicode character. UTF-8 data consists of 8-bit bytes
(sequences of one, two, three or four bytes depending on the character being encoded) and
is well suited for ASCII-based systems, where there is a predominance of one-byte charac-
ters (ASCII represents characters as one byte). Currently, UTF-8 is widely implemented in
UNIX systems and in databases.

The variable-width UTF-16 encoding form expresses Unicode characters in units of 16
bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters of
Unicode are expressed in a single 16-bit unit. However, characters with values above FFFF
hexadecimal are expressed with an ordered pair of 16-bit units called surrogates. Surro-
gates are 16-bit integers in the range D800 through DFFF, which are used solely for the pur-
pose of “escaping” into higher numbered characters. Approximately one million characters
can be expressed in this manner. Although a surrogate pair requires 32 bits to represent
characters, it is space-efficient to use these 16-bit units. Surrogates are rare characters in
current implementations. Many string-handling implementations are written in terms of
UTF-16. [Note: Details and sample code for UTF-16 handling are available on the Unicode
Consortium Web site at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts encoded
above FFFF hexadecimal should use UTF-32, a 32-bit, fixed-width encoding form that usu-
ally requires twice as much memory as UTF-16 encoded characters. The major advantage
of the fixed-width UTF-32 encoding form is that it expresses all characters uniformly, so it
is easy to handle in arrays.

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the data
itself. Typically, the UTF-8 encoding form should be used where computer systems and

Appendix F Unicode® 1323

business protocols require data to be handled in 8-bit units, particularly in legacy systems
being upgraded, because it often simplifies changes to existing programs. For this reason,
UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-16 is the
encoding form of choice on Microsoft Windows applications. UTF-32 is likely to become
more widely used in the future as more characters are encoded with values above FFFF
hexadecimal. Also, UTF-32 requires less sophisticated handling than UTF-16 in the pres-
ence of surrogate pairs. Figure F.1 shows the different ways in which the three encoding
forms handle character encoding.

F.3 Characters and Glyphs
The Unicode Standard consists of characters, written components (i.e., alphabetic letters,
numerals, punctuation marks, accent marks, etc.) that can be represented by numeric val-
ues. Examples of characters include: U+0041 LATIN CAPITAL LETTER A. In the first
character representation, U+yyyy is a code value, in which U+ refers to Unicode code val-
ues, as opposed to other hexadecimal values. The yyyy represents a four-digit hexadecimal
number of an encoded character. Code values are bit combinations that represent encoded
characters. Characters are represented with glyphs, various shapes, fonts and sizes for dis-
playing characters. There are no code values for glyphs in the Unicode Standard. Examples
of glyphs are shown in Fig. F.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators and so on. that comprose the written lan-
guages and scripts of the world. A diacritic is a special mark added to a character to
distinguish it from another letter or to indicate an accent (e.g., in Spanish, the tilde “~”
above the character “n”). Currently, Unicode provides code values for 94,140 character
representations, with more than 880,000 code values reserved for future expansion.

Character UTF-8 UTF-16 UTF-32

LATIN CAPITAL LETTER A 0x41 0x0041 0x00000041

GREEK CAPITAL LETTER
ALPHA

0xCD 0x91 0x0391 0x00000391

CJK UNIFIED IDEOGRAPH-
4E95

0xE4 0xBA 0x95 0x4E95 0x00004E95

OLD ITALIC LETTER A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. F.1 Correlation between the three encoding forms.

Fig. F.2 Various glyphs of the character A.

1324 Unicode® Appendix F

F.4 Advantages/Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage the high demands of international markets by processing
different writing systems at the same time. Also, all characters can be managed in an iden-
tical manner, thus avoiding any confusion caused by different character-code architectures.
Moreover, managing data in a consistent manner eliminates data corruption, because data
can be sorted, searched and manipulated via a consistent process.

Another advantage of the Unicode Standard is portability (i.e., the ability to execute
software on disparate computers or with disparate operating systems). Most operating sys-
tems, databases, programming languages and Web browsers currently support, or are plan-
ning to support, Unicode. Additionally, Unicode includes more characters than any other
character set in common use (although it does not yet include all of the world’s characters.

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8 bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multi-byte character set (MBCS) that encode Asian characters (ideographs) require
two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32 encoding
forms may be used with little hindrance on memory and performance.

F.5 Unicode Consortium’s Web Site
If you would like to learn more about the Unicode Standard, visit www.unicode.org.
This site provides a wealth of information about the Unicode Standard. Currently, the home
page is organized into various sections: New to Unicode, General Information, The Con-
sortium, The Unicode Standard, Work in Progress and For Members.

The New to Unicode section consists of two subsections: What is Unicode? and
How to Use this Site. The first subsection provides a technical introduction to Unicode
by describing design principles, character interpretations and assignments, text processing
and Unicode conformance. This subsection is recommended reading for anyone new to
Unicode. Also, this subsection provides a list of related links that provide the reader with
additional information about Unicode. The How to Use this Site subsection contains
information about using and navigating the site as well hyperlinks to additional resources.

The General Information section contains six subsections: Where is my Char-
acter?, Display Problems?, Useful Resources, Enabled Products, Mail Lists
and Conferences. The main areas covered in this section include a link to the Unicode
code charts (a complete listing of code values) assembled by the Unicode Consortium as
well as a detailed outline on how to locate an encoded character in the code chart. Also, the
section contains advice on how to configure different operating systems and Web browsers
so that the Unicode characters can be viewed properly. Moreover, from this section, the
user can navigate to other sites that provide information on various topics, such as fonts,
linguistics and such other standards as the Armenian Standards Page and the Chinese GB
18030 Encoding Standard.

Appendix F Unicode® 1325

The Consortium section consists of five subsections: Who we are, Our Members,
How to Join, Press Info and Contact Us. This section provides a list of the current
Unicode Consortium members as well as information on how to become a member. Privi-
leges for each member type—full, associate, specialist and individual—and the fees
assessed to each member are listed here.

The Unicode Standard section consists of nine subsections: Start Here, Latest Ver-
sion, Technical Reports, Code Charts, Unicode Data, Updates & Errata, Uni-
code Policies, Glossary and Technical FAQ. This section describes the updates
applied to the latest version of the Unicode Standard and categorizes all defined encoding.
The user can learn how the latest version has been modified to encompass more features
and capabilities. For instance, one enhancement of Version 3.1 is that it contains additional
encoded characters. Also, if users are unfamiliar with vocabulary terms used by the Uni-
code Consortium, they can navigate to the Glossary subsection.

The Work in Progress section consists of three subsections: Calendar of Meetings,
Proposed Characters and Submitting Proposals. This section presents the user
with a catalog of the recent characters included into the Unicode Standard scheme as well
as those characters being considered for inclusion. If users determine that a character has
been overlooked, then they can submit a written proposal for the inclusion of that character.
The Submitting Proposals subsection contains strict guidelines that must be adhered to
when submitting written proposals.

The For Members section consists of two subsections: Member Resources and
Working Documents. These subsections are password protected; only consortium mem-
bers can access these links.

F.6 Using Unicode
Visual Studio .NET uses Unicode UTF-16 encoding to represent all characters. Figure F.3
uses Visual Basic to display the text “Welcome to Unicode!” in eight different languages:
English, French, German, Japanese, Portuguese, Russian, Spanish and Traditional Chinese.
[Note: The Unicode Consortium’s Web site contains a link to code charts that lists the 16-
bit Unicode code values.]

The first welcome message (lines 13–16) contains the hexadecimal codes for the
English text. The Code Charts page on the Unicode Consortium Web site contains a doc-
ument that lists the code values for the Basic Latin block (or category), which includes
the English alphabet. The hexadecimal codes in lines 13–14 equate to “Welcome.” When
using Unicode characters in Visual Basic, the format &Hyyyy is used, where yyyy represents
the hexadecimal Unicode encoding. For example, the letter “W” (in “Welcome”) is denoted
by &H57. [Note: The actual code for the letter “W” is &H0057, but Visual Studio removes
the two zeros.] Line 15 contains the hexadecimal for the space character (&H20). The hexa-
decimal value for the word “to” is on line 15 and the word “Unicode” is on line 14. “Uni-
code” is not encoded because it is a registered trademark and has no equivalent translation
in most languages. Line 16 also contains the &H21 notation for the exclamation mark (!).

The remaining welcome messages (lines 18–61) contain the hexadecimal codes for the
other seven languages. The code values used for the French, German, Portuguese and
Spanish text are located in the Basic Latin block, the code values used for the Traditional
Chinese text are located in the CJK Unified Ideographs block, the code values used for

1326 Unicode® Appendix F

the Russian text are located in the Cyrillic block and the code values used for the Japanese
text are located in the Hiragana block.

1 ' Fig. F.3: Unicode.vb
2 ' Using Unicode encoding.
3
4 Public Class FrmUnicode
5 Inherits System.Windows.Forms.Form
6
7 ' Visual Studio .NET generated code
8
9 Private Sub Form1_Load(ByVal sender As System.Object, _

10 ByVal e As System.EventArgs) Handles MyBase.Load
11
12 'English
13 lblEnglish.Text = ChrW(&H57) & ChrW(&H65) & ChrW(&H6C) & _
14 ChrW(&H63) & ChrW(&H6F) & ChrW(&H6D) & ChrW(&H65) & _
15 ChrW(&H20) & ChrW(&H74) & ChrW(&H6F) & ChrW(&H20) & _
16 "Unicode" & ChrW(&H21)
17
18 ' French
19 lblFrench.Text = ChrW(&H42) & ChrW(&H69) & ChrW(&H65) & _
20 ChrW(&H6E) & ChrW(&H76) & ChrW(&H65) & ChrW(&H6E) & _
21 ChrW(&H75) & ChrW(&H65) & ChrW(&H20) & ChrW(&H61) & _
22 ChrW(&H75) & ChrW(&H20) & "Unicode" & ChrW(&H21)
23
24 ' German
25 lblGerman.Text = ChrW(&H57) & ChrW(&H69) & ChrW(&H6C) & _
26 ChrW(&H6B) & ChrW(&H6F) & ChrW(&H6D) & ChrW(&H6D) & _
27 ChrW(&H65) & ChrW(&H6E) & ChrW(&H20) & ChrW(&H7A) & _
28 ChrW(&H75) & ChrW(&H20) & "Unicode" & ChrW(&H21)
29
30 ' Japanese
31 lblJapanese.Text = "Unicode" & ChrW(&H3078) & _
32 ChrW(&H3087) & ChrW(&H3045) & ChrW(&H3053) & _
33 ChrW(&H305D) & ChrW(&H21)
34
35 ' Portuguese
36 lblPortuguese.Text = ChrW(&H53) & ChrW(&HE9) & ChrW(&H6A) & _
37 ChrW(&H61) & ChrW(&H20) & ChrW(&H42) & _
38 ChrW(&H65) & ChrW(&H6D) & ChrW(&H76) & _
39 ChrW(&H69) & ChrW(&H6E) & ChrW(&H64) & _
40 ChrW(&H6F) & ChrW(&H20) & "Unicode" & ChrW(&H21)
41
42 ' Russian
43 lblRussian.Text = ChrW(&H414) & ChrW(&H43E) & ChrW(&H431) & _
44 ChrW(&H440) & ChrW(&H43E) & ChrW(&H20) & _
45 ChrW(&H43F) & ChrW(&H43E) & ChrW(&H436) & _
46 ChrW(&H430) & ChrW(&H43B) & ChrW(&H43E) & _
47 ChrW(&H432) & ChrW(&H430) & ChrW(&H442) & _
48 ChrW(&H44A) & ChrW(&H20) & ChrW(&H432) & _
49 ChrW(&H20) & "Unicode" & ChrW(&H21)
50

Fig. F.3 Windows application demonstrating Unicode encoding (part 1 of 2).

Appendix F Unicode® 1327

[Note: To render the Asian characters in a Windows application, you would need to
install the proper language files on your computer. To do this, open the Regional
Options dialog from the Control Panel (Start > Settings > Control Panel). At the
bottom of the General tab is a list of languages. Check the Japanese and the Tradi-
tional Chinese checkboxes and press Apply. Follow the directions of the install wizard
to install the languages. For additional assistance, visit www.unicode.org/help/
display_problems.html.]

F.7 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to
E007F (Tags), to the written characters of the world. Currently, there are code values for
94,140 characters. To simplify the search for a character and its associated code value, the
Unicode Standard generally groups code values by script and function (i.e., Latin charac-
ters are grouped in a block, mathematical operators are grouped in another block, etc.). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, etc.). The Code Charts page on the Unicode
Consortium Web site lists all the defined blocks and their respective code values.
Figure F.4 lists some blocks (scripts) from the Web site and their range of code values.

51 ' Spanish
52 lblSpanish.Text = ChrW(&H42) & ChrW(&H69) & ChrW(&H65) & _
53 ChrW(&H6E) & ChrW(&H76) & ChrW(&H65) & _
54 ChrW(&H6E) & ChrW(&H69) & ChrW(&H64) & _
55 ChrW(&H61) & ChrW(&H20) & ChrW(&H61) & _
56 ChrW(&H20) & "Unicode" & ChrW(&H21)
57
58 ' Traditional Chinese
59 lblChinese.Text = ChrW(&H6B22) & ChrW(&H8FCE) & _
60 ChrW(&H4F7F) & ChrW(&H7528) & ChrW(&H20) & _
61 "Unicode" & ChrW(&H21)
62 End Sub
63
64 End Class

Fig. F.3 Windows application demonstrating Unicode encoding (part 2 of 2).

1328 Unicode® Appendix F

SUMMARY
• Before Unicode, software developers were plagued by the use of inconsistent character encoding

(i.e., numeric values for characters). Most countries and organizations had their own encoding sys-
tems, which were incompatible. A good example is the individual encoding systems on the Win-
dows and Macintosh platforms.

• Computers process data by converting characters to numeric values. For instance, the character
“a” is converted to a numeric value so that a computer can manipulate that piece of data.

• Without Unicode, localization of global software requires significant modifications to the source
code, which results in increased cost and delays in releasing the product.

• Localization is necessary with each release of a version. By the time a software product is local-
ized for a particular market, a newer version, which needs to be localized as well, is ready for dis-
tribution. As a result, it is cumbersome and costly to produce and distribute global software
products in a market where there is no universal character-encoding standard.

• The Unicode Consortium developed the Unicode Standard in response to the serious problems cre-
ated by multiple character encodings and the use of those encodings.

• The Unicode Standard facilitates the production and distribution of localized software. It outlines
a specification for the consistent encoding of the world’s characters and symbols.

Script Range of Code Values

Arabic U+0600–U+06FF

Basic Latin U+0000–U+007F

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF

Ethiopic U+1200–U+137F

Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF

Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF

Mongolian U+1800–U+18AF

Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F

Thai U+0E00–U+0E7F

Fig. F.4 Some character ranges.

Appendix F Unicode® 1329

• Software products that handle text encoded in the Unicode Standard need to be localized, but the
localization process is simpler and more efficient because the numeric values need not be convert-
ed.

• The Unicode Standard is designed to be universal, efficient, uniform and unambiguous.

• A universal encoding system encompasses all commonly used characters; an efficient encoding
system parses text files easily; a uniform encoding system assigns fixed values to all characters;
and an unambiguous encoding system represents the same character for any given value.

• Unicode extends the limited ASCII character set to include all the major characters of the world.

• Unicode makes use of three Unicode Transformation Formats (UTF): UTF-8, UTF-16 and UTF-
32, each of which may be appropriate for use in different contexts.

• UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending on the
character being encoded) and is well suited for ASCII-based systems, where there is a predomi-
nance of one-byte characters (ASCII represents characters as one byte).

• UTF-8 is a variable-width encoding form that is more compact for text involving mostly Latin
characters and ASCII punctuation.

• UTF-16 is the default encoding form of the Unicode Standard. It is a variable-width encoding form
that uses 16-bit code units instead of bytes. Most characters are represented by a single unit, but
some characters require surrogate pairs.

• Surrogates are 16-bit integers in the range D800 through DFFF, which are used solely for the pur-
pose of “escaping” into higher numbered characters.

• Without surrogate pairs, the UTF-16 encoding form can only encompass 65,000 characters, but
with the surrogate pairs, this is expanded to include over a million characters.

• UTF-32 is a 32-bit encoding form. The major advantage of the fixed-width encoding form is that
it uniformly expresses all characters, so that they are easy to handle in arrays and so forth.

• The Unicode Standard consists of characters. A character is any written component that can be
represented by a numeric value.

• Characters are represented with glyphs (various shapes, fonts and sizes for displaying characters).

• Code values are bit combinations that represent encoded characters. The Unicode notation for a
code value is U+yyyy, in which U+ refers to the Unicode code values, as opposed to other hexa-
decimal values. The yyyy represents a four-digit hexadecimal number.

• Currently, the Unicode Standard provides code values for 94,140 character representations.

• An advantage of the Unicode Standard is its impact on the overall performance of the international
economy. Applications that conform to an encoding standard can be processed easily by comput-
ers anywhere.

• Another advantage of the Unicode Standard is its portability. Applications written in Unicode can
be easily transferred to different operating systems, databases, Web browsers and so on. Most
companies currently support, or are planning to support, Unicode.

• To obtain more information about the Unicode Standard and the Unicode Consortium, visit
www.unicode.org. It contains a link to the code charts, which contain the 16-bit code values
for the currently encoded characters.

• The Unicode Standard has become the default encoding system for XML and any language de-
rived from XML, such as XHTML.

• The Visual Basic .NET IDE uses Unicode UTF-16 encoding to represent all characters.

• In the marking up of Visual Basic documents, the entity reference &Hyyyy is used, where yyyy rep-
resents the hexadecimal code value.

1330 Unicode® Appendix F

TERMINOLOGY

SELF-REVIEW EXERCISES
F.1 Fill in the blanks in each of the following.

a) Global software developers had to their products to a specific market before
distribution.

b) The Unicode Standard is an standard that facilitates the uniform production
and distribution of software products.

c) The four design basis that constitute the Unicode Standard are: , ,
 and .

d) A is the smallest written component the can be represented with a numeric
value.

e) Software that can execute on different operating systems is said to be .
f) Of the three encoding forms, is currently supported by Internet Explorer 5.5

and Netscape Communicator 6.

F.2 State whether each of the following is true or false. If false, explain why.
a) The Unicode Standard encompasses all the world’s characters.
b) A Unicode code value is represented as U+yyyy, where yyyy represents a number in bi-

nary notation.
c) A diacritic is a character with a special mark that emphasizes an accent.
d) Unicode is portable.
e) When designing Visual Basic programs, the entity reference is denoted by #U+yyyy.

ANSWERS TO SELF-REVIEW EXERCISES
F.1 a) localize. b) encoding. c) universal, efficient, uniform, unambiguous. d) character. e) por-
table. f) UTF-8.

F.2 a) False. It encompasses the majority of the world’s characters. b) False. The yyyy represents a
hexadecimal number. c) False. A diacritic is a special mark added to a character to distinguish it from
another letter or to indicate an accent. d) True. e) False. The entity reference is denoted by &Hyyyy.

EXERCISES
F.3 Navigate to the Unicode Consortium Web site (www.unicode.org) and write the hexa-
decimal code values for the following characters. In which block are they located?

&Hyyyy notation portability
ASCII script
block surrogate
character symbol
character set unambiguous (Unicode design basis)
code value Unicode Consortium
diacritic Unicode design basis
double-byte character set (DBCS) Unicode Standard
efficient (Unicode design basis) Unicode Transformation Format (UTF)
encode uniform (Unicode design basis)
entity reference universal (Unicode design basis)
glyph UTF-8
hexadecimal notation UTF-16
localization UTF-32
multi-byte character set (MBCS)

Appendix F Unicode® 1331

a) Latin letter ‘Z.’
b) Latin letter ‘n’ with the ‘tilde (~).’
c) Greek letter ‘delta.’
d) Mathematical operator ‘less than or equal to.’
e) Punctuation symbol ‘open quote (“).’

F.4 Describe the Unicode Standard design basis.

F.5 Define the following terms:
a) code value.
b) surrogates.
c) Unicode Standard.
d) UTF-8.
e) UTF-16.
f) UTF-32.

F.6 Describe a scenario where it is optimal to store your data in UTF-16 format.

F.7 Using the Unicode Standard code values, create a program that prints your first and last
name. If you know other writing systems, print your first and last name in those as well. Use a Label
to display your name.

F.8 Write an ASP.NET program that prints “Welcome to Unicode!” in English, French, German,
Japanese, Portuguese, Russian, Spanish and Traditional Chinese. Use the code values provided in
Fig. F.3. In ASP.NET, a code value is represented the same way as in a Windows application
(&Hyyyy, where yyyy is a four-digit hexadecimal number).

