
1

Game Maker Tutorial
A First Person Shooter

Written by Mark Overmars

Copyright © 2007 YoYo Games Ltd
Last changed: February 25, 2007
Uses: Game Maker7.0, Pro Edition, Advanced Mode
Level: Advanced

In this tutorial we are going to explore the new 3D drawing functions in Game Maker.
“But I thought Game Maker was for 2-dimensional games?” you might ask. Well, yes, it
is meant for 2-dimensional games. But there are functions for 3D graphics. And many 3-
dimensional looking games actually are 2-dimensional. In this tutorial we will create a
first person shooter. Even though all the graphics will look 3-dimensional, the game
actually takes place in a 2-dimensional world. So we will use the standard machinery of
Game Maker to create this 2-dimensional game, but rather than drawing the 2-
dimensional room we will create 3-dimensional graphics instead. As we will see, this is
not very difficult. But you do need to understand GML pretty well and must not be afraid
of writing quite some pieces of code. Hence, this tutorial is for advanced users only. And
don’t forget, the 3D graphics functions are only available in the Pro Edition of Game
Maker.

We will create the game in a number of steps, starting with a simple 2-dimensional
version and then adding the 3D graphics. All partial games are provided in the folder
Examples that comes with this tutorial and can be loaded into Game Maker.

A First 2-Dimensional Game
As indicated above, the actual game play of the first person shooter will be 2-
dimensional. So we first have to create the 2-dimensional game, which we will then later
convert to 3-dimensional graphics. Because graphics are not important at this stage, we
do not need fancy sprites. All objects (player, enemies, bullets, etc.) will be represented
by simple colored disks. And there are some wall objects that will be represented by
horizontal and vertical blocks. In this section we will make a simple 2-dimensional scene
with rooms and a player character. Other items will be added later. The game can be
found in the file fps0.gmk in the Examples folder.

We will create two wall objects: a horizontal one and a vertical one. We also create one
base wall object, called obj_wall_basic. This object will become the parent of all
other wall objects (later we will create more). This will make aspects like collision
detection and drawing a lot easier as we will see. Wall objects will have no behavior. All
wall objects will be solid. So the horizontal wall object will look something like this:

2

So it is pretty boring. Only the sprite and parent are filled in.

The next object we must create is the player object. We represent it with a small blue
disk. We give it a red dot on one side to be able to see the direction it is moving in. This
is only important in the 2-dimensional version and is irrelevant in the 3D version. In its
End Step event we include a Set Variable action in which we set the variable
image_angle to direction, to let the red dot indeed point in the correct direction. At
the moment we only need to define the motion. To get a bit of smooth motion we do not
want the motion to start and abruptly. This will look quite bad in the 3D version. So we
gradually let it start moving and stop moving. To this end, in the Keyboard event of the
<Up> key we include an Execute Code action with the following code:

So it will slowly gain speed until a maximum of 2 is reached. In the <Down> Keyboard
event we do the same but in the opposite direction. In the <Left> and <Right> Keyboard
event we simply increase or decrease the direction of motion. In the Create event we set
the variable friction to 0.2 such that, once the player releases the <Up> key the speed
decreases again. (You might want to play a bit with the maximum speed, speed increase,
and friction to get the effect you want.) Finally, in the Collision event with the
obj_wall_basic object we stop the motion (this is rather ugly and we will see later
how to improve this). Because all other walls objects have the obj_wall_basic as
parent we only need to define one collision event.

Finally we need to create a level with various regions. Careful level design will be
important to create interesting game play. For the time being we restrict ourselves to the
weird looking room below.

{
 if (speed < 2) speed = min(2,speed+0.4);
}

3

Better load the game fps0.gmk into Game Maker and play a bit with it. Looks rather
boring doesn’t it?

Turning It into a 3-Dimensional Game
This is probably the most important section. Here we are going to turn our boring 2-
dimensional game into a much better looking (but actually still boring) 3-dimensional
game.

Our player object becomes the most important object. In its creation event we initialize
the 3D mode by using the following piece of code:

The first line starts 3D mode. The second line indicates that hidden surface removal is
turned on. This means that objects that lie behind other objects are not visible. Normally
this is what you want in a 3-dimensional game. The next line indicates that we are not
going to use light sources. Finally, the fourth line indicates that no culling should happen.
This is slightly more complicated to understand. When drawing a polygon in space it has

{
 d3d_start();
 d3d_set_hidden(true);
 d3d_set_lighting(false);
 d3d_set_culling(false);
 texture_set_interpolation(true);
}

4

two sides. When culling is on only one of the two sides is drawn (defined by the order of
the vertices). This saves drawing time when carefully used. But as our walls will be
viewed from both sides, this is not what we want. (Actually, these three lines are not
required because these are the default settings but we included them such that you
understand their meaning.) Finally we set the texture interpolation. This makes the
texture we use look nicer when you get close to them. (You can also set this in the
Global Game Settings.)

To make sure that the events in the player object are performed before those in other
objects, we give it a depth of 100 (you should remember that objects are treating in
decreasing depth order). We also remove the End Step event that we added in our 2D
version of the game to indicate the direction. This is no longer required and would
actually lead to problems later on.

The next thing to do is that the walls should become nice looking and are drawn in the
correct way. To this end we will need to use some textures. In this tutorial we use a
number of textures, some of them created by David Gurrea that can be found on the site
http://www.davegh.com/blade/davegh.htm. (Please read the conditions of use stated
there. Because of these conditions, the textures are not included with this tutorial. You
should download them yourself.) We reduced them all in size to 128x128. It is very
important that the sizes of textures are powers of 2 (e.g. 64, 128, 256) otherwise they
won’t match up nicely. Here is the wall, ceiling, and floor texture we will use:

We add these three images as background resources to the game. To let each wall object
draw a wall with this background texture we need to know what the coordinates of the
wall should be. We set this in the Create event of each individual wall object (because it
will be different for each). For example, for the horizontal wall we put the following code
in the Create event:

{
 x1 = x-16;
 x2 = x+16;
 y1 = y;
 y2 = y;
 z1 = 32;
 z2 = 0;
 tex = background_get_texture(texture_wall);
}

5

The last line requires some explanation. The function background_get_texture()
returns the index of the texture corresponding to the indicated background resource. We
will use this later when indicating the texture used to draw the wall. We put a similar
piece of code in the creation event for all other wall objects.

To actually draw the wall will happen in the Draw event of the obj_wall_basic
object. Here we include a Code Action with the following piece of code:

It draws a wall, using the values that we set in the creation events. The last two
parameters indicate that the texture must be repeated just once in both directions, so it
fills the whole wall. Repeated textures can be used to fill large areas.

We are almost done. We still need to indicate how we look at the world and we must also
draw the floor and ceiling of the rooms. This we will do in the draw event of the player
object. The player object will from now on serve the role of the camera that moves
through the world. Here we include an Execute Code action with the following piece of
code:

There are three parts here. In the first part we set the projection through which we look at
the room. The function d3d_set_projection() takes as its first three parameters the
point from which we look, as the next three parameters the point we look towards, and as
the last three parameters the upward direction (can be used to give the camera a twist).
We look from position (x,y,10), that is, the position were the camera is but a bit higher in
the air. The point we look towards looks rather complicated but this is simply a point that
lies one step in the direction of the player. Finally we indicate that the upward direction
of the camera is the z-direction (0,0,1).

The second part simply sets alpha to 1 meaning that all objects are solid. It also sets the
color to white. This is important. Textures are actually blended with the current color.

{
 // set the projection
 d3d_set_projection(x,y,10, x+cos(direction*pi/180),
 y-sin(direction*pi/180),10, 0,0,1);
 // set color and transparency
 draw_set_alpha(1);
 draw_set_color(c_white);
 // draw floor and ceiling
 d3d_draw_floor(0,0,0,640,480,0,
 background_get_texture(texture_floor),24,18);
 d3d_draw_floor(0,0,32,640,480,32,
 background_get_texture(texture_ceiling),16,12);
}

{
 d3d_draw_wall(x1,y1,z1,x2,y2,z2,tex,1,1);
}

6

This is a useful feature (you can for example make the ceiling red by setting the drawing
color to red before drawing the ceiling). But most of the time you want a white blending
color. (The default drawing color in Game Maker is black so if you do not change it, the
whole world will look black.)

In the third part we draw the floor and ceiling (at height 32) using the correct textures. As
you see we indicate that the texture must be repeated many times over the ceiling rather
than being stretched all over it.

That is all. The game can be found in the file fps1.gmk in the Examples folder. You
can now run the game and walk around in your world. Suddenly our game looks
completely different, even though it is in fact still our 2-dimensional game. Only the
graphics has become 3D. The game should look something like this:

Improving the Experience
In this section we are going to improve on the “game” created in the previous section.
First of all we will add some more variation, by using different kinds of walls. Secondly
we will improve the level design. To improve the visual appearance (and add some
creepiness) we will add fog to the world. And finally we will improve the motion through
the world.

7

More variation in walls
The world as we designed it up to now looks rather boring. All walls look the same. Not
only is this boring, it makes it also difficult for the player to orient himself in the world.
This is bad game design (unless it is the intention of the game). It is more user-friendly if
the player can more easily remember where he is and where he came from.

The solution to this problem is rather trivial. We add a number of additional textures in
the game and make a number of additional wall objects. These will be exactly the same
as the other ones, except that in their Create event we assign a different texture to them.
Remember to give all the wall objects the obj_wall_basic wall as their parent. By
using different colored sprites for the different wall it is easier to create the levels. (Note
that these sprites are not used in the game but they are shown in the levels.)

Better level design
The current level has a number of problems. First of all, there are wall that look very flat
because you can see both sides of them. This should be avoided. Secondly, we tried to fill
up the whole level with regions. Even though this is normal for real buildings, it is not
very good for games. To get interesting surprises we better have a sparser set of areas
with corridors between them. By adding turns in the corridors we reduce the part of the
world that the player can see at any one time. This increases the feeling of danger. You
never know what will lie behind the next corner. (As we will see below there is another
reason for laying out the level in a more sparse way. It enables us to make the graphics
faster by drawing only part of the level.)

To create a sparser level we will need more space. So we will increase the size of the
room quite a bit. To avoid that this also changes the size of the window, we use a single
view of the window size we want. The position of the view in the room does not matter
because we anyway set the projection ourselves. Here is an image of part of the new
level. The different colored walls correspond to different textures. You can find the new
game in the file fps2.gmk.

8

Adding fog
To add a scarier feel you can add fog to your game. The effect of fog is that objects in the
distance look darker than objects that are nearby (or lighter, depending on the color of the
fog). When an object is really far away it becomes invisible. Fog adds atmosphere to the
game, gives a better feeling of depth and distance, and makes it possible to avoid drawing
objects that are far away, making things faster. To enable fog, just add the following line
to the Execute Code action in the Create event of the player object (after enabling 3D).

If enables the fog, with a black color, starting at distance 10, and becoming completely
black at distance 300. (Note that on some graphics cards fog is not supported. So better
make sure that your game does not depend on it.) With fog enabled, the world looks as
follows:

 d3d_set_fog(true,c_black,10,300);

9

Better motion
What remains to be done is to improve the motion control. When you hit an object you
stop moving at the moment. This is not very nice and makes walking through corridors
more difficult. When you hit a wall under a small angle, you should slide along the wall
rather than stop. To achieve this we need to make some changes. First of all, we no
longer make the walls solid. When objects are solid we cannot precisely control what
happens in case of a collision because the system does this for us. But we want all the
control. So all wall objects are made non-solid. In the collision event we include an
Execute Code action with the following piece of code:

{
 x = xprevious;
 y = yprevious;
 if (abs(hspeed) >= abs(vspeed) &&
 not place_meeting(x+hspeed,y,obj_wall_basic))
 { x += hspeed; exit;}
 if (abs(vspeed) >= abs(hspeed) &&
 not place_meeting(x,y+vspeed,obj_wall_basic))
 { y += vspeed; exit;}
 speed = 0;
}

10

You should read this code as follows. In the first two lines we set the player back to the
previous position (to undo the collision). Next we can check whether we can move the
player just horizontal (sliding along horizontal walls). We only do this when the
horizontal speed is larger than the vertical speed. If the horizontal slide position is
collision free with the walls we place it there. Next we try the same with sliding
vertically. If both fail we set the speed to 0 to stop moving.

A second change we make is that we allow for both walking and running. When the
player presses the <Shift> key we make the player move faster. This is achieved as
follows: In the <Up> and <Down> Keyboard events we test whether the <Shift> key is
pressed and, if so, allow for a faster speed, as follows:

A last issue is that in most First Person Shooter games the player is also able to strafe,
that is, move left and right sideways. For this we use the <z> and <x> key. The motion
should perpendicular to the current direction the player is facing. For the <z> key the
code becomes:

A similar piece of code is required for the <x> key. You can try out the game in the file
fps2.gmk for the effect.

Adding Objects in the World
Our world is still rather empty. There are only some walls. In this section we are going to
add some objects to our world. These are mainly for decoration but the player (and
opponents) can also hide behind them. There are globally speaking two ways of adding
objects to the world. The first way is to create a 3-dimensional object consisting of
texture mapped triangles. This gives the nicest effect but is rather time consuming, both
to create and to draw. Instead, we will simply use sprites to represent these objects in our
world. We will use this technique for everything in our world: the bullets, plants,
weapons, explosions, etc. But things are slightly more difficult than it seems. As sprites
are flat, if we look from the wrong direction, they will not be visible. We will solve this
by keeping sprites facing the player.

{
 var maxspeed;
 if keyboard_check(vk_shift) maxspeed = 3 else maxspeed = 1.5;
 if (speed < maxspeed) speed = min(maxspeed ,speed+0.4);
}

{
 var xn,yn;
 xn = x - sin(direction*pi/180);
 yn = y - cos(direction*pi/180);
 if not place_meeting(xn,yn,obj_wall_basic)
 { x = xn; y = yn; }
}

11

Facing sprites
As an example, we are going to create a plant object that we can place in the rooms to
make the world look more interesting. Like the player and the wall segments we use a
very simple sprite to represent the plant in the room. This is easy for designing the room
and will be used for collision checking such that the player cannot walk through the plant.
We create a plant object and give it as parent again our basic wall object. So for the
player (and later for bullets) the plant will behave like a wall. We will though overwrite
the draw event because we must draw something else. For drawing the plant we need a
nice sprite. This sprite will be partially transparent and to make the edges look better we
switch on the option to smooth the edges. In the drawing event we use this sprite image to
draw the plant on a vertical wall. Because the sprite is partially transparent you only see
that particular part of the wall.

There is though one important issue. The sprite is a flat image. If you would look at it
from the side it becomes very thin and even disappears. To solve this we can use a simple
trick that is used in many other games as well. We let the sprite always face the camera.
So independent of the direction from which you look, the sprite will look the same. It
kind of rotates with you. Even though this might sound unnatural the effect is pretty
good. So how do we do this? We need a little bit of arithmetic for this. The following
picture shows the situation. The arrow indicated the direction the player is looking,
denoted with D. The black rectangle represents the sprite. Assuming the sprite has a
length of 2L, the positions of the two corners are:

• (x-L.sin(D*pi/180),y-L.cos(D*pi/180))
• (x+L.sin(D*pi/180),y+L.cos(D*pi/180))

The following piece of code can e.g. be placed in the drawing event for the plant object.

In the code we determine the correct sprite texture, compute the two values indicated
above, and then draw the sprite on a 14x20 size wall that is standing on the floor, rotated

D

L

L

{
 var ss,cc,tex;
 tex = sprite_get_texture(spr_plant,0);
 ss = sin(obj_player.direction*pi/180);
 cc = cos(obj_player.direction*pi/180);
 d3d_draw_wall(x-7*ss,y-7*cc,20,x+7*ss,y+7*cc,0,tex,1,1);
}

12

in the correct direction. Clearly the precise size and position depend on the actual object
that must be drawn.

If there are multiple sprites that must be drawn this way it is actually easier to store the
sine and cosine in global variables, updated by the player object, rather than recomputing
them for each sprite that must be drawn. This is the way we will do it in the game we are
creating. In the End Step event of the player object we store the two values in global
variables camsin and camcos.

There is one important issue. As the edges of the sprite are partially transparent (by
smoothing them) we have to be careful with the order in which objects are drawn.
Partially transparent (alpha blended) sprites are only blended with objects that have been
drawn earlier. To get the required effect alpha blended sprites must be drawn after all
other objects are drawn. This can easily be achieved by giving the plant objects (and
others ones) a negative depth. The result of adding some plants looks like this:

In this way you can create many other objects in your game that you can place in the
rooms. (But don’t overdo it. This might make the game slow and hamper game play.)

Animated objects
We can also create animated objects in a similar way. There are just two important issues.
First of all, we need a sprite that consists of several subimages for the animation. We
must make sure that the actual sprite we use to represent the object has the same number
of subimages, otherwise we cannot use the built-in image_index variable. Secondly, in
the drawing event we must pick the texture corresponding to the correct subimage using

13

the image_index variable. Here is a typical piece of code that could be executed in the
draw event of some explosion object. As can be seen it also uses alpha settings.

The game we created so far can be found in the file fps3.gmk.

Shooting
Because this is supposed to be a shooter we better add the possibility to shoot. In this
section we will only allow the shooting of barrels that we will place in the game world. In
the next section we will add monsters.

Adding barrels
To shoot some barrels we need an image of a barrel. We actually need two, one when the
barrel is standing still, and one when it is exploding. We borrow some images for this
from Doom. These can be found on http://www.cslab.ece.ntua.gr/~phib/doom1.htm.
These are both animated sprites. We also need two sprites to represent them in the room.
To get a correct animation, it is important that these sprites have the same number of
subimages as the actual animations. We create a barrel object and an exploding barrel
object. Both we give the basic wall object as parent such that we cannot walk through
them. The barrel object we place in the room at different locations. Because it has only
two subimages we set the variable image_speed to 0.1 in the Create event to slow
down the animation. In the draw event we draw the correct subimage on a facing wall as
was indicated above.

When the barrel is destroyed (so in the Destroy event) we create an exploding barrel
object at the same place. For this object we again set a slower animation speed. Because
the barrel does not immediately explode we set an alarm clock such that the explosion
sound is only played after a short while. We draw it in the same way as above, except that
we use one trick. We slowly decrease the alpha value such that the explosion becomes
more translucent over time. In the draw event we add the following line for this:

Finally, in the Animation End event we destroy the exploding barrel. The game can be
found in the file fps4.gmk.

{
 var ss,cc,tex;
 tex = sprite_get_texture(spr_explosion,image_index);
 ss = sin(obj_player.direction*pi/180);
 cc = cos(obj_player.direction*pi/180);
 draw_set_alpha(0.7);
 draw_set_color(c_white);
 d3d_draw_wall(x-8*ss,y-8*cc,2,x+8*ss,y+8*cc,18,ttt,1,1);
 draw_set_alpha(1);
}

 draw_set_alpha(1-0.05*image_index);

14

You could easily add some extra stuff, e.g. that nearby barrels explode as well and that
the explosion hurt the player when he is nearby, but we did not implement such features
in this simple game.

The gun
For the gun we will again use an animated sprite. This sprite has images for the stationary
gun (subimage 0) and for the shooting and reloading of the gun. Normally we only draw
subimage 0 (so we set the image_speed to 0) but when a shot is fired we must go once
through the whole animation. We want to put the gun as an overlay on the game. To
achieve this a few things are required. First of all, we must make sure that the gun object
is drawn last. This is done by giving the gun object a depth of -100. Secondly, we must
no longer use the perspective projection but change the projection in the normal
orthographic projection. And finally we must temporarily switch off hidden surface
removal. The code for the Draw event for the gun object looks as follows:

Note that we scale the sprite with a factor 2 and both directions. Otherwise it is too small.
As in the next step the Draw event of the player object sets the projection back to a
perspective projection, we do not need to change it back here.

A similar technique can be used for all overlays you need. Below we will use it also for
displaying the health of the player and you can for example use it to give instructions,
display statistics, etc. You can also make the overlay partially translucent by changing the
alpha value before drawing it.

The shooting
We now have the barrel to shoot and the gun, but we still do not have the shooting
mechanism implemented. Because this is a shotgun, bullets go very fast. So it is not an
option to create a bullet object. Instead, at the moment the player presses the <Space>
key, we must determine the object that is hit and, if it is a barrel, let it explode.

First of all we introduce a variable can_shoot in the gun object that indicates whether
the player can shoot a bullet. We set it to true in the Create event of the gun object.
When the player presses the <Space> key we check it. If the player can shoot we set it to
false, and start the animation of the gun by changing the image speed. In the Animation
End event we set can_shoot again to true and set both image_index and
image_speed to 0. As a result, the player cannot shoot continuously.

To determine what the bullet hits we proceed as follows. We take small steps from the
current position of the player in the current direction. For each position we check whether

{
 d3d_set_projection_ortho(0,0,640,480,0);
 d3d_set_hidden(false);
 draw_sprite_ext(sprite_shotgun,-1,0,224,2,2,0,c_white,1);
 d3d_set_hidden(true);
}

15

an object is hit. As all interesting objects are children of the basic wall object we only
check whether there is such an instance at the location. If so, we check whether it is a
barrel. If so we destroy the barrel. Whenever we hit a basic wall object we stop the loop
because this will be the end of the path of the bullet. The code we place in the Keyboard
event for the <Space> key looks as follows:

In the file fps4.gmk the result can be found. (The code is slightly different as we store
the camera’s position and the required sin and cos in global variables to speed up some
calculations, but the idea is exactly the same.)

Adding Opponents
It is nice that we can shoot some barrels but the fun of that is soon gone. We will need
some opponents. In this tutorial we will add just one type of monster but once you
understand how this works, it is easy to add more. For the monster we need two animated
sprites, one for when it is alive and one for when it is dying. Both we took from the
Doom site mentioned above. We also need a sprite to represent the monster in the room
that is used for collision detection.

We make two objects, one for the monster that is alive and one for the monster that is
dying. For both we set the animation speed correctly. When the monster dies we create a
dying monster at the same position. This all works exactly the way as for the barrel.
There is just one difference. At the end of the dying animation we do not destroy the dead
monster but we keep it lying around, just showing the last subimage of the animation. To
this end in the Animation End event we include a Change Sprite action and set the
correct subimage (7) and set the speed to 0.

To be able to shoot the monsters we can again proceed in the same way as for the barrel.
But we have to make a few changes. First of all, we do not want monsters to be children
of our basic wall object. This will give problems when they walk around. So we create a
new object obj_monster_basic. This will be the parent object for all monsters (even

{
 var xx, yy, dx, dy, ii;
 xx = obj_player.x;
 yy = obj_player.y;
 dx = 4*cos(obj_player.direction*pi/180);
 dy = -4*sin(obj_player.direction*pi/180);
 repeat (100)
 {
 xx += dx;
 yy += dy;
 ii = instance_position(xx,yy,obj_wall_basic);
 if (ii == noone) continue;
 if (ii.object_index == obj_barrel)
 with (ii) instance_destroy();
 break;
 }
}

16

though we have just one now). A second change is that we want to be able to shoot
through plants. So we also create a basic plant object. (The basic plant object will have
the basic wall as parent because we do not want to be able to walk through the plants.)
The shooting code is now adapted as follows:

It is largely the same as above. We first check whether a wall is hit. If not, we check
whether a monster is hit and, if so, destroy it. If a wall was hit we check whether the
instance is a type of plant and if so continue (so the bullet will fly through the plant).
(The function object_is_ancestor(obj1,obj2) returns whether obj2 is an
ancestor of obj1.) Finally, if we hit the barrel we will let it explode. You can find the
game in the file fps5.gmk.

The final thing to do is to let the monster attack the player. This monster will not shoot
but simply walk towards the player. When it hits the player the player should loose some
health. A health mechanism is built into Game Maker as you should know. In the creation
event of the player we set the health to 100. In the gun object, that also functions as our
overlay, we also draw the health bar, slightly transparent, as follows:

And in the No More Health event we simply restart the game (a bit boring; think of
something better).

 draw_set_alpha(0.4);
 draw_healthbar(5,460,100,475,health,c_black,c_red,c_lime,
 0,true,true);
 draw_set_alpha(1);

{
 var xx, yy, dx, dy, ii;
 xx = obj_player.x;
 yy = obj_player.y;
 dx = 4*cos(obj_player.direction*pi/180);
 dy = -4*sin(obj_player.direction*pi/180);
 repeat (50)
 {
 xx += dx;
 yy += dy;
 ii = instance_position(xx,yy,obj_wall_basic);
 if (ii == noone)
 {
 ii = instance_position(xx,yy,obj_monster_basic);
 if (ii == noone) continue;
 with (ii) instance_destroy();
 break;
 }
 if object_is_ancestor(ii.object_index,obj_plant_basic) continue;
 if (ii.object_index == obj_barrel)
 with (ii) instance_destroy();
 break;
 }
}

17

To let the monsters attack the player we put the following code in the Begin Step event
of the monster object:

This does the following: If the distance from the monster to the player is large then we do
nothing and simply set the speed to 0. If the monster cannot see the player (the line
between them collides with a wall) we also do nothing. Only when the monster can see
the player it starts moving towards it. If the distance is less than 12 we assume that it hits
the player so we stop it and start subtracting health and play a sound. Otherwise we move
towards the player position with a given speed. (Note that the first test could be removed
but the function to test for a collision with a line is rather expensive so we only want to
do this if the monster is nearby.) To avoid walls, the monster can use the same sliding
mechanism that we gave the player. (We actually put this in the basic monster because it
is most likely the same for all monsters.)

Now we must place some monsters at vital places in our world and we are done. We have
our first person shooter ready. The game can be found in the file fps5.gmk. Clearly, to
make it more interesting you should create an exit to the next room, guarded by monsters,
and then create a number of additional rooms. You should also create some additional
monsters, and add some other objects in the world, like health packs. Also you could
give monsters a health, requiring multiple shots, and you could maybe find better guns
and ammunition. It is up to you to extent it. Some basic additional ideas though will be
discussed below.

{
 if (point_distance(x,y,obj_player.x,obj_player.y) > 200)
 { speed = 0; exit; }
 if (collision_line(x,y, obj_player.x,obj_player.y,
 obj_wall_basic,false,false))
 { speed = 0; exit; }
 if (point_distance(x,y, obj_player.x,obj_player.y) < 12)
 {
 speed = 0; health -= 2;
 if not sound_isplaying(snd_ow) sound_play(snd_ow);
 exit;
 }
 move_towards_point(obj_player.x,obj_player.y,1.4);
}

18

Other Issues
In this section we will discuss a few other issues that you might want to incorporate in
your game.

Clipping
When walking through our 3-dimensional world you see only a small part of it.
Unfortunately, the system does not know what part you see. So all objects (at least, those
in front of you) are drawn. This is quite a waste of time and even on fast graphics cards
this can lead to a slow frame-rate, especially when the room is large. All 3-dimensional
games must consider this issue and avoid the drawing of unnecessary objects as much as
possible.

One way to do this is to create small levels. You can then use special points such as
teleporters to move from one level to the next. You can also do this in ways in which the
user does not notice it. For example, you can make a winding corridor. You put this
corridor in both levels. Halfway the corridor you jump from one level to the next. As the
player cannot see the rest of the level, he will not notice. (You should use persistent
rooms for this to make it possible for the player to return to the previous place. You can
achieve similar effect by using doors, or elevators.

Another way is to use clipping. When using clipping we only draw the objects that are
close to the player. Whenever we draw something we first check whether the object is
close enough. To make this fast we store the current position of the player (the camera) in
two global variables camx and camy. Next, in the Draw event of every wall, plant,
monster, etc. we add the following test:

19

So if the distance to the camera is large we don’t do anything. The value of 240 depends
on your room design. Better make sure that are no places where you can look through
long corridors. Also give the room a black background color such that if there is a place
where you can look further it will simply be black, which fits nicely with our black fog.
You can find the game with this and some of the other changes mentioned below in the
file fps6.gmk. If you have a slow graphics card it should run much better than the
previous one. (If you have a fast graphics card you might want to change the room speed
to see the effect.)

When rooms get larger and have more objects in them the effect will become even
clearer. You could even more cleverly try to determine which instances must be drawn.
Commercial games use portal techniques in which they store for each area in the level
which other areas are potential visible and only draw those. This can improve the speed
even further.

Doors
It is a nice additional feature to put doors between rooms and corridors. This can create
addition tension when playing the game. What is behind the door? Will there be monsters
on the other side? Also you can force the player to follow the level in a particular way by
providing buttons that open certain doors.

Here we will add some simple doors to our game: doors that slide sideways when hit by a
bullet. Doors that slide up or down are also easy. Rotating doors are a bit more
complicated because you must handle the situation in which there is a monster or player
blocking the door.

To add the door we first need a texture for it. We add this as a background, just like a
wall. We also need a sprite to represent it in our room design and for collision detection,
like the other walls. We create two objects (that is easier although you could also do it
with one). The first object is the closed door. It looks exactly the same as the horizontal
wall object, except that in its Destroy event it creates an instance of the sliding wall
object. Again we give it the basic wall as the parent to make sure the player and monsters
cannot walk through it.

The second object is the sliding door. It looks like the closed door but in its Create event
we give it a horizontal speed of 1. Also we set an alarm clock to 32 and in the Alarm
event we set the speed to 0 (we could actually also destroy the object). Finally, in its step
event we adapt the x1 and x2 positions to make sure the texture is drawn at the correct
place. This finishes the sliding wall.

We also must make sure the door can be opened. We decided that we open the door when
the player shoots it. To this end, in the <Space> event of the overlay object (where the
shooting is handled) we change the code at the end as follows:

 if (point_distance(x,y,global.camx,global.camy) > 240) exit;

20

That is all. Place a few strategic doors in the room. Make sure they can safely slide into
the wall, so don’t place them at the end of the walls. The result can be found in the file
fps6.gmk. Of course, to make it all more interesting you should also add vertical sliding
doors and maybe door that move left and right.

Floors and ceilings
In the game we created so far we made one large floor and one large ceiling. Even though
this is easy it is also rather boring. This can easily be solved. You can create a number of
different textures for different floors and ceilings and then you can make some different
floor and ceiling objects that draw part of this. They are very simple objects as they have
no further behavior (unless you want floors and ceilings to move). You place these at the
appropriate positions in the room and you are done. Better make the floor and ceiling
segments rather large, otherwise you need too many of them.

You can even give the ceiling pieces different heights. In this way you can create high
and low areas in your world. Make sure though that the walls are also high enough.
Giving different heights to the floor is also possible but more complicated. You must also
adapt the height of the player and of the monsters and other objects, based on the floor
they stand on. This requires some additional calculations. And you must decide, based on
the height difference, whether the play can walk from one surface to the next.

One you have created all this it is also easy to create forbidden parts of the floor. For
example, you can give a floor part a lava texture (you can even make it animated). To
avoid the player to walk onto the lava the easiest solution is to place invisible wall
segments around it.

We did not implement all these options in the example game but you should by now be
able to experiment with it yourself.

Making a Game Out of It
Clearly, what we created so far is not really a game. But it gives you the basis to make
one. You should add many more different monsters with different behavior, different
textures to make the world look more interesting, different weapons, different sound
effects, and various additional objects. Also careful level design is very important. Note
that adding all of this might require too many textures to store at the same moment. But if
you don’t use all of them at once you can easily use the functions or actions to replace
sprites and backgrounds from a file. This has the additional advantage that for example
the number of different wall objects you need is limited. In the next level you can simply
use the same but, because you replace the textures, they look differently. You might want
to consult the forums and other help at our website http://www.yoyogames.com for more
ideas and techniques.

 if (ii.object_index == obj_barrel) || (ii.object_index == obj_door)
 with (ii) instance_destroy();
 break;

